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Motivation
● A realistic scenario:

– A city with 4 mln population
– 1 mln cell phone users are using location-based 

services
– Every LBS subscriber reports his/her position once 

per hour
– Result: 280 updates per second!

● High update rate is a big challenge for any disk-
based index structure
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Example: TPR-tree
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● A natural choice for indexing moving objects
– Updates required only on velocity changes
– But are they effective?
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Example: update with TPR-tree

● Let's change the velocity of b
2
! That means:

1)Delete the old b
2
: 2 traversals!

2) Insert the new b
2
: 2 traversals!
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● 1 traversal = 3 I/Os
● 1 update = 12 I/Os!
● Conclusion: TPR-tree updates are expensive
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Why Lazy Group Update (LGU)?
● Are 4 traversals for a single update necessary? 

Observations:
– The top-down traversal is redudant during deletion 

if we can access the leaf level directly
– The deletion and insertion algorithms do not use the 

available main memory
– Several updates to the same leaf could share a 

single traversal
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LGU: the data structure
● Adaptable to most R-tree variants (R, TPR, ...)
● Memory-based D-Table
● Disk-based I-Buffers for each node
● Direct leaf level lookup table
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Example: deletions with LGU

● New deletions: (example: b
2
)

– Remove the entry from the lookup table
– Add a deletion entry to the D-Table
– No I/O
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Example: deletions with LGU, cont.
● When the D-Table is full:

– Execute the largest group of deletions going to a 
single page

– 2 I/Os for n deletions
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Example: insertions with LGU
● New insertions are added to the root node I-

Buffer in main memory
● When any I-Buffer gets full:

– Part of it is pushed down to the I-Buffers or leaf 
nodes below
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LGU insertion: push down strategies
● What part of a full I-Buffer should be pushed 

down?
– Whole buffer

● Naive choice
● Very small groups are pushed too; 1 I/O per 1 insertion 

possible
– The largest group

● No I/O wastage for small groups!
– The ''youngest'' group

● Reasoning: old entries may become obsolete soon
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LGU updates: summary
● Insertions:

– Processed lazily in batches top-down
– It will take several buffer push-downs for any given 

insertion to reach leaf level
● Deletions:

– Processed lazily in batches bottom-up
● Less than 1 I/O per 1 update on average
● Lazy updates: additional burden for queries
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Performance results
● In a nutshell: TPR-based LGU outperforms TPR 

by up to 2 orders of magnitude
● Similarly, R-based LGU outperforms related 

work by order of magnitude
● Main measure of performance:

– Workload (combined update/query) throughput
– A representative example:

● TPR-based LGU: ~ 250 operations per second
● TPR: ~15 operations per second
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Performance results, cont.
● Empirical comparison of push-down strategies:

– Both largest-group and youngest-group strategies 
significantly outperform whole-buffer strategy

– Largest-group is the best
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Strong points
✔ Tackles a very important scenario of frequent 

updates
✔ Provides quite accurate analytical model
✔ Extensive performance studies

✔ Several related work data structures compared
✔ Uniform, skewed, network datasets
✔ Various workload sizes
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Weak points
✗ Not enough algorithmic pseudocode

✗ In particular, no exact delete algorithm
✗ Contradictions between textual description and 

figures
✗ Lookup table requires a large amount of main 

memory which depends on dataset size
✗ 60% or more of dataset!

✗ Youngest-group push-down strategy requires 
timestamps for data, but space overhead is not 
discussed

✗ Chaotic style
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Relation to my project
● The same setting – we are solving the same 

problem
● Both are based on the Buffer Tree idea

– Both process updates lazily in batches
– Different buffer data structures

● Different delete processing
– LGU: bottom-up, additional data structure
– My project: top-down, processed together with 

insertions
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Conclusion
● A relevant contribution to an active research 

area
● Demonstrates a convincing performance 

improvement and analytical model
● However, skimps over very important details


