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Why Moving Objects?

Position-aware, online, moving objects are enabled by the
following trends.

0 Miniaturization of electronics

1 Advances in positioning systems (e.g., GPS, assisted GPS, ...)

1 Advances in wireless communications

Examples of position-aware online moving objects

1 GPS-enabled mobile-phones, as well as diverse types of personal
digital assistants (online “cameras,” “wrist watches,” etc.).

o The coming years will withess very large quantities of these.
0 Vehicles, including cars, public transportation, recreational vehicles,
sea vessels, airplanes, etc.

Sensor-networks also generate MO data
1 Monitoring of any kind-of continuous variables, e.g., temperature, pressure
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Spatial Indexing With the R-Tree
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Grow-Post trees

Grow-Post trees: generalized R-tree-type indexes

Bounding predicate (BP) = something that describes entries in a subtree

Building blocks of algorithms:
» Consistent(BP, Q) — returns true if results
of query Q can be under BP (in the R-tree,

MBR intersects Q)

» PickSplit(node) — splits a
Internal Nodes

page of entries into two groups

e Penalty(BP, E) —returns an
estimate how “worse” BP
becomes if E iIs inserted under it

* Union(node) — computes a
BP of a collection of entries (in
the R-tree, computes an MBR
— minimum and maximum in all
dimensions )

Leaf Nodes
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Insertion

 Insert(E)
» |eaf = ChoosePath(E, root)
= |nsert E into leaf
= PropogateUp (leaf)

=  ChoosePath(E, node)
= |f node is leaf, return node.
= From all entries in node, choose entry <MBR, ptr> with the smallest Penalty
(MBR, E).
= ChoosePath(E, ReadNode(ptr)).
 PropogateUp(node)

= |f node is overfull, call PickSplit(node) to produce nl1 and n2, replace
node’s old entry in its parent by el = Union(nl), e2 = Union(n2), call
PropogateUp(node's parent)

= Elseif e = Union(node) is different from node’s old entry in its parent,
replace the old entry with e, call PropogateUp(node's parent).

« Create a new root with two entries whenever a root is split.
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Heuristics for Penalty

* Heuristics of least area enlargement and smallest area
are used in the R-tree’s Penalty.
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Heuristics for Penalty

* Heuristics of least area enlargement and smallest area
are used in the R-tree’s Penalty.
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Comments on R-Trees

* Works well for 2 - 4 D datasets. Several variants (notably,
R* and R*-trees) have been proposed; widely used

e Supports a wide variety of queries
0 Point / range queries
1 Spatial join queries [Brinkhoff et al., 1993]
0 Direction, topological, distance queries [Papadias et al., 1995]
1 k- Nearest neighbor queries [Roussopoulos et al., 1995]
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* Problem definition
0 Data and queries

e Structure and algorithms of the TPR-tree
* Insertion example
e Summary
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Problem Statement

We address the problem of indexing the ever-changing
current and predicted future positions of point objects
moving in one, two, and three-dimensional space.

 Indexing challenges specific to MOs

e continuous change of positions — extrapolation between
the last update and the current time must be supported

* hyper-dynamic workloads — high-rates of updates
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Modeling Continuous Movement

 |In conventional databases, data Is assumed constant
unless explicitly modified.

« With continuous movement, this is problematic.

i Too frequent updates
0 Qutdated, inacurate data
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Modeling Continuous Movement

 |In conventional databases, data Is assumed constant
unless explicitly modified.

« With continuous movement, this is problematic.
i Too frequent updates
0 Qutdated, inacurate data
e Instead of storing position values, we store positions as

functions of time, yielding time-parameterized positions.
1 We use linear functions to capture the present and future positions.

x(t)= x(t,))+ v(¢t-t,), wheret2 now

1 Updates are less frequent
1 Tentative future queries are supported

0 For example, given {, the current and anticiapted, future position of a two-
dimensional point can be described by four parameters.

x(to)a y(to): VoV,
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Modeling Continuous Movement

* Three ways to think about continuously moving points in
d-dimensional space:
0 Lines in (d+1)-dimensional space
o d spatial dimensions and 1 time dimension

1 Points in 2d-dimensional space
o d spatial and d velocity dimensions (function parameters: x(¢,),v )

1 Time-parameterized points in d-dimensional space

X x(t,)
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Queries

 Type 1: objects that
Intersect a given

rectangle at ¢ X
5 . objectsthat 64
intersect a given T
rectangle sometime ~ *{
from f, tot, ;
« Type 3: objects that |
Intersect a given

moving rectangle I 2 3 4 5 6
sometime between 7,

andz,
We can expect, that most queries will be consentrated in the
sliding window [CT, CT+W/], 1.e. CT <=t,1,t,<=CT + W
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 Background: R-tree
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e Structure and algorithms of the TPR-tree
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e Summary
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The TPR-tree Is based on the
R-tree.

Moving points are bounded
with time-parameterized
rectangles.

0 Are bounding from now on.

0 The R-tree allows overlap.

The tree employs
conservative bounding
rectangles.
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Entry Structure, Querying

Do we need to store t. in each entry?
o No — we use one common reference time t. (the same for data

oints): : - i i
p ) xmm - ximln (tr) - ximln (tc) + Vimm (t’, - tc)

l

xmax - ximaX(tr) - ximaX(tC)_l_ vimaX(tr _ tc)

l

Entry structure: <TPBR, ptr>
TPBR = MBR,VBR = (™", ™", ", %), (", v, v v™)

At any t > CT we can get a valid R-tree: TPR-tree(t) = R-tree
RN O (B R (R
XP (@) = X ) V(- )
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Tightening

e |deally, bounding
rectangles should be

X,

always minimal. g
1 EXxcessive storage cost 4
3

2

1

« TPBRs are "tightened” (i.e., recomputed) whenever a
bounded node is modified
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Tightening

e |deally, bounding
rectangles should be

X,

always minimal. g
1 EXxcessive storage cost 4
3
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« TPBRs are "tightened” (i.e., recomputed) whenever a
bounded node is modified
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Insertion: Grouping Points

 How to group moving points (Penalty and PickSplit)?

1 The R-tree’s algorithms minimize characteristics of MBRs such as
area, overlap, and margin.

0 How does that work for moving points?

v

-
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— —
1 1p— 1 11—
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Insertion in the TPR-Tree

* The bounding rectangle characteristics (area, overlap, and
margin) are functions of time.

* The goal is to minimize these for all time points from now
to now+H.

0 Minimizing the characteristics for time now + H/2 does not work
(e.g., the area of a conservative bounding rectangle is not linear).

* We use the regular R*-tree algorithms, but all bounding
rectangle characteristics are replaced by their integrals.

nowt H

J Adt, where A(t) Is, e.g., the area of an MBR

now
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What H to use?

* Intuitivly: we want H to be equal to the time during
which queries will see the node that we consider
modifying:

i H depends on the update rate, and on how far queries may
reach into the future (W)

1 Experiments show that H = Ul + W consistently gives good
guery performance (Ul — average update interval)

I The system can track Ul automatically (How?)
0 W is usually smaller than Ul
 can be tracked automatically too
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Example |

* We lllustrate the working of the TPR-tree by means of an
example.

1 The subsequent figures are generated automatically, by the index
code used for performance experiments.

e Data
1 20 one-dimensional points are used.

* Index Parameters
1 Page size = 64 (5 entries in leaf nodes and 3 in non-leaf nodes).
1 H=8.
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Example |
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Example IlI
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Example IV
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What about Expanding BRs?

o Will the expanding TPBRs

ruin the performance? T T T T Rlee
 That's what the 500 |- [ Phtree —¥—
experiments show:
1 Settings: D‘m” I ’
1 objects update only =
once per hour! 5001 i
o 2D data, with W = 40. & ao | i
1 Due to the constant influx of
updates, the performance of o 1
the TPR-tree does not —
degrade after reaching a
certain level. DED 1:;0 1|a|:1 Exlm 3|:Im sén 42||:1 4s||:1 ﬁﬂlm 600

Time
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Summary

 The TPR-tree indexes the current and predicted future
positions of moving objects.

1 The TPR-tree is based on the proven, widely used R-tree
technology

1 The tree extends the R*-tree by introducing conservative, time-

parameterized bounding rectangles, which are tightened regularly.

1 The tree’s algorithms use integrals of area, overlap, etc.

0 The tree can be tuned to take advantage of a specific update rate
and querying window length.

1 QOther types of queries that are supported by the R-tree can be
supported by the TPR-tree, e.g., nearest-neighbor queries.
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