
Indexing the Positions of Continuously
Moving Objects

Simonas Šaltenis Christian S. Jensen
Aalborg University, Denmark

Scott T. Leutenegger Mario A. Lopez
Denver University, USA

SIGMOD 2000

presented by
Simonas Šaltenis

http://www.cs.auc.dk/index.html
http://www.auc.dk/

September 20, 2006 © Simonas Šaltenis 2

Why Moving Objects?
• Position-aware, online, moving objects are enabled by the

following trends.
 Miniaturization of electronics
 Advances in positioning systems (e.g., GPS, assisted GPS, ...)
 Advances in wireless communications

• Examples of position-aware online moving objects
 GPS-enabled mobile-phones, as well as diverse types of personal

digital assistants (online “cameras,” “wrist watches,” etc.).
◆ The coming years will witness very large quantities of these.

 Vehicles, including cars, public transportation, recreational vehicles,
sea vessels, airplanes, etc.

• Sensor-networks also generate MO data
 Monitoring of any kind-of continuous variables, e.g., temperature, pressure

September 20, 2006 © Simonas Šaltenis 3

Outline
• Motivation
• Background: R-tree
• Problem definition

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
• Summary

September 20, 2006 © Simonas Šaltenis 4

Spatial Indexing With the R-Tree
• Example

QueryR1

R2

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data items

p8p3 p4 p9 p10p11 p12p13

R6 R7

R3 R4
R5

R6

R7

p1
p7

p6

p8

p2

p3

p4

p5

p9
p10

p11

p12

p13

September 20, 2006 © Simonas Šaltenis 5

Internal Nodes

Leaf Nodes

BP1 BPnBP2
...

…..
...

Grow-Post trees: generalized R-tree-type indexes

• Union(node) – computes a
BP of a collection of entries (in
the R-tree, computes an MBR
– minimum and maximum in all
dimensions)

• Penalty(BP, E) – returns an
estimate how “worse” BP
becomes if E is inserted under it

Bounding predicate (BP) = something that describes entries in a subtree

Building blocks of algorithms:
• Consistent(BP, Q) – returns true if results
of query Q can be under BP (in the R-tree,
MBR intersects Q)
• PickSplit(node) – splits a
page of entries into two groups

Grow-Post trees

September 20, 2006 © Simonas Šaltenis 6

Insertion
• Insert(E)

 leaf = ChoosePath(E, root)
 Insert E into leaf
 PropogateUp (leaf)

 ChoosePath(E, node)
 If node is leaf, return node.
 From all entries in node, choose entry <MBR, ptr> with the smallest Penalty

(MBR, E).
 ChoosePath(E, ReadNode(ptr)).

• PropogateUp(node)
 If node is overfull, call PickSplit(node) to produce n1 and n2, replace

node’s old entry in its parent by e1 = Union(n1), e2 = Union(n2), call
PropogateUp(node's parent)

 Else if e = Union(node) is different from node’s old entry in its parent,
replace the old entry with e, call PropogateUp(node's parent).

• Create a new root with two entries whenever a root is split.

September 20, 2006 © Simonas Šaltenis 7

Heuristics for Penalty
• Heuristics of least area enlargement and smallest area

are used in the R-tree’s Penalty.

R1

R2

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data tuples

p8p3 p4 p9 p10p11 p12p13

R6 R7

R3 R4
R5

R6

R7

p1
p7

p6

p8

p2

p3

p4

p5

p9
p10

p11

p12

p13
p14

September 20, 2006 © Simonas Šaltenis 8

Heuristics for Penalty
• Heuristics of least area enlargement and smallest area

are used in the R-tree’s Penalty.

R1

R2

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data tuples

p8p3 p4 p9 p10p11 p12p13

R6 R7

R3 R4
R5

R6

R7

p1
p7

p6

p8

p2

p3

p4

p5

p9
p10

p11

p12

p13
p14

p14

September 20, 2006 © Simonas Šaltenis 9

Comments on R-Trees
• Works well for 2 - 4 D datasets. Several variants (notably,

R+ and R*-trees) have been proposed; widely used
• Supports a wide variety of queries

 Point / range queries
 Spatial join queries [Brinkhoff et al., 1993]
 Direction, topological, distance queries [Papadias et al., 1995]
 k- Nearest neighbor queries [Roussopoulos et al., 1995]

September 20, 2006 © Simonas Šaltenis 10

Outline
• Motivation
• Background: R-tree
• Problem definition

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
• Summary

September 20, 2006 © Simonas Šaltenis 11

Problem Statement

We address the problem of indexing the ever-changing
current and predicted future positions of point objects
moving in one, two, and three-dimensional space.

• Indexing challenges specific to MOs
• continuous change of positions – extrapolation between

the last update and the current time must be supported
• hyper-dynamic workloads – high-rates of updates

September 20, 2006 © Simonas Šaltenis 12

Modeling Continuous Movement
• In conventional databases, data is assumed constant

unless explicitly modified.
• With continuous movement, this is problematic.

 Too frequent updates
 Outdated, inacurate data

September 20, 2006 © Simonas Šaltenis 13

Modeling Continuous Movement
• In conventional databases, data is assumed constant

unless explicitly modified.
• With continuous movement, this is problematic.

 Too frequent updates
 Outdated, inacurate data

• Instead of storing position values, we store positions as
functions of time, yielding time-parameterized positions.
 We use linear functions to capture the present and future positions.

 Updates are less frequent
 Tentative future queries are supported
 For example, given , the current and anticiapted, future position of a two-

dimensional point can be described by four parameters.

 where,)()()(00 nowtttvtxtx ≥−+=

0t

yx vvtytx ,),(),(00

September 20, 2006 © Simonas Šaltenis 14

Modeling Continuous Movement
• Three ways to think about continuously moving points in

d-dimensional space:
 Lines in (d+1)-dimensional space

◆ d spatial dimensions and 1 time dimension
 Points in 2d-dimensional space

◆ d spatial and d velocity dimensions (function parameters:)
 Time-parameterized points in d-dimensional space

vtx),(0

x

t2 3 4 5 6

1
o12

3
4
5
6

1

o2

o3

v0 0.5 1

1
2
3
4
5
6

x(t0)

-0.5

o1
o2

o3

September 20, 2006 © Simonas Šaltenis 15

Queries

• Type 1: objects that
intersect a given
rectangle at

• Type 2: objects that
intersect a given
rectangle sometime
from to

• Type 3: objects that
intersect a given
moving rectangle
sometime between
and

1t 2t

1t
2t

t

1
2
3
4
5
6
x

t1 2 3 4 5 6

o1

o1o2

o3

o4

• We can expect, that most queries will be consentrated in the
sliding window [CT, CT+W], i.e. CT <= t, t1, t2 <= CT + W

September 20, 2006 © Simonas Šaltenis 16

Outline
• Motivation
• Background: R-tree
• Problem definition

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
• Summary

September 20, 2006 © Simonas Šaltenis 17

Time-Parameterized Rectangles
• The TPR-tree is based on the

R-tree.

• Moving points are bounded
with time-parameterized
rectangles.
 Are bounding from now on.

 The R-tree allows overlap.

• The tree employs
conservative bounding
rectangles. { }

{ }
{ }

{ }

min

max

min

max

Union() :
() min . ()

() max . ()

min .

max .

i c i c

i c i c

i i

i i

node
x t o x t o node

x t o x t o node

v ov o node

v ov o node

= ∈

= ∈

= ∈

= ∈

September 20, 2006 © Simonas Šaltenis 18

Entry Structure, Querying

• Do we need to store tc in each entry?
 No – we use one common reference time tr (the same for data

points):

• Entry structure: <TPBR, ptr>
• TPBR = MBR,VBR = min max min max min max min max

1 1 2 2 1 1 2 2(, , ,), (, , ,)x x x x v v v v

• At any t > CT we can get a valid R-tree: TPR-tree(t) = R-tree
min min min

max max max

() () ()

() () ()
i i r i r

i i r i r

x t x t v t t
x t x t v t t

= + −

= + −

min min min min

max max max max

() () ()

() () ()
i i r i c i r c

i i r i c i r c

x x t x t v t t
x x t x t v t t

= = + −

= = + −

September 20, 2006 © Simonas Šaltenis 19

Tightening

• TPBRs are ”tightened” (i.e., recomputed) whenever a
bounded node is modified

x

t2 3 4 5 6

1
2
3
4
5
6

1

• Ideally, bounding
rectangles should be
always minimal.
 Excessive storage cost

September 20, 2006 © Simonas Šaltenis 20

Tightening

• TPBRs are ”tightened” (i.e., recomputed) whenever a
bounded node is modified

x

t2 3 4 5 6

1
2
3
4
5
6

1

• Ideally, bounding
rectangles should be
always minimal.
 Excessive storage cost

September 20, 2006 © Simonas Šaltenis 21

Insertion: Grouping Points

• How to group moving points (Penalty and PickSplit)?
 The R-tree’s algorithms minimize characteristics of MBRs such as

area, overlap, and margin.
 How does that work for moving points?

7

1

6

5

4

2

3

7

5

6

4

2

3
1

6

5

4

2

3
1

7

7

5

6

4

2

3
1

7

5

6

4

2

3
1

7

5

6

4

2

3
1

September 20, 2006 © Simonas Šaltenis 22

Insertion in the TPR-Tree
• The bounding rectangle characteristics (area, overlap, and

margin) are functions of time.
• The goal is to minimize these for all time points from now

to now+H.
 Minimizing the characteristics for time now + H/2 does not work

(e.g., the area of a conservative bounding rectangle is not linear).

,∫
+ Hnow

now

dttA)(where A(t) is, e.g., the area of an MBR

• We use the regular R*-tree algorithms, but all bounding
rectangle characteristics are replaced by their integrals.

September 20, 2006 © Simonas Šaltenis 23

What H to use?
• Intuitivly: we want H to be equal to the time during

which queries will see the node that we consider
modifying:

 H depends on the update rate, and on how far queries may
reach into the future (W)

 Experiments show that H = UI + W consistently gives good
query performance (UI – average update interval)

 The system can track UI automatically (How?)
 W is usually smaller than UI

• can be tracked automatically too

September 20, 2006 © Simonas Šaltenis 24

Outline
• Motivation
• Background: R-tree
• Problem definition

 Data and queries

• Structure and algorithms of the TPR-tree
• Insertion example
• Summary

September 20, 2006 © Simonas Šaltenis 25

Example I
• We illustrate the working of the TPR-tree by means of an

example.
 The subsequent figures are generated automatically, by the index

code used for performance experiments.

• Data
 20 one-dimensional points are used.

• Index Parameters
 Page size = 64 (5 entries in leaf nodes and 3 in non-leaf nodes).
 H = 8.

September 20, 2006 © Simonas Šaltenis 26

Example II

CT = 0

At CT=1, the point at x = 20, v = 0 is
updated to have x = 18.5, v = -0.5.

September 20, 2006 © Simonas Šaltenis 27

Example III

CT = 1

Inserting a moving point at
position 14 with v = –0.5.

September 20, 2006 © Simonas Šaltenis 28

Example IV

After insertion

September 20, 2006 © Simonas Šaltenis 29

What about Expanding BRs?

• Will the expanding TPBRs
ruin the performance?

• That's what the
experiments show:
 Settings:

◆ objects update only
once per hour!

◆ 2D data, with W = 40.
 Due to the constant influx of

updates, the performance of
the TPR-tree does not
degrade after reaching a
certain level.

September 20, 2006 © Simonas Šaltenis 30

Summary
• The TPR-tree indexes the current and predicted future

positions of moving objects.
 The TPR-tree is based on the proven, widely used R-tree

technology
 The tree extends the R*-tree by introducing conservative, time-

parameterized bounding rectangles, which are tightened regularly.
 The tree’s algorithms use integrals of area, overlap, etc.
 The tree can be tuned to take advantage of a specific update rate

and querying window length.
 Other types of queries that are supported by the R-tree can be

supported by the TPR-tree, e.g., nearest-neighbor queries.

