Audio Identication using N-grams Martin Møller Larsen Anders Skovsgaard

Lars Tabro Sørensen

Outline

- Motivation
- Demonstration
- Related Work
- Fingerprint Technique
- The Proposed Algorithm
- Test Results
- Next Semester
- Questions

Motivation

- Compact string fingerprint suited for mobile devices.
- Generic backend for fingerprint searching.
- Audio Identification using small sample data.
- Fast and precise database lookup.

Demonstration

Related Work

- Sony/Ericsson TrackID
- Levenshtein distance (fuzzy searching)
- Spell checkers
- Suffix tree
 - Longest common substring
- DNA searching techniques.
 - Also represented as strings.
 - Is too strict.
 - BLAST
 - SSAHA hashing, n-grams

Fingerprint

- For each song we got we create fingerprint
- The steps in the FutureProofFingerPrintFunction:
 - Decodes the audio to PCM and converts it to mono
 - Then it is resampled to sample rate of 8 KHZ
 - A low-pass filter is used on the input signal
 - The input signal is analyzed in pieces of 500 ms
 - A fast Fourier Transformation is to get the frequency domain

Fingerprint

- When the frequency domain is analyzed we generate a symbol each 62,5 ms from the codebook
- The codebook contains the vectors which corresponds to a specific frequency domain

Based on the SSAHA but with character position threshold.

Example:

Building index:

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q

s = <u>**EH</u>FFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q</u></u>**

EH	Song METADATA
	Pos: o

s = E<u>HF</u>FNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q

EH	Song METADATA
	Pos: o
HF	Song METADATA
	Pos: 1

s = EH<u>FF</u>NNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q

EH	Song METADATA
	Pos: o
HF	Song METADATA
	Pos: 1
FF	Song METADATA
	Pos: 2

s = EHF<u>FN</u>NFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q

EH	Song METADATA
	Pos: o
HF	Song METADATA
	Pos: 1
FF	Song METADATA
	Pos: 2
FN	Song METADATA
	Pos: 3
	•••

Example:

Searching the database:

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Qq = N9FFNFF

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Q $q = \underline{N9}FFNFF$

Gram	Pos in q	Pos in s	Group	
N9	0	9	9 -	

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Qq = N9FFNFF

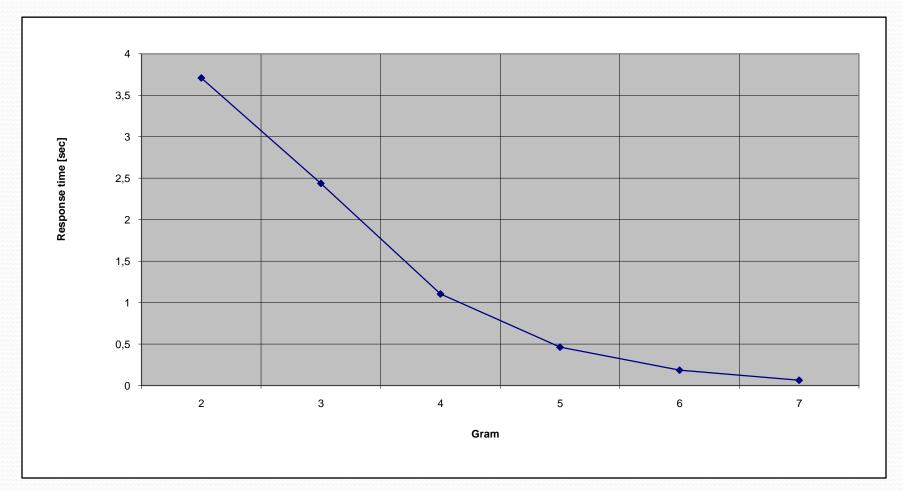
Gram	Pos in q	Pos in s	Group		
N9	0	9	9 -		
9F	1	10	9		

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Qq = N9FF

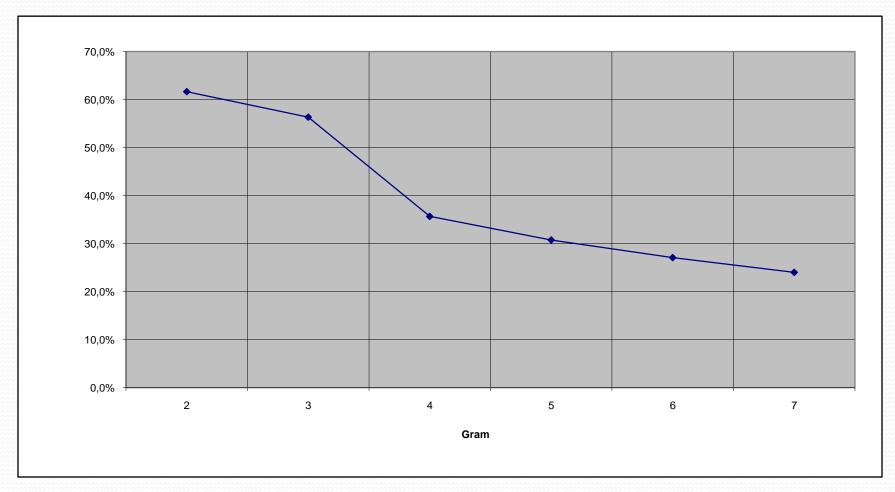
Gram	Pos in q	Pos in s	Group	
N9	0	9	9	
9F	1	10	9	
FF	2	2	0	
		6	4 —	
		11	9	
		15	13 —	

s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Qq = N9FFNFF

Gram	Pos in q	Pos in s	Group	
N9	0	9	9	
9F	1	10	9	
FF	2	2	0	
		6	4	_
		11	9	
		15	13	
FN	3	3	0	
		7	4	
		12	9	



Gram	Pos in q	Pos in s	Group	Gram	Pos in q	Pos in s	Group
N9	0	9	9 -	NF	4	5	1
9F	1	10	9			14	10
FF	2	2	0 -				
		6	4 —				
		11	9				
		15	13 -				
FN	3	3	0				
		7	4				
		12	9				


s = EHFFNNFFNN9FFNNFFvvvvQ/rrrttAZvNNtttAAA99Qq = N9FFNFF

Gram	Pos in q	Pos in s	Gro	oup	Gram	Pos in q	Pos in s	Group
N9	0	9	9		NF	4	5	1
9F	1	10	9				14	10
FF	2	2	0		FF	5	2	-3 💻
		6	4	_			6	1
		11	9				11	6 —
		15	13	-			15	10
FN	3	3	0					
		7	4					
		12	9					

Test Results

Test Results

Next Semester

- Improve the algorithm so that it can search for similar string using techniques like levenshtein
- Optimize the system for even larger database with more songs

Questions

- Is it possibly to define a relationship between our output symbols from our codebook in order to use the levenshtein technique?
- 2. How can the fingerprint system be improved so it is more robust regarding distorted sound recording?
- 3. Is there more relevant performance studies?