
1

Handling Frequent Updates of Moving Objects

CIKM'05 paper by

Bin Lin and Jianwen Su
Dept. of Computer Science, University of California, Santa Barbara

Santa Barbara, CA, USA

Presented by
Laurynas Biveinis



2

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



3

Motivation
● A realistic scenario:

– A city with 4 mln population
– 1 mln cell phone users are using location-based 

services
– Every LBS subscriber reports his/her position once 

per hour
– Result: 280 updates per second!

● High update rate is a big challenge for any disk-
based index structure



4

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



5

Example: TPR-tree

a
1

a
2

a
3

s
1

b
2

b
1

s
2

r
1

a
1
|a

2
|a

3
b

1
|b

2

s
1
|s

2

r
1
|r

2

...

● A natural choice for indexing moving objects
– Updates required only on velocity changes
– But are they effective?



6

Example: update with TPR-tree

● Let's change the velocity of b
2
! That means:

1)Delete the old b
2
: 2 traversals!

2) Insert the new b
2
: 2 traversals!

a
1

a
2

a
3

s
1

b
2

b
1

b
2

s
2

r
1

a
1
|a

2
|a

3 b
1
|b

2

s
1
|s

2

r
1
|r

2

...

● 1 traversal = 3 I/Os
● 1 update = 12 I/Os!
● Conclusion: TPR-tree updates are expensive



7

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



8

Why Lazy Group Update (LGU)?
● Are 4 traversals for a single update necessary? 

Observations:
– The top-down traversal is redudant during deletion 

if we can access the leaf level directly
– The deletion and insertion algorithms do not use the 

available main memory
– Several updates to the same leaf could share a 

single traversal



9

LGU: the data structure
● Adaptable to most R-tree variants (R, TPR, ...)
● Memory-based D-Table
● Disk-based I-Buffers for each node
● Direct leaf level lookup table



10

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



11

Example: deletions with LGU

● New deletions: (example: b
2
)

– Remove the entry from the lookup table
– Add a deletion entry to the D-Table
– No I/O

a
1
|a

2
|a

3
b

1
|b

2

s
1
|s

2

r
1
|r

2

...
a

1

a
2

a
3

b
1

b
2

Lookup table D-Table

b
2

...

...



12

Example: deletions with LGU, cont.
● When the D-Table is full:

– Execute the largest group of deletions going to a 
single page

– 2 I/Os for n deletions

a
1
|a

2
|a

3
|a

4
|a

5
|a

6
b

1
|b

2

... D-Table

b
2

a
3

b
1

a
4

a
6

a
5



13

Example: insertions with LGU
● New insertions are added to the root node I-

Buffer in main memory
● When any I-Buffer gets full:

– Part of it is pushed down to the I-Buffers or leaf 
nodes below

A
1
|A

2

r
1
|r

2

B
1
|B

2

a
1
|a

2
|b

1
|b

2
|b

3

a
3
|a

4

b
4
|b

5

... ... ... ...



14

LGU insertion: push down strategies
● What part of a full I-Buffer should be pushed 

down?
– Whole buffer

● Naive choice
● Very small groups are pushed too; 1 I/O per 1 insertion 

possible
– The largest group

● No I/O wastage for small groups!
– The ''youngest'' group

● Reasoning: old entries may become obsolete soon



15

LGU updates: summary
● Insertions:

– Processed lazily in batches top-down
– It will take several buffer push-downs for any given 

insertion to reach leaf level
● Deletions:

– Processed lazily in batches bottom-up
● Less than 1 I/O per 1 update on average
● Lazy updates: additional burden for queries



16

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



17

Performance results
● In a nutshell: TPR-based LGU outperforms TPR 

by up to 2 orders of magnitude
● Similarly, R-based LGU outperforms related 

work by order of magnitude
● Main measure of performance:

– Workload (combined update/query) throughput
– A representative example:

● TPR-based LGU: ~ 250 operations per second
● TPR: ~15 operations per second



18

Performance results, cont.
● Empirical comparison of push-down strategies:

– Both largest-group and youngest-group strategies 
significantly outperform whole-buffer strategy

– Largest-group is the best



19

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



20

Strong points
✔ Tackles a very important scenario of frequent 

updates
✔ Provides quite accurate analytical model
✔ Extensive performance studies

✔ Several related work data structures compared
✔ Uniform, skewed, network datasets
✔ Various workload sizes



21

Weak points
✗ Not enough algorithmic pseudocode

✗ In particular, no exact delete algorithm
✗ Contradictions between textual description and 

figures
✗ Lookup table requires a large amount of main 

memory which depends on dataset size
✗ 60% or more of dataset!

✗ Youngest-group push-down strategy requires 
timestamps for data, but space overhead is not 
discussed

✗ Chaotic style



22

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



23

Relation to my project
● The same setting – we are solving the same 

problem
● Both are based on the Buffer Tree idea

– Both process updates lazily in batches
– Different buffer data structures

● Different delete processing
– LGU: bottom-up, additional data structure
– My project: top-down, processed together with 

insertions



24

Talk Outline

●  Motivation
●  Example: updates with TPR-tree
●  Proposal: Lazy Group Update
●  Updates with LGU
●  Performance results
●  Strong and weak points
●  Relation to my project
●  Conclusion



25

Conclusion
● A relevant contribution to an active research 

area
● Demonstrates a convincing performance 

improvement and analytical model
● However, skimps over very important details


