

Boosting Location-Based Services with a Moving Object Database Engine

Nikos Pelekis, Yannis Theodoridis June 25, 2006,

Dept of Informatics, Univ. of Piraeus, Hellas {npelekis, ytheod}@unipi.gr

MobiDE'06, June 25, 2006, Chicago, Illinois, USA.

Presented by: Thomas Winterberg

Outline

- I) Motivation
- 2) Types
- 3) Moving types
 - a) Idea
 - b) Operations on moving objects
 - c) Interation with temporal and spatial domains
 - d) Set Relationship
- 4) Hermes LBS(Location Based Service) tool
- 5) Related work
- 6) Evaluation

I) Motivation

- Develop a plugin to an Object Relational DBMBS(ORDBMS).
- The plugin named Hermes-MDC(Moving Data Catridge) should provide temporal functionality to the database (spatio-temporal functionality).
- Hermes-MDC supports modelling and querying of moving objects (Types).
 Objects that change location, shape and size either discretly or continously in time.

2) Types The movement an object in time and the corresponding trajectory

2) Types

System overview Spatial types:

Basic idea of moving types

- Decompose temoporal development of a moving type into slides.
- Continuously \rightarrow Discrete. Reduce number of points to be saved
- More easy to accomodate discrete changing objects in databases

Figure 2 Moving Point with various types of movement

 Decompose definition of each moving type into sub-definition(=unit moving type) and compose these definitions as a collection to define the moving type.

Basic idea of moving types

Definition 1: Unit_Function = $_{d}\langle x_i:double, y_i:double, x_e:double, y_e:double, x_c:double, y_c:double, (x_i,y_i) \rightarrow (x_e,y_e)$ $v:double, a:double, flag:TypeOfFunction\rangle$, where $\Pi TypeOfFunction T=\{ CONST, PLNML_1, ARC_{1..8>} \}$

Definition 2: Unit_Moving_Point = _d (p: Period(SEC), m: Unit_Function) Unit_Moving_Point + associate period of time e.g [b,e) where b is beginning and e is ending point

Unit_Moving_Segment (change shape/form)

Definition 5: Unit_Moving_Segment = $_d \{ \langle b: Unit_Moving_Point, e: Unit_Moving_Point, \\ m: Unit_Moving_Point, kind:TypeOfSegment \rangle \mid (kind = SEG \Rightarrow equal (b.p, e.p)) \land (kind = ARC \Rightarrow equal (b.p, e.p, m.p)) \}$, where Π TypeOfSegment $T = \{ SEG, ARC \}$

Structure of the Moving_LineString Object

3.a) Moving types UML: Hermes-MDC architecture and Java Collection

Operations on moving objects

2 Types of operations:

• Time dependant: User-defined time point/at given instant.

• Time independant: % Timepoint<SEC>. Models <u>sequence</u> of time intervals that 2 objects are within. Return type is Moving_Object

Operations on moving objects

- Boolean {Moving_Object} within_distance(distance, Moving_Point, tolerance, Timepoint<SEC>)
- Determines if two moving objects are within some specified distance from each other at a user-defined time point.
- WHERE kind ='test' AND truck245.within_distance(50000,location,now)

Operations on moving objects

Examples topological relationships:

mask:ANYINTERACT -Returns TRUE if the objects are not disjoint.

 Varchar2{Moving_Object}relate (mask, Moving_Polygon, tolerance, Timepoint<SEC>

Operations on moving objects

Examples distance:

 Number {Moving_Object} distance(Moving_Point, tolerance, Timepoint<SEC>)

3.c) Interation with temporal and spatial domains

Restriction:

Moving_Point at_periode(Period<SEC>)
 Delimit time period that is meaningful to ask the projetion of the moving object.

Find object:

 Moving_Point at_Linestring(SDO Geometry) An object moves on a linestring geometry during a route. Find the position of the object.

3.c) Interation with temporal and spatial domains

 $temporalElement\langle g \rangle =_d \{te: set\langle period\langle g \rangle \rangle \mid \forall i, j \cdot i \neq j \Longrightarrow te_i \cap te_j = \emptyset \}$

Temp Element:

- Temp_Element<SEC>temp_element()
- Project time periods that form unit moving objects. Concatenate these periods to a temp element.

3.d) Set Relationship

- Geometry{Moving_Point} intersection(Geometry, tolerance, Timepont<SEC>).
- Possible to define entering/leaving locations.
- Can be used to check whether a car (moving point) is intersecting with an area containing heavy rain (geometry).

4) Hermes LBS tool / experiental results

- System extension that provides spatio-temporal functionality to Oracle10g ORDBMS.
- Extends PL/SQL DML and DDL of Oracle 10g \rightarrow result \rightarrow query language.
- Developed a prototype application for travelers entering the area of an airport.
 spatial = ground plan of airport, random trajectories of travelers moving around the area.

4) Hermes LBS tool / experiental results

• The LBS tool

Figure 7 Visualization of enter/leave points in an area of interest

5) Related work – Dat5 project

- Weather forecasting on a route
- We receive a weather forecast every 5 minutes
- A user wants to know whether there is a risk of rain on her path
- The user is a moving object
- The rainy weather is a geometry
- When the 2 objects intersect there is rain on the path

6) Evaluation

Good points

- Can be implemented in the real world.
- Data catrigde can be a system extension that provides spatio-temporal functionality to e.g. Oracle10g.
- Clear idea of the paper

6) Evaluation

Could be improved

- The term string on page 4 paragraph I could be more clarified e.g. by an illustration.
- The definitions 8 and 9 on page 5 in section 2.2 could have a more obvious description (e.g what is a ulong ?).
- The mask relationships on page 7 line 24 could be exemplifed e.g. by ANYINTERACT.
- The figure 5 on page 7 could have an explanation for why there is a gap
- Summarize the article is short. It could be longer with more clarified definitions.