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Why Moving Objects?
• Position-aware, online, moving objects are enabled by the 

following trends.
 Miniaturization of electronics
 Advances in positioning systems (e.g., GPS, assisted GPS, ...)
 Advances in wireless communications

• Examples of position-aware online moving objects
 GPS-enabled mobile-phones, as well as diverse types of personal 

digital assistants (online “cameras,” “wrist watches,” etc.).
◆ The coming years will witness very large quantities of these.

 Vehicles, including cars, public transportation, recreational vehicles, 
sea vessels, airplanes, etc.

• Sensor-networks also generate MO data
 Monitoring of any kind-of continuous variables, e.g., temperature, pressure



September 20, 2006 © Simonas Šaltenis 3

Outline
• Motivation
• Background: R-tree
• Problem definition 

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
• Summary
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Spatial Indexing With the R-Tree
• Example
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Internal Nodes
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Grow-Post trees: generalized R-tree-type indexes 

• Union(node) – computes a 
BP of a collection of entries (in 
the R-tree, computes an MBR 
– minimum and maximum in all 
dimensions ) 

• Penalty(BP, E) – returns  an 
estimate how “worse” BP 
becomes if E is inserted under it

Bounding predicate (BP) = something that describes entries in a subtree

Building blocks of algorithms:
• Consistent(BP, Q) – returns true if results 
of query Q can be under BP (in the R-tree, 
MBR intersects Q)
• PickSplit(node) – splits  a 
page of entries into two groups

Grow-Post trees
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Insertion 
• Insert(E)

 leaf = ChoosePath(E, root)
 Insert E into leaf
 PropogateUp (leaf)

 ChoosePath(E, node)
 If node is leaf, return node.
 From all entries in node, choose entry <MBR, ptr> with the smallest Penalty 

(MBR, E).  
 ChoosePath(E, ReadNode(ptr)).

• PropogateUp(node)
 If node is overfull, call PickSplit(node) to produce n1 and n2, replace 

node’s old entry in its parent by e1 = Union(n1), e2 = Union(n2), call 
PropogateUp(node's parent)

 Else if e = Union(node) is different from node’s old entry in its parent, 
replace the old entry with e, call PropogateUp(node's parent). 

• Create a new root with two entries whenever a root is split.
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Heuristics for Penalty
• Heuristics of least area enlargement and smallest area 

are used in the R-tree’s Penalty.  
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Comments on R-Trees
• Works well for 2 - 4 D datasets. Several variants (notably, 

R+ and R*-trees) have been proposed; widely used
• Supports a wide variety of queries

 Point / range queries
 Spatial join queries [Brinkhoff et al., 1993]
 Direction, topological, distance queries [Papadias et al., 1995]
 k- Nearest neighbor queries [Roussopoulos et al., 1995]
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Outline
• Motivation
• Background: R-tree
• Problem definition 

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
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Problem Statement

We address the problem of indexing the ever-changing 
current and predicted future positions of point objects 
moving in one, two, and three-dimensional space.

• Indexing challenges specific to MOs
• continuous change of positions – extrapolation between 

the last update and the current time must be supported 
• hyper-dynamic workloads – high-rates of updates  
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Modeling Continuous Movement
• In conventional databases, data is assumed constant 

unless explicitly modified.
• With continuous movement, this is problematic. 

 Too frequent updates
 Outdated, inacurate data
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Modeling Continuous Movement
• In conventional databases, data is assumed constant 

unless explicitly modified.
• With continuous movement, this is problematic. 

 Too frequent updates
 Outdated, inacurate data

• Instead of storing position values, we store positions as 
functions of time, yielding  time-parameterized positions. 
 We use linear functions to capture the present and future positions.

 Updates are less frequent
 Tentative future queries are supported  
 For example, given    , the current and anticiapted, future position of a two-

dimensional point can be described by four parameters. 
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Modeling Continuous Movement
• Three ways to think about continuously moving points in   

d-dimensional space:
 Lines in (d+1)-dimensional space 

◆ d spatial dimensions and 1 time dimension 
 Points in 2d-dimensional space 

◆ d spatial and d velocity dimensions (function parameters:              ) 
 Time-parameterized points in d-dimensional space
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Queries

• Type 1: objects that 
intersect a given 
rectangle at 

• Type 2: objects that 
intersect a given 
rectangle sometime 
from     to

• Type 3: objects that 
intersect a given 
moving rectangle 
sometime between    
and
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• We can expect, that most queries will be consentrated in the 
sliding window [CT, CT+W], i.e. CT <= t, t1, t2 <= CT + W 
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Outline
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• Background: R-tree
• Problem definition 

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
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Time-Parameterized Rectangles
• The TPR-tree is based on the 

R-tree.

• Moving points are bounded 
with time-parameterized 
rectangles.
 Are bounding from now on.

 The R-tree allows overlap.

• The tree employs 
conservative bounding 
rectangles. { }
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Entry Structure, Querying

• Do we need to store tc in each entry?
 No – we use one common reference time tr  (the same for data 

points):

• Entry structure: <TPBR, ptr>
• TPBR = MBR,VBR = min max min max min max min max

1 1 2 2 1 1 2 2( , , , ), ( , , , )x x x x v v v v

• At any t > CT we can get a valid R-tree: TPR-tree(t) = R-tree
min min min

max max max
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Tightening

• TPBRs are ”tightened” (i.e., recomputed) whenever a 
bounded node is modified
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• Ideally, bounding 
rectangles should be 
always minimal.
 Excessive storage cost
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Insertion: Grouping Points

• How to group moving points (Penalty and PickSplit)? 
 The R-tree’s algorithms minimize characteristics of MBRs such as 

area, overlap, and margin.
 How does that work for moving points?

7

1

6

5

4

2

3

7

5

6

4

2

3
1

6

5

4

2

3
1

7

7

5

6

4

2

3
1

7

5

6

4

2

3
1

7

5

6

4

2

3
1



September 20, 2006 © Simonas Šaltenis 22

Insertion in the TPR-Tree
• The bounding rectangle characteristics (area, overlap, and 

margin) are functions of time. 
• The goal is to minimize these for all time points from now 

to now+H.
 Minimizing the characteristics for time now + H/2 does not work 

(e.g., the area of a conservative bounding rectangle is not linear).

,∫
+ Hnow

now

dttA )( where A(t) is, e.g., the area of an MBR

• We use the regular R*-tree algorithms, but all bounding 
rectangle characteristics are replaced by their integrals.
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What H to use?
• Intuitivly: we want H to be equal to the time during 

which queries will see the node that we consider 
modifying:

 H depends on the update rate, and on how far  queries may 
reach into the future (W)

 Experiments show that H = UI + W consistently gives good 
query performance (UI – average update interval)

 The system can track UI automatically (How?)
 W is usually smaller than UI 

• can be tracked automatically too
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Example I
• We illustrate the working of the TPR-tree by means of an 

example.
 The subsequent figures are generated automatically, by the index 

code used for performance experiments. 

• Data
 20 one-dimensional points are used.

• Index Parameters
 Page size = 64 (5 entries in leaf nodes and 3 in non-leaf nodes).
 H = 8.
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Example II

CT = 0

At CT=1, the point at x = 20, v = 0 is 
updated to have x = 18.5, v = -0.5.



September 20, 2006 © Simonas Šaltenis 27

Example III

CT = 1

Inserting a moving point at 
position 14 with v = –0.5.



September 20, 2006 © Simonas Šaltenis 28

Example IV

After insertion
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What about Expanding BRs?

• Will the expanding TPBRs 
ruin the performance?

• That's what the 
experiments show:
 Settings: 

◆ objects update only 
once per hour!

◆ 2D data, with W = 40.
 Due to the constant influx of 

updates, the performance of 
the TPR-tree does not 
degrade after reaching a 
certain level. 



September 20, 2006 © Simonas Šaltenis 30

Summary
• The TPR-tree indexes the current and predicted future 

positions of moving objects.
 The TPR-tree is based on the proven, widely used R-tree 

technology
 The tree extends the R*-tree by introducing conservative, time-

parameterized bounding rectangles, which are tightened regularly.
 The tree’s algorithms use integrals of area, overlap, etc.
 The tree can be tuned to take advantage of a specific update rate 

and querying window length.
 Other types of queries that are supported by the R-tree can be 

supported by the TPR-tree, e.g., nearest-neighbor queries. 


