Indexing the Positions of Continuously
Moving Objects

Simonas Saltenis Christian S. Jensen
Aalborg University, Denmark
Scott T. Leutenegger Mario A. Lopez
Denver University, USA
SIGMOD 2000

presented by
Simonas Saltenis

| JAVA\R={8]2{E
Department of Computer Séience JINNIVMERS ! TY

http://www.cs.auc.dk/index.html
http://www.auc.dk/

Why Moving Objects?

Position-aware, online, moving objects are enabled by the
following trends.

0 Miniaturization of electronics

1 Advances in positioning systems (e.g., GPS, assisted GPS, ...)

1 Advances in wireless communications

Examples of position-aware online moving objects

1 GPS-enabled mobile-phones, as well as diverse types of personal
digital assistants (online “cameras,” “wrist watches,” etc.).

o The coming years will withess very large quantities of these.
0 Vehicles, including cars, public transportation, recreational vehicles,
sea vessels, airplanes, etc.

Sensor-networks also generate MO data
1 Monitoring of any kind-of continuous variables, e.g., temperature, pressure

September 20, 2006 © Simonas Saltenis)

Outline

« Background: R-tree

e Problem definition
1 Data and queries

e Structure and algorithms of the TPR-tree
* Insertion example
e Summary

September 20, 2006 © Simonas Saltenis

Spatial Indexing With the R-Tree

 Example

|
' R1 P Query
: ;@‘7/:1/
1 o ___ P 11
e T IR (RIR2
1IR3 |IR4 PAes | 1 I
| [
::____p_2§'§=: : : :R5 :: \
|
| ics%: p3 L _@28_:5 R3 (R4)|(€{?)
: | 5 : 1 N/
b I::::_—_:p:':i's'-"?'_______!
' R2 :'R'7' pl Zc?»&'::
- I L Y
%% P ! :i pl[p2]] [p3[p4]p5] [p6(p7]p8] (P9
1

S b B RN

______________________ Pointers to data items

September 20, 2006 © Simonas Saltenis

Grow-Post trees

Grow-Post trees: generalized R-tree-type indexes

Bounding predicate (BP) = something that describes entries in a subtree

Building blocks of algorithms:
» Consistent(BP, Q) — returns true if results
of query Q can be under BP (in the R-tree,

MBR intersects Q)

» PickSplit(node) — splits a
Internal Nodes

page of entries into two groups

e Penalty(BP, E) —returns an
estimate how “worse” BP
becomes if E iIs inserted under it

* Union(node) — computes a
BP of a collection of entries (in
the R-tree, computes an MBR
— minimum and maximum in all
dimensions)

Leaf Nodes

September 20, 2006 © Simonas Saltenis 5

Insertion

 Insert(E)
» |eaf = ChoosePath(E, root)
= |nsert E into leaf
= PropogateUp (leaf)

= ChoosePath(E, node)
= |f node is leaf, return node.
= From all entries in node, choose entry <MBR, ptr> with the smallest Penalty
(MBR, E).
= ChoosePath(E, ReadNode(ptr)).
 PropogateUp(node)

= |f node is overfull, call PickSplit(node) to produce nl1 and n2, replace
node’s old entry in its parent by el = Union(nl), e2 = Union(n2), call
PropogateUp(node's parent)

= Elseif e = Union(node) is different from node’s old entry in its parent,
replace the old entry with e, call PropogateUp(node's parent).

« Create a new root with two entries whenever a root is split.

September 20, 2006 © Simonas Saltenis 6

Heuristics for Penalty

* Heuristics of least area enlargement and smallest area
are used in the R-tree’s Penalty.

I — =S
' R1 | PO
I ! 1
'\ :c;;'g;p7 1
GERIT
IR3 R4 PREE !
o __ P2, RSN
: : :' g
I 1563 p3 | L 53 Po
| | 1 |
:_ ________ :::::___:p:sré:?:______.;
fﬁf """""""" R7 pliZsi

| 1
e I ||
-
I 10 Igod PS>
IR6 P T
W pllgs) :

September 20, 2006 © Simonas Saltenis

yd

R3

R4

R

Y

\

pl

p2

p3

p4|p

5

p6 |p7|p3

|

|

R

Pointers to data tuples

N

Heuristics for Penalty

* Heuristics of least area enlargement and smallest area
are used in the R-tree’s Penalty.

I — =S
| RI B!
I ! I
'\ :c;;&.p7 1
::CSJE' pT | 1 ::
1R3 R4 PASE
i___ _P2gp |'Rs
I : ! t
I 1% p3 s> p8y
| | 1 |
: ____:::::___:p:sré:?:______.;
'R2 \R7 PIZeS))
1 1 |
jSpd T L "
! plocgy, BPI3
|: R6 I |§§:_Pl‘_1 __h
wo__pllgys :

September 20, 2006 © Simonas Saltenis

R3

R4

pl|p2

p3

Y
p4|p

R

RENEE

Pointers to data tuples

Comments on R-Trees

* Works well for 2 - 4 D datasets. Several variants (notably,
R* and R*-trees) have been proposed; widely used

e Supports a wide variety of queries
0 Point / range queries
1 Spatial join queries [Brinkhoff et al., 1993]
0 Direction, topological, distance queries [Papadias et al., 1995]
1 k- Nearest neighbor queries [Roussopoulos et al., 1995]

September 20, 2006 © Simonas Saltenis

Outline

* Problem definition
0 Data and queries

e Structure and algorithms of the TPR-tree
* Insertion example
e Summary

September 20, 2006 © Simonas Saltenis

10

Problem Statement

We address the problem of indexing the ever-changing
current and predicted future positions of point objects
moving in one, two, and three-dimensional space.

 Indexing challenges specific to MOs

e continuous change of positions — extrapolation between
the last update and the current time must be supported

* hyper-dynamic workloads — high-rates of updates

September 20, 2006 © Simonas Saltenis 11

Modeling Continuous Movement

 |In conventional databases, data Is assumed constant
unless explicitly modified.

« With continuous movement, this is problematic.

i Too frequent updates
0 Qutdated, inacurate data

September 20, 2006 © Simonas Saltenis

12

Modeling Continuous Movement

 |In conventional databases, data Is assumed constant
unless explicitly modified.

« With continuous movement, this is problematic.
i Too frequent updates
0 Qutdated, inacurate data
e Instead of storing position values, we store positions as

functions of time, yielding time-parameterized positions.
1 We use linear functions to capture the present and future positions.

x(t)= x(t,))+ v(¢t-t,), wheret2 now

1 Updates are less frequent
1 Tentative future queries are supported

0 For example, given {, the current and anticiapted, future position of a two-
dimensional point can be described by four parameters.

x(to)a y(to): VoV,

September 20, 2006 © Simonas Saltenis 13

Modeling Continuous Movement

* Three ways to think about continuously moving points in
d-dimensional space:
0 Lines in (d+1)-dimensional space
o d spatial dimensions and 1 time dimension

1 Points in 2d-dimensional space
o d spatial and d velocity dimensions (function parameters: x(¢,),v)

1 Time-parameterized points in d-dimensional space

X x(t,)

0 - 64

5. %5 5]

4 41

3 3]

2 21 0
1 11 0

1 23 4 5 6 ¢ 0.5 0 0.5]V

September 20, 2006 © Simonas Saltenis

Queries

 Type 1: objects that
Intersect a given

rectangle at ¢ X
5 . objectsthat 64
intersect a given T
rectangle sometime ~ *{
from f, tot, ;
« Type 3: objects that |
Intersect a given

moving rectangle I 2 3 4 5 6
sometime between 7,

andz,
We can expect, that most queries will be consentrated in the
sliding window [CT, CT+W/], 1.e. CT <=t,1,t,<=CT + W

September 20, 2006 © Simonas Saltenis 15

Outline

e Motivation
 Background: R-tree

 Problem definition
0 Data and queries

e Structure and algorithms of the TPR-tree
* Insertion example
e Summary

September 20, 2006 © Simonas Saltenis 16

The TPR-tree Is based on the
R-tree.

Moving points are bounded
with time-parameterized
rectangles.

0 Are bounding from now on.

0 The R-tree allows overlap.

The tree employs
conservative bounding
rectangles.

September 20, 2006 © Simonas Saltenis

Time-Parameterized Rectangles

i e
gl gg E
T L
S f’L
Union(node):

x™(t)= min[ox(,)|0 1 node]

x ()= max[0.X, (tc)|0D node]

min —

ymn = min[oV, |0D node]

ol node]

max —

2 max{ 0.V,

l

17

Entry Structure, Querying

Do we need to store t. in each entry?
o No — we use one common reference time t. (the same for data

oints): : - i i
p) xmm - ximln (tr) - ximln (tc) + Vimm (t’, - tc)

l

xmax - ximaX(tr) - ximaX(tC)_l_ vimaX(tr _ tc)

l

Entry structure: <TPBR, ptr>
TPBR = MBR,VBR = (™", ™", ", %), (", v, v v™)

At any t > CT we can get a valid R-tree: TPR-tree(t) = R-tree
RN O (B R (R
XP (@) = X) V(-)

September 20, 2006 © Simonas Saltenis 18

Tightening

e |deally, bounding
rectangles should be

X,

always minimal. g
1 EXxcessive storage cost 4
3

2

1

« TPBRs are "tightened” (i.e., recomputed) whenever a
bounded node is modified

September 20, 2006 © Simonas Saltenis

Tightening

e |deally, bounding
rectangles should be

X,

always minimal. g
1 EXxcessive storage cost 4
3

2

1

« TPBRs are "tightened” (i.e., recomputed) whenever a
bounded node is modified

September 20, 2006 © Simonas Saltenis

Insertion: Grouping Points

 How to group moving points (Penalty and PickSplit)?

1 The R-tree’s algorithms minimize characteristics of MBRs such as
area, overlap, and margin.

0 How does that work for moving points?

v

-
'

4 4
2 2
— —
1 1p— 1 11—
3 I 3 I 3

September 20, 2006 © Simonas Saltenis

Insertion in the TPR-Tree

* The bounding rectangle characteristics (area, overlap, and
margin) are functions of time.

* The goal is to minimize these for all time points from now
to now+H.

0 Minimizing the characteristics for time now + H/2 does not work
(e.g., the area of a conservative bounding rectangle is not linear).

* We use the regular R*-tree algorithms, but all bounding
rectangle characteristics are replaced by their integrals.

nowt H

J Adt, where A(t) Is, e.g., the area of an MBR

now

September 20, 2006 © Simonas Saltenis 22

What H to use?

* Intuitivly: we want H to be equal to the time during
which queries will see the node that we consider
modifying:

i H depends on the update rate, and on how far queries may
reach into the future (W)

1 Experiments show that H = Ul + W consistently gives good
guery performance (Ul — average update interval)

I The system can track Ul automatically (How?)
0 W is usually smaller than Ul
 can be tracked automatically too

September 20, 2006 © Simonas Saltenis

23

Outline

e Motivation
 Background: R-tree

 Problem definition
0 Data and queries

e Structure and algorithms of the TPR-tree
e Insertion example
e Summary

September 20, 2006 © Simonas Saltenis 24

Example |

* We lllustrate the working of the TPR-tree by means of an
example.

1 The subsequent figures are generated automatically, by the index
code used for performance experiments.

e Data
1 20 one-dimensional points are used.

* Index Parameters
1 Page size = 64 (5 entries in leaf nodes and 3 in non-leaf nodes).
1 H=8.

September 20, 2006 © Simonas Saltenis

25

Example |

a0 I I I I 20

18 o N

16 = | —
14 m -

12 .

X{now]

10 + —

-2 -15-1-050 05 1 1.5 2
W

S

5) ' ' ; . AtCT=1, the pointatx=20,v=0is
updated to have x = 18.5, v =-0.5.

Time

September 20, 2006 © Simonas Saltenis 26

Example IlI

25

1
I
f1
I 18 | |
..::::::::E::: 15 i _
I '

CT

[

T R==R=1=T:

| ! | Inserting a moving point at
. S 4 g gap

Time

” position 14 with v =-0.5.

September 20, 2006 © Simonas Saltenis

Example IV

25

—h
o
|
=pll
|

20

15

-+

4 L I S E— —
-2 -15-1-050 05 1 1.5 %

W

After insertion

/I\

I{\ VAN

Time

September 20, 2006 © Simonas Saltenis

What about Expanding BRs?

o Will the expanding TPBRs

ruin the performance? T T T T Rlee
 That's what the 500 |- [Phtree —¥—
experiments show:
1 Settings: D‘m” I ’
1 objects update only =
once per hour! 5001 i
o 2D data, with W = 40. & ao | i
1 Due to the constant influx of
updates, the performance of o 1
the TPR-tree does not —
degrade after reaching a
certain level. DED 1:;0 1|a|:1 Exlm 3|:Im sén 42||:1 4s||:1 ﬁﬂlm 600

Time

September 20, 2006 © Simonas Saltenis 29

Summary

 The TPR-tree indexes the current and predicted future
positions of moving objects.

1 The TPR-tree is based on the proven, widely used R-tree
technology

1 The tree extends the R*-tree by introducing conservative, time-

parameterized bounding rectangles, which are tightened regularly.

1 The tree’s algorithms use integrals of area, overlap, etc.

0 The tree can be tuned to take advantage of a specific update rate
and querying window length.

1 QOther types of queries that are supported by the R-tree can be
supported by the TPR-tree, e.g., nearest-neighbor queries.

September 20, 2006 © Simonas Saltenis

30

