R-trees with Update Memos

ICDE'0O6 paper by

Xiaopeng Xiong and Walid G. Aref
Purdue University

Presented by
Laurynas Biveinis

Talk Outline

* Motivation

 Example: Updates with R-tree

* Related work: Bottom-up Updates
e Contribution: RUM-tree
 Experimental Evaluation

e Strong and Weak Points

* Relation to my Project

e Conclusion

Motivation

e Scenarios with continuous spatial data
sampling are getting more and more common

- 1 min LBS users that send 1 update/hour
- 280 updates/second!
- Queries are relatively rare

* \Wanted: a spatial disk-based index that can
nandle high volume of updates

* |s R-tree good enough?

Talk Outline

* Motivation

* Example: Updates with R-tree

* Related work: Bottom-up Updates
* Contribution: RUM-tree

* Experimental Evaluation

e Strong and Weak Points

e Relation to my Project

e Conclusion

Example: Updates with R-tree

* R-tree: index of choice for low-dimensionality
spatial data

* |[ndex structure suited for efficient range queries
on mostly static data

/ r1|r2 \ a, s
1
a r
/ s.1|s.2 & 33
b1

alala, |blb, S, b

Example: Updates with R-tree

* | et's update position of b2

1) Delete the old b_: 2 traversals!

2)Insert the new b : 2 traversals! 1

a lala,

e 1 traversal = 3 1/Os
* 1 update =12 1/Os!

* Conclusion: R-tree updates are expensive

How to Make Updates Cheaper?

* Top-down traversals do not do anything useful
on upper tree levels if new object position is
close to the old one

* Top-down traversal during deletion is redudant
iIf leaf level can be accessed directly

Related Work: Bottom-up Updates

* FUR-tree by Lee et al in VLDB 2003

* Updates are processed bottom-up as locally as
possible

- If new position is close to the old one: update leaf

- If not so close: traverse tree bottom-up as little as
possible

* Performance is unstable and depends on
characteristics of updates

A Different Approach: RUM-tree

RUM-tree — ,R-tree with Update Memo*

Skip performing deletions altogether!

- Store deletions in main memory — ,Update Memo®
- No top-down or bottom-up traversals at all
- Let obsolete entries stay in the tree

- But clean the tree periodically from them —
,Garbage Cleaner”

Perform insertions as for ordinary R-tree

Enhance query algorithm to filter obsolete
entries

RUM-tree: the Data Structure

» |_eaf entries are timestamped to differentiate
between up to date and obsolete entries:

- <MBR, oid, stamp>
 Update Memo structure:
- Entry format:
- <object-id, latest-timestamp, max-num-of-obsolete>
- Primary access on object-id
- Invariant max-num-of-obsolete > 0
- Requires very little amount of main memory

10

RUM-tree: Deletions

o Let's delete the old position of a,

« No obsolete a, entries in the tree yet

: Update Memo _Update Memo
e No disk I/0O! Object Time Max OI¢ Object Time Max Old
b2 1 2 I:> a3 2 1
bz 1 2

11

RUM-tree: Deletions, cont.

* | et's delete the old position of b2
* One old position of b2 already in the tree

e No disk I/O Update Memo Update Memo
Object Time Max Ol¢ Object Time Max Ol¢
a3 2 1 a3 1
b2 1 2 b2 3

12

RUM-tree: Insertions

* Let's insert a new position of b2

* Ordinary R-tree insertion

 Update Memo update

* |[f no old entry in Update Memo: create new one

e Update Memo Update Memo
’/ 12 \ Object Time Max Olc Object Time |Max Ol
a a
s |s |s ? 2 = B I
172173 b 3 3 b, 4 4

o |

b la.lala, b.[b,| cb

13

RUM-tree: Queries

* Ordinary R-tree query with Update Memo filter
* |ntuition: the bigger UM, the slower the query
« Example: range query with MBR(s) U MBR(s)

Raw answer set

r|r
/ 12 \ R-tree quer3> b,],bz,(Stamp=4)1C1’bZ(Stampz?’)

S |s.|s
1| 2| ’ Update Memo
/ \ UM Fil Object [Time [Max OId
iiter a
bJajlaja, blb, b, s .
b, 4 4

N

Final answer set
b1,b2,(stamp=4),c1

14

RUM-tree: Garbage Cleaning

* With previous algorithms:

- Disk tree only grows with time
- Update Memo only grows with time
- Performance, esp. of queries, drops with time

* S0, sometimes the garbage must be disposed

- Utp(_jl_?te Me:\n/lo 5 Update Memo
ject |lime Max Uld Object Time |Max Ol

'/ r1|r2 \ a, 2 1 '/ r1|r2 \
b, 4 4

S1|32|83 S1|S’2’S3
/ \ Garbage CIeani& / \

b la la,la, b [b, clb, alaja, b.lc]|b,

15

RUM-tree: Garbage Cleaning, cont.

e | eaf level nodes linked to a list

 All obsolete entries from each node are cleaned
by a so-called token

* After | updates token is passed to the next node

O O -
Token

16

RUM-tree: Garbage Cleaning, cont.

* Another way: to clean garbage whenever node
Is touched

 Combined with cleaning token method

o Useful definitions to measure GC effectiveness

- Garbage ratio (gr): number of obsolete entries
divided by total number of objects

- Inspection ratio (ir):number of GC-inspected nodes
divided by number of updates

* WWe want to minimize both gr and rr.

17

Talk Outline

Motivation

Example: Updates with R-tree
Related work: Bottom-up Updates
Contribution: RUM-tree
Experimental Evaluation

18

Experimental Evaluation

* | os Angeles street network

* Objects moving along the network generated by

Brinkhoff generator

PARAMETERS

VALUES USED

Number of objects

Moving distance between updates
Extent of objects

Node size (bytes)

Inspection Ratio of RUM-tree

2M., 2M~20M
0.01, 0~0.01
0, 0~0.01
1024, 2048, 4096, 8192
20%, 0% ~100%

19

GC Parameter Evaluation and
Tuning

5.0 - 20 -
—"— RUM-tree
RUM t tﬂl{en 18 —— RUM-‘tl‘EEtuken
45 —8 “iré€touch 16 | —o— RUM-tree, .1
e
4.0 s 14r
9 O 12+
m i
3.5 v I
14 e 10
2 © gl
O 3.0 o
2.5 M 4T
2 |
2.0 ' 0
100 0 20 40 60 80 100
Inspection Ratio (%) Inspection Ratio (%)

20

Performance Comparison

* Trees compared:
- R*-tree
- FUR-tree

* Previously discussed related work: bottom-up updates

- RUM-tree
* All internal tree nodes stored in main memory

21

|O/Update

L
=

ha
on

ha
=

-
=

-
n

Performance Comparison Results

Number of Objects (in Millions)

| <> R*-tree

| —¥— FUR-tree 0
- —@— RUM-tree <>

- e

o
o
>
K + K * %
r—e @ ® @ ®
u]]] 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20

10/Query

0
2 4 6 8

.
et
-

- R*tree
—¥— FUR-tree
—8— RUM-tree

1b 15 1ﬁ 1% 1ﬁ zh
Number of Objects (in Millions)

22

Performance Comparison Results,
cont.

(Obj. Extent =0 Moving Dist. =0.01 Number of Obj. = 20M) 600 -
4u-_ R Aree . —@®— RUM-tree
-) —¥— FUR-tree 500 | ®
] = & —&— RUM-tree - I /
30 @ ®
_ R o £ 4001
g 25 o
= = I o
3 20 = 300 /
g i
O 15- N 200 L
5 o
= 10 E
1 100 |- L
. =100
u | : : : : : | I 0 | | | | | | | | | | |
11100 1:10 1:1 10:1 100:1 1000:110000:1 0 2 4 6 8 10 12 14 16 18 20 22
of Updates : # of Queries Number of Moving Objects (in Millions)

23

Performance Comparison
Conclusion

* RUM-tree update cost: ~3 I/O

- Twice better than FUR-tree
- 3-10-... times better than R*-tree

- Scales very well
* All trees have similar query cost

24

Talk Outline

Motivation

Example: Updates with R-tree
Related work: Bottom-up Updates
Contribution: RUM-tree
Experimental Evaluation

Strong and Weak Points

25

Strong Points

* An important problem setting
* Works with any amount of main memory

- Update Memo is very small
e Stable performance

* Proposed solution discussed thouroughly

- Correctness, crash recovery, cost model,
concurrency control

» Comprehensive experimental evaluation
- Although only with network dataset
* Clear and concise writing style

26

Weak Points

* Falils to consider garbage cleaning with only
clean-on-touch

- Much simpler data structures and algorithms
* No leaf-level linked list, no parent pointers, no tokens

- Garbage ratio = 6%, compared to ~1% in paper
experiments

* Crash Recovery treatment has issues
- It is possible to lose deletions
* Cost model falls apart with ir = 0%

e Performance evaluation with uniform and
skewed datasets would add value

27

Talk Outline

Motivation

Example: Updates with R-tree
Related work: Bottom-up Updates
Contribution: RUM-tree
Experimental Evaluation

Strong and Weak Points

Relation to my Project

28

My Project (R"-tree)

* The same setting, but persistence is not
assumed

- Frequent updates
* Disk-based R-tree
* Main memory buffer of incoming updates

* When buffer gets full, its updates are processed
on the main tree in batch

- Performance win by making lots of updates share
same |/O operations

29

Relation to my Project

e Similar in that incoming deletions are procesed
in memory, but data structures differ very much

» Different persistence assumptions, not really
comparable performance

- RUM-tree and related work: index is persistent
* Each update costs at least 1 [/O by definition

- RR-tree: index is partially main-memory based
* Each update costs ~ 0.1 1/0O

30

Conclusion

* Well-written paper on important topic
e Contribution: an R-tree modification, that:

- Supports frequent updates
- Grounded by theoretical analysis
- Convincingly outperforms related work

* Problem setting similar to my project

- A key difference in persistence
- Thus cannot be directly compared

31

