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Motivation

e Scenarios with continuous spatial data
sampling are getting more and more common

- 1 min LBS users that send 1 update/hour
- 280 updates/second!
- Queries are relatively rare

* \Wanted: a spatial disk-based index that can
nandle high volume of updates

* |s R-tree good enough?
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Example: Updates with R-tree

* R-tree: index of choice for low-dimensionality
spatial data

* |[ndex structure suited for efficient range queries
on mostly static data
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Example: Updates with R-tree

* | et's update position of b2

1) Delete the old b_: 2 traversals!

2)Insert the new b : 2 traversals! 1

a lala,

e 1 traversal = 3 1/Os
* 1 update =12 1/Os!

* Conclusion: R-tree updates are expensive



How to Make Updates Cheaper?

* Top-down traversals do not do anything useful
on upper tree levels if new object position is
close to the old one

* Top-down traversal during deletion is redudant
iIf leaf level can be accessed directly




Related Work: Bottom-up Updates

* FUR-tree by Lee et al in VLDB 2003

* Updates are processed bottom-up as locally as
possible

- If new position is close to the old one: update leaf

- If not so close: traverse tree bottom-up as little as
possible

* Performance is unstable and depends on
characteristics of updates



A Different Approach: RUM-tree

RUM-tree — ,R-tree with Update Memo*

Skip performing deletions altogether!

- Store deletions in main memory — ,Update Memo®
- No top-down or bottom-up traversals at all
- Let obsolete entries stay in the tree

- But clean the tree periodically from them —
,Garbage Cleaner”

Perform insertions as for ordinary R-tree

Enhance query algorithm to filter obsolete
entries



RUM-tree: the Data Structure

» |_eaf entries are timestamped to differentiate
between up to date and obsolete entries:

- <MBR, oid, stamp>
 Update Memo structure:
- Entry format:
- <object-id, latest-timestamp, max-num-of-obsolete>
- Primary access on object-id
- Invariant max-num-of-obsolete > 0
- Requires very little amount of main memory
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RUM-tree: Deletions

o Let's delete the old position of a,

« No obsolete a, entries in the tree yet

: Update Memo _Update Memo
e No disk I/0O! Object Time Max OI¢ Object Time Max Old
b2 1 2 I:> a3 2 1
bz 1 2
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RUM-tree: Deletions, cont.

* | et's delete the old position of b2
* One old position of b2 already in the tree

e No disk I/O Update Memo Update Memo
Object Time Max Ol¢ Object Time Max Ol¢
a3 2 1 a3 1
b2 1 2 b2 3
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RUM-tree: Insertions

* Let's insert a new position of b2

* Ordinary R-tree insertion

 Update Memo update

* |[f no old entry in Update Memo: create new one

e Update Memo Update Memo
’/ 12 \ Object Time Max Olc Object Time |Max Ol
a a
s |s |s ? 2 = B I
172173 b 3 3 b, 4 4

o |
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RUM-tree: Queries

* Ordinary R-tree query with Update Memo filter
* |ntuition: the bigger UM, the slower the query
« Example: range query with MBR(s ) U MBR(s )

Raw answer set

r|r
/ 12 \ R-tree quer3> b,],bz,(Stamp=4)1C1’bZ(Stampz?’)

S |s.|s
1| 2| ’ Update Memo
/ \ UM Fil Object [Time  [Max OId
iiter a
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b, 4 4

N

Final answer set
b1,b2,(stamp=4),c1
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RUM-tree: Garbage Cleaning

* With previous algorithms:

- Disk tree only grows with time
- Update Memo only grows with time
- Performance, esp. of queries, drops with time

* S0, sometimes the garbage must be disposed

- Utp(_jl_?te Me:\n/lo 5 Update Memo
ject |lime  Max Uld Object Time |Max Ol

'/ r1|r2 \ a, 2 1 '/ r1|r2 \
b, 4 4

S1|32|83 S1|S’2’S3
/ \ Garbage CIeani& / \

b la la,la, b [b, clb, alaja, b.lc]|b,
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RUM-tree: Garbage Cleaning, cont.

e | eaf level nodes linked to a list

 All obsolete entries from each node are cleaned
by a so-called token

* After | updates token is passed to the next node

O O -
Token
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RUM-tree: Garbage Cleaning, cont.

* Another way: to clean garbage whenever node
Is touched

 Combined with cleaning token method

o Useful definitions to measure GC effectiveness

- Garbage ratio (gr): number of obsolete entries
divided by total number of objects

- Inspection ratio (ir):number of GC-inspected nodes
divided by number of updates

* WWe want to minimize both gr and rr.
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Experimental Evaluation

* | os Angeles street network

* Objects moving along the network generated by

Brinkhoff generator

PARAMETERS

VALUES USED

Number of objects

Moving distance between updates
Extent of objects

Node size (bytes)

Inspection Ratio of RUM-tree

2M., 2M~20M
0.01, 0~0.01
0, 0~0.01
1024, 2048, 4096, 8192
20%, 0% ~100%
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GC Parameter Evaluation and
Tuning
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Performance Comparison

* Trees compared:
- R*-tree
- FUR-tree

* Previously discussed related work: bottom-up updates

- RUM-tree
* All internal tree nodes stored in main memory
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Performance Comparison Results
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Performance Comparison Results,
cont.
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Performance Comparison
Conclusion

* RUM-tree update cost: ~3 I/O

- Twice better than FUR-tree
- 3-10-... times better than R*-tree

- Scales very well
* All trees have similar query cost
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Strong Points

* An important problem setting
* Works with any amount of main memory

- Update Memo is very small
e Stable performance

* Proposed solution discussed thouroughly

- Correctness, crash recovery, cost model,
concurrency control

» Comprehensive experimental evaluation
- Although only with network dataset
* Clear and concise writing style
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Weak Points

* Falils to consider garbage cleaning with only
clean-on-touch

- Much simpler data structures and algorithms
* No leaf-level linked list, no parent pointers, no tokens

- Garbage ratio = 6%, compared to ~1% in paper
experiments

* Crash Recovery treatment has issues
- It is possible to lose deletions
* Cost model falls apart with ir = 0%

e Performance evaluation with uniform and
skewed datasets would add value
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My Project (R"-tree)

* The same setting, but persistence is not
assumed

- Frequent updates
* Disk-based R-tree
* Main memory buffer of incoming updates

* When buffer gets full, its updates are processed
on the main tree in batch

- Performance win by making lots of updates share
same |/O operations
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Relation to my Project

e Similar in that incoming deletions are procesed
in memory, but data structures differ very much

» Different persistence assumptions, not really
comparable performance

- RUM-tree and related work: index is persistent
* Each update costs at least 1 [/O by definition

- RR-tree: index is partially main-memory based
* Each update costs ~ 0.1 1/0O
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Conclusion

* Well-written paper on important topic
e Contribution: an R-tree modification, that:

- Supports frequent updates
- Grounded by theoretical analysis
- Convincingly outperforms related work

* Problem setting similar to my project

- A key difference in persistence
- Thus cannot be directly compared
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