
Flow Logic for Language-Based
Safety and Security

René Rydhof Hansen

Kongens Lyngby 2005
IMM-PHD-2005-143

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Society is increasingly dependent on information and communication technol-
ogy. Computers are integrated into everything from toasters to control systems
for critical infrastructure. Consequently even simple programming errors have
the potential to wreck havoc on practically every aspect of society and everyday
life. It is therefore a crucial challenge for computer science to develop tools and
techniques that can help improve the quality of software design and implemen-
tation.

In this dissertation it is argued that techniques rooted in the theory and
practice of programming languages, so-called language-based safety and security,
provide a feasible platform for developing software that can be verified and
validated with a very high degree of assurance. Specifically, it is argued and
demonstrated that static analysis is an indispensable technique for language-
based safety and security and that the Flow Logic framework for static analysis
is particularly useful this regard.

In order to support and illustrate the above points, a number of program
analyses are developed for the Carmel programming language, a variant of the
low-level language used on Java smart cards. The analyses are formally proved
correct with respect to the semantics and are then used to verify a wide spectrum
of pertinent safety and security properties.

iv Summary

Resumé

Samfundet afhænger i stadig stigende grad af informations- og kommunikations-
teknologi. Computere indbygges i alt fra brødristere til kontrolsystemer for
kritisk infrastruktur. Derfor kan selv simple programmeringsfejl have en uover-
skuelig ødelæggende effekt p̊a alle aspekter af samfundet. Det er derfor en
grundlæggende udfordring for datalogien at udvikle værktøjer og teknikker der
kan bruges til at forbedre kvaliteten af den software der i fremtiden skal designes
og implementeres.

I denne afhandling argumenteres der for at teknikker der har rod i teorien om
programmeringssprog, s̊akaldt sprogbaseret sikkerhed, udgør en nyttig platform
for udvikling af programmer der med en høj grad af sikkerhed kan verificeres
og valideres. Specifikt argumenteres der for at statisk analyse er en uundværlig
metode i relation til sprogbaseret sikkerhed og at Flow Logic er særligt brugbart
i den forbindelse.

For at understøtte og illustrere ovenst̊aende pointer, udvikles der et antal
programanalyser for programmeringssproget Carmel, der er en variant af det
lavniveau-sprog der anvendes p̊a Java smart cards. Analyserne bevises formelt
korrekte med hensyn til semantikken og bruges derefter til at verificere et bredt
spektrum af sikkerhedsegenskaber.

vi Resumé

Preface
Problems worthy of attack

prove their worth by hitting back
—Piet Hein

This dissertation was written at the Technical University of Denmark, Informat-
ics and Mathematical Modelling. Supervised by Flemming Nielson. The work
reported in the following chapters grew out of the SecSafe project, cf. [Siv03b],
whose goal it was to investigate the use of static analysis for verifying security
properties of Java Card bytecode programs.

The basic control flow analysis, exception analysis, data flow analysis, and
ownership analysis as well as a preliminary report on implementation issues
are published as SecSafe technical reports: [Han02c, Han02b, Han02d]. The
ownership analysis and a prototype implementation used for firewall validation
is published in [Han02a]. Transaction flow analysis for Carmel (with exceptions)
is published in [HS05] and the devil’s advocate in [Han04].

Acknowledgements. First of all I would like to thank Flemming Nielson,
my supervisor, and Hanne Riis Nielson for their enduring support. Thanks also
to Mikael Buchholtz for our many talks and discussions: always interesting,
sometimes relevant, and never boring; to Igor A. Siveroni for putting up with my
many questions and for his hospitality; and to my fellow students and the staff
at IMM for creating a pleasant atmosphere. Jacob Grydholt Jensen deserves
special thanks for reading and commenting on an early draft. Finally I owe my
wife, family, and friends a debt of gratitude for their support and patience.

René Rydhof Hansen
Kongens Lyngby, January 2005

viii Preface

Contents

Summary iii

Resumé v

Preface vii

1 Introduction 1
1.1 Thesis . 2
1.2 Safety and Security on a Smart Card 3
1.3 Outline of the Dissertation . 4

2 The Carmel Language 7
2.1 From Java Card Bytecode to Carmel 7
2.2 Program Structure . 8

2.2.1 Notation . 9
2.2.2 Types . 9
2.2.3 Programs . 10
2.2.4 Packages . 10
2.2.5 Classes . 10
2.2.6 Interfaces . 11
2.2.7 Methods . 12
2.2.8 Exception Handlers . 13
2.2.9 Fields . 13
2.2.10 Instructions . 14
2.2.11 Concrete Syntax . 14

2.3 Bytecode Verification . 14
2.4 Operational Semantics . 17

2.4.1 Semantic Domains . 18
2.4.2 Programs and Initial Configurations 20
2.4.3 Imperative Core . 21

x Preface

2.4.4 Object Fragment . 24
2.4.5 Method Fragment . 26
2.4.6 Arrays . 28
2.4.7 Subroutines . 29
2.4.8 Exceptions . 29

2.5 CarmelEXC and Runtime Exceptions 31
2.5.1 Preallocated Exceptions 31
2.5.2 Extending the Semantics 31

2.6 Carmel Core . 33
2.7 Summary . 33

3 Flow Logic for Carmel 35
3.1 Flow Logic . 36
3.2 Control Flow Analysis . 36

3.2.1 Preliminaries . 37
3.2.2 Abstract Domains . 38
3.2.3 Flow Logic Specification 44
3.2.4 Control Flow Analysis: Full Specification 51
3.2.5 Analysing Programs . 51

3.3 Theoretical Properties . 51
3.3.1 Semantic Soundness . 54
3.3.2 Moore Family Property 70

3.4 Implementation . 72
3.4.1 Alternation-free Least Fixed-Point logic 72
3.4.2 Solving the Constraints 74
3.4.3 Generating Constraints 74
3.4.4 Correctness of the Constraint Generator 78
3.4.5 Complexity and Scalability 84

3.5 Handling Exceptions . 85
3.5.1 Abstract Domains . 86
3.5.2 Flow Logic Specification for Exception Analysis 87
3.5.3 Semantic Correctness . 88
3.5.4 Implementation . 91

3.6 Summary . 91

4 Extending the Flow Logic 93
4.1 Data Flow Analysis . 93

4.1.1 Instrumenting the Semantics 94
4.1.2 Abstract Domains . 95
4.1.3 Flow Logic Specification 97
4.1.4 Semantic Correctness . 99
4.1.5 Using the Data Flow Analysis 101
4.1.6 Implementation . 104

4.2 Applet Firewall and Ownership Analysis 104
4.2.1 Ownership and Sharing 104
4.2.2 Adding Ownership to the Semantic Domains 106

xi

4.2.3 Semantic Rules . 106
4.2.4 Abstract Domains for Ownership Analysis 111
4.2.5 Flow Logic Specification 113
4.2.6 Semantic Correctness . 115
4.2.7 Containment . 120
4.2.8 Implementation . 122

4.3 Summary . 122

5 Safety and Security 125
5.1 Transaction Flow Analysis . 125

5.1.1 Extended Semantics . 126
5.1.2 Well-Formed Transactions 128
5.1.3 Abstract Domains . 130
5.1.4 Transaction Flow Logic 131
5.1.5 Semantic Correctness . 136
5.1.6 Static Well-Formedness 138
5.1.7 Implementation . 139

5.2 Secure Information Flow . 140
5.2.1 Non-Interference for Carmel Core 141
5.2.2 Information Flow Analysis 143
5.2.3 Abstract Domains . 146
5.2.4 Flow Logic Specification 147
5.2.5 Soundness and Non-Interference 153

5.3 Summary . 160

6 The Devil’s Advocate 163
6.1 Carmel Core and Program Extensions 164
6.2 Leaking References . 166
6.3 Control Flow Analysis . 166

6.3.1 Abstract Domains . 167
6.3.2 Flow Logic Specification 168
6.3.3 Semantic Correctness . 170

6.4 The Devil’s Advocate . 172
6.4.1 Implementation . 177

6.5 Summary . 178

7 Conclusions 181
7.1 Related Work . 181
7.2 Conclusions . 182

A Carmel Semantics 185
A.1 Full Semantics for Runtime Exceptions 185

A.1.1 Imperative Core . 185
A.1.2 Object Fragment . 185
A.1.3 Method Fragment . 186
A.1.4 Arrays . 186

xii Preface

A.1.5 Exceptions . 187
A.2 Carmel Core Semantics . 187

B Constraint Generator 189

C Transaction Flow Analysis 195
C.1 Semantic Reduction Rules . 195
C.2 Transaction Flow Analysis . 197

Bibliography 201

C h a p t e r 1

Introduction
When you think how well basic appliances work,

it’s hard to believe anyone ever gets on an airplane
—Calvin (Calvin & Hobbes)

Relying on computers to perform critical tasks is fraught with danger and may
have dire consequences. Lethal consequences even. This is the inevitable con-
clusion reached from even a cursory reading of the ACM Forum on Risks to
the Public in Computers and Related Systems (known as “the RISKS forum”),
cf. [RIS, Neu95]. Moreover, in many of the incidents discussed in the RISKS
forum, faulty software is either the direct cause of or a contributing factor to
the incident. With this less than impressive history of software reliability in
mind, the stated goal of pervasive, or ubiquitous, computing to provide “infor-
mation and communication technology everywhere, for everyone, at all times”,
cf. [CfP04], suddenly seems like a dangerous proposition. While several method-
ologies, tools, and techniques exist for developing trustworthy and reliable sys-
tems, they often add considerable overhead to the development process both
in terms of time spent and resources expended. In addition, the deployment
of formal methods for developing reliable systems often require specialist tools
and training that may be hard and expensive to come by. For these reasons
such methodologies have mainly found use in the development of high-assurance
systems where the extra time and cost can be justified. However, if the full po-
tential of modern information and communications technology is to be realised,
tools and techniques for increasing software quality that are more accessible to
non-specialists and more easily integrated into the design and implementation
processes must be developed and employed.

In recent years techniques from programming languages, e.g., static analysis,
type systems, and program rewriting, have been successfully used for verifying
and validating safety and security properties of programs and has been ad-

2 Introduction

vanced as a promising partial solution to some of the problems outlined above,
cf. [Ame02, Bar03, Koz99, SMH01, Nec97]. The language-based approach is
particularly appealing for several reasons: often concepts already familiar to
programmers are leveraged, e.g., type systems, making it easier for program-
mers to understand and use; being rooted in programming languages means that
there is a long tradition for implementing highly automated tools that can be
integrated into existing development tools, e.g., compilers and static checkers.

The work in this dissertation supports the above arguments by developing
Flow Logic based static analyses that are used to verify a number of safety and
security properties of a stack-based low-level bytecode language based on the
Java Card Virtual Machine Language, cf. [Sun00, Che00]. Using Java Card
bytecode as basis for this dissertation has several advantages. First, it demon-
strates how the Flow Logic framework copes with both low-level languages and
advanced high-level language features such as objects and exceptions. Second,
it minimises the trusted computing base for high-assurance applet by eliminating
the need to trust (or prove) that a given Java Card compiler produces correct
code. This is particularly important when developing applications that must
be certified to comply with a given security standard, e.g., the Common Crite-
ria [CC99]. Finally, low-level bytecode languages have already seen widespread
use in embedded systems, notably smart cards, and this trend can be expected
to continue. Therefore it is important to gain an understanding of how to de-
velop high-quality and high-assurance applications for such systems.

1.1 Thesis

The main thesis of the dissertation can be formulated as follows:

The Flow Logic framework for static analysis is a powerful tool for
language-based safety and security.

In order to support this thesis the Flow Logic framework must be shown to
have, at least, the following properties:

• Versatility: the framework must support many different notions of com-
putation as well as unique and non-standard language features.

• Flexibility: it must support the development and specification of many
different types of analyses and properties.

• Robustness: minor changes and additions to both the analysis specifica-
tion and the underlying semantics should be easily accommodated in the
framework.

• Scalability: the framework should be able to cope with all the features of
a full programming language.

• Implementability: the framework must support a clear implementation
strategy.

1.2 Safety and Security on a Smart Card 3

In this dissertation it is argued that the Flow Logic framework does indeed
have all of the above properties. The emphasis will be on showing versatil-
ity (in terms of non-standard language features), flexibility, robustness, and
scalability since it has already been demonstrated that the Flow Logic frame-
work supports many different models of computation, e.g., [BBD+03, NHN03,
BDNN01b, BDNN01a, NN98a, NN97, GNN97], and that it supports implemen-
tation through the systematic development of constraint generators over suitable
constraint languages, e.g., the alternation-free least fixed-point logic [NNS+04,
BBD+03, NNS02b, NNS02a, BNN02, NS01, Pil03, Han02d, Han02a].

In this dissertation the above thesis is examined and proved by developing
a number of analyses for a low-level language based on Java Card bytecode.
The analyses are developed in a staged, or modular, fashion and then used
to verify safety and security properties, some of which are non-standard and
unique to the Java Card platform. Details are given in the next section. As a
consequence of this work, it will also be argued that language-based safety and
security is a compelling methodology for developing safe and secure programs,
and that static analysis is an indispensable technique for language-based safety
and security.

1.2 Safety and Security on a Smart Card

For many safety and security critical applications smart cards provide an ideal
platform due to the physical properties of the cards that make it very hard
to change programs or data on the card, at least without leaving very visible
evidence; this feature of smart cards is called “tamper-resistance” or “tamper-
evident”. Smart cards have, traditionally, been programmed using proprietary
languages and programming tools making it very hard to port applications be-
tween different brands of smart cards. In addition programmers had to be
trained for particular smart cards. This changed with the advent of the Java
Card platform which is essentially a smart card with a built-in Java Card Virtual
Machine (JCVM). The JCVM implements a subset of the Java Virtual Machine
but extended with special features for smart card support, e.g., an applet1 fire-
wall mechanism. The JCVM is an interpreter for the Java Card Virtual Machine
Language (JCVML), a stack-based low-level bytecode language similar to the
Java bytecode language, most often produced by compiling programs written in
Java Card, an extended subset of Java that only includes rudimentary language
constructs and simple data types from Java proper. A short history of the Java
Card platform and related languages can be found in [Che00].

The unpredictable environment in which Java Cards are used, e.g., a card
may be torn from the card reader at any point during computation, and the
somewhat esoteric protocols and coding conventions used in Java Card pro-
gramming conspire to make it difficult to guarantee that a program and its data
are handled in a sufficiently safe and secure manner. The EU research project
SecSafe, cf. [Siv03b], was conceived to address this problem through the use of

1Java Card applications are traditionally referred to as applets.

4 Introduction

static analysis for verification and validation. As a part of that project, a list
of specific problems of immediate interest was identified as a possible starting
point, cf. [MM01]. A subset of the identified problems are summarised below:

1. Information Flow Control: smart card programs often manipulate confi-
dential data, e.g., PIN codes and personal information, it is important to
ensure that such information is not leaked.

2. Service Control: certain functions of an applet should only be accessible
under specific conditions, e.g., card reset should only be possible in special
card terminals.

3. Error Prediction: only specific exceptions should be allowed to reach the
top-level, i.e., the user.

4. Atomic Updates: certain sets of operations should be performed in the
same transaction.

5. Overflow Control: numerical operations in Java Card may overflow silently
resulting in errors and potential breach of security.

The problems of Information Flow Control and Error Prediction are targeted
directly by the analyses developed in this dissertation, while Service Control,
Atomic Updates, and Overflow Control are partially handled or could be handled
by straightforward extensions of the pertinent analyses.

1.3 Outline of the Dissertation

In Chapter 2 the Carmel language is introduced as a rational reconstruction of
the Java Card Virtual Machine Language. The Carmel language will serve as a
vehicle of exposition throughout the dissertation.

In Chapter 3 a control flow analysis of Carmel is developed and proved cor-
rect. The control flow analysis is at the heart of all the subsequent analyses. An
implementation of the control flow analysis, as a constraint generator over the
alternation-free least fixed-point logic, is discussed in details and also formally
proved correct. Finally, the control flow analysis is extended in a natural way
to encompass an exception analysis. The correctness proof for the control flow
analysis is extended in a similarly simple and natural way to cover the entire
exception analysis. The developments in this chapter mainly shows robustness,
scalability, and implementability but also to some extent versatility.

Chapter 4 further examines the versatility, robustness and flexibility of the
Flow Logic framework by developing two analyses, a data flow analysis and an
ownership analysis respectively, as natural extensions of the control flow and
exception analyses. The former analysis illustrates how traditional analyses
can be specified and integrated. The latter analysis shows how features that
are unique to the Java Card Virtual Machine Language can be modelled and
analysed.

1.3 Outline of the Dissertation 5

Two advanced analyses are discussed in Chapter 5. The first is a transaction
flow analysis that is used to verify that the use of transactions in a given pro-
gram does not give rise to any errors. In contrast to the previous analyses, the
transaction flow analysis is a context dependent analysis and thus also serves to
demonstrate how the framework copes with such analyses. The second analysis
in this chapter is an information flow analysis that is used to ensure that con-
fidential data does not leak. This is established by showing that the analysis
can be used to guarantee a non-interference property. Whereas the previous
analyses are all first-order analyses, i.e., abstract properties describe (sets of)
concrete values, the information flow analysis is a second-order analysis, i.e.,
abstract properties represent relations between values. This gives rise to a more
complicated and involved proof of correctness. This work demonstrates a high
degree of versatility and flexibility of the framework.

An important aspect of the Java Card platform is that it allows for programs
to be downloaded dynamically and thereby extend the runtime environment.
Chapter 6 defines an abstract representation of the analysis result of all possible
dynamic extensions. This representation is called the devil’s advocate and by
analysing a program in conjunction with the devil’s advocate it is possible to
guarantee that the program will not leak certain information to any program
later downloaded onto the card. In essence it enables analyses to work even
under an “open world” assumption. The concept of devil’s advocate developed
in this chapter offers a very compelling illustration of the flexibility of the Flow
Logic framework.

6 Introduction

C h a p t e r 2

The Carmel Language

A scientific theory should be as simple as possible, but no simpler
—Albert Einstein

In this chapter the Carmel language is introduced. Carmel will serve as a
vehicle of exposition and as a target for the problems, properties, and analyses
of the following chapters. As such, the intention is for Carmel to provide a basis
for exposition and discussion; consequently the definition of Carmel emphasises
simplicity and succinctness over features and efficiency. To carry this intention
even further a small subset of Carmel, called Carmel Core, is identified and used
as the theoretical basis for the analyses and developments in chapters 5 and 6.

In Section 2.1 the design rationale and background for the Carmel language
and its variants are discussed in more detail while Carmel Core is defined in
Section 2.6.

2.1 From Java Card Bytecode to Carmel

Carmel is the descendant of a language called JCVMLe that was originally
conceived as the target of study for the SecSafe project, cf. [Siv03b, Siv04,
Mar01, SH01], that investigated the application of program analysis to ensure
the safety and security of Java Card systems. The idea was to create a language
that was based on and as expressible and powerful as Java Card Virtual Machine
Language1 (JCVML), but targeted more towards formal methods and proofs.
This resulted in a language with 31 instructions as opposed to the more than 180
instructions of JCVML and where names and types were used directly instead
of the corresponding tokens and offsets used in JCVML. This made JCVMLe

1Also known as Java Card Bytecode

8 The Carmel Language

well-suited for formal methods and, equally important, for communicating ideas
and analyses.

Even though JCVMLe represents a significant simplification, or rationalisa-
tion, of JCVML it retains all the expressive power of JCVML. Indeed a trivial
syntactic substitution suffices to translate a JCVML program into the corre-
sponding JCVMLe program. The name Carmel was later adopted and used for
various subsets, incarnations, and variations of JCVMLe. The program struc-
ture and rationale for JCVMLe (and later Carmel) is described in [Mar01]. An
operational semantics is given in [Siv04, SH01]. The underlying runtime sys-
tem, the Java Card Runtime Environment (JCRE), is formalised in [Siv03a]
along with parts of the API supported by the JCRE. Program structure and
operational semantics for the Carmel variant studied in this dissertation can
be found in sections 2.2 and 2.4 respectively. The semantics of [Siv04, SH01]
define not only a semantics for the JCVMLe language but also for parts of the
underlying runtime-environment as defined in [Sun00]. Most notably the notion
of ownership and the related firewall of the Java Card Runtime Environment,
cf. [SJE01], since these are inextricably linked to the execution of a program on
a Java smart card.

In this dissertation the goal is not to define one base language that fully
captures all the special features of JCVML and the JCRE. The goal is to define a
target language that is as small and simple as possible while still being useful for
the intended purpose. Any extra features of interest, e.g., the above mentioned
firewall, can then be added to the base language and studied as needed. This
is a quite common approach when studying programming languages: to have
a small base language for theoretical studies and then a larger language more
directly oriented towards application. Such an approach has several advantages:
it reduces the overhead when adding new features and it provides a clearer
picture of how various language components interact. As a further step in this
direction a small subset of Carmel proper is identified that includes only the
most basic and important instructions and features. This subset, called Carmel
Core and described in more detail in Section 2.6, will serve as the base language
for the theoretical developments in chapters 5 and 6.

2.2 Program Structure

The formal structure for Carmel programs is defined and discussed in this sec-
tion. Following the approach of [Mar01] an abstract foundation is laid for the
Carmel language in which programs are represented as an abstract data struc-
ture that is accessed through a number of special access functions.

In contrast to a more traditional approach of representing programs as (ab-
stract) syntax trees the data structure approach has the advantage that it is
very easy to extract relevant information from a program in a very convenient
manner. The disadvantage, however, is that the abstract data structure does
not convey the actual program structure in a very visual or intuitive manner.
Therefore a more readable syntax, based on the Java Card syntax, for actual

2.2 Program Structure 9

Type ::= RefType | PrimType

PrimType ::= boolean | byte | short | int
RefType ::= ArrayType | SimpleRef

SimpleRef ::= ClassName | InterfaceName

ElemType ::= SimpleRef | PrimType

ArrayType ::= (array ElemType)
ReturnType ::= Type | void

MethodType ::= Type∗ → ReturnType

Figure 2.1: Carmel types

program examples is briefly discussed in Section 2.2.11.

2.2.1 Notation

Following [Mar01, Siv04] a domain is defined to be a set equipped with corre-
sponding access functions that are used to access and modify various compo-
nents of the domain. The record notation is also introduced as a particularly
convenient way to specify a domain with all its access functions:

Dom = (f 1 : Dom1)× . . .× (f n : Domn)

which defines the domain, Dom, with access functions f i : Dom → Domi for
1 ≤ i ≤ n. Access to an element, f i, of d ∈ Dom is written in an “object-
oriented” style: d.f i and similarly updating an element is written d[f i 7→ v].
Lifting the domain Dom to a domain that includes a (new) bottom value is
written Dom⊥.

To enhance legibility and reduce the number of parentheses the above nota-
tion is extended from access functions to functions in general: writing x.f for
f(x) and x1.f(x2, . . . , xn) for f(x1, x2, . . . , xn).

2.2.2 Types

Carmel (and JCVML) is a strongly typed language and type declarations are
an intrinsic part of the program structure. In Figure 2.1 the Carmel types are
shown. Note that unlike the semantics of [Siv04, SH01] the Carmel semantics
presented here does not model word sizes or word boundaries and thus does not
need to distinguish between the primitive types; in essence all of the primitive
types, denoted PrimType, are considered simply as numbers. For the analy-
ses and properties discussed in the following chapters this memory model is
sufficient.

Figure 2.2 defines a subtype relation, denoted �, on the Carmel types. The
functions super∗ (for both classes and interfaces) and implements∗ are defined
in Sections 2.2.5 and 2.2.6.

10 The Carmel Language

t ∈ ElemType

t � t

t � t′

(array t) � (array t′)

σ′ ∈ super∗(σ)

σ � σ′

iface ′ ∈ super∗(iface)

iface � iface ′

iface � Object
iface ∈ implements∗(σ)

σ � iface

Figure 2.2: Subtyping relation

2.2.3 Programs

In order to facilitate the co-existence of several applets on a Java Card, JCVML
programs are made up of a number of packages that introduce separate names-
paces and thus can be thought of as programs in their own right.

For Carmel a similar structure is adopted and a program is defined to be a
set of packages:

Program = (packages : P(Package))

2.2.4 Packages

Each package has a name and contains the set of classes and interfaces defined
in it:

Package = (name : PackageName)×
(classes : P(Class))×
(interfaces : P(Interface))

Since packages are uniquely identified by their name (in a given program) a
package may be unambiguously referenced simply by its name rather than its
full definition.

2.2.5 Classes

Classes in Carmel, as in other class-based object oriented languages, provide the
main abstraction mechanism of the language. They are instantiated as objects
that capture state information and the methods for manipulating the state in a
natural manner.

A class is defined by the package it belongs to, its name, and its place in
the class hierarchy. The class hierarchy is encoded in the super : Class →
Class⊥ function that returns the superclass of the given class. In keeping with
JCVML the existence of a special class, Object, is assumed that is implicitly
the superclass of all classes except itself; thus the super function will return the
bottom value, ⊥, when used on the Object class. The methods and fields defined
by a class are accessed through the methods and fields component respectively.

2.2 Program Structure 11

Finally, a class may implement a number of interfaces, as defined in the next
section, available through the implements function:

Class = (name : ClassName)×
(package : Package)×
(super : Class⊥)×
(methods : P(Method))×
(fields : P(Field))×
(implements : P(Interface))

A class inherits all the static and instance fields of its super class. Similarly
static and virtual methods are inherited from the super class. In addition to
implementing new static and virtual methods a class may supply its own imple-
mentation of a virtual method already defined in the super class and thereby
override the previous definition. When a virtual method is invoked a method
lookup is performed at runtime to search the class hierarchy for the applicable
implementation of the invoked method. This process is also called dynamic
method dispatch. The method lookup is formally defined in conjunction with
the semantics of method invocation. In Chapter 3 a control flow analysis is de-
fined that, among other things, computes an over-approximation of the method
implementations that may be used at each invocation point in a program.

Classes may be referred to using the qualified name of the class, i.e., the
combination of package name and class name which uniquely identifies a class
in a given program. As an example consider the class named C belonging to the
package p, this class is referred to as “p.C”. When no confusion can arise the
package name may be elided, e.g., when a program only contains one package.

The following two functions are defined for later use. The first determines
the set of super classes for a given class by transitively traversing the class
hierarchy:

super∗(⊥) = ∅
super∗(σ) = {σ.super} ∪ (σ.super).super∗

The next determines the set of interfaces implemented (transitively) by a class
by first taking the union of all the interfaces directly implemented by the class
(σ.implements) and all the super-interfaces of those ((σ.implements).super∗),
and finally recursively add all the interfaces implemented by the superclass
((σ.super).implements∗):

implements∗(⊥) = ∅
implements∗(σ) =
σ.implements ∪ (σ.implements).super∗ ∪ (σ.super).implements∗

The super∗ for interfaces is defined in the next section.

2.2.6 Interfaces

Since JCVML, and consequently Carmel, does not allow a class to inherit from
more than one class interfaces can be seen as a way to regain some of the advan-

12 The Carmel Language

tages of multiple-inheritance and yet avoid the problems inherent in multiple-
inheritance.

Interface = (name : InterfaceName)×
(package : Package)×
(super : P(Interface))×
(methods : P(Method))×
(fields : P(Field))×
(implementedBy : P(Class))

The methods of an interface are called abstract methods and do not contain
any instructions. A class that implements a given interface must provide im-
plementations of all the methods declared in the interface. Interfaces behave
like classes regarding fields and methods: fields are inherited and methods are
looked up.

Interfaces may be referred to using only the qualified name of the interface
and as for classes, the package name may be omitted when it is unambiguously
defined by context.

The following function transitively computes the complete set of super-
interfaces to a given interface. For convenience it is defined on a set of interfaces:

super∗({iface1, . . . , ifacen}) =⋃
1≤i≤n ifacei.super⋃
1≤i≤n {iface | iface ∈ iface i.super.super∗ }

2.2.7 Methods

The actual functionality of a Carmel program is implemented by methods. Meth-
ods are identified by their name, the class or interface in which they are defined,
and their type. Furthermore methods contain the instructions that actually im-
plements the method, accessible through the function instructionAt that takes
a program counter and returns the corresponding instruction or bottom if there
is no instruction at that program counter. Finally, a method can be either a
static method or a virtual method as indicated by isStatic:

Method = (class : Class ∪ Interface)×
(name : MethodName)×
(type : MethodType)×
(instructionAt : PC→ Instruction⊥)×
(isStatic : Bool)
(handlers : N0 → ExcHandler⊥)

The first instruction of a method is located at program counter 0 and for a
non-branching instruction at program counter pc the next instruction can be
found at program counter pc + 1. For m.type = (t1 :: · · · :: tn) → t′ define
m.returnType = t′.

A method may also define a number of exception handlers accessed through
the handlers component. The ordering of handlers, as defined by the argument

2.2 Program Structure 13

to the handlers function, determines which handler to use in the case of over-
lapping handlers. It is the responsibility of the compiler to define a suitable
ordering as specified in [LY99]. The handlers function returns the bottom value
for indices that has not been assigned to a handler.

Methods that are defined in interfaces are called abstract methods and do
not contain any instructions. In contrast a class that implements a given inter-
face must provide actual the implementations of all the methods defined in the
interface.

The qualified name of a method is not sufficient to uniquely identify a given
method since Carmel (and JCVML) allows a form of overloading where different
methods can have the same name provided they have different argument types.
This implies that a method can be identified by using its argument type in
addition to the qualified name. For example: p.C2.abs(p.Num) identifies the
method named abs that takes a (reference to a) p.Num as argument and is
defined in the class C2 which belongs to the package p. For methods that are
not overloaded the argument type may also be omitted.

2.2.8 Exception Handlers

Every method can define a number of local exception handlers to catch specific
exceptions that are thrown in a specified region of the method. Thus exception
handlers are composed as follows:

ExcHandler = (catchType : Class⊥)×
(startAddr : PC)×
(endAddr : PC)×
(handlerAddr : PC)

where catchType determines which exception to catch (with ⊥ indicating any
exception) while startAddr and endAddr specifies the region in which the ex-
ception should be caught and finally the start address of the handler itself is
given by handlerAddr.

Note that it is the responsibility of the compiler to define an order on excep-
tion handlers so that the innermost (relevant) handlers appear first as specified
in [LY99, Sun00].

2.2.9 Fields

Fields are given by the combination of the class in which they are define, the
name of the field, and the type of the field:

Field = (class : Class ∪ Interface)×
(name : FieldName)×
(type : Type)×
(isStatic : Bool)

Similar to a method, a field can be either a static field or an instance field as
indicated by isStatic.

14 The Carmel Language

A field is uniquely identified by its qualified name.

2.2.10 Instructions

The full instruction set of Carmel is shown in Figure 2.3. The instruction set can
be divided into six natural categories, called fragments, each handling a different
aspect of Carmel: imperative core, objects, methods, arrays, subroutines, and
exceptions.

Note that similar to JCVML most of the instructions are typed, i.e., they
indicate the type of values expected and produced by the instruction. These
types are called operand types and are defined as follows:

OpType = {r, b, s, i}

representing references (or return addresses), byte (or bool) values, short val-
ues, and int values respectively.

In the figure square brackets are used to indicate an optional keyword or type
declaration, e.g., return [t] indicates that a return instruction may optionally
return a value of type t.

2.2.11 Concrete Syntax

The abstract program structure defined in the preceding section is very conve-
nient when defining the semantics for Carmel and other similarly formal tasks.
However for illustration and concrete program examples it is less than optimal
and does not convey the actual structure of a program in a very visual or intu-
itive way. Therefore a more readable concrete syntax (based on the syntax for
Java Card) is used for program examples as illustrated in Figure 2.4.

For more details on the syntax, including a formal definition of the syntax
as an extension of the Java syntax, see [Mar01, Section 3.3].

2.3 Bytecode Verification

One feature in particular makes Java Card, and indeed the entire family of
Java-like languages, particularly attractive for developers of safety and security
critical systems namely bytecode verification. The bytecode verification can be
seen as an extended type check of JCVML code that in addition to ensuring
“traditional” type safety also checks certain other safety properties, e.g., that
programs are structurally well-formed and follows the type discipline of the
virtual machine. This is very useful for making certain that compiled code that
comes from untrusted or unknown sources can be checked independently to
confirm that it is well-typed and structurally well-formed, i.e., that it is indeed
a program. Furthermore the bytecode verification ensures that the verified
program meets a number of requirements on the control and data flow of the
program, e.g., that a local variable is not accessed before it has been assigned a

2.3 Bytecode Verification 15

Imperative core
Instruction ::= nop No operation

| push t c Push c onto stack
| pop n Pop n stack positions
| dup m n Duplicate stack positions
| swap m n Swap stack positions
| numop t op [t′] Numerical operation
| goto pc Unconditional jump to pc
| if t cmp [nul] goto pc Conditional jump
| lookupswitch t (ki=>pci)

n
1 default=>pc0

| tableswitch t l=>(pci)
n
0 default=>pcn+1

| load t x Load local variable
| store t x Save local variable
| inc t x c Increment local variable

Object fragment
| new σ Create new instance
| checkcast t Dynamic type-check
| instanceof σ Dynamic type-check
| getstatic f Fetch value of static field
| putstatic f Update static field
| getfield [this] f Fetch value of instance field
| putfield [this] f Update instance field

Method fragment
| invokestatic m Invoke a static method
| invokevirtual m Invoke a virtual method
| invokeinterface iface Invoke an interface
| return [t] Return from invocation

Arrays
| new (array t) Create new array
| arraylength Get length of array
| arrayload t Fetch value from array
| arraystore t Update array

Subroutines
| jsr pc Jump to subroutine
| ret x Return from subroutine

Exceptions
| throw Throw an exception

Figure 2.3: Carmel instructions grouped by language fragment.

16 The Carmel Language

package p;

class Num

{

short val;

}

class C

{

static short rescue;

short abs(Num n) {

0: load r 1

1: getfield Num.val

2: store s 2

3: goto 7

4: pop 1

5: getfield this p.C.rescue

6: return s

7: load s 2

8: if lt s 0 goto 11

9: load s 2

10: return s

11: load s 2

12: numop s neg

13: return s

0-2: NullPointerExc => 4

}

}

class C2 extends C

{

short run() {

0: push s 42

1: putstatic C.rescue

2: load r 0

3: push s 3

4: new (array p.Num)

5: push s 1

6: arrayload r

7: invokevirtual p.C2.abs(p.Num)

8: return s

}

}

Figure 2.4: Example Carmel program

2.4 Operational Semantics 17

value and that the operand stack does not grow indefinitely. Following [HM01]
the main tasks of the bytecode verifier can be summarised as follows:

• Stack frames do not under- of overflow

• Every bytecode is valid

• Jumps lead to legal instructions

• Method signatures contain valid information

• Operands are of the correct type

• Access control is obeyed

• Objects are initialised before use

• Subroutines are used in a first-in-first-out order

In addition, since the bytecode verifier is defined and implemented as a work-list
based data flow analysis, it also ensures that when control flow paths are joined,
e.g., after a conditional, the stack heights along the two paths must be the same
and the local heaps must be type-compatible.

Since all JCVML programs must be verified before they are executed it is
reasonable to also assume that all Carmel programs considered here have been
bytecode verified. While this assumption makes some of the proofs in Section 5.2
much simpler by ensuring that the operand stack height for a given instruction is
fixed, it is not strictly necessary since equivalent guarantees could be integrated
in the analysis. Furthermore Carmel programs are well-formed by assumption
and no other analysis nor the semantics defined in this chapter depends on
programs being bytecode verified. Indeed some of the analyses could be used to
perform many of the tasks performed by the bytecode verifier. However, this is
tangential to the purpose of the present work and will not be discussed further
here. The full specification and further details of the bytecode verifier can be
found in [Sun00] and [LY99].

2.4 Operational Semantics

The formal semantics of the Carmel language can now be defined. The semantics
is based on that of [Siv04, SH01] but modified to better suit the goals of this
dissertation and clarify presentation as discussed in Section 2.1.

The Carmel semantics is specified as a structural operational semantics,
i.e., a small step semantics, as described in [Plo81, NN92]. The presentation
is structured around the six fragments of Carmel: imperative core, objects,
methods, arrays, subroutines, and exceptions.

18 The Carmel Language

2.4.1 Semantic Domains

Values in Carmel programs are either numbers, references, or return addresses
from subroutine jumps:

Val = Num + Ref + RetAdr

Since modelling the details of the different types of JCVML numbers, e.g., byte
and short, is of no interest Carmel numbers are simply defined to be integers:

Num = Z

Subroutine jumps are always local to a method and therefore program counters
suffice to implement return addresses:

RetAdr = PC

Program counters are taken to be the natural numbers and zero and it is assumed
that programs are normalised in the sense that the program counter starts at
zero for every method and that the instruction following program counter pc
can be found at pc + 1:

PC = N0

For later use the domain of addresses is defined. An address is used to uniquely
identify an instruction in a given program:

Addr = Method× PC

A reference is either a location in the heap or the null-reference:

Ref = Location ∪ {null}

Locations are not specified further. It is assumed that the set of locations is
countably infinite.

The heap contains objects and arrays during program execution and is im-
plemented as a map from references to objects and arrays:

Heap = Ref → (Object + Array)

Objects are defined by the class they are instantiated from and a valuation of
its instance fields:

Object = (class : Class)×
(fieldValue : Field→ Val)

in the interest of succinctness and legibility the notation o.f is used for an object,
o, and a field f ∈ dom(o.fieldValue), as a shorthand for o.fieldValue(f) where
no confusion can arise.

In JCVML arrays are actually considered as a special kind of objects. This
is most clearly evidenced by the fact that JCVML allows method invocations

2.4 Operational Semantics 19

on array references in the same way as for object references. To improve clarity
Carmel differentiates more clearly between arrays and objects.

An array contains a number of elements of a given type. The individual
elements can be accessed through the value function:

Array = (type : ElemType)×
(length : N0)×
(value : N0 → Val)

Static fields are kept in a separate semantic component, called the static heap.
Since static fields are uniquely identified by their name, type, and the class in
which they are defined the static heap can be implemented directly as a map
from fields to values:

StaHeap = Field→ Val

The heap and the static heap can be seen as implementing the global variables
in the sense that any object, array, or value stored in either the heap or the
static heap is available to any method in the program with the right reference
or field. In addition to these global variables, each method has a number of
local variables that are stored in the local heap. The local variables do not have
names as such but are identified simply by a number:

LocHeap = N0 → Val

Note that the local variable with number 0 usually contains a reference to the
object in which the method is invoked, i.e., a self-reference (sometimes called a
this-pointer).

The notation v0 :: · · · :: vn is used as a shorthand for the local heap imple-
mented by the map [0 7→ v0, . . . , n 7→ vn].

Every method also has a local operand stack that is used as “scratch” space
or for temporary storage. The stack is implemented as a sequence of values:

Stack = Val∗

By definition the left-most element of the sequence is the top element of the
stack and thus the stack “grows” from right to left. The length of a stack
S = (v0 :: · · · :: vi :: · · · :: vn) is written as |S| = n + 1 and the individual
elements of a stack are accessed as S|i = vi for 0 ≤ i ≤ n.

Putting the above together the domain for stack frames can now be defined to
consist of the method that is currently executing, the current program counter,
a local heap, and an operand stack:

Frame = Method× PC× LocHeap× Stack

Exceptions that are not handled in the same method as it is thrown give rise
to a special kind of stack frame, called an exception frame, that can only occur
in the top-most position of a call stack. An exception frame only contains a

20 The Carmel Language

location pointing to an object of the exception class and the address where it
was thrown (or re-thrown):

ExcFrame = Location× Addr

For readability ordinary frames are written as 〈m, pc, L, S〉 and exception frames
as 〈Exc locX , (m, pc)〉. This then gives rise to the following definition of call
stacks:

CallStack = (Frame + ExcFrame)× Frame∗

which is simply a sequence of ordinary stack frames with either an ordinary
or an exception frame as a top element. The notational conveniences used for
operand stacks will also be used for call stacks.

Finally the domain for the semantic configurations of the operational seman-
tics can be defined:

Conf = RunConf + FinConf

Two different kinds of configurations are used in the semantics. The first kind
is used for the normal execution of the semantics:

RunConf = StaHeap× Heap× CallStack

The second kind of configuration is used if and when a program terminates:

FinConf = StaHeap× Heap× Val⊥

The value that replaces the call stack is used for a final return value or bottom
if no value is returned.

Using the above definition for configurations the semantics of Carmel is
defined as a structural operational semantics, cf. [Plo81]. For a program P ∈
Program the semantic reduction rules for are of the general form

P ` C =⇒ C ′

where C,C ′ ∈ Conf. The notation =⇒∗ is used to indicate the reflexive and
transitive closure of =⇒.

2.4.2 Programs and Initial Configurations

Before going into the details of the semantics of the Carmel instruction set, the
initial configurations for Carmel programs must be defined. Since Java smart
cards and JCVML allows for several applets to co-exist and run independently,
a lengthy procedure is specified for downloading, installing, and registering an
applet on a smart card. This is further complicated by the fact that a given
applet may be instantiated more than once on a given smart card. For these
reasons JCVML does not have a single special method that acts as a starting
point for all programs. Instead each applet defines a method that is designated
as the applets entry point to be invoked when the applet is executed.

2.4 Operational Semantics 21

A more abstract approach is taken here: every package is considered to be
an applet and applets can only be instantiated once. Furthermore every package
must define a special class, called the main class, that implements a method
designated as the entry point of that package. Execution of a program then
starts by instantiating all of the special classes and invoking one of the entry
points with a self-reference.

For a package p ∈ P.packages in a given program, P ∈ Program, the main
class is accessed by the main : Package→ Class function and let P.main denote
the set of all main classes in a program. The entry point of a class, σ ∈ Class,
is similarly accessed by the function entry : Class→ Method.

The initial configurations for Carmel programs can then be formalised as
follows:

Definition 2.1 (Initial configurations). For a program, P ∈ Program, the
configuration C ∈ RunConf is an initial configuration if and only if C can
be written on the form 〈K,H, 〈mσ, 0, [0 7→ locσ], ε〉 :: ε〉 where σ ∈ P.main,
mσ = σ.entry, and ∀τ ∈ P.main : ∃locτ : H(locτ) = τ .

Note that a program can have several different initial configurations, each cor-
responding to a different applet being activated.

2.4.3 Imperative Core

The imperative core of Carmel is concerned with manipulating the stack and
local heap and contains the basic control structures such as conditionals. Fig-
ures 2.5 and 2.6 display the full imperative core semantics.

The nop instruction is a “no-op” or “dummy” instruction that does not affect
the result of a program. It is included for completeness. For stack manipulation
the usual push and pop instructions are provided. The instructions dup and
swap implement additional instructions for changing the stack: dup duplicates
the top m words at stack position n and swap interchanges the top m elements
with the immediately following n elements on the stack.

Arithmetic is performed by the numop instruction that takes one or two
elements from the top of the stack, depending on whether the operation to
be performed is unary or binary, and replaces the element(s) with the result
of performing the numerical operation. The binary operators supported are
BinaryOp = {add, sub, mul, div, rem, cmp, and, or, xor, shl, shr} and the unary
operators UnaryOp = {neg, to}. Note that division by zero is explicitly disal-
lowed and will result in a stuck configuration. In a later section runtime excep-
tions are discussed which, among other things, allows an exception to be raised
when a division by zero is detected instead of ending in a stuck configuration.

Carmel has several instructions for control flow: goto for unconditional
jumps, if for conditional jumps, and lookupswitch and tableswitch for case
analysis. Conditionals come in two flavours: one that compares the top two
elements of the stack and one that compares the top element to either the null
reference (null) or the number zero (0) depending on the type. Note that when
comparing references only the operators eq for equality and ne for inequality

22 The Carmel Language

m.instructionAt(pc) = nop

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = push t c

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, c :: S〉 :: SF 〉

m.instructionAt(pc) = pop n

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = dup m n
m > 0 |S1| = m |S1 :: S2| = n

P ` 〈K,H, 〈m, pc, L, S1 :: S2 :: S3〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L, S1 :: S2 :: S1 :: S3〉 :: SF 〉

m.instructionAt(pc) = swap m n
m > 0 n > 0 |S1| = m |S2| = n

P ` 〈K,H, 〈m, pc, L, S1 :: S2 :: S3〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L, S2 :: S1 :: S3〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ BinaryOp v = op(v1, v2) op ∈ {div, rem} ⇒ v2 6= 0

P ` 〈K,H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈K,S, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ UnaryOp v = op(v1)

P ` 〈K,H, 〈m, pc, L, v1 :: S〉 :: SF 〉 =⇒ 〈K,S, 〈m, pc + 1, L, v :: S〉 :: SF 〉

Figure 2.5: Imperative core semantics (1)

2.4 Operational Semantics 23

m.instructionAt(pc) = goto pc0

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc0, L, S〉 :: SF 〉

m.instructionAt(pc) = if t cmp goto pc0

t = r ⇒ cmp ∈ {eq, ne} pc1 =

{
pc0 if cmp(v1, v2) = true
pc + 1 otherwise

P ` 〈K,H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc1, L, S〉 :: SF 〉

m.instructionAt(pc) = if t cmp nul goto pc0

t = r ⇒ cmp ∈ {eq, ne} pc′ =

{
pc0 if cmp(v1,nul) = true
pc + 1 otherwise

P ` 〈K,H, 〈m, pc, L, v1 :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc′, L, S〉 :: SF 〉

m.instructionAt(pc) = lookupswitch t (ki=>pci)
n
1 default=>pc0

pc′ =

{
pci if ∃i ∈ {1, . . . , n} : v = ki

pc0 otherwise

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc′, L, S〉 :: SF 〉

m.instructionAt(pc) = tableswitch t l=>(pci)
n
0 default=>pcn+1

pc′ =

{
pci if l ≤ v ≤ (l + n) and i = v − l
pcn+1 otherwise

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc′, L, S〉 :: SF 〉

m.instructionAt(pc) = load t x

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, L(x) :: S〉 :: SF 〉

m.instructionAt(pc) = store t x

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L[x 7→ v], S〉 :: SF 〉

m.instructionAt(pc) = inc t x c

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L[x 7→ L(x) + c], S〉 :: SF 〉

Figure 2.6: Imperative core semantics (2)

24 The Carmel Language

are allowed. The lookupswitch compares the top element of the stack with a
list of keys and jumps to the corresponding address if a match is found, other-
wise it jumps to the specified default address. The second switching instruction,
tableswitch, first subtracts a base value from the top element of the stack and
then uses the result as an index into a jump table.

The load instruction is provided for reading the content of a local variable
and push it onto the top of the operand stack. Conversely the store instruc-
tion updates the value of the specified local variable with the value on top of
the stack. Finally the inc instruction is a convenient shortcut for performing
addition and subtraction directly on values stored in local variables without the
need to go through the operand stack.

2.4.4 Object Fragment

The object fragment contains instructions for creating objects, runtime type-
checks, and field manipulation (both static and instance). The semantics of the
object fragment is shown in Figure 2.7.

The new instruction is used to create new instances of the class taken as
a parameter. The instruction allocates an unused location on the heap and
returns it on top of the stack. This is formalised in the newObject function:

newObject : Class× Heap→ Location× Heap

newObject(σ,H) = (loc, H ′)

where

loc /∈ dom(H) ∧ o ∈ Object ∧ H ′ = H[loc 7→ o] ∧ o.class = σ

The instance fields of the new object must be initiated with the correct default
value:

∀f ∈ σ.fields : ¬f.isStatic ⇒ o.fieldValue(f) = def (f.type)

The default value of a field depends on its type:

def (t) =

{
0 if t ∈ PrimType

null if t ∈ RefType

Due to the dynamic nature of object creation it is sometimes useful to be able
to check the type of an object at runtime. Carmel provides two instructions
for this: checkcast and instanceof. While both instructions basically check
the same thing, they handle failure very differently. The checkcast instruction
will become stuck if the type-check fails, either because loc = null or because
the object pointed to does not belong to a subclass of σ; in a later section
exceptions are added to the semantics allowing this instruction to throw an
exception instead of becoming stuck. In contrast instanceof does not get
stuck upon failure but simply return a 0 on top of the stack and 1 if the check
was successful.

2.4 Operational Semantics 25

m.instructionAt(pc) = new σ σ ∈ Class (loc, H ′) = newObject(σ,H)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H ′, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = checkcast σ loc 6= null ⇒ H(loc).class � σ

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = instanceof σ

v =

{
1 if loc 6= null ∧H(loc).class � σ
0 otherwise

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = getstatic f
f.isStatic = true

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,S, 〈m, pc + 1, L,K(f) :: S〉 :: SF 〉

m.instructionAt(pc) = putstatic f
f.isStatic = true

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈K[f 7→ v], H, 〈m, pc + 1, L, S〉 :: S〉

m.instructionAt(pc) = getfield f
loc 6= null o = H(loc) v = o.fieldValue(f) f.isStatic = false

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = putfield f
f.isStatic = false loc 6= null o = H(loc)

o′ = o[fieldValue 7→ o.fieldValue[f 7→ v]]

P ` 〈K,H, 〈m, pc, L, v :: loc :: S〉 :: SF 〉 =⇒
〈K,H[loc 7→ o′], 〈m, pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = getfield this f
f.isStatic = false loc = L(0) loc 6= null

o = H(loc) v = o.fieldValue(f)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = putfield this f
f.isStatic = false loc = L(0) loc 6= null

o = H(loc) o′ = o[fieldValue 7→ o.fieldValue[f 7→ v]]

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈K,H[loc 7→ o′], 〈m, pc + 1, L, S〉 :: SF 〉

Figure 2.7: Object fragment semantics

26 The Carmel Language

Two instructions are provided for manipulating static fields: getstatic and
putstatic. The getstatic instruction reads the contents of a static field and
pushes it onto the stack and vice versa for putstatic.

The instructions for reading and writing instance fields mirror those for
statics fields. The two instructions, getfield and putfield, are used to read
and update instance fields respectively. Because instance fields are local to the
object that contains them an additional object reference (location) is needed
to identify the correct instance field. Since methods often need to reference
instance fields in the current object, i.e., the same object as the one the method
is invoked in, two variants of the instructions for working with instance fields are
provided: getfield this and putfield this. These instructions use the self
reference found in local variable 0 as object reference to locating the specified
field rather than taking it as an explicit parameter on the operand stack.

2.4.5 Method Fragment

The method fragment contains all instructions concerning method invocation
and return, see Figure 2.8.

As discussed in Section 2.2.7, Carmel supports two kinds of methods: static
and virtual invoked by invokestatic and invokevirtual respectively.

Since static methods are resolved at compile time, no method lookup is
needed in order to find the right method. This is different for virtual methods:
in order to identify the virtual method to be invoked, a reference (location)
to the relevant object must be provided. The corresponding method is then
looked up in the class hierarchy and executed, this is called dynamic dispatch
since resolution is done dynamically at runtime. Method lookup is implemented
by the following function:

methodLookup(m0, σ) =

⊥ if σ = ⊥
m0 if m0 ∈ σ.methods ∧ σ 6= ⊥
methodLookup(m0, σ.super) if m0 /∈ σ.methods ∧ σ 6= ⊥

Conceptually interfaces are a way to reclaim some of the power of multiple
inheritance, by allowing a class to implement several interfaces from which the
class then “inherits” methods and fields, and yet avoiding the problems and
ambiguities inherent in multiple inheritance.

When a virtual method (or an interface) returns, the stack frame of the
invoking (virtual) method is reinstated with the arguments and object reference
for the invoked method removed from the operand stack and control is returned
to the invoking method. In [Siv04, SH01] the arguments and object reference
are removed from the stack immediately when the method is invoked rather
than when it returns. The choice to leave the arguments and reference on the
operand stack until the method returned was made in order to simplify the
proof of correctness for the control flow analysis specified in Chapter 3. Note
that this does not in any way change the behaviour of Carmel programs it is

2.4 Operational Semantics 27

m.instructionAt(pc) = invokestatic m0

m.isStatic = true n = |m0| L0 = v1 :: · · · :: vn

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉 =⇒
〈K,H, 〈m0, 0, L0, ε〉 :: 〈m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0

m.isStatic = false loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0|mv = methodLookup(m0, o.class)

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

m.instructionAt(pc) = invokeinterface m0

loc 6= null o = H(loc) Lv = loc :: v1 · · · :: v|m0|

mv = methodLookup(m0, o.class)

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

m.instructionAt(pc) = return

S′ =

{
v′
1 :: · · · :: v′

|m| :: loc :: S′′ if m.isStatic 6= true

v′
1 :: · · · :: v′

|m| :: S′′ if m.isStatic = true

P ` 〈K,H, 〈m, pc, L, S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈K,H, 〈m′, pc′ + 1, L′, S′′〉 :: SF 〉

m.instructionAt(pc) = return t

S′ =

{
v′
1 :: · · · :: v′

|m| :: loc :: S′′ if m.isStatic 6= true

v′
1 :: · · · :: v′

|m| :: S′′ if m.isStatic = true

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈K,H, 〈m′, pc′ + 1, L′, v :: S′′〉 :: SF 〉

m.instructionAt(pc) = return

P ` 〈K,H, 〈m, pc, L, S〉 :: ε〉 =⇒ 〈K,H, 〈Ret ⊥〉〉

m.instructionAt(pc) = return t

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: ε〉 =⇒ 〈K,H, 〈Ret v〉〉

Figure 2.8: Method fragment semantics

28 The Carmel Language

m.instructionAt(pc) = new (array t)
n ≥ 0 (H ′, loc) = newArray(t, n,H)

P ` 〈K,H, 〈m, pc, L, n :: S〉 :: SF 〉 =⇒ 〈K,H ′, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = arraylength loc 6= null n = H(loc).length

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, n :: S〉 :: SF 〉

m.instructionAt(pc) = arrayload t
loc 6= null v = H(loc).value(n) 0 ≤ n < H(loc).length

P ` 〈K,H, 〈m, pc, L, n :: loc :: S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = arraystore t
loc 6= null a = H(loc) a′ = a[value 7→ a.value[n 7→ v]]

H ′ = H[loc 7→ a′] 0 ≤ n < H(loc).length

P ` 〈K,H, 〈m, pc, L, v :: n :: loc :: S〉 :: SF 〉 =⇒ 〈K,H ′, 〈k, pc + 1, L, S〉 :: SF 〉

Figure 2.9: Array fragment semantics

merely an annotation. However, as a consequence the “clean up” when returning
from a method invocation is different for virtual and static methods. For static
methods the parameters on the stack must be removed, for virtual methods the
object reference must be removed as well. In addition there are two variants
of the return instruction: one for methods that do not return a value on for
methods that do.

Finally, the return instructions must also handle the special case of program
termination, i.e., when the returning method is actually the method invoked in
the initial configuration. In that case the return instructions evaluate to a final
configuration.

2.4.6 Arrays

The support for arrays in Carmel, and in JCVML, is rather rudimentary and is
limited to creating arrays, determining the length of an array, and reading and
modifying array elements, see Figure 2.9.

Creating a new array is done using the new (array t) in a manner that is
very similar to the creation of a new object using the newArray function:

newArray : Type× N× Heap→ Location× Heap

newArray(t, n,H) = (loc, H ′)

where

loc /∈ dom(H) ∧ a ∈ Array ∧ H ′ = H[loc 7→ a] ∧ a.type = t ∧ a.length = n

2.4 Operational Semantics 29

m.instructionAt(pc) = jsr pc0

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc0, pc + 1 :: S〉 :: SF 〉

m.instructionAt(pc) = ret n pc0 = L(n)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc0, V, S〉 :: SF 〉

Figure 2.10: Subroutine semantics

Furthermore, the array is initialised according to its type: ∀i ∈ {0, . . . , n− 1} :
a.value(i) = def (t).

The length of an array is readily obtained using the arraylength instruc-
tion and elements are read and written using the arrayload and arraystore

instructions respectively.

2.4.7 Subroutines

Subroutines are not, as such, formally defined entities, e.g., like methods, in
Carmel nor in JCVML. Instead subroutines are implemented by a special jump
instruction, jsr, that stores the jump address on the stack (actually the address
immediately following the jump instruction). It is then the responsibility of the
target of the jump to store the would be return address and, when done, use
the return instruction, jsr, to jump back to the return address.

See Figure 2.10 for the semantics.

2.4.8 Exceptions

Exceptions can arise in two different ways in JCVML: a programmer may explic-
itly throw an exception or an exception may be thrown by the runtime system
as a consequence of some error condition. For the developments in subsequent
chapters only few very specific runtime exceptions, if any, are of interest. For
this reason, and in the interest of keeping the language small, runtime exceptions
are not considered to be part of Carmel proper. Instead a Carmel program will
end in a stuck configuration if an unrecoverable runtime error occurs. However,
for completeness sake Section 2.5 shows how runtime exceptions can be added
to the basic Carmel semantics. The resulting language is called CarmelEXC.
Section 3.5 illustrates how a control flow analysis for Carmel can be extended
to an exception analysis handling both programmer exceptions and runtime
exceptions and thus handle all of CarmelEXC.

Exception handlers, like methods, are defined directly in the program struc-
ture and thus, there are no instructions, as such, for defining exception handlers
just as there are no specific instructions for defining a method. Therefore there
is only one instruction relating to exceptions, namely the throw instruction.

30 The Carmel Language

m.instructionAt(pc) = throw

loc 6= null σX = H(loc).class � Throwable

F =

{
〈m, pc0, L, loc :: ε〉 if findHandler(m, pc, σX) = pc0

〈Exc loc, (m, pc)〉 if findHandler(m, pc, σX) = ⊥

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

σX = H(locX).class findHandler(m, pc, σX) = pc0

P ` 〈K,H, 〈Exc loc, (mX , pcX)〉 :: 〈m, pc, L, S〉 :: SF 〉 =⇒
〈K,H, 〈m, pc0, L, locX :: ε〉 :: SF 〉

σX = H(locX).class findHandler(m, pc, σX) = ⊥

P ` 〈K,H, 〈Exc locX , (mX , pcX)〉 :: 〈m, pc, L, S〉 :: SF 〉 =⇒
〈K,H, 〈Exc locX , (m, pc)〉 :: SF 〉

Figure 2.11: Exception semantics

Exceptions are implemented simply as objects that belong to a subclass of
the Throwable class. The throw instruction either jumps to a local exception
handler if one is found or, if the exception can not be handled locally, replaces
the current stack frame either with a special exception frame that contains only
the location pointing to the exception object, cf. Figure 2.11.

Two rules that are not directly related to instructions are also needed to
evaluate semantic configurations with an exception frame on top of the call
stack: one that applies when an exception handler was found in the method
of the stack frame below the exception frame and one that applies when no
exception handler was found. Note that the latter case conceptually corresponds
to re-throwing the exception and this is noted by updating the address in the
exception frame.

In order to define the findHandler used above to find the appropriate local
handler, if one exists, two auxiliary predicates are defined. The first determines
if a given handler, H, can handle an exception of class σX that was thrown at
program counter pc:

canHandle(h, pc, σX) ≡ h.startAddr ≤ pc ≤ h.endAddr∧
(σX � h.catchType ∨ h.catchType = ⊥)

The second predicate checks if a given handler is the first applicable handler:

firstHandler(H, i, pc, σX) ≡ canHandle(H(i), pc, σX)∧
(∀j : canHandle(H(j), pc, σX) ⇒ j ≤ i)

Given the above two predicates the findHandler function is defined as follows:

findHandler(m, pc, σX) =

H(i).handlerAddr if H = m.handlers∧
∃i : firstHandler(H, i, pc, σX)

⊥ otherwise

2.5 CarmelEXC and Runtime Exceptions 31

2.5 CarmelEXC and Runtime Exceptions

In contrast to exceptions explicitly thrown, using the throw instruction, by
request of the programmer, runtime exceptions are thrown implicitly by the
runtime system when an error is detected, e.g., if a program tries to divide
a number by 0 or dereference a null pointer. Many of the semantic rules
described in the previous section included in their premise extra conditions to
prevent such errors from occurring resulting instead in a stuck configuration.
In this section we introduce runtime exceptions to handle the cases where the
ordinary semantics would get stuck by automatically throwing an exception.
This extension of the Carmel semantics is called CarmelEXC.

2.5.1 Preallocated Exceptions

Runtime exceptions are handled by the same semantic structures and rules
as ordinary exceptions. But since runtime exceptions occur implicitly it is not
possible to directly copy the approach taken for ordinary exceptions that require
programs to explicitly allocate an exception object before throwing it. Instead
it is assumed that the runtime system has preallocated exception objects for the
runtime exception classes.

The set of runtime exceptions that are assumed to be preallocated is defined
as follows:

RuntimeException = {ArithmeticExc,
NullPointerExc,
ClassCastExc,
NegArraySizeExc,
IndexOutOfBoundsExc}

A reference to one of these preallocated objects can be obtained by using the
excLocation:

excLocation : Heap× RuntimeException→ Location

In the next section the semantic rules are discussed for a few of the instructions
that may throw a runtime exception. The remaining instructions can be found
in Appendix A.1.

2.5.2 Extending the Semantics

Below a few examples are given to show how the semantic rules can be extended
to throw the proper runtime exception when an error is detected.

To simplify the specification the nextFrame function is introduced:

nextFrame(m, pc, L, S,H, locX , σX) ={
〈m, pc0, L, locX :: ε〉 if findHandler(m, pc, σX) = pc0

〈Exc locX , (m, pc)〉 if findHandler(m, pc, σX) = ⊥

32 The Carmel Language

Intuitively the nextFrame function jumps to a local exception handler if one
exists for the given exception. Otherwise an exception frame is returned.

Only division by zero gives rise to a runtime exception from numerical oper-
ators, namely the ArithmeticExc exception. This is formalised in the following
rule:

m.instructionAt(pc) = numop t op [t′]
op ∈ {div, rem} v2 = 0 σX = ArithmeticExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

Most of the instructions that require an object reference as an argument will
throw an exception, NullPointerExc, if the null reference is passed, including
the throw instruction. This is exemplified below in the getfield instruction:

m.instructionAt(pc) = getfield f
loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

The checkcast instruction checks if an object belongs to a subclass of the
class given as an argument. If this is not the case the instruction throws the
ClassCastExc exception:

m.instructionAt(pc) = checkcast σ
loc 6= null ⇒ H(loc).class 6� σ σX = ClassCastExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

Thus a checkcast instruction can be seen as an assertion or a condition for the
program to continue execution.

Arrays must have a non-negative size otherwise the NegArraySizeExc is
thrown when an array is created:

m.instructionAt(pc) = new (array t)
n < 0 σX = NegArraySizeExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, n :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

Finally, accessing array elements can fail in two ways: by passing a null reference,
resulting in a NullPointerExc exception, or by accessing an index that is not
within the bounds of the array, resulting in an IndexOutOfBoundsExc exception.

m.instructionAt(pc) = arrayload t

σX =

{
NullPointerExc if loc = null

IndexOutOfBoundsExc if n < 0 ∨ n ≥ H(loc).length

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, n :: loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

The remaining rules that may throw runtime exceptions can be found in Ap-
pendix A.1.

2.6 Carmel Core 33

InstructionCore ::= push t c
| pop n
| numop t op [t′]
| goto pc
| if t cmp [nul] goto pc
| load t x
| store t x
| new σ
| getfield f
| putfield f
| invokevirtual m
| return [t]

Figure 2.12: Carmel Core instructions

2.6 Carmel Core

Even though Carmel represents a significant rationalisation over JCVML, in-
cluding a sizable reduction in the number of instructions from 100+ to just 31,
it is still a rather large language for use with formal methods and in particular
for manual proofs. For this reason a subset of Carmel, called Carmel Core,
is identified that contains only essential structures and instructions. This core
language, in essence a Carmel (or JCVML) calculus, is used in later chapters to
develop and study advanced analyses and properties. The full instruction set of
Carmel Core is shown in Figure 2.12. Note that Carmel Core is comparable to
the Java/JVML subsets studied, e.g., in [FM99, FM98, RR98, WR99, IPW99,
ZR02, CHS01].

The semantics for Carmel Core is a simplified version of the Carmel seman-
tics. In particular the program structure and semantic domains for Carmel
Core can be constructed as restrictions of the corresponding structures and do-
mains for Carmel. For example, since exceptions are not supported no exception
frames are needed. As another example neither static fields nor methods are
included in Carmel Core and the static heap is therefore not included either.
The reduction rules for Carmel Core can be found in Appendix A.2.

2.7 Summary

In this chapter the program structure, syntax, and semantics for the Carmel
language was introduced. Carmel is a rational reconstruction of the Java Card
Virtual Machine Language that will be used as the target language for the
problems, properties, and analyses developed in this dissertation. A small sub-
set of Carmel, called Carmel Core, was defined to facilitate and simplify later
developments of advanced analyses and properties.

34 The Carmel Language

In [SJ03a] a prototype implementation of an interpreter for Carmel is dis-
cussed. The interpreter supports step-by-step visualisation of the execution of a
program and makes it inspect all parts of the state of the virtual machine, e.g.,
the operand stack and the heap, during program execution. The prototype also
implements the control flow analysis for Carmel specified in Section 3.2.

While the formalisation of the Java Virtual Machine has been a very active
area of research, with [Ber98, Ber97, Ste98] as early examples, the formalisa-
tion of the Java Card Virtual Machine Language is less well-studied. A formal
operational semantics for a precursor to JCVML, the Java Secure Processor, is
given in [HBL99]. For a comprehensive survey of the considerable amount of
research into various aspects of Java and related subjects see [HM01].

C h a p t e r 3

Flow Logic for Carmel

Logic merely enables one to be wrong with authority
—Doctor Who

This chapter serves as an introduction to the concept of Flow Logic, a spec-
ification oriented approach to static analysis. The Flow Logic framework is
introduced by way of formally developing and proving correct a control flow
analysis for Carmel in great detail. The analysis is furthermore used as a foun-
dation for other analyses developed in subsequent chapters. The use of the
control flow analysis as basis is exemplified in this chapter by extending it to
an exception analysis covering the entire CarmelEXC language.

In addition it is shown how to systematically turn the abstract Flow Logic
specification into a constraint generator over the Alternation-free Least Fixed-
Point logic for which solutions can be found efficiently. The constraint generator
is formally proved to be equivalent to the Flow Logic specification and thus the
formal correctness of the analysis is carried through to the implementation. Such
an “end-to-end” guarantee of correctness is very important for applications that
require a very high degree of formal assurance, e.g., high security systems eval-
uated according to the Common Criteria security evaluation standard [CC99],
where the higher assurance levels (EAL5 and up) require verification and vali-
dation based on formal methods.

Formal verification and validation is often demanding and time-consuming
work and consequently very expensive. In this dissertation it is argued that
the framework and general methodology presented and discussed here can be
leveraged to significantly reduce the cost of such verification and validation
tasks by facilitating the construction of automated verification and validation
tools. Here the basic tenet of static analysis, that an analysis ultimately must
be implementable (or at least decidable), lends a unique perspective to the de-

36 Flow Logic for Carmel

velopment of such tools. Development is further supported by the the fact that
trade-offs between cost and precision of an analysis are well-studied and well-
understood; this is exemplified in the Galois connections often used in abstract
interpretation, cf. [CC77, NNH99], that provide theory and tools for systemati-
cally constructing less precise (and thus less costly) analyses from more precise
analyses and thereby allowing a systematic exploration of the design space for
a given analysis.

3.1 Flow Logic

Flow Logic is a constraint-based specification oriented framework for developing
static analyses [NN97, NN98c, NNH99, NN02]. The applicability of the frame-
work is demonstrated by the wide variety of languages and calculi for which
analyses have been specified, including the π-calculus [BDNN01b, BDNN99,
BDNN98], Spi-calculus [NNS02a], λ-calculus [NN98b, NN97], the ambient cal-
culus [NNH02, NNHJ99, NHN03, HJNN99], imperative objects [NN98a], Con-
current ML [GNN97], and protocol narrations [BBD+03].

In the Flow Logic framework a clear distinction is made between specifying
and analysis and computing an analysis result, not unlike type-systems. Flow
Logic is, in general, used only for the former while the latter is a separate activity
often involving other formalisms and tools. This approach allows efforts to be
focused on designing and specifying an analysis without making compromises
dictated by implementation considerations. On the other hand implementation
of an analysis also benefits since Flow Logic is “implementation agnostic” in
the sense that no particular tool or formalism is proscribed by the framework.
The implementor of an analysis is thus free to choose a suitable tool and in
particular is able to exploit emerging and state of the art technologies.

The flexibility afforded by the high-level logical approach also allows insights
gained from other approaches, such as abstract interpretation and type/effect
systems, to be integrated rather easily into Flow Logic specifications.

3.2 Control Flow Analysis

An important feature of many object-oriented languages, including Carmel, is
that of dynamic dispatch as mentioned in Section 2.4.5. One of the immediate
consequences of dynamic dispatch is that the actual control flow and call graph
of a program is resolved dynamically at runtime. However, in order to apply
the techniques from program analysis to verify and validate safety and security
properties of programs it is a prerequisite that the control flow of a program
is known (or at least a conservative approximation thereof). In particular: for
every method (or interface) invocation in a program the set of methods that
can actually be invoked at that point must be known statically. This leads to
the notion of a control flow analysis which is a program analysis that for each
method invocation in a program computes an over-approximation of the set of

3.2 Control Flow Analysis 37

methods that can be invoked at that point. In [TP00] a number of control flow
analyses for object-oriented languages are described (re-formulated as set based
analyses) and compared with respect to speed and precision.

In this section a control flow analysis is developed for Carmel. For presenta-
tion purposes the basic analysis is specified for Carmel without taking exceptions
into account; Section 3.5 then extends the basic analysis to handle both user
thrown and runtime exceptions. A general strategy for implementing analyses
specified in the Flow Logic framework is also discussed and illustrated in detail
for the control flow analysis.

3.2.1 Preliminaries

In anticipation of the following sections, the most important lattice and order
theoretic notions used are reviewed below. Since the notions and definitions
are standard they are not discussed in any detail. For a through treatment
see [DP90, NNH99].

Definition 3.1 (Partial order). A partial order in P is a relation, v, on P
such that v is reflexive, anti-symmetric, and transitive:

1. ∀x ∈ P : x v x

2. ∀x, y ∈ P : x v y ∧ y v x ⇒ x = y

3. ∀x, y, z ∈ P : x v y ∧ y v z ⇒ x v z

A partially ordered set is a set P equipped with a partial order v.

If P has an element x ∈ P such that ∀y ∈ P :x v y then this element is called
the least element of P and is denoted ⊥ (or even ⊥P). Analogously, the greatest
element of P is an element x ∈ P such that ∀y ∈ P : y v x and is denoted > (or
>P). Generalising this leads to the definition of upper bounds:

Definition 3.2 (Upper bound). Let (P,v) be a partially ordered set and
let S ⊆ P , then u ∈ P is an upper bound for S in P if ∀x ∈ S:x v u. If
furthermore u v v for all upper bounds v of S in P then u is the least upper
bound of S in P and is denoted

⊔
S whenever it exists.

The binary least upper bound
⊔
{x, y} is written xt y. The converse notion of

lower bounds can be defined similarly:

Definition 3.3 (Lower bound). Let (P,v) be a partially ordered set and let
S ⊆ P , then l ∈ P is a lower bound for S in P if ∀y ∈ S: l v y. If furthermore
m v l for all lower bounds m of S in P then l is the greatest lower bound of S
in P and is denoted

d
S whenever it exists.

The binary greatest lower bound
d
{x, y} is written x u y.

Definition 3.4 (Lattice). Let (P,v) be a partially ordered set such that P 6= ∅.
If xt y and x u y exists for all x, y ∈ P , then (P,v) is a lattice.

38 Flow Logic for Carmel

Definition 3.5 (Complete lattice). Let (P,v) be a partially ordered set such
that P 6= ∅. If

⊔
S and

d
S exists for all S ⊆ P , then (P,v) is a complete

lattice.

Note that if P is a complete lattice then ⊥ =
⊔
∅ =

d
P and > =

d
∅ =

⊔
P .

3.2.2 Abstract Domains

An important part of designing an analysis is to find and define abstract do-
mains that can support the kind of analysis being developed. In the following
the abstract domains for the control flow analysis of Carmel are discussed in
detail, including the techniques used for constructing the analysis domains as
systematic abstractions of the corresponding concrete semantic domains.

Remark 3.6 (Notation). Overlining is used as a notational convention to
indicate abstract domains, e.g., Ref, often obtained by abstracting the corre-
sponding concrete domain, e.g., the domain Ref. In order for an analysis to be
well-defined it is frequently necessary to require that certain abstract domains
are equipped with additional structure, e.g., that domains are complete lattices.
Here abstract domains which are also complete lattices are indicated as “hatted”

domains, e.g., Ŝtack.

For the control flow analysis numbers need not be tracked in much detail and
thus numbers are simply represented as a single abstract value indicating “any
number”:

Num = {INT}

In Section 4.1 a more precise abstract domain for numbers is introduced. That
domain is then used to specify a data flow analysis for Carmel.

When designing a control flow analysis for an object-oriented language ar-
guably one of the most important aspects to consider is how to track the flow
of object references. For this reason the abstraction of object references should
be considered and chosen carefully to ensure the usefulness of the abstraction.
Due to the severe memory constraints that apply to Java Card applets, typical
applets only create and instantiate new objects during the installation and ini-
tialisation phase. Furthermore, classes are only rarely instantiated more than
once and thus it is often the case that only a single object of a given class exists
during the lifetime of an applet, cf. [Che00, Mar00]. This leads naturally to the
following abstract domain for object references:

ObjRef = Class] {null}

Object references are simply abstracted into the class of the object that they
reference. This is similar to the class object graphs defined in [VHU92]. An
obvious improvement would be to use an abstraction similar to the textual object
graphs also discussed in [VHU92]; essentially the textual object graphs abstract
an object reference into its class and its creation point. However, as noted above,
typical Java Card applets usually only instantiate a class once and in the case

3.2 Control Flow Analysis 39

where several objects of the same class are needed they are likely to be created
at the same point in the program; thereby negating the advantage gained by
using textual object graphs. For these reasons modelling object references as
class object graphs is sufficient for the present analysis. In order to improve
legibility abstract object references, σ ∈ ObjRef, are written (Ref σ).

Array references are modelled, not unlike object references, simply by the
type of elements an array contains:

ArrRef = ElemType

Abstract array references are written (Ref (array t)) rather than t for read-
ability. This particular choice of abstract domain for array references implies
that all arrays containing elements of the same type are indistinguishable in
the analysis. While this is sufficiently precise for the present work it would be
straightforward to extend the above mentioned textual object graphs of [VHU92]
to arrays and array references.

The abstract domain for references can now be defined:

Ref = ObjRef + ArrRef

Finally an abstract domain for return addresses, used for subroutines, is needed
to complete the abstract domains for basic values. Because subroutines are local
in a method return addresses can be modelled by program counters:

RetAddr = N0

An abstract return address, pc ∈ RetAddr, is written (Adr pc).
The above domains can now be combined to define the abstract domain for

values:
Val = Num + Ref + RetAddr

For analysis purposes it is convenient to work with sets of such values and thus
the following complete lattice is used as the basic domain of abstract values:

V̂al = P(Val)

This domain admits the following ordering on abstract values using subset in-

clusion. Let v̂1, v̂2 ∈ V̂al and define:

v̂1 vcVal
v̂2 iff v̂1 ⊆ v̂2

Proposition 3.9 below shows that this domain indeed is a complete lattice.
The state of an object in Carmel is simply the state of the objects instance

fields; objects can therefore be modelled as maps from (instance) field to abstract
values:

Ôbject = Field→ V̂al

By extending the ordering on V̂al, i.e., subset inclusion, in a point-wise manner

an ordering on abstract objects is obtained. Let ô1, ô2 ∈ Ôbject and define

ô1 vÔbject
ô2 iff dom(ô1) ⊆ dom(ô2) ∧ ∀f ∈ dom(ô1) : ô1.f ⊆ ô2.f

40 Flow Logic for Carmel

For the simple control flow analysis the length and structure of an array is not
needed and is thus abstracted away:

Ârray = V̂al

The ordering on V̂al trivially induces the same ordering on abstract arrays.
The abstract domains defined thus far have all been targeted towards a flow

insensitive analysis. This could easily be extended to the abstract domains
for stacks and the local heap, i.e., modelling both simply as a set of abstract
values. However, for several of the intended uses of the analysis more precision
is required and in particular a locally, i.e., intra-procedurally, flow sensitive
analysis is needed. This leads to an abstract representation of the local heap
and the operand stack indexed over the addresses of the program. In other
words, an abstract local heap and an abstract operand stack is associated to
every instruction in the program. This is similar to the approach taken by
Freund and Mitchell in [FM99, FM98]:

̂LocHeap = Addr→ Var→ V̂al

This domain admits an ordering: let L̂1, L̂2 ∈ ̂LocHeap and define for all
(m1, pc1), (m2, pc2) ∈ Addr:

L̂1 v ̂LocHeap
L̂2 iff

∀x ∈ dom(L̂1(m1, pc1)): L̂1(m1, pc1)(x) ⊆ L̂2(m2, pc2)(x)

For succinctness and readability of the Flow Logic specification notational short-
hands are introduced: L̂1(m1, pc1) vY L̂2(m2, pc2) with Y ⊆ Var defined as
follows

L̂1 vY L̂2 iff

∀x ∈ dom(L̂1(m1, pc1)) \ Y : L̂1(m1, pc1)(x) ⊆ L̂2(m2, pc2)(x)

and take (A0 :: · · · :: An) v L̂(m, pc)[0..n] to stand for

∀i ∈ {0, . . . , n} : Ai ⊆ L̂(m, pc)(i)

This is particularly useful when specifying the analysis for transferring actual
parameters in method invocations.

Because the operand stack is used to transfer return values from method
invocations an extended address domain is used, with a special program counter
for every method explicitly representing the end of control flow for that method.
It also facilitates the analysis of methods with more than one return instruction:

Addr = Addr + (Method× {END})

This corresponds to the usual requirement for control flow graphs to have special
and explicit entry and exit nodes, cf. [NNH99, ASU85]. Since methods have a

3.2 Control Flow Analysis 41

unique and easily identifiable entry point, namely the instruction at program
counter pc = 0, only a special end-point is needed.

The semantics of Carmel in principle allows stacks of infinite length to be
constructed1 and therefore the abstract representation must allow for this; thus a
stack is abstractly modelled as a potentially infinite sequence of abstract values:

V̂al∞ = V̂alω ∪ V̂al∗

where V̂alω is the set of all infinite sequences of abstract values and V̂al∗ is the
set of all finite sequences defined by

V̂al∗ =
∞⋃

i≥0

V̂ali

with V̂al0 = ∅, V̂al1 = V̂al, and V̂ali+1 = V̂al× V̂ali. Elements of V̂al∞ are written
as S1 :: · · · :: Sn for finite sequences, S1 :: S2 :: · · · for infinite sequences and ε
for the empty sequence. The length of such elements is defined as follows

|S| =

0 if S = ε

n if S = (S1 :: · · · :: Sn) ∈ V̂al∗

∞ if S ∈ V̂alω

Thus an ordering can be imposed on V̂al∞. Writing S|i for the ith element of

S ∈ V̂al∞ with |S| ≥ i the following ordering relation is defined

S vcVal∞
T iff |S| ≤ |T | ∧ ∀i : 1 ≤ i ≤ |S| : S|i ⊆ T |i

While the domain V̂al∞ is certainly sufficient for modelling stacks that arise
during the evaluation of a Carmel program, it is rather inconvenient for the in-
tended applications and the developments in subsequent chapters where infinite
stacks are not possible. Therefore a very similar but slightly simpler domain is

used, with essentially the same ordering as for V̂al∞ and using a top-element

to represent infinite stacks: (V̂al∗)>. Rather than introduce this in an ad-hoc
manner a Galois connection, a concept well-known from abstract interpretation,
can be used to systematically relate the above two domains. Formally a Galois
connections is defined as follows:

Definition 3.7 (Galois connection). For the partially ordered sets (L,vL)

and (M,vM), the pair (α, γ) defines a Galois connection, written L −−−→←−−−α

γ
M ,

if and only if

1. α:L→M and γ:M → L are monotone functions

2. idL vL γ ◦ α

3. α ◦ γ vM idM

1The bytecode verifier rejects all programs that may give rise to infinite stacks.

42 Flow Logic for Carmel

where idL and idM are the identity functions on L and M respectively.

As mentioned, Galois connections play an important role in the field of abstract
interpretation, cf. [CC77, NNH99], where they are used to systematically con-
struct simpler and more abstract domains from complex and concrete domains.
In abstract interpretation Galois connections are (usually) used to relate the
concrete domains to their abstract counterparts and thereby prove the correct-
ness of the abstraction and thus the correctness of the analysis. Here Galois
connections are used to validate the use of a less obvious but more practical ab-
stract domain instead of the more obvious (but less practical) abstract domain

V̂al∞. A more systematic use of Galois connections in the Flow Logic framework
is certainly feasible but the usefulness of such an approach for the present work
is less evident, cf. [NHN03, HJNN99].

For the present purpose an abstraction function is defined on V̂al∞ that
formalises the above discussion by mapping infinite stacks to the top element of

(V̂al∗)> and acts as the identity map on finite stacks:

αStack(S) =

{
S if S ∈ V̂al∗

>Stack if S ∈ V̂alω

this leads to the following conretisation function:

γStack(S) =

{
S if S 6= >Stack

V̂al :: · · · if S = >Stack

where V̂al :: · · · is an infinite sequence with each element identical to the entire

set of V̂al.
The above functions can now be used to state and prove the formal relation-

ship between the two domains for operand stacks:

Proposition 3.8. The pair (αStack, γStack) defines a Galois connection:

V̂al∞ −−−−−→←−−−−−
αStack

γStack

(V̂al∗)>

Proof. It is trivial to show that αStack and γStack are monotone functions. In
order to prove that γStack ◦αStack w id the proof is split into two cases. First let

S ∈ V̂al∗ then by definition

γStack(αStack(S)) = γStack(S)
= S
w S

Now assume that S ∈ V̂alω it then follows that

γStack(αStack(S)) = γStack(>Stack)

= V̂al :: · · ·
w S

and thus γStack ◦ αStack w id . Similarly it can be shown that αStack ◦ γStack v id .
It follows that (αStack, γStack) is a Galois connection.

3.2 Control Flow Analysis 43

Finally the abstract domain for stacks can be defined in the following way:

Ŝtack = Addr→ (V̂al∗)>

In accordance with the concrete domain for heaps being split into a static
and a dynamic component, two separate abstract domains are defined to model
the static and dynamic heap respectively. The static component holds the values
of all static fields and is modelled in a straightforward manner as a map from
(static) fields to a set of abstract values:

̂StaHeap = Field→ V̂al

The point-wise extension of the ordering on V̂al yields an ordering on ̂StaHeap:

K̂1 v ̂StaHeap
K̂2 iff ∀f ∈ dom(K̂1) : K̂1.f ⊆ K̂2.f

The dynamic component of the heap contains the objects and arrays that are
created during program execution, both of which must be accommodated in the
abstract representation:

Ĥeap = (ObjRef → Ôbject)× (ArrRef → Ârray)

For an abstract heap Ĥ the notation Ĥ(Ref σ) is used for π1(Ĥ)(Ref σ) and
similarly π2(Ĥ)(Ref (array t)) is written Ĥ(Ref (array t)) where π1 and π2 are
the projections of the first and second component respectively. The notaion is
well-defined because ObjRef ∩ ArrRef = ∅.

This leads to the following ordering induced from the ordering on abstract

objects and arrays respectively. For Ĥ1, Ĥ2 ∈ Ĥeap:

Ĥ1 vĤeap
Ĥ2 iff ∀(Ref σ) ∈ dom(Ĥ1) : Ĥ1(Ref σ) v

Ôbject
Ĥ2(Ref σ) ∧

∀(Ref (array t)) ∈ dom(Ĥ1) :

Ĥ1(Ref (array t)) ⊆ Ĥ2(Ref (array t))

Note that the notational conventions imply that ∀(Ref σ) ∈ dom(Ĥ1) is equiva-
lent to ∀σ ∈ dom(π1(Ĥ1)) and similarly (Ref (array t)) ∈ dom(Ĥ1) is equivalent
to ∀t ∈ dom(π2(Ĥ1)).

The domain for the control flow analysis can now be defined by combining
the abstract domains for the global heap (both dynamic and static), the local
heap, and an operand stack:

ÂnalysisCFA = ̂StaHeap× Ĥeap× ̂LocHeap× Ŝtack

It should be evident that elements of the above domain contain the abstract
information equivalent to a semantic configuration, which is indeed what must
be proved formally in order to establish the semantic correctness of the analysis.

A point-wise ordering, vCFA, can trivially be defined on the analysis domain:

(K̂1, Ĥ1, L̂1, Ŝ1) vCFA (K̂2, Ĥ2, L̂2, Ŝ2) iff

K̂1 v ̂StaHeap
K̂2 ∧ Ĥ1 vĤeap

Ĥ2 ∧ L̂1 v ̂LocHeap
L̂2 ∧ Ŝ1 vŜtack

Ŝ2

44 Flow Logic for Carmel

This ordering makes it possible to compare two analysis result for a given pro-
gram and indeed to determine which of the two is the smallest solution with
respect to the ordering.

The following proposition formally states and proves that a number of the
above mentioned domains are indeed complete lattices. Note that the same

name is used for both the lattice and its carrier set, e.g., V̂al = (V̂al,⊆).

Proposition 3.9. The following domains define complete lattices:

1. V̂al = (V̂al,⊆)

2. Ârray = (Ârray,⊆)

3. Ôbject = (Ôbject,v
Ôbject

)

4. ̂LocHeap = (̂LocHeap,v ̂LocHeap
)

5. Ŝtack = (Ŝtack,v
Ŝtack

)

6. ̂StaHeap = (̂StaHeap,v ̂StaHeap
)

7. Ĥeap = (Ĥeap,v
Ĥeap

)

8. ÂnalysisCFA = (ÂnalysisCFA,vCFA)

Proof. Cases 1 and 2 follow trivially from [DP90, Example 2.7(2)]. The remain-
ing cases follow from [DP90, Paragraph 2.14] since the orderings introduced are

simply the pointwise extension of the ordering on V̂al, namely ⊆.

In the sequel the subscript of the ordering relation is omitted when is it clear
from the context.

3.2.3 Flow Logic Specification

Having defined the universe of discourse, i.e., the abstract domains, for the
control flow analysis, the analysis itself can now be specified. As discussed in
Section 3.1 this is done by specifying judgements that define when a proposed
analysis result is acceptable with respect to a given program. For the control
flow analysis of Carmel the judgements are on the form:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : instr

where (K̂, Ĥ, L̂, Ŝ) ∈ ÂnalysisCFA, and instr is the instruction at program
counter pc in method m. Intuitively the judgement states that (K̂, Ĥ, L̂, Ŝ)
is an acceptable analysis of the instruction instr at address (m, pc).

In the following the judgements for a few specific instructions are discussed
in depth to introduce both the notation and conventions used, and also to give

3.2 Control Flow Analysis 45

some insight into how the analysis and methodology works. To facilitate the
Flow Logic specification some special notation for variable binding is introduced:

A / B :

meaning that the value of B is bound to the variable A that may then be ref-
erenced later. By extending the notation slightly with a simple form of pattern
matching it becomes particularly useful for manipulating abstract stacks. For
example

A1 :: · · · :: An :: X / Ŝ(m, pc) :

means that the abstract stack at Ŝ(m, pc) must contain at least n elements,
bound to variables A1 through An respectively. The rest of the stack (if any) is
then bound to X. The elements of the stack can then be conveniently referenced
using the variables making the specification easer to read (and write).

The push Instruction

The Flow Logic judgement for the push instruction is of the following form:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : push t v

From the semantics it is known that push simply pushes its argument v on
top of the current stack. In the analysis the stack at address (m, pc) is con-
tained in Ŝ(m, pc) and thus the effect of push is to create a new stack with
the abstract representation of v, denoted βConst(v) here, on top of the current
stack: βConst(v) :: Ŝ(m, pc); this is then available at the next instruction which
is located at (m, pc + 1). This is formulated as follows

βConst(v) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

where

βConst(c) =

{INT} if c ∈ Num

{null} if c = null

{(Adr c)} if c ∈ RetAdr

In Section 3.3 it will become evident that the βConst function is a special case of
the representation function for values.

No local variables are modified by executing a push instruction and thus the
current local heap is just copied forward to the next instruction without change:

L̂(m, pc) v L̂(m, pc + 1)

Combining the above formulae results in the following specification for the push
instruction:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : push t c

iff βConst(v) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Note that since both the static heap and the dynamic heap are defined as global
components, contrary to the local heap and the operand stack, it is not necessary
to explicitly copy them forward when they are not modified.

46 Flow Logic for Carmel

The store Instruction

The next instruction of interest is the store instruction:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : store t x

This instruction saves the top element of the stack in the variable given as
argument, x, to the instruction. Clearly, in order for this to work properly there
must be at least one element on the stack which is checked by the bytecode
verification. The situation is similar in the analysis and special notation is
introduced to aid the specification:

A :: X / Ŝ(m, pc) :

This notation provides a succinct way of expressing that the abstract stack
should be of the form A :: X, i.e., it should have at least one element. Further-
more, it acts as a binder for the variables A and X so that they may subsequently
be referred to in a convenient manner.

Storing the top element of the stack, denoted A, in the local heap, available
for the next instruction, is modelled as:

A v L̂(m, pc + 1)(x)

Similarly having stored and thus popped the top of the stack, the bottom of the
stack is then copied forward to the next instruction:

X v Ŝ(m, pc + 1)

Finally, the local variables that were not modified by the instruction, i.e., all
but x, must be transferred to the next instruction:

L̂(m, pc) v{x} L̂(m, pc + 1)

Putting the above together results in the following clause for store instructions:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : store t x

iff A :: X / Ŝ(m, pc) :

A v L̂(m, pc + 1)(x)

X v Ŝ(m, pc + 1)

L̂(m, pc) v{x} L̂(m, pc + 1)

The new Instruction

The judgement for the new-instruction follows the same pattern:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : new σ

The new-instruction allocates room on the heap for a new instance of the class
given as argument to the instruction and returns a reference to the object on
top of the stack:

{(Ref σ)} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

3.2 Control Flow Analysis 47

The fields of the new object are all initialised with their default value: 0 for
numeric types and null for reference types:

default(σ) v Ĥ(Ref σ)

where default is defined as follows:

∀f ∈ fields(σ): default(σ)(f) = βConst(def (f.type))

Note that def is the function, also used in the semantics, that maps types to
their default values, i.e., numeric types to 0 and reference types to null. The
representation function, βConst, also used for the push-instruction, is used here
to map the default values to their abstract representations.

No local variables were modified and therefore the local heap is simply copied
forward:

L̂(m, pc) v L̂(m, pc + 1)

Combining the above gives the following clause for new-instructions:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : new σ

iff {(Ref σ)} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

The putfield Instruction

Next is the specification for putfield instructions:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putfield f

The putfield instruction stores the first element of the stack in the field given
as argument to the instruction. The second element of the stack must be a
reference to the specific object in whose field the value should be stored. Thus
the stack must contain at least two elements:

A :: B :: X / Ŝ(m, pc) :

To model the concrete behaviour in the analysis all the elements on top of the
stack are copied to all the objects referenced in the second element of the stack:

∀(Ref σ) ∈ B: A v Ĥ(Ref σ)(f)

As already noted objects are abstracted into their class and thus the contents of
the fields of objects of the same class is also merged and stored in the abstract
heap.

The bottom of the stack is then copied forward to the next instruction:

X v Ŝ(m, pc + 1)

48 Flow Logic for Carmel

and since no local variables were modified, the abstract local heap is transferred
unchanged to the next instruction:

L̂(m, pc) v L̂(m, pc + 1)

Thus the combined clause for putfield-instructions:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putfield f

iff A :: B :: X / Ŝ :

∀(Ref σ) ∈ B: A v Ĥ(Ref σ)(f)

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

The invokevirtual Instruction

The analysis of invokevirtual is discussed:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokevirtual m0

The arguments for the method must be found on top of the stack and, as for
the putfield instruction, a reference to the target object must be found on
the stack immediately following the arguments. Using |m0| to denote the arity
of method m0 (note that |m0| is statically determined by the type of m0) the
required stack layout can be specified:

A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :

Following the semantics, the methodLookup function is used directly in the
analysis of the dynamic dispatch of virtual methods. This is possible because
the methodLookup function is really a representation of the class-hierarchy in a
program and the class-hierarchy does not change dynamically during run-time
and can therefore be computed at compile-time.

Because of the approximative nature the analysis there may be more than
one object reference to the target object(s). Therefore it may be necessary to
do method lookups for several references:

∀(Ref σ) ∈ B:
mv / methodLookup(m0, σ) : . . .

Again the ‘. . ./. . .’ notation is used to bind the value of the right-hand side (here
the looked up method) to the variable on the left-hand side for later reference.

For each of the looked up methods, mv, the arguments must now be trans-
ferred as local variables in the invoked method, available in the very first in-
struction, i.e., with pc = 0. Furthermore a reference to the object containing
the invoked method, the self reference, must be passed to the invoked method
in local variable number 0:

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]

3.2 Control Flow Analysis 49

Note that the semantics of inheritance and virtual methods in Carmel (and
JCVML) requires that m0 and mv are of the same type, i.e., accept the same
arguments and return a value of the same type. In particular this entails that
|mv| = |m0|.

When an invoked method returns it may or may not return a value. In the
latter case the invoked method has return type void. In this case the bottom
of the stack should simply be copied forward to the next instruction:

m0.returnType = void ⇒

X v Ŝ(m, pc + 1)

In the former case the invoked method has a return type different from void

and the return value can then be found at the top of the stack of the invoked
method, mv, at the special address: (mv,END) used to indicate the logical end
of a method. The value found there must then be copied back to the top of the
stack of the invoking method (less the arguments and the object reference that
are popped off the stack) and passed forward to the next instruction:

m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

Finally, since none of the local variable of the invoking method have been
changed they are copied forward unchanged:

L̂(m, pc) v L̂(m, pc + 1)

The resulting combined clause for invokevirtual:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokevirtual m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

The arrayload Instruction

The instructions for manipulating arrays are very straightforward. Here the
specification of the arrayload-instruction is discussed:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arrayload t

The arrayload instruction takes two arguments: a reference to the array and
an index into the array; it then returns the value of the referenced array at

50 Flow Logic for Carmel

the given index on top of the stack for the next instruction. Since arrays are
modelled as the set of (abstract) values the array can possibly contain the entire
(abstract) array is simply copied forward to the next instruction:

∀(Ref (array t)) ∈ B:

Ĥ(Ref (array t)) :: X v Ŝ(m, pc + 1)

This instruction does not modify local variables and thus the local heap is just
carried forward:

L̂(m, pc) v L̂(m, pc + 1)

The analysis of the arrayload-instruction can thus be specified as follows:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arrayload t

iff A :: B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B:

Ĥ(Ref (array t)) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

The jsr and ret Instructions

Subroutines are mostly used to implement the try/finally functionality of
Java Card that is particularly useful for executing “clean-up” code in the event
of exceptional control flow.

The jsr-instruction initiates a subroutine and works almost like a goto

except that the address of the instruction following the jsr-instruction is put
on top of the stack. The intention is then that the called subroutine should save
this address in a local variable and then use it later for jumping back to where
the subroutine was called from. Thus subroutines can be seen as an advanced
form of the goto-instruction. This is modelled straightforwardly in the analysis:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : jsr pc0

iff {(Adr pc + 1)} :: Ŝ(m, pc) v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

To return from a subroutine the ret instruction is used: it jumps (back) to
the program counter stored in the local variable given as an argument to the
instruction. In the analysis care is taken to copy the current stack and local
heap to all the possible return addresses:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : ret i

iff ∀(Adr pc0) ∈ L̂(m, pc)(i):

Ŝ(m, pc) v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

The conceptual simplicity of subroutines hides a subtle issue with type checking
of subroutines: the local variables not used by a given subroutine may contain

3.3 Theoretical Properties 51

values of different, conflicting, types depending on where it was called from.
In order to deal with this the type system has to incorporate a limited form of
polymorphism, cf. [FM99, Fre98]. Since a control flow analysis is only concerned
with tracking (or approximating) the actual control flow of a program and not
with prohibiting “illegal” or unwanted control flow, the analysis of subroutines
is straightforward and does not require any special considerations. Thereby the
program analysis approach sidesteps some of the modelling problems brought
about by subroutine polymorphism, cf. [Fre98].

3.2.4 Control Flow Analysis: Full Specification

The Flow Logic specification for the control flow analysis of the full Carmel
language is divided into six fragments like the semantics: imperative core (Fig-
ures 3.1, 3.2, and 3.3), objects (Figure 3.4), methods (Figure 3.5), arrays (Fig-
ure 3.6), and subroutines (Figure 3.7). Exceptions are not covered by the basic
control flow analysis; however, an exception analysis is developed in Section 3.5.

3.2.5 Analysing Programs

Taking initial configurations into account, cf. Definition 2.1, the Flow Logic
specification is extended to cover the analysis of entire programs as follows:

(K̂, Ĥ, L̂, Ŝ) |=CFA P iff
∀(m, pc) ∈ P.addresses:

m.instructionAt(pc) = instr ⇒ (K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : instr
∀σ ∈ P.main:

default(σ) v Ĥ(Ref σ)

mσ = σ.entry ⇒ (Ref σ) ∈ L̂0(mσ, 0)

where P.addresses is the set of addresses occurring in the program P defined as
follows:

P.addresses = {(m, pc) | pc ∈ dom(m.instructionAt),m ∈ σ.methods,
σ ∈ p.classes, p ∈ P.packages}

3.3 Theoretical Properties

In this section two important theoretical properties are formally stated and
proved for the control flow analysis namely: semantic soundness and a Moore
family property for analysis results.

Semantic soundness proves that the analysis results can be trusted to cor-
rectly reflect the actual run-time behaviour of an analysed program and that the
specified analysis does indeed analyse the intended property, in this case control
flow. A formally stated and proved semantic soundness result is crucial when
using the analysis for high-assurance purposes such as certifying that a program

52 Flow Logic for Carmel

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : nop
iff true

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : push t c

iff βConst(v) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : pop n

iff A1 :: · · · :: An :: X / Ŝ(m, pc) :

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : dup m n

iff S1 :: S2 :: X / Ŝ(m, pc) :
A1 :: · · · :: Am / S1 :
Am+1 :: · · · :: An / S2 :

S1 :: S2 :: S1 :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : swap m n

iff S1 :: S2 :: X / Ŝ(m, pc) :
A1 :: · · · :: Am / S1 :
Am+1 :: · · · :: An / S2 :

S2 :: S1 :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : numop t unop [t′]

iff A :: X / Ŝ(m, pc) :

{INT} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : numop t binop [t′]

iff A1 :: A2 :: X / Ŝ(m, pc) :

{INT} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 3.1: Imperative Core (1)

3.3 Theoretical Properties 53

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : goto pc0

iff Ŝ(m, pc) v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : if t cmp goto pc0

iff A1 :: A2 :: X / Ŝ(m, pc) :

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : if t cmp nul goto pc0

iff A :: X / Ŝ(m, pc) :

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : lookupswitch t (ki=>pci)
n
1 default=>pcn+1

iff A :: X / Ŝ(m, pc) :
∀i ∈ {1, . . . , n, n + 1} :

X v Ŝ(m, pci)

L̂(m, pc) v L̂(m, pci)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : tableswitch t l=>(pci)
n
0 default=>pcn+1

iff A :: X / Ŝ(m, pc) :
∀i ∈ {0, . . . , n, n + 1} :

X v Ŝ(m, pci)

L̂(m, pc) v L̂(m, pci)

Figure 3.2: Imperative Core (2)

54 Flow Logic for Carmel

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : load t x

iff L̂(m, pc)(x) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : store t x

iff A :: X / Ŝ(m, pc) :

A v L̂(m, pc + 1)(x)

X v Ŝ(m, pc + 1)

L̂(m, pc) v{x} L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : inc t x n

iff Ŝ(m, pc) v Ŝ(m, pc + 1)

{INT} v L̂(m, pc + 1)(x)

L̂(m, pc) v{x} L̂(m, pc + 1)

Figure 3.3: Imperative Core (3)

does not exhibit certain unwanted behaviours as for example is required by the
higher assurance levels (EAL5 and above) of the Common Criteria [CC99].

The Moore family property, also proved in the following, serves two purposes:
first and foremost for showing that every program can be analysed, and second,
that there exists a smallest or best analysis for every program.

3.3.1 Semantic Soundness

In this section the semantic soundness of the control flow analysis is proved. This
is done, as is usual in the Flow Logic framework when working with a small-
step semantics, by establishing a subject reduction property for the analysis.
The technique is well-known and often used in conjunction with proving the
correctness of type systems, cf. [Pie02].

As a prerequisite for proving the subject reduction property the formal re-
lationship between the concrete semantic domains and their corresponding ab-
stract counterparts must established. Following [NNH99] this is done using
representation functions and correctness relations that provide a very system-
atic and structured approach to formalising, stating, and proving the semantic
soundness of analyses.

Representation Functions and Correctness Relations

Intuitively a representation function maps a concrete value, e.g., a number, to
the best possible abstract representation in the corresponding abstract domain.
For numbers the abstract domain is a singleton set and the representation func-
tion for numbers is therefore the constant function that maps every (concrete)

3.3 Theoretical Properties 55

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : new σ

iff {(Ref σ)} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : checkcast t

iff Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : instanceof σ

iff A :: X / Ŝ(m, pc) :

{INT} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : getstatic f

iff K̂(f) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v Ŝ(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putstatic f

iff A :: X / Ŝ(m, pc) :

A v K̂(f)

X v Ŝ(m, pc)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putfield f

iff A :: B :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ B: A v Ĥ(Ref σ)(f)

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putfield this f

iff A :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ L̂(m, pc)(0): A v Ĥ(Ref σ)(f)

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 3.4: Object Fragment

56 Flow Logic for Carmel

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokestatic m0

iff A1 :: · · · :: A|m0| :: X / Ŝ(m, pc) :

A1 :: · · · :: A|m| v L̂(m0, 0)[0..|m| − 1]
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(m0,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokevirtual m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokeinterface m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : return
iff true

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : return t

iff A :: X / Ŝ(m, pc) :

A :: ε v Ŝ(m0,END)

Figure 3.5: Method Fragment

3.3 Theoretical Properties 57

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : new (array t)

iff A :: X / Ŝ(m, pc) :

{(Ref (array t))} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arraylength

iff B :: X / Ŝ(m, pc) :

{INT} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arrayload t

iff A :: B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B:

Ĥ(Ref (array t)) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arraystore t

iff A1 :: A2 :: B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B:

A1 v Ĥ(Ref (array t))

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 3.6: Arrays

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : jsr pc0

iff {(Adr pc + 1)} :: Ŝ(m, pc) v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : ret i

iff ∀(Adr pc0) ∈ L̂(m, pc)(i):

Ŝ(m, pc) v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

Figure 3.7: Subroutines

58 Flow Logic for Carmel

number to the abstract token INT:

βNum(n) = {INT} for n ∈ Num

The abstract representation of locations (references) depends on the class or type
of object or array respectively that the location points to and thus the meaning
of a location is always relative to a given heap. Therefore the representation
function for locations is parameterised on a heap: H ∈ Heap. Let loc ∈ dom(H)
and define the representation function for locations as follows:

βH
Ref(loc) =

{null} if loc = null

{(Ref σ)} if H(loc) ∈ Object and H(loc).class = σ
{(Ref (array t))} if H(loc) ∈ Array and H(loc).type = t

To represent return addresses they are simply inject into the corresponding
abstract domain:

βRetAdr(pc) = {(Adr pc)} for pc ∈ RetAdr

Using the above, a representation function for all basic values in the semantics,
v ∈ Val, is defined:

βH
Val(v) =

βNum(v) if v ∈ Num

βH
Ref(v) if v ∈ Ref

βRetAdr(v) if v ∈ RetAdr

Now the βConst function defined in Section 3.2.3 can be seen as a special case of
βVal for values that does not depend on the heap:

βConst(c) =

βNum(c) if c ∈ Num

{null} if c = null

βRetAdr(c) if c ∈ RetAdr

This representation function was used in the Flow Logic specification for the
push instruction.

Stacks are finite sequences of values and are represented as sequences of
corresponding abstract values obtained by using the representation function for
basic values. For S = v1 :: · · · :: vn ∈ Stack define:

βH
Stack(S) = βH

Val(v1) :: · · · :: βH
Val(vn)

Since the local heap is implemented as a map from local variables to values, a
representation function for local heaps can be obtained by simply composing
the representation function for values with the local heap. For L ∈ LocHeap

define
βH

LocHeap(L) = βH
Val ◦ L

Abstract objects are represented as maps from fields to abstract values.
Thus to map a concrete object into an abstract object it is sufficient to map the

3.3 Theoretical Properties 59

contents of the concrete objects fields into the corresponding abstract value(s).
For o ∈ Object define:

βH
Object(o) = βH

Val ◦ (o.fieldValue)

In particular for all fields, f ∈ dom(o.fieldValue), it holds that βH
Object(o)(f) =

βH
Val(o.f).

The situation for arrays is slightly more involved since abstract arrays are
represented as a single abstract value. It must therefore be ensured that all the
elements of the concrete array are represented in this one abstract value which
is done by simply taking the least upper bound of the abstract representation
of all the elements of the concrete array. Let a ∈ Array and define:

βH
Array(a) =

⊔

0≤i≤a.length

βH
Val(a.values(i))

Recall that the global heap is split into a static heap and an “ordinary heap”.
The static heap is used only for static fields and the ordinary heap contains
both objects (with instance fields) and arrays.

Concrete heaps are defined as maps from locations to objects and arrays.
In the analysis a location is abstracted into the class of object (type of array)
that the location points to. There may therefore be several concrete objects
(arrays) corresponding to a single abstract object (array) reference, i.e., an ab-
stract reference may represent several different concrete locations. The abstract
representation of a heap must therefore take all these concrete objects (arrays)
into account; this is done by taking the least upper bound over all the involved
objects (arrays):

βHeap(H)(Ref σ) =
⊔

loc ∈ dom(H)

βH
Val(loc) = (Ref σ)

βH
Object(H(loc))

and for array references

βHeap(H)(Ref (array t)) =
⊔

loc ∈ dom(H)

βH
Val(loc) = (Ref (array t))

βH
Array(H(loc))

Representing the static heap is much simpler as there are no references involved.
The static heap just maps a field identifier to a value leading to a simple repre-
sentation function for K ∈ StaHeap:

βH
StaHeap(K) = βH

Val ◦K

which is very similar to the representation function for local heaps.
The representation functions defined above formally relates the concrete se-

mantic domains to their abstract counterparts. The next step then is to define
when an analysis result can be said to correctly approximate the semantics. To

60 Flow Logic for Carmel

this end correctness relations are introduced that relate analysis results to stack
frames, call stacks, and semantic configurations. Correctness relations are used
instead of representation functions because neither stack frames (and thus call
stacks) nor semantic configurations have direct abstract counterparts.

Intuitively an abstract local heap and an abstract stack correctly approx-
imates a stack frame if the abstract representation of the concrete local heap
and stack are contained in their abstract equivalents (at the right address). In
symbols:

〈m, pc, L, S〉 RH
Frame (L̂, Ŝ) iff βH

LocHeap(L) v L̂(m, pc) ∧

βH
Stack(S) v Ŝ(m, pc)

Note that correctness relations, like representation functions, may be defined
relative to a heap, H.

Since call-stacks are finite sequences of stack frames, SF = F1 :: · · · :: Fn

where Fi = 〈mi, pci, Li, Si〉 for 1 ≤ i ≤ n, it is trivial to extend the correctness
relation for stack frames to cover entire call-stacks by simply requiring that each
individual stack frame is correctly represented:

SF RH
CallStack (L̂, Ŝ) iff ∀i ∈ {1, . . . , n} : Fi R

H
Frame (L̂, Ŝ)

Finally, by combining all of the above representation functions and correct-
ness relations, the correctness relation for full semantic configurations is defined
as follows:

〈K,H, SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) iff βH
StaHeap(K) v K̂ ∧

βHeap(H) v Ĥ ∧

SF RH
CallStack (L̂, Ŝ)

The above formalises the intuition that an analysis result correctly approximates
a semantic configuration if the abstract representations, as defined by the rep-
resentation functions, of the semantic objects that constitute the configuration
are contained in the analysis result.

Subject Reduction

Implicit in the analysis is an assumption that the structure of the call stacks is
the result of method invocations and their corresponding returns. In particular
it is assumed that all stack frames below the currently active stack frame are
suspended in a method invocation waiting to return. A call-stack that conforms
to this structure is called well-formed :

Definition 3.10 (Well-Formedness). A call stack SF = 〈m1, pc1, L1, S1〉 ::

3.3 Theoretical Properties 61

· · · :: 〈mn, pcn, Ln, Sn〉, is said to be well-formed if and only if

∀i ∈ {2, . . . , n} :
mi.instructionAt(pci) = invokestatic m′′

i ⇒
Si = vi,1 :: · · · :: vi,|mi−1| :: S′′

i ∧
mi−1 = m′′

i

mi.instructionAt(pci) = invokevirtual m′′
i ⇒

Si = vi,1 :: · · · :: vi,|mi−1| :: loci :: S′′
i ∧

H(loci).class = σi ∧
mi−1 = methodLookup(m′′

i , σi)
mi.instructionAt(pci) = invokeinterface m′′

i ⇒
Si = vi,1 :: · · · :: vi,|mi−1| :: loci :: S′′

i ∧
H(loci).class = σi ∧
mi−1 = methodLookup(m′′

i , σi)

This definition is extended to semantic configurations: a semantic configuration
〈K,H, SF 〉 is well-formed if and only if SF is well-formed.

Next two lemmas are proved showing that well-formedness of semantic con-
figurations is preserved under semantic reduction and that initial configurations
are always well-formed:

Lemma 3.11. For P ∈ Program if 〈K,H, SF 〉 is a well-formed configuration
and P ` 〈K,H, SF 〉 =⇒ 〈K ′, H ′, SF ′〉 then 〈K ′, H ′, SF ′〉 is well-formed.

Proof. By induction in the length of the call-stack, SF .
The base case, for call stacks of length one, holds vacuously. For the in-

duction step, a case analysis is used on the instruction that is executed in the
semantic step. There are only four interesting cases, since most instructions
only modify the top element of the call stack. The return instruction on the
other hand, removes the top element of the call-stack thus reducing the size
of the call-stack and the case then follows immediately from the induction hy-
pothesis. The remaining four cases (invokevirtual, invokeinterface, and
invokestatic) follow from inspection of the semantics.

Lemma 3.12. If 〈K,H, SF 〉 is an initial configuration for P then 〈K,H, SF 〉
is well-formed.

Proof. Holds Vacuously since |SF | = 1.

These two lemmas in conjunction justify the assumption made in the analysis
and ensures that it is not necessary to consider any pathological call-stacks when
proving the subject reduction property.

An immediate corollary of the two lemmas is that, for a given program, any
semantic reduction sequence will consist entirely of well-formed configurations:

Corollary 3.13. If P ∈ Program, C0 is an initial configuration for P , and
P ` C0 =⇒∗ C then C is well-formed.

The subject reduction property for the analysis can now be stated and proved:

62 Flow Logic for Carmel

Theorem 3.14 (Subject Reduction). Let P ∈ Program, (K̂, Ĥ, L̂, Ŝ) |=CFA

P and let C = 〈K,H, SF 〉 be a well-formed semantic configuration such that
P ` C =⇒ C ′ then

C RConf (K̂, Ĥ, L̂, Ŝ) ⇒ C ′ RConf (K̂, Ĥ, L̂, Ŝ)

Proof. By case inspection using Lemma 3.11 for the return instruction. Below
a few illustrative cases are shown in detail.

Case push: By assumption:

m.instructionAt(pc) = push t c

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, c :: S〉 :: SF 〉

and

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : push t c (3.1)

and

〈K,H, 〈m, pc, V, S〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) (3.2)

Now it follows from (3.1) that

{INT} :: Ŝ(m, pc) v Ŝ(m, pc + 1) (3.3)

L̂(m, pc) v L̂(m, pc + 1) (3.4)

and from (3.2) it follows that

βH(K) v K̂ (3.5)

β(H) v Ĥ (3.6)

βH(L) v L̂(m, pc) (3.7)

βH(S) v Ŝ(m, pc) (3.8)

From (3.3) and (3.8) above it follows that

βH(c :: S) = βH(c) :: βH(S)
= {INT} :: βH(S)

v {INT} :: Ŝ(m, pc)

v Ŝ(m, pc + 1)

(3.9)

By (3.4) and (3.7) the following is obtained:

βH(L) v L̂(m, pc)

v L̂(m, pc + 1)
(3.10)

The Theorem now follows from (3.5), (3.6), (3.9) and (3.10).

Case store: By assumption:

3.3 Theoretical Properties 63

m.instructionAt(pc) = store t x

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L[x 7→ v], S〉 :: SF 〉

and
(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : store t x (3.11)

and
〈K,H, 〈m, pc, L, v :: S〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) (3.12)

From (3.12) it follows that

βH(K) v K̂ (3.13)

β(H) v Ĥ (3.14)

βH(L) v L̂(m, pc) (3.15)

βH(v :: S) v Ŝ(m, pc) (3.16)

Now Ŝ(m, pc) = A :: X for some A and X, and (3.16) implies that

βH(v) v A (3.17)

βH(S) v X (3.18)

Using (3.11) gives

A v L̂(m, pc + 1)(x) (3.19)

X v Ŝ(m, pc + 1) (3.20)

Combining (3.17) and (3.19) the following is obtained:

βH(v) v A

v L̂(m, pc + 1)(x)
(3.21)

and combining (3.18) and (3.20) it follows that

βH(S) v X

v Ŝ(m, pc + 1)
(3.22)

From (3.11) and the definition of vx it follows that

∀x ∈ dom(L̂(m, pc)) \ {x} : L̂(m, pc)(x) v L̂(m, pc + 1)(x) (3.23)

Thus from (3.21) and (3.23):

βH(L[x 7→ v]) v L̂(m, pc + 1) (3.24)

The Theorem now follows from (3.13), (3.14), (3.22) and (3.24).

Case putfield: By assumption

64 Flow Logic for Carmel

m.instructionAt(pc) = putfield f
f.isStatic = false loc 6= null o = H(loc)

o′ = o[fieldValue 7→ o.fieldValue[f 7→ v]]

P ` 〈K,H, 〈m, pc, L, v :: loc :: S〉 :: SF 〉 =⇒
〈K,H[loc 7→ o′], 〈m, pc + 1, L, S〉 :: SF 〉

Again by assumption:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : putfield f (3.25)

and

〈K,H, 〈m, pc, L, v :: loc :: S〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) (3.26)

From (3.26) it follows that

βH(K) v K̂ (3.27)

β(H) v Ĥ (3.28)

βH(V) v L̂(m, pc) (3.29)

βH(v :: loc :: S) v Ŝ(m, pc) (3.30)

Clearly, o.class = o′.class, whence H(loc).class = H ′(loc).class. This
implies that

βH
Ref(loc) = βH′

Ref(loc) (3.31)

and therefore

βH
Val = βH′

Val (3.32)

whence

βH
Stack = βH′

Stack (3.33)

βH
LocHeap = βH′

LocHeap (3.34)

βH
StaHeap = βH′

StaHeap (3.35)

βH
Object = βH′

Object (3.36)

Now it follows from (3.27) and (3.35) that

βH′

(K) = βH(K)

v K̂
(3.37)

And from (3.25), (3.29) and (3.34) it follows that

βH′

(L) = βH(L)

v L̂(m, pc)

v L̂(m, pc + 1)

(3.38)

3.3 Theoretical Properties 65

From (3.25) it is known that Ŝ(m, pc) = A :: B :: X for some A, B, and
X and thus from (3.30):

βH(v) v A (3.39)

βH(loc) v B (3.40)

βH(S) v X (3.41)

Thus from (3.25), (3.33), and (3.41):

βH′

(S) = βH(S)
v X

v Ŝ(m, pc + 1)

(3.42)

Let σ = o.class, then βH(loc) = βH′

(loc) = (Ref σ). Since H ′ = H[loc 7→
o′] it is the case that ∀(Ref σ′) such that (Ref σ) 6= (Ref σ′):

β(H ′)(Ref σ′) = β(H)(Ref σ′)

v Ĥ(Ref σ′)
(3.43)

Similarly, for all f ′ such that f ′ 6= f it is the case that

β(H ′)(Ref σ)(f ′) = β(H)(Ref σ)(f ′)

v Ĥ(Ref σ)(f ′)
(3.44)

The following is derived from (3.31) and (3.40):

βH′

(loc) = βH(loc)
v B

(3.45)

Putting (3.25), (3.32), (3.39), and (3.45) together results in

βH′

(H ′(loc).f) = βH′

(o′.f)

= βH′

(v)
= βH(v)
v A

v Ŝ(Ref σ)(f)

(3.46)

Whence, by (3.43), (3.44), and (3.46):

β(H ′) v Ĥ (3.47)

The Theorem now follows from (3.37), (3.38), (3.42), and (3.47).

Case getfield this: By assumption

m.instructionAt(pc) = getfield this f
f.isStatic = false loc = L(0) loc 6= null

o = H(loc) v = o.fieldValue(f)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

66 Flow Logic for Carmel

Furthermore, by assumption:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : getfield this f (3.48)

and
〈K,H, 〈m, pc, L, S〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) (3.49)

From (3.49) it follows that

βH(K) v K̂ (3.50)

β(H) v Ĥ (3.51)

βH(L) v L̂(m, pc) (3.52)

βH(S) v Ŝ(m, pc) (3.53)

It follows directly from (3.48) and (3.52) that

βH(L) v L̂(m, pc)

v L̂(m, pc + 1)
(3.54)

Now assuming that o.class = σ it follows from (3.52) that

βH(L(0)) = βH(loc)
= (Ref σ)

v L̂(m, pc)(0)
(3.55)

Then from (3.48) and (3.55):

Ĥ(Ref σ)(f) :: Ŝ(m, pc) v Ŝ(m, pc + 1) (3.56)

Using (3.51), the fact that σ = o.class = H(loc).class and the definition
of β(H)(Ref σ) results in

βH(H(loc)) = βH(o)
v β(H)(Ref σ)

v Ĥ(Ref σ)
(3.57)

and thus
βH(o.fieldValue(f)) v Ĥ(Ref σ)(f) (3.58)

and therefore

βH(v :: S) = βH(v) :: βH(S)

v βH(v) :: Ŝ(m, pc)

= βH(o.fieldValue(f)) :: Ŝ(m, pc)

v Ĥ(Ref σ)(f) :: Ŝ(m, pc)

v Ŝ(m, pc + 1)

(3.59)

The Theorem now follows from (3.50), (3.51), (3.54) and (3.59).

3.3 Theoretical Properties 67

Case invokevirtual: By assumption

m.instructionAt(pc) = invokevirtual m0

m.isStatic = false loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0|mv = methodLookup(m0, o.class)

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

and furthermore

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokevirtual m0 (3.60)

and

〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉) RConf (K̂, Ĥ, L̂, Ŝ)
(3.61)

From (3.61) it immediately follows that

βH(K) v K̂ (3.62)

β(H) v Ĥ (3.63)

βH(L) v L̂(m, pc) (3.64)

βH(v1 :: · · · :: vn :: loc :: S) v Ŝ(m, pc) (3.65)

From (3.60) it follows that Ŝ(m, pc) = A1 :: · · · :: A|m0| :: B :: X for some
A1, . . . , A|m0|, B,X and thus (3.61) entails that

βH(vi) v Ai (3.66)

βH(loc) v B (3.67)

βH(S) v X (3.68)

Now, assuming that o.class = σ it follows that βH(loc) = (Ref σ) and
combining (3.60) with (3.67) it gives rise to:

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|] (3.69)

because mv = methodLookup(m0, σ). From this it is clear that

βH(Lv) v L̂(mv, 0) (3.70)

and
βH(ε) v Ŝ(mv, 0) (3.71)

The Theorem now follows from (3.62), (3.63), (3.70) and (3.71).

Case return: By assumption

m.instructionAt(pc) = return t

S′ =

{
v′
1 :: · · · :: v′

|m| :: loc :: S′′ if m.isStatic 6= true

v′
1 :: · · · :: v′

|m| :: S′′ if m.isStatic = true

P ` 〈K,H, 〈m, pc, L, v :: S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈K,H, 〈m′, pc′ + 1, L′, v :: S′′〉 :: SF 〉

68 Flow Logic for Carmel

and
(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : return t (3.72)

and

〈K,H, 〈m, pc, L, v :: S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ)
(3.73)

From the assumptions it follows immediately that

βH(K) v K̂ (3.74)

β(H) v Ĥ (3.75)

βH(L) v L̂(m, pc) (3.76)

βH(v :: S) v Ŝ(m, pc) (3.77)

βH(L′) v L̂(m′, pc′) (3.78)

βH(S′) v Ŝ(m′, pc′) (3.79)

From Lemma 3.11 it follows that the instruction at m′.instructionAt(pc′)
is one of either invokevirtual, invokestatic or invokespecial and
thus:

L̂(m′, pc′) v L̂(m′, pc′ + 1) (3.80)

Combining this with (3.78) results in

βH(L′) v L̂(m′, pc′ + 1) (3.81)

There are now three sub-cases to consider, depending on the instruction
at m′.instructionAt(pc′). Assume now that

m′.instructionAt(pc′) = invokevirtual m′′

then it must be the case that m.isStatic 6= true and then Lemma 3.11
gives that

m = methodLookup(m′′, H(loc).class) (3.82)

and
S′ = v′

1 :: · · · :: v|m| :: loc :: S′′ (3.83)

From (3.79) it is the case that Ŝ(m′, pc′) = A1 :: · · · :: A|m| :: B :: X and
therefore that

H(loc).class = βH(loc) v B (3.84)

Then by assumption

(K̂, Ĥ, L̂, Ŝ) |=CFA (m′, pc′) : invokevirtual m′′

which combined with (3.82) and (3.84) gives that Ŝ(m,END) = A :: Y
and that

A :: X v Ŝ(m′, pc′ + 1) (3.85)

3.3 Theoretical Properties 69

but from (3.79) it is the case that

βH(S′′) v X (3.86)

and from (3.72) that Ŝ(m, pc) v Ŝ(m,END) which implies that

βH(v :: S) = βH(v) :: βH(S) v Ŝ(m,END) (3.87)

and therefore it is known that

βH(v) v A (3.88)

Combining the above results in the following

βH(v :: S′′) = βH(v) :: βH(S′′)
v A :: X

v Ŝ(m′, pc′ + 1)
(3.89)

The two remaining subcases are similar and the Theorem now follows
from (3.74), (3.75), (3.81) and (3.89).

Case arrayload: By assumption:

m.instructionAt(pc) = arrayload t
loc 6= null v = H(loc).value(n) 0 ≤ n < H(loc).length

P ` 〈K,H, 〈m, pc, L, n :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

and

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : arrayload t (3.90)

and

〈K,H, 〈m, pc, L, n :: loc :: S〉 :: SF 〉 RConf (K̂, Ĥ, L̂, Ŝ) (3.91)

and from this it immediately follows that

βH(K) v K̂ (3.92)

β(H) v Ĥ (3.93)

βH(L) v L̂(m, pc) (3.94)

βH(n :: loc :: S) v Ŝ(m, pc) (3.95)

Now it follows from (3.90) and (3.94) that

βH(L) v L̂(m, pc)

v L̂(m, pc + 1)
(3.96)

70 Flow Logic for Carmel

From (3.90) it follows that Ŝ(m, pc) = A :: B :: X for some A, B and X;
now (3.95) implies that

βH(n) v A (3.97)

βH(loc) v B (3.98)

βH(S) v X (3.99)

Since βH(loc) = (Ref (array t)), eq. (3.98) implies (Ref (array t)) ∈ B
and thus from (3.90) it can be deduced that

Ĥ(Ref (array t)) :: X v Ŝ(m, pc + 1) (3.100)

Furthermore it is the case that

βH(v) = βH(H(loc).value(n))
v βH(H(loc))
v β(H)(Ref (array t))

v Ĥ(Ref (array t))

(3.101)

Finally from (3.99), (3.101) and (3.90) it follows that

βH(v :: S) = βH(v) :: βH(S)

v Ĥ(Ref (array t)) :: X

v Ŝ(m, pc + 1)

(3.102)

The Theorem new follows from (3.92), (3.93), (3.96) and (3.102).

The remaining cases are similar.

It follows from the subject reduction property that the control flow analysis
does indeed track the control flow of a program and in particular which object
references are used for virtual method invocations, i.e., the object references
that determine the outcome of a dynamic dispatch. In fact the above theorem
combined with the definitions of the representation functions implies that the
analysis not only tracks the control flow of a program but actually computes a
sound approximation of the local heap and operand stack for every instruction
in the program.

3.3.2 Moore Family Property

This section is devoted to establishing that the set of acceptable analyses, as
specified by the control flow analysis, constitute a Moore family :

Definition 3.15 (Moore family). Let L = (L,vL) be a complete lattice, then
a subset S ⊆ L of L is a Moore family if and only if it is closed under greatest
lower bounds: ∀S′ ⊆ S : uS′ ∈ S.

Trivially, a Moore family, S, contains both a least and a greatest element: uS
and u∅ (which is equal to >L) respectively. Thus a Moore family is never empty.

3.3 Theoretical Properties 71

Theorem 3.16 (Moore family (CFA)). The set of acceptable analyses for a
given program under |=CFA is a Moore family, i.e., for a program P ∈ Program:

∀A′ ⊆ {A |A |=CFA P } : uA′ ∈ {A |A |=CFA P }

Proof. Let P ∈ Program and Ai∈I ∈ ÂnalysisCFA for some index set I such
that Ai |=CFA P for all i ∈ I. Then (ui∈IAi) |=CFA P can be proved by case
inspection on the analysis specification for each instruction.

Case push: Let (K̂i, Ĥi, L̂i, Ŝi) = Ai for all i ∈ I, then by definition Ai |=CFA P
is equivalent to

{INT} :: Ŝi(m, pc) v Ŝi(m, pc + 1)

L̂i(m, pc) v L̂i(m, pc + 1)

and thus

∀i ∈ I : {INT} ⊆ Ŝi(m, pc + 1)|0 ⇒ {INT} ⊆ (ui∈I Ŝi)(m, pc + 1)|0

Similarly

∀j ∈ I : ∀k ∈ {0, . . . , |Ŝj |} : (ui∈I Ŝi)(m, pc)|k ⊆ Ŝj(m, pc)|k
⊆ Ŝj(m, pc + 1)|k+1

and thus
∀k ∈ {0, . . . ,minj∈I{|Ŝj |}} :

(ui∈I Ŝi)(m, pc)|k ⊆ (ui∈I Ŝi)(m, pc + 1)|k+1

whence
{INT} :: (ui∈I Ŝi(m, pc)) v (ui∈I Ŝi(m, pc + 1))

The formula L̂i(m, pc) v L̂i(m, pc) is equivalent to

∀x ∈ dom(L̂i(m, pc)) : L̂(m, pc)(x) ⊆ L̂i(m, pc + 1)(x)

and therefore

∀j ∈ I : ∀x ∈ (
⋂

i∈I dom(L̂i)) :

(ui∈IL̂i(m, pc))(x) ⊆ L̂j(m, pc)(x)

⊆ L̂j(m, pc + 1)(x)

which entails

∀x ∈ (
⋂

i∈I

dom(L̂i)) : (ui∈IL̂i(m, pc))(x) ⊆ (ui∈IL̂i(m, pc + 1))(x)

Combined with the above this results in

{INT} :: (ui∈I Ŝi(m, pc)) v (ui∈I Ŝi(m, pc + 1))

(ui∈IL̂i(m, pc)) v (ui∈IL̂i(m, pc + 1))

which is equivalent to

(ui∈IAi) |=CFA (m, pc) : push t n

This ends the case for push.

The remaining cases are similar.

72 Flow Logic for Carmel

From Theorem 3.16 and the comments following Definition 3.15 it follows that
all programs admit at least one analysis, namely u∅, and in addition that all
programs admit a best (smallest) analysis, namely

d
{A |A |=CFA P }.

3.4 Implementation

Having specified a control flow analysis and formally proved it correct, the focus
is now turned to implementing the analysis. For analyses specified in the Flow
Logic framework the most expedient way to do this is often by converting the
abstract specification into a constraint generator over a suitable constraint lan-
guage for which automated solvers exist. That is also the approach taken here
by turning the specification into a constraint generator over the Alternation-free
Least Fixed-Point logic (ALFP). Constraints in ALFP form can be solved effi-
ciently by the “Succinct Solver” developed by Nielson and Seidl in [NS01]. A
detailed discussion of ALFP and the “Succinct Solver” can be found in [NNS02b]
while [NNS+04] illustrates the solvers usefulness for program analysis applica-
tions.

3.4.1 Alternation-free Least Fixed-Point logic

The presentation of ALFP given here closely follows that given in [NNS02b].

Let X be a fixed countable set of variables and R a finite, ranked alphabet
of predicate symbols. The preconditions, pre, and clauses, cl , of ALFP are then
defined as follows:

pre ::= R(x1, . . . , xn) | ¬R(x1, . . . , xn) | pre1 ∧ pre2 | pre1 ∨ pre2

| ∃x : pre | ∀x : pre

cl ::= R(x1, . . . , xn) | 1 | cl1 ∧ cl2 | pre ⇒ cl | ∀x : cl

where x, x1, . . . , xn ∈ X and R ∈ R. Occurrences of R(· · ·) and ¬R(· · ·) in
preconditions are called queries and negative queries respectively; occurrences
in clauses are called assertions.

In order to handle negative queries a notion of stratification is introduced
similar to that found in Datalog :

Definition 3.17 (ALFP Formula). A clause, cl , is said to be an ALFP
formula if it has the form cl = cl1∧· · ·∧cln and there exists a ranking function,
rank:R → {1, . . . , n}, such that for i ∈ {1, . . . , n} the following hold:

1. rank(R) = i for all predicates R of an assertion in cl i

2. rank(R) ≤ i for all predicates R of a query in cl i

3. rank(R) < i for every predicate R of a negative query in cl i

3.4 Implementation 73

(ρ, σ) |=PRE R(x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ ρ(R)
(ρ, σ) |=PRE ¬R(x1, . . . , xn) iff (σ(t1), . . . , σ(tn)) /∈ ρ(R)
(ρ, σ) |=PRE pre1 ∧ pre2 iff (ρ, σ) |=PRE pre1 and (ρ, σ) |=PRE pre2

(ρ, σ) |=PRE pre1 ∨ pre2 iff (ρ, σ) |=PRE pre1 or (ρ, σ) |=PRE pre2

(ρ, σ) |=PRE ∃x : pre iff (ρ, σ[x 7→ a]) |=PRE pre for some a ∈ U
(ρ, σ) |=PRE ∀x : pre iff (ρ, σ[x 7→ a]) |=PRE pre for all a ∈ U
(ρ, σ) |=ALFP R(x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ ρ(R)
(ρ, σ) |=ALFP 1 iff true
(ρ, σ) |=ALFP cl1 ∧ cl2 iff (ρ, σ) |=ALFP cl1 and (ρ, σ) |=ALFP cl2
(ρ, σ) |=ALFP pre ⇒ cl iff (ρ, σ) |=ALFP cl whenever (ρ, σ) |=PRE pre
(ρ, σ) |=ALFP ∀x : cl iff (ρ, σ[x 7→ a]) |=ALFP cl for all a ∈ U

Figure 3.8: Semantics for ALFP

Each i in the above definition is called a stratum and the maximal rank, i.e.,
the number of strata, is denoted by maxrank(R) = max {rank(R) |R ∈ R}.

The semantics of clauses and preconditions can now be defined. Given a
non-empty and finite universe, U , of atomic values and interpretations ρ and σ
for predicate symbols and free variables respectively, the satisfaction relations
for preconditions and clauses are given in Figure 3.8.

For a given interpretation of free variables, σ, an interpretation, ρ, of pred-
icate symbols is called a solution to the clause, cl , if indeed (ρ, σ) |=ALFP cl .
Furthermore, since the clauses considered in this dissertation have no free vari-
ables the given σ is of no consequence and hence a fixed interpretation, σ0, is
assumed throughout this dissertation.

The set of interpretations of predicate symbols in R over U gives rise to an
ordering on the set of interpretations, ∆. Let ρ1, ρ2 ∈ ∆ and define

ρ1 v ρ2 iff ∃i ∈ N0:
(∀R ∈ R: rank(R) < i ⇒ ρ1(R) = ρ2(R)) ∧
(∀R ∈ R: rank(R) = i ⇒ ρ1(R) ⊆ ρ2(R)) ∧
(i = maxrank(R) ∨
∃R ∈ R: rank(R) = i ∧ ρ1(R) ⊂ ρ2(R))

In fact ∆ = (∆,v) forms a complete lattice. Furthermore sets of solutions form
Moore families, cf. Definition 3.15, as proved by Proposition 1 of [NNS02b].
This is an important property because it implies that there always exists a
solution for a stratified ALFP clause with no free variables and indeed there
always exists a least solution.

Using stratification it is possible to define equality and in-equality predicates
in the following manner:

(∀x : EQ(x, x)) ∧ (∀x : ∀y : ¬EQ(x, y) ⇒ NEQ(x, y))

To see that the above formula is properly stratified take rank(EQ) = 0 and

74 Flow Logic for Carmel

rank(NEQ) = 1. In the following the query EQ(x, y) is written x = y and the
query NEQ(x, y) as x 6= y.

3.4.2 Solving the Constraints

In [NNS02b, NS01] an algorithm for finding the least solution in an efficient
manner is described along with the techniques used to implement an efficient
prototype called the “Succinct Solver”2. The details of both algorithm and pro-
totype implementation are outside the scope of this dissertation.

Various benchmarks and example uses of the Succinct Solver can be found
in [NNS+04, BNN02, Pil03].

3.4.3 Generating Constraints

In the rest of this section a given finite universe, UP , is assumed; the universe
is assumed to contain only the atoms that occur in the program P ∈ Program.
This includes all the abstract program structures such as classes and method
and also the runtime structures such as objects, arrays and basic values.

Furthermore, in order to manipulate and calculate stack positions the uni-
verse is assumed to include a number of unique atoms that represent the stack
height for a given program. This is possible since the maximum stack height
of a program is known beforehand and is known to be finite. Assuming that
the maximum stack height is n then the stack position atoms are denoted:
[[0]], . . . , [[n]]. For the actual calculation of stack positions a number of auxiliary
relations are also created for every possible stack move, e.g., the relation SP−2

corresponds to removing the top two stack positions, i.e., SP−2(x, y) holds for
all x = [[i]] and y = [[j]] such that j = i− 2. In general:

∀i ∈ {0, . . . , n} : i + j ≥ 0 ⇒ SPj([[i]], [[i + j]])

Note that for a given program all the auxiliary relations that are needed in
order to generate constraints can be determined statically since stack copying
depends only depends on which instructions are used and the arity of methods
that are invoked, e.g., either SP−|m0| (if m0 returns a value) or SP−(|m0|+1) (if
m0 does not return a value) is needed for invoking method m0. Thus copying
a stack from address (m, pc) forward to address (m, pc + 1) less the top two
positions can be formulated in ALFP as follows:

∀x : ∀y : ∀v : SP−2(x, y) ∧ S(m, pc, x, v) ⇒ S(m, pc + 1, y, v)

The Succinct Solver actually has a built-in encoding of terms using relations.
This allows for a simpler and more elegant encoding of stack positions using
terms to encode Peano numbers that can then be manipulated directly without
the need for (explicit) auxiliary relations.

2The name was derived from the fact that the algorithm can be described very succinctly
in one page of Standard ML(-like) pseudo-code.

3.4 Implementation 75

To enhance readability and ease the specification of the constraint generator
two auxiliary predicates are introduced. One that copies the stack in method
m0 at program counter pc0 from stack position i (and down) to the stack at
program counter pc1 from stack position j:

COPYSTACK(m0, pc0, i, pc1, j) ≡
∀x : ∀y : ∀v : SPj−i(x, y) ∧ S(m0, pc0, x, v) ⇒ S(m0, pc1, y, v)

The other predicate copies the local heap in method m at program counter pc0

to program counter pc1:

COPYLOCHEAP(m0, pc0, pc1) ≡
∀x : ∀v : L(m0, pc0, x, v) ⇒ L(m0, pc1, x, v)

Below the constraint generator is developed in detail for a few instructions. The
specification for the rest of the instructions can be found in Appendix B.

The push instruction

The push instruction places a number or a null-reference on top of the stack.
Assuming that it is a number the Flow Logic specification would look like the
following:

{INT} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

which is turned into two ALFP formulae, one that “pushes” the number on top
of the stack:

S(m, pc, [[0]], INT)

and one that transfers the remainder of the stack:

COPYSTACK(m, pc, 0, pc + 1, 1)

Furthermore, the local heap should be copied forward without modification. In
the Flow Logic specification this is done by the following:

L̂(m, pc) v L̂(m, pc + 1)

which is implemented by the COPYLOCHEAP predicate:

COPYLOCHEAP(m, pc, pc + 1)

Putting all of the above together results in the following constraint generator
for push:

G[[(m, pc) : push t n]] =
S(m, pc + 1, [[0]], INT)∧
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

76 Flow Logic for Carmel

The store Instruction

The Flow Logic specification for the store instruction makes use of the stack
matching and binding operator:

A :: X / Ŝ(m, pc)

Intuitively this operator binds whatever is on top of the stack to the variable A
which may then be referenced later in the specification. This is used to transfer
the value on top of the stack to the local variable x:

A v L̂(m, pc + 1)(x)

which is translated into the following ALFP formula:

∀v : S(m, pc, [[0]], v) ⇒ L(m, pc + 1, x, v)

A more direct translation of the A0 :: · · · :: An :: X / Ŝ(m, pc) notation would
be to introduce fresh relations A0, . . . ,An and then copy the values from the
stack to the new relations, e.g., ∀v : S(m, pc, [[0]], v) ⇒ A0(v). From there the
values could then be transferred to their final destination, e.g., ∀v : A0(v) ⇒
L(m, pc + 1, x, v) as above. However, such a translation would introduce many
new relations only used for temporarily storing values. The translation used
here “short circuits” the process and thus obviates the need for creating new
relations used only for temporary storage.

As for the push instruction another formula is needed to copy the remainder
of the stack:

COPYSTACK(m, pc, 1, pc + 1, 0)

Finally the local heap is copied forward while taking care to model the special
operator vX that transfers the contents of all the variables in the local heap
except those in X:

L̂(m, pc) v{x} L̂(m, pc + 1)

this functionality is implemented by comparing the variable names for inequality
using the encoded predicate t1 6= t2:

∀y : ∀v : (y 6= x) ∧ L(m, pc, y, v) ⇒ L(m, pc + 1, y, v)

Thus the constraint generator for store:

G[[(m, pc) : store t x]] =
∀v : S(m, pc, [[0]], v) ⇒ L(m, pc + 1, x, v)∧
∀y : ∀v : (y 6= x) ∧ L(m, pc, y, v) ⇒ L(m, pc + 1, y, v)
COPYSTACK(m, pc, 1, pc + 1, 0)

3.4 Implementation 77

The invokevirtual Instruction

The constraint generator for invokevirtual is the most involved simply because
of its size. For ease of reference the Flow Logic specification is repeated here:

(K̂, Ĥ, L̂, Ŝ) |=CFA (m, pc) : invokevirtual m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

First the target method is looked up using the encoding of the methodLookup

function and the object reference found on the stack. The reference on the stack
is then transferred to the invoked method’s local variable 0 as a self-reference:

∀r : ∀mv : S(m, pc, [[|m0|]], r) ∧ML(m, r,mv) ⇒ L(mv, 0, 0, r)

Next the parameters are transferred in much the same way, with one formula
for each parameter:

∀r : ∀mv : ∀v :
S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(m, pc, [[0]], v) ⇒ L(mv, 0, 1, v)
...

∀r : ∀mv : ∀v :
S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(m, pc, [[|m0| − 1]], v) ⇒ L(mv, 0, |m0|, v)

Since no local variables were modified in the invoking method, the local heap is
simply copied:

COPYLOCHEAP(m, pc, pc + 1)

If the invoked method does not return a value, i.e., if m0.returnType = void

the remainder of the stack is copied forward:

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0)

If instead the method does return a value, it should be copied from the top of
the invoked method’s stack and back to the stack of the invoking method:

∀r : ∀mv : ∀v :
S(m, pc, |m0|, r) ∧ML(m, r,mv)∧

S(mv,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)

78 Flow Logic for Carmel

and the remaining stack is copied:

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

Combining the above results in the following constraint generator:

G[[(m, pc) : invokevirtual m0]] =
∀r : ∀mv :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv) ⇒ L(mv, 0, 0, r)
∀r : ∀mv : ∀v :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧
S(m, pc, [[0]], v) ⇒ L(mv, 0, 1, v)

...
S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(m, pc, [[|m0| − 1]], v) ⇒ L(mv, 0, |m0|, v)
COPYLOCHEAP(m, pc, pc + 1)
if m0.returnType = void then

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0)
if m0.returnType 6= void then
∀r : ∀mv : ∀v : S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(mv,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

Generating Constraints for Programs

The constraint generators for the individual instructions are combined and lifted
to covers entire programs:

G[[P]] =
∧

∀(m, pc) ∈ P.addresses
m.instructionAt(pc) = instr

G[[(m, pc) : instr]]

∧
∧

σ ∈ P.main
mσ = σ.entry

L(mσ, 0, 0, (Ref σ))

∧
∧

σ ∈ P.classes
m = σ.methods

mv = methodLookup(m, σ)

ML(m,σ,mv)

where the ML relation is used to statically encode the methodLookup function
to make it accessible in the ALFP formulation.

3.4.4 Correctness of the Constraint Generator

It is now possible to prove that the two formulations of the control flow analysis,
as an abstract Flow Logic specification and as an ALFP constraint generator re-

3.4 Implementation 79

spectively, are equivalent. First a lemma showing that the generated constraints
do indeed form an ALFP formula:

Lemma 3.18. Let P ∈ Program then G[[P]] is an ALFP formula.

Proof. Define rank(EQ) = 0, rank(NEQ) = 1, and let all other predicates have
rank 2. It is easily checked that this ranking function fulfils the requirements of
Definition 3.17 since negation is only used to define in-equality.

In order to compare the ALFP solutions to solutions over the abstract domains
a translation from the ALFP solution back to the abstract domains of the Flow
Logic is defined:

[[L]]ρ(m, pc)(x) = {v | (m, pc, x, v) ∈ ρ(L)}
[[S]]ρ(m, pc)|i = {v | (m, pc, [[i]], v) ∈ ρ(S)}

[[H]]ρ(Ref σ)(f) = {v | ((Ref σ), f, v) ∈ ρ(H)}
[[H]]ρ(Ref (array t)) = {v | ((Ref (array t)), ARRAY, v) ∈ ρ(H)}

[[K]]ρ(f) = {v | (f, v) ∈ ρ(K)}

which is combined to:

[[ρ]] = ([[K]]ρ, [[H]]ρ, [[L]]ρ, [[S]]ρ)

And finally a lemma proving that the predicates introduced to conveniently copy
stack positions and local heaps work as expected:

Lemma 3.19. For any solution ρ the following holds:

(ρ, σ0) |=ALFP COPYSTACK(m, pc0, i, pc1, j) iff
∀x : [[S]]ρ(m, pc0)|x+i ⊆ [[S]]ρ(m, pc1)|x+j

and

(ρ, σ) |=ALFP COPYLOCHEAP(m, pc0, pc1) iff
∀x : [[L]]ρ(m, pc0)(x) ⊆ [[L]]ρ(m, pc1)(x)

Proof. By expansion of the COPYSTACK and COPYLOCHEAP predicates and
applying the semantics of ALFP.

The equivalence between the two formulations of the analysis can now be stated
and proved:

Theorem 3.20. Let P ∈ Program then

[[ρ]] |=CFA P iff (ρ, σ0) |=ALFP G[[P]]

Proof. By case analysis on the instructions of P . Here only two cases are con-
sidered in detail. The remaining cases are similar or trivial.

80 Flow Logic for Carmel

Case push: (if) Assume that

(ρ, σ0) |=ALFP G[[(m, pc) : push t n]]

Using the definition of the constraint generator for push the above implies

(ρ, σ0) |=ALFP (S(m, pc + 1, [[0]], INT)∧
COPYSTACK(m, pc, 0, pc + 1, 1)∧
COPYLOCHEAP(m, pc, pc + 1))

which is equivalent to

(ρ, σ0) |=ALFP S(m, pc + 1, [[0]], INT) (3.103)

(ρ, σ0) |=ALFP COPYSTACK(m, pc, 0, pc + 1, 1) (3.104)

(ρ, σ0) |=ALFP COPYLOCHEAP(m, pc, pc + 1) (3.105)

Applying the semantics of ALFP to equation (3.103) results in:

(m, pc, [[0]], INT) ∈ ρ(S)

and thus by definition of [[S]]ρ:

{INT} ⊆ [[S]]ρ(m, pc)|0

Using lemma 3.19 on equations (3.104) and (3.105) implies

∀x : [[S]]ρ(m, pc)|x+0 ⊆ [[S]]ρ(m, pc + 1)|x+1

and

∀x : [[L]]ρ(m, pc)(x) ⊆ [[L]]ρ(m, pc + 1)(x)

Combining the above results in

{INT} :: [[S]]ρ(m, pc) v [[S]]ρ(m, pc + 1)

and

[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)

and thus

[[ρ]] |=CFA (m, pc) : push t n

(only if) Assume that

[[ρ]] |=CFA (m, pc) : push t n

which is equivalent to

{INT} :: [[S]]ρ(m, pc) v [[S]]ρ(m, pc + 1)
[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)

3.4 Implementation 81

Expanding the definition of v results in:

{INT} ⊆ [[S]]ρ(m, pc + 1)|0
∀x : [[S]]ρ(m, pc)|x ⊆ [[S]]ρ(m, pc + 1)|x+1

∀x : [[L]]ρ(m, pc)(x) ⊆ [[L]]ρ(m, pc + 1)(x)

which is equivalent to

{INT} ⊆ [[S]]ρ(m, pc + 1)|0
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

and by definition

(ρ, σ0) |=ALFP G[[(m, pc) : push t n]]

Which concludes the case for push.

Case invokevirtual: (if) Assume that

(ρ, σ0) |=ALFP G[[(m, pc) : invokevirtual m0]]

This expands to

(ρ, σ0) |=ALFP ∀r : ∀mv : S(m, pc, |m0|, r)∧
ML(m0, r,mv) ⇒ L(mv, 0, 0, r)

(3.106)

and

(ρ, σ0) |=ALFP ∀r : ∀mv : ∀v :
S(m, pc, |m0|, r) ∧ML(m, r,mv)∧

S(m, pc, 0, v) ⇒ L(mv, 0, 1, v)
...
S(m, pc, |m0|, r) ∧ML(m, r,mv)∧

S(m, pc, |m0| − 1, v) ⇒ L(mv, 0, |m0|, v)

(3.107)

and

(ρ, σ0) |=ALFP COPYLOCHEAP(m, pc, pc + 1) (3.108)

and if m0.returnType = void then

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0) (3.109)

else if m0.returnType 6= void then

∀r : ∀mv : ∀v : S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧
S(mv, END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

(3.110)

82 Flow Logic for Carmel

Equation (3.106) can further be reformulated as:

∀r : ∀mv : r ∈ [[S]]ρ(m, pc)||m0|∧
ML(m0, r,mv) ⇒ r ∈ [[L]]ρ(mv, 0)(0)

By definition ML(m0, r,mv) is equivalent to mv = methodLookup(m0, r)
and thus the above gives

∀r : r ∈ [[S]]ρ(m, pc)||m0|∧
mv = methodLookup(m0, r) ⇒ r ∈ [[L]]ρ(mv, 0)(0)

Equation (3.107) can be reformulated in a similar manner:

∀r : ∀v : r ∈ [[S]]ρ(m, pc)||m0| ∧mv = methodLookup(m0, r)∧
v ∈ [[S]]ρ(m, pc)|0 ⇒ r ∈ [[L]]ρ(mv, 0)(1)

...
∀r : ∀v : r ∈ [[S]]ρ(m, pc)||m0| ∧mv = methodLookup(m0, r)∧

v ∈ [[S]]ρ(m, pc)||m0|−1 ⇒ r ∈ [[L]]ρ(mv, 0)(|m0|)

which can be combined to the following:

∀i ∈ {0, . . . , |m0| − 1} : ∀r : ∀v :
r ∈ [[S]]ρ(m, pc)||m0| ∧ v ∈ [[S]]ρ(m, pc)|i ⇒

v ∈ [[L]]ρ(mv, 0)(i + 1)

Using the notation from the Flow Logic specification this can be written
as:

A1 :: · · · :: A|m0| :: B / [[S]]ρ(m, pc) :
∀(Ref σ) ∈ B :

mv = methodLookup(m0, σ)
{(Ref σ)} :: A1 :: · · · :: A|m0| v [[L]]ρ(mv, σ)[0..|m0|]

Lemma 3.19 and equation (3.108) gives

[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)

Expanding equation (3.109) results in

m0.returnType = void ⇒
∀x : [[S]]ρ(m, pc)|x+|m0|+1 ⊆ [[S]]ρ(m, pc)|x+0

and similarly for equation (3.110):

m0.returnType 6= void ⇒
∀r : ∀v : r ∈ [[S]]ρ(m, pc)||m0| ∧mv = methodLookup(m0, r)∧

v ∈ [[S]]ρ(mv,END)|0 ⇒ v ∈ [[S]]ρ(m, pc + 1)|0
∀x : [[S]]ρ(m, pc)|x+|m0|+1 ⊆ [[S]]ρ(m, pc)|x+1

3.4 Implementation 83

Finally, putting all of the above together:

A1 :: · · · :: A|m0| :: B / [[S]]ρ(m, pc) :
∀(Ref σ) ∈ B :

mv = methodLookup(m0, σ)
{(Ref σ)} :: A1 :: · · · :: A|m0| v [[L]]ρ(mv, σ)[0..|m0|]
[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)
m0.returnType = void ⇒
∀x : [[S]]ρ(m, pc)|x+|m0|+1 ⊆ [[S]]ρ(m, pc)|x+0

m0.returnType 6= void ⇒
∀r : ∀v : r ∈ [[S]]ρ(m, pc)||m0| ∧ v ∈ [[S]]ρ(mv,END)|0 ⇒

v ∈ [[S]]ρ(m, pc + 1)|0
∀x : [[S]]ρ(m, pc)|x+|m0|+1 ⊆ [[S]]ρ(m, pc)|x+1

and thus

[[ρ]] |=CFA (m, pc) : invokevirtual m0

(only if) Assume that

[[ρ]] |=CFA (m, pc) : invokevirtual m0

By definition this is equivalent to

A1 :: · · · :: A|m0| :: B :: X / [[S]]ρ(m, pc) :
∀(Ref σ) ∈ B :

mv = methodLookup(m0, σ)
{(Ref σ)} :: A1 :: · · · :: A|m0| v [[L]]ρ(mv, 0)[0..|m0|]
m0.returnType = void ⇒

X v [[S]]ρ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / [[S]]ρ(mv,END) : A :: X v [[S]]ρ(m, pc + 1)
[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)

which can be reformulated as

∀(Ref σ) ∈ [[S]]ρ(m, pc)||m0| :
mv = methodLookup(m0, σ)
{(Ref σ)} ⊆ [[L]](mv, 0)(0)
∀v : v ∈ [[S]]ρ(m, pc)|0 ⊆ v ∈ [[L]](mv, 0)(1)
...
∀v : v ∈ [[S]]ρ(m, pc)||m0|−1 ⊆ v ∈ [[L]](mv, 0)(|m0|)
if m0.returnType = void then
∀x : ∀v : v ∈ [[S]]ρ(m, pc)|x+|m0|+1 ⇒ v ∈ [[S]]ρ(m, pc + 1)|x+0

if m0.returnType 6= void then
∀v : v ∈ [[S]]ρ(mv,END)|0 ⇒ v ∈ [[S]]ρ(m, pc + 1)|0
∀x : ∀v : v ∈ [[S]]ρ(m, pc)|x+|m0|+1 ⇒ v ∈ [[S]]ρ(m, pc + 1)|x+1

[[L]]ρ(m, pc) v [[L]]ρ(m, pc + 1)

84 Flow Logic for Carmel

Rewriting the above once more using the definition of ML and Lemma 3.19
gives:

∀(Ref σ) : ∀mv : S(m, pc, [[|m0|]], (Ref σ)) ∧ML(m0, σ,mv) ⇒
L(mv, 0, 0, (Ref σ))
∀v : S(m, pc, [[0]], v) ⇒ L(mv, 0, 1, v)
...
∀v : S(m, pc, [[|m0| − 1]], v) ⇒ L(mv, 0, |m0|, v)
if m0.returnType = void then

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0)
if m0.returnType 6= void then
∀v : S(mv,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

COPYLOCHEAP(m, pc, pc + 1)

which is equivalent to

(ρ, σ0) |=ALFP G[[(m, pc) : invokevirtual m0]]

This concludes the case for invokevirtual.

The remaining 30+ cases are similar.

As a consequence of this result it is now possible to build a fully automated
analysis tool for Carmel programs.

3.4.5 Complexity and Scalability

In [NNS02b] the runtime complexity of the algorithm implemented by the Suc-
cinct Solver is analysed and discussed at length. Proposition 2 in [NNS02b]
shows that the asymptotic complexity of the solver algorithm is given by

O(#ρ + N r · n)

where N is the size of the universe, n the size of the constraint solved, r the
maximal nesting depth of quantifiers, and #ρ the sum of cardinalities of the
predicates in the constraint.

For Carmel programs the size of the generated constraint is linear in the pro-
gram size, |P |, and thus n is bounded linearly by the program size. The universe
is comprised by the program constants and structures and thus the size of the
universe, N , is also linearly bounded by the program size. The maximal nesting
depth is easily determined to be three by inspecting the constraint generator.
Finally the cardinalities of the relations are bounded by

|Method|P · |PC|P ·max {|Var|P , |Stack|P } ·N

where |Method|P is the number of methods in program P , |PC|P the largest
number of instructions in any method, |Var|P the largest number of local vari-
ables used in any method, |Stack|P the largest number of stack positions used

3.5 Handling Exceptions 85

in any method, and N is the size of the universe. All of the factors in the above
formula are linearly bounded by the size of the program and thus the above is
bounded by O(|P |4). This results in the following upper bound for the asymp-
totic complexity of the solver algorithm for constraints generated from Carmel
programs

O(|P |4 + |P |3 · |P |)

and thus a bound of O(|P |4) is obtained.
In [Pil03, NNS+04] a prototype implementation of the analysis is bench-

marked on a realistically sized electronic purse applet, called Demoney, that was
developed as part of the SecSafe project (see [Siv03b, MM02, Mar02]). Using a
näıve and unoptimised constraint generator, very similar to the one outlined in
this section, it took on the order of 30 seconds to solve the constraints generated
for Demoney and a partial implementation of the JCRE API. This gives a rough
indication that the combination of Flow Logic and ALFP/Succinct Solver scales
very well to applications of a realistic size.

3.5 Handling Exceptions

The control flow analysis specified and proved correct in the preceding sections
was designed to cover the Carmel language with one notable caveat: the analysis
did not include exceptions. This situation is rectified in the following where the
control flow analysis is extended, in a very systematic and modular way, to cover
not only full Carmel but also CarmelEXC by integrating an exception analysis
into the base analysis. The exception analysis is specified in such a way as to
make it easy to include into other analyses especially those discussed in later
sections and chapters.

While applications in general should be developed to be robust and able
to cope with errors and exceptional situations, the often sensitive and criti-
cal nature of most smart card applications combined with the severely limited
opportunities for user intervention and interaction makes good error handling
essential for smart card applets. This requirement frequently means that errors
and exceptions, where possible, must be handled gracefully within the appli-
cation itself, as it is often impossible or impractical for the user to assist the
application in recovering after an error. Thus only errors that cannot be handled
internally or that require user notification should be reported to the user.

A rather different approach to exceptions in a high-assurance environment
is taken in the SPARK Ada approach[Bar03] where programs are required to
be exception free, i.e., it must be shown that a program cannot possibly give
rise to an exception. Such a strict requirement makes good sense in certain
high-assurance environments where it may not be possible, or even make sense,
to (try to) recover from an error or exceptional situation. For typical smart
card applications such an approach is excessive and it is often preferable to let
the user or an operator know that an error occurred. However, an exception
analysis, that over-approximates the exceptions thrown, can be used to verify
that a given program can only give rise to a specific subset of exceptions or

86 Flow Logic for Carmel

even that the program does not give rise to any exceptions at all. In this way
program analysis can be used to check a wide spectrum of exception policies.

3.5.1 Abstract Domains

As discussed in Chapter 2 exceptions are simply objects of a subclass of the
Throwable-class and this naturally leads to the following abstract domain for
exceptions:

̂Exception = ObjRef

and the representation function for exceptions is identical to the representation

function for references. Let (Ref σX) ∈ ̂Exception, H ∈ Heap, and define:

βH
Exc(σX) = βH

Ref(Ref σX) (3.111)

An exception cache is introduced to track exceptions that are not handled lo-
cally, i.e., in the method they are thrown:

̂ExcCache = Method→ P(̂Exception)

Combining the exception cache with the domains for the control flow analysis
the domain below for exception analyses is obtained:

ÂnalysisEXC = ̂StaHeap× Ĥeap× ̂LocHeap× Ŝtack× ̂ExcCache

Exceptions that are handled in the method in which they are thrown are not
explicitly tracked. Instead the semantics are modelled directly by copying the
current local heap and a stack consisting only of the reference to the exception
object to the program counter of the exception handler.

To simplify the presentation of the analysis specification the following ex-
ception predicate is defined that formalises the abstract exception handling:

HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc)) ≡

findHandler(m, pc, σX) = ⊥ ⇒

(Ref σX) ∈ Ê(m)
findHandler(m, pc, σX) = pcX ⇒

{(Ref σX)} :: ε v Ŝ(m, pcX)

L̂(m, pc) v L̂(m, pcX)

where findHandler is the same function that is used in the semantics. Intu-
itively the predicate checks if an exception of class σX , that was thrown at
program counter pc in method m, has a local handler by looking it up using the
findHandler function. If there is an appropriate local handler the first program
counter of the handler, pcX , is returned and the operand stack and local heap
is set up for the local handler. If a handler is not found locally, the exception is
just recorded in the exception cache for the current method.

3.5 Handling Exceptions 87

3.5.2 Flow Logic Specification for Exception Analysis

The judgements for the exception analysis are on the form:

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m, pc) : instr

where (K̂, Ĥ, L̂, Ŝ, Ê) ∈ ÂnalysisEXC. As for the control flow analysis the intu-
itive meaning of the above judgement is that (K̂, Ĥ, L̂, Ŝ, Ê) is an acceptable,
i.e., correct, analysis of the instruction instr found at address (m, pc).

With an exception analysis component added to the control flow analy-
sis it is now possible to extend the control flow analysis to cover the entire
Carmel language. In particular, the throw-instruction can now be analysed.
The throw-instruction is used to explicitly throw a programmer defined excep-
tion. The class of the exception to be thrown is given as an object reference on
top of the operand stack. Using the HANDLE-predicate defined previously, the
specification for this instruction is especially simple:

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m, pc) : throw

iff B :: X / Ŝ(m, pc) :
∀(Ref σX) ∈ B:HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

HANDLE(L̂,Ŝ,Ê)((Ref NullPointerExc), (m, pc))

Note that throwing an exception may itself give rise to an exception if the
exception reference is a null-reference. This shows how the runtime exceptions
can be modelled in the analysis and thus how the control flow and exception
analyses can extended to cover not only Carmel but all of CarmelEXC.

Next a few representative clauses for the exception analysis are given, show-
ing how the judgements for the control flow analysis are easily adapted for the
exception analysis. The modifications mainly consist in adding a HANDLE-
predicate to the analysis of instructions that may throw a runtime exception:

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m, pc) : numop t binop [t′]

iff A1 :: A2 :: X / Ŝ(m, pc) :

{INT} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)
HANDLE(L̂,Ŝ,Ê)((Ref ArithmeticExc), (m, pc))

The necessary changes are similar for most of the remaining instructions. Only
the instructions for method invocation (invokevirtual, invokeinterface, and
invokestatic) are slightly more involved: in addition to tracking exceptions
that may be thrown as the result of executing the instruction itself, it must also
be ensured that any exceptions thrown and not caught by the invoked method
are re-thrown in the current method. In the semantics this is handled directly by
the two special reduction rules that apply for exception frames, cf. Figure 2.11.

88 Flow Logic for Carmel

The specification for invokevirtual follows:

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m, pc) : invokevirtual m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]

∀(Ref σX) ∈ Ê(mv):HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)
HANDLE(L̂,Ŝ,Ê)((Ref NullPointerExc), (m, pc))

The analysis of the other instructions for method invocation are similar.

3.5.3 Semantic Correctness

Semantic correctness for the exception analysis is established in the same way
as for the control flow analysis by proving a subject reduction property for the
analysis. First the notion of well-formedness must be extended to take exception
frames into account:

Definition 3.21 (Extended Well-Formedness). A call-stack SF = F ::
〈m2, pc2, L2, S2〉 :: · · · :: 〈mn, pcn, Ln, Sn〉 is extended well-formed if and only if

∀i ∈ {2, . . . , n} :
mi.instructionAt(pci) = invokestatic m′′

i ⇒
Si = vi,1 :: · · · :: vi,|mi−1| :: S′′

i ∧
mi−1 = m′′

i

mi.instructionAt(pci) = invokevirtual m′′
i ⇒

Si = vi,1 :: · · · :: vi,|mi−1| :: loci :: S′′
i ∧

H(loci).class = σi ∧
mi−1 = methodLookup(m′′

i , σi)
mi.instructionAt(pci) = invokeinterface m′′

i ⇒
Si = vi,1 :: · · · :: vi,|mi−1| :: loci :: S′′

i ∧
H(loci).class = σi ∧
mi−1 = methodLookup(m′′

i , σi)

and either F = 〈m1, pc1, L1, S1〉 or F = 〈Exc locX , (m1, pc1)〉 for some locX .

Intuitively the definition states that a call stack is extended well-formed if either
it is well-formed, see Definition 3.10, or if the top of the call stack is an exception
frame and the rest of it is well-formed. Next Lemma 3.11 is extended to also
hold for CarmelEXC:

3.5 Handling Exceptions 89

Lemma 3.22. For P ∈ Program if 〈K,H, SF 〉 is an extended well-formed con-
figuration and P ` 〈K,H, SF 〉 =⇒EXC 〈K

′, H ′, SF ′〉 then 〈K ′, H ′, SF ′〉 is ex-
tended well-formed.

Proof. Simple adaptation of the proof for Lemma 3.11 since exceptions only
give rise to exception frames and cannot create entirely new “ordinary” stack
frames.

In addition to the representation function for exceptions, cf. equation (3.111),
all the representation functions defined for the control flow analysis can be re-
used without modification. Even the correctness relation for stack frames can
be re-used since exception frames are handled at the level of call stacks:

F1 :: · · ·Fn R
H
EXC,CallStack (L̂, Ŝ, Ê) iff

∀i ∈ {2, . . . , n} : Fi R
H
Frame (L̂, Ŝ) ∧

F1 = 〈m1, pc1, L1, S1〉 ⇒ F1 R
H
Frame (L̂, Ŝ) ∧

F1 = 〈Exc locX , (mX , pcX)〉 ⇒ βH
Ref(locX) ∈ Ê(mX)

Note that only the top frame in a call stack can be an exception frame. The
correctness relation for semantic configurations can then be defined as follows:

〈K,H, SF 〉 REXC,Conf (K̂, Ĥ, L̂, Ŝ, Ê) iff βH
StaHeap(K) v K̂ ∧

βHeap(H) v Ĥ ∧

SF RH
EXC,CallStack (L̂, Ŝ, Ê)

Following the same procedure as for the control flow analysis a subject reduction
property for the exception analysis can now be stated and proved:

Theorem 3.23 (Subject Reduction (EXC)). Assume P ∈ Program, such
that (K̂, Ĥ, L̂, Ŝ, Ê) |=EXC P and let C be an extended well-formed semantic
configuration such that P ` C =⇒EXC C ′ then

C REXC,Conf (K̂, Ĥ, L̂, Ŝ, Ê) ⇒ C ′ REXC,Conf (K̂, Ĥ, L̂, Ŝ, Ê)

Proof. The proof is an extension of the proof for Theorem 3.14 (suject reduction
for the control flow analysis).

Case numop: Assume that C = 〈K,H, 〈m, pc, L, S〉 :: SF 〉 and that

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m, pc) : numop t op (3.112)

There are three sub-cases.

Sub-case 1: If the instruction does not throw an exception the case pro-
ceeds exactly as in the proof for Theorem 3.14.

Sub-case 2: If the instruction throws an exception that is handled locally
it must be the case that

C ′ = 〈K,H, 〈m, pc0, L, locX :: ε〉 :: SF 〉

90 Flow Logic for Carmel

for some pc0 such that findHandler(m, pc, ArithmeticExc) = pc0. It
then follows from equation (3.112) that

HANDLE(L̂,Ŝ,Ê)((Ref ArithmeticExc), (m, pc))

and thus by definition of the handler predicate that:

{(Ref ArithmeticExc)} :: ε v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

and thus βH
LocHeap(L) v L̂(m, pc) v L̂(m, pc0) whence

〈m, pc0, L, locX :: ε〉 RH
Frame (L̂, Ŝ)

This sub-case now follows.

Sub-case 3: If the instruction throws an exception that is not handled
locally. Then it follows that

C ′ = 〈K,H, 〈Exc locX , (mX , pcX)〉 :: 〈m2, pc2, L2, S2〉 :: SF 〉

with H(locX).class = ArithmeticExc and such that no local han-
dler is found: findHandler(m, pc, ArithmeticExc) = ⊥. Thus from
equation (3.112) and the definition of the analysis and the exception
predicate it must be the case that

(Ref ArithmeticExc) ∈ Ê(m)

From which this sub-case follows.

This concludes the case for numop.

Case “local handler”: Assume that

C = 〈K,H, 〈Exc locX , (mX , pcX)〉 :: 〈m2, pc2, L2, S2〉 :: SF 〉

with σX = H(locX).class such that

findHandler(m2, pc2, σX) = pcX (3.113)

and, by assumption, βH
Ref(locX) ∈ Ê(mX); thus

C ′ = 〈K,H, 〈m2, pcX , L2, locX :: ε〉 :: SF 〉

From the extended well-formedness of C it follows that the instruction at
(m2, pc2) is a method invocation. Assume, without loss of generality that
m2.instructionAt(pc2) = invokevirtual m0 then S2 = v1 :: · · · :: v|m0| ::
loc :: S′

2 and by assumption

(K̂, Ĥ, L̂, Ŝ, Ê) |=EXC (m2, pc2) : invokevirtual m0 (3.114)

3.6 Summary 91

with mX = methodLookup(m0, H(loc).class) since C is extended well-
formed. From equation (3.114) it follows that

∀(Ref σX) ∈ Ê(mX):HANDLE(L̂,Ŝ,Ê)((Ref σX), (m2, pc2))

and thus from equation (3.113):

{(Ref σX)} :: ε v Ŝ(m2, pcX)

L̂(m2, pc2) v L̂(m2, pcX)

and thus the sub-case follows.

The remaining cases are similar.

An interesting thing to note about the exception analysis is that it was built
simply by extending the control flow analysis with an exception handling pred-
icate rather than starting from scratch. The proof of correctness was also done
by re-using the proof for the control flow analysis with added proof-cases specific
to the exception semantics. This indicates a certain degree of robustness of the
analysis.

3.5.4 Implementation

The exception analysis has been implemented in a prototype analysis and ver-
ification tool. The implementation was obtained by simply extending the im-
plementation of the control flow analysis (Section 3.4) with predicates for the
exception handler and an exception component. A simple, but verbose, encod-
ing of the findHandler function was chosen: for each line of the program in which
an exception may be raised it specifies the correct handler. This encoding must
be generated before solving the constraints and thus requires a preprocessing
step.

3.6 Summary

In this chapter a control flow analysis for the Carmel language was designed,
specified, and formally proved correct with respect to the semantics. Further-
more, it was shown how the Flow Logic specification for the control flow analysis
systematically can be turned into a constraint generator over ALFP which in
combination with the Succinct Solver provides a way to efficiently implement
the control flow analysis. The constraint generator was formally proved to be
equivalent to the Flow Logic specification. Finally the control flow analysis
was extended to track the set of exceptions that a program may throw during
evaluation. The resulting exception analysis also formally proved correct with
respect to the semantics.

The control flow analysis specified in this chapter has been formalised and
formally proved correct using the Coq proof assistant as reported in [CJPR04].

92 Flow Logic for Carmel

Proofs in the Coq system are constructive and thus programs “implementing”
the proofs may be extracted via the Curry-Howard isomorphism. Extracting
the program corresponding to the proof of correctness of the analysis results in
an implementation of the analysis that is correct by construction. It is noted
in [CJPR04, Section 7] that the Coq formalisation was facilitated by the analysis
being specified in the Flow Logic framework.

A rather different approach to analysing bytecode is taken in the SOOT
framework for analysing and optimising Java bytecode, cf. [VRCG+99]. There
the Java bytecode is converted into a sequence of intermediate formats (called
Baf, Jimple[VRH98], and Grimp respectively) and different analyses and opti-
misations are performed at each stage. Baf is described as a “streamlined repre-
sentation” of Java bytecode, Jimple as a typed three-address representation, and
Grimp as an “aggregated version” of Jimple, cf. [VRCG+99, VRGH+00]. An
important feature of the Jimple and Grimp intermediate representations is that
the operand stack has been removed and stack access converted to equivalent
operations on local variables; this approach makes it possible to use standard
analysis techniques, e.g., monotone frameworks, to be applied more readily. In
contrast the flexibility of the Flow Logic framework allows for a natural formu-
lation of analyses directly on the stack based bytecode.

Both [PCC01] and [SJ03b] define frameworks for abstract interpretation of
Java and a simple imperative object-oriented language respectively. Both frame-
works can be instantiated to perform various analyses of the target language.

In [TP00] a number of different propagation based call graph analyses (basi-
cally control flow analyses) are surveyed and compared on speed and precision.
For efficiency reasons, most of the analyses model the operand stack and local
variables by simply merging the operand stack (local variables) for all instruc-
tions.

C h a p t e r 4

Extending the Flow Logic

I object to doing things that computers can do
—Olin Shivers

The control flow and exception analyses defined in the previous chapter provide
essential information on the basic behaviour of a program. In this chapter vari-
ous additions and extensions are explored and how they can be accommodated
by the fundamental analyses, with the twofold intention of increasing the scope
of the analyses and their applications, and to demonstrate the malleability and
robustness of the analyses.

4.1 Data Flow Analysis

In addition to computing information about the possible control flow of a pro-
gram it is often desirable or even necessary to gain more detailed information
about the data flow of a program. Knowledge of the data flow in a program
is useful for a wide variety of applications, spanning from optimisation to de-
bugging and verification, but can also be used to enhance the precision of the
control flow analysis. In this section a relatively simple data flow analysis, based
on modification counts, is defined and illustrate how the additional information
gained can be used to improve the precision of both the control flow and the
exception analyses defined in the previous chapter. In Section 5.1 the data flow
analysis plays an integral part in the transaction flow analysis used for verifying
the well-formedness of transactions.

Data in a Carmel program is comprised of numbers, object references, and
return addresses. Since the latter two are already tracked by the control flow
analysis the data flow analysis need only track numbers and the operations
on them. The analysis defined here can be viewed as a variation over the

94 Extending the Flow Logic

ValDFA = NumDFA + Ref + RetAddr

ObjectDFA = (class : Class)×
(fieldValue : Field→ ValDFA)

ArrayDFA = (type : Type)×
(length : N0)×
(value : N0 → ValDFA)

StaHeapDFA = Field→ ValDFA

LocHeapDFA = N0 → ValDFA

StackDFA = Val∗DFA

Figure 4.1: Updated concrete domains

well-known constant propagation analysis, cf. [NNH99]. The underlying idea
is that the exact numbers of interest are tracked through a (small) number of
modifications after which they are simply considered to be “unknown”, i.e.,
mapped to the top-value of the analysis domain. Such an analysis is very well-
suited for tracking constants in JCVML programs since they are often calculated
(form other constants) in the beginning of a program and then left unmodified
for the rest of the program.

The data flow analysis is defined for the entire CarmelEXC language.

4.1.1 Instrumenting the Semantics

While most of the semantics defined in Chapter 2 can be re-used directly it is
necessary to instrument the numerical values with modification counts in order
to prove the correctness of the data flow analysis. The instrumentation merely
records the modification counts of numbers and does not change the underlying
semantics in any way.

First the domain for recording the instrumented numbers must be defined.
Modification counts can only take on the values of the natural numbers and zero
which leads naturally to the following domain for instrumented numbers:

NumDFA = Z× N0

The idea being that an instrumented number, (z, χ) ∈ NumDFA, is a number, z,
that has been modified at most χ times during program execution. To make
the instrumented semantics more readable instrumented numbers are written
as zχ.

While only the numbers domain needs to be changed in any substantial way
to account for the instrumentation, all the domains that depend on numbers
must be updated to reflect the changed numbers domains. The updated domains
are shown in Figure 4.1.

With the domains in place the semantic rules must also be updated to reflect
the new domains and in particular the new domain for numbers. The changes

4.1 Data Flow Analysis 95

are simple and straightforward and only the rules that involve numbers directly
need to be changed. Below the necessary changes are illustrated for a few rules.

Constants are assumed to start with a modification count of 0. This is
evident in the rule for push:

m.instructionAt(pc) = push t c v =

{
null if c = null

c0 otherwise

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

When numbers are used in computations the modification counts must be in-
creased, as exemplified by the rule for (binary) numerical operations: in order
to compute the modification count for the result the maximum is taken of the
modification counts of the arguments and add one (for the current operation):

m.instructionAt(pc) = numop t op [t′]
op ∈ BinaryOp op ∈ {div, rem} ⇒ v2 6= 0

χ = max {χ1, χ2}+ 1 v = applyBinary(op, v1, v2)

P ` 〈K,H, 〈m, pc, L, vχ1

1 :: vχ2

2 :: S〉 :: SF 〉 =⇒DFA

〈K,H, 〈m, pc + 1, L, vχ :: S〉 :: SF 〉

In Figure 4.2 the adapted rules are shown. The remaining rules need no modi-
fication to handle the instrumented numbers.

4.1.2 Abstract Domains

For the analysis an abstract representation of the instrumented numbers is cho-
sen that allows tracking of numbers through finitely many modifications. Num-
bers that have been modified more than N number of times are represented by
the top value, written INTN :

Num>
N = (Z× {0, . . . , N}) ∪ {INTN}

Notice how this actually defines a family of abstract domains parameterised by
the maximum number of modifications, N , tracked by the domain. This enables
an easy fine-tuning of the precision of the data flow analysis on a case-by-case
basis.

Because the control flow analysis modelled all numbers simply as a single
value, there was no need to model arithmetic operators since they would always
result in the same value. This is no longer the case due to the increased precision
achieved by the modification counts. Therefore the analysis must also model
the arithmetic operators. For op ∈ BinOp and zχ1

1 , zχ2

2 ∈ Num>
N \ {INTN} the

abstract arithmetic operator is defined as follows:

δop(zχ1

1 , zχ2

2) =

{
op(z1, z2)

max{χ1,χ2}+1 if max {χ1, χ2} < N
INTN otherwise

and δop(zχ, INTN) = δop(INTN , zχ) = δop(INTN , INTN) = INTN . The abstract
arithmetic function for unary operators is defined in a similar manner. The

96 Extending the Flow Logic

m.instructionAt(pc) = push t c

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L, c0 :: S〉 :: SF 〉

m.instructionAt(pc) = inc t x c
vχ1

1 = L(x) v = v1 + c χ = χ1 + 1

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L[x 7→ vχ], S〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ BinaryOp op ∈ {div, rem} ⇒ v2 6= 0

χ = max {χ1, χ2}+ 1 v = applyBinary(op, v1, v2)

P ` 〈K,H, 〈m, pc, L, vχ1

1 :: vχ2

2 :: S〉 :: SF 〉 =⇒DFA

〈K,H, 〈m, pc + 1, L, vχ :: S〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ UnaryOp χ = χ1 + 1 v = applyUnary(op, v1)

P ` 〈K,H, 〈m, pc, L, vχ1

1 :: S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L, vχ :: S〉 :: SF 〉

m.instructionAt(pc) = instanceof σ

v =

{
1 if H(loc).class � σ
0 otherwise

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L, v0 :: S〉 :: SF 〉

m.instructionAt(pc) = arraylength loc 6= null v = H(loc).length

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒DFA 〈K,H, 〈m, pc + 1, L, v0 :: S〉 :: SF 〉

Figure 4.2: Instrumented semantics

4.1 Data Flow Analysis 97

ValDFA = Num>
N + Ref + RetAddr

V̂alDFA = P(ValDFA)

Ôbject = Field→ V̂alDFA

Ârray = V̂alDFA

̂LocHeapDFA = Addr→ N0 → V̂alDFA

ŜtackDFA = Addr→ (V̂al
∗

DFA)>

̂StaHeap = Field→ V̂alDFA

ÂnalysisDFA = ̂StaHeapDFA × ĤeapDFA × ̂LocHeapDFA × ŜtackDFA × ̂ExcCache

Figure 4.3: Updated abstract domains

above is easily extended to operate on sets of abstract values A1, A2 ∈ V̂al:

δop(A1, A2) =
{
δop(a1, a2)

∣∣ a1 ∈ A1 ∩ Num>
N , a2 ∈ A2 ∩ Num>

N

}

The abstract arithmetic function for unary operators is extended in a similar
fashion. For op ∈ UnaryOp and zχ1

1 ∈ Num>
N \ {INTN} define

δop(zχ1

1) =

{
op(z1)

χ1+1 if χ1 < N
INTN otherwise

which is extended to operate on sets, let A1 ∈ V̂al:

δop(A1) =
{
δop(a1)

∣∣ a1 ∈ A1 ∩ Num>
N

}

As was the case for the semantic domains, changing the basic domain for (ab-
stract) numbers implies that all domains depending on the numbers domain
must be updated to reflect that change. Figure 4.3 shows the updated abstract
domains.

4.1.3 Flow Logic Specification

With the abstract domains and operators in place the data flow analysis can now
be specified as a small extension of the control flow analysis. Since the control
flow analysis is specified in a way that is entirely independent on the specific
data flow of a program, it only depends on the fact that there is a flow, it is
sufficient to adapt the clauses for instructions that actually work with numbers:
push, numop, inc, instanceof, new (default values), arraylength.

Before proceeding with the specification the representation function for con-
stants is adapted to take the updated domains into account:

βDFA,Const(c) =

βNumDFA
(c, 0) if c ∈ Num

{null} if c = null

βRetAdr(c) if c ∈ RetAdr

98 Extending the Flow Logic

Obviously only the case for numbers need to be changed: it now uses the proper
representation function (as defined in the next section) and uses a default mod-
ification count of zero since constants that occur directly in a program, by
definition, have not been modified yet.

Applying the above representation function the new specification for the
instructions push and instanceof becomes:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : push t c

iff βDFA,Const(c) :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : instanceof t

iff A :: X / Ŝ(m, pc) :

(βDFA,Const(0) ∪ βDFA,Const(1)) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Using the abstract arithmetic functions the analysis of numerical operations is
updated in the following way:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : numop t unop [t′]

iff A :: X / Ŝ(m, pc) :

δunop(A) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : numop t binop [t′]

iff A1 :: A2 :: X / Ŝ(m, pc) :

δbinop(A1, A2) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

For the new instruction the only change needed is to re-define the default func-
tion, that maps fields to their (abstract) default value, to use the new represen-
tation function:

∀f ∈ instanceFields(σ): defaultDFA(σ)(f) = βDFA,Const(def (f.type))

The specification is updated accordingly:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : new σ

iff {(Ref σ)} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

defaultDFA(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

Since array lengths are not tracked, the arraylength instruction just returns
the top value of the numerical domain:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : arraylength

iff B :: X / Ŝ(m, pc) :

{INTN} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

4.1 Data Flow Analysis 99

Finally, for the inc-instruction the abstract arithmetic operator is used to cal-
culate the new value of the local variable x by adding the constant n:

δadd (L̂(m, pc)(x), βDFA,Const(n))

which then gives rise to the following updated specification:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : inc t x n

iff Ŝ(m, pc) v Ŝ(m, pc + 1)

δadd (L̂(m, pc)(x), βDFA,Const(n)) v L̂(m, pc + 1)(x)

L̂(m, pc) v{x} L̂(m, pc + 1)

The Flow Logic specification for the rest of the instructions remains unchanged.
Note that the data flow analysis as specified here merely tracks numerical values
through a number of modifications. In Section 4.1.5 the results of the data flow
analysis are used to increase the precision of the control flow analysis and the
exception analysis.

4.1.4 Semantic Correctness

Proving the semantic correctness of the data flow analysis is quite easy and
follows the same technique as for the previous analyses. First a representation
function for the new numbers domain is introduced. In the following is assumed
that a particular N has been chosen for the abstract numbers domain Num>

N :

βNumDFA
(zχ) =

{
{zχ} if n ≤ N
{INTN} otherwise

Next the representation functions and correctness relations that depend on the
representation function for numbers are updated. First the representation func-
tion for values:

βH
DFA,Val(v) =

βNumDFA
(v) if v ∈ NumDFA

βH
Ref(v) if v ∈ Ref

βRetAdr(v) if v ∈ RetAdr

where H ∈ Heap and v ∈ Val. Since none of the other representation functions
need to be changed, except to use the new representation function for values, the
details are elided here. The correctness relations are also unchanged from those
used for the control flow analysis. Thus the semantic correctness of the data
flow analysis can now be stated and proved. First observe that the extended
well-formedness lemma trivially extends to cover the instrumented semantics:

Lemma 4.1. If P ∈ Program and 〈K,H, SF 〉 is an extended well-formed config-
uration and P ` 〈K,H, SF 〉 =⇒DFA 〈K

′, H ′, SF ′〉 then 〈K ′, H ′, SF ′〉 is extended
well-formed.

Proof. Trivial since the semantics for method invocation and return is un-
changed.

100 Extending the Flow Logic

Now the subject reduction property can be established, and thus semantic cor-
rectness, for the data flow analysis:

Theorem 4.2 (Subject Reduction (DFA)). Assume that P ∈ Program,
such that (K̂, Ĥ, L̂, Ŝ, Ê) |=DFA P and let C = 〈K,H, SF 〉 be an extended well-
formed semantic configuration such that P ` C =⇒DFA C ′ then

C RDFA,Conf (K̂, Ĥ, L̂, Ŝ, Ê) ⇒ C ′ RDFA,Conf (K̂, Ĥ, L̂, Ŝ, Ê)

Proof. Analogous to the proof of Theorem 3.14; only the modified rules need to
be proved. Below only the case for numop is shown in detail.

Case numop: By assumption

m.instructionAt(pc) = numop t op [t′]
op ∈ BinaryOp op ∈ {div, rem} ⇒ v2 6= 0

χ = max {χ1, χ2}+ 1 v = applyBinary(op, v1, v2)

P ` 〈K,H, 〈m, pc, L, vχ1

1 :: vχ2

2 :: S〉 :: SF 〉 =⇒DFA

〈K,H, 〈m, pc + 1, L, vχ :: S〉 :: SF 〉

and
(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : numop t op [t′] (4.1)

and

〈K,H, 〈m, pc, L, vχ1

1 :: vχ2

2 :: S〉 :: SF 〉 RDFA,Conf (K̂, Ĥ, L̂, Ŝ, Ê) (4.2)

It follows from equation (4.1) that

βH
DFA(K) v K̂ (4.3)

βDFA(H) v Ĥ (4.4)

βH
DFA(L) v L̂(m, pc) (4.5)

βH
DFA(vχ1

1 :: v2 ::χ2 :: S) v Ŝ(mp, c) (4.6)

From the definition of the analysis and equations (4.1) and (4.5) it follows
that

βH
DFA(L) v L̂(m, pc)

v L̂(m, pc + 1)
(4.7)

Also from the definition of the analysis and equation (4.1) it is the case
that A1 :: A2 :: X /Ŝ(m, pc) and thus βH

DFA(vχ1

1) v A1 and βH
DFA(vχ2

2) v A2

and therefore by definition that

δop(vχ1

1 , vχ2

2) :: X v Ŝ(m, pc + 1) (4.8)

If max {χ1, χ2} ≥ N the case follows trivially; assume therefore that
max {χ1, χ2} < N then, by definition:

vχ = op(v1, v2)
max{χ1,χ2}+1

∈ δop(vχ1

1 , vχ2

2)

The case now follows from equations (4.3), (4.4), (4.7), and (4.8).

The remaining cases are similar or trivial.

4.1 Data Flow Analysis 101

While some work was needed to instrument the semantics and adapt all the
semantic and abstract domains and their representation functions this was
straightforward and mostly trivial. This was also the case for the analysis
specification and proof of correctness where only modified clauses actually had
to be specified and proved. This is a very important aspect of the analysis,
made possible through the use of the Flow Logic framework, that allows for an
analysis to be developed incrementally.

4.1.5 Using the Data Flow Analysis

In Section 5.1 the data flow analysis defined in this chapter is used as part of
an analysis that ensures the well-formedness of transactions. In this section
different ways of using the data flow analysis to improve the precision of the
previously discussed control flow analysis and exception analysis are considered.

Improving the Control Flow Analysis

One of the traditional uses of a data flow analysis is to enhance the precision of
the underlying control flow analysis. In the following the control flow analysis
of Section 3.2 is adapted to make use of the data flow component to improve the
precision of the control flow analysis. This is done by exploiting the knowledge
gained from the data flow analysis about the possible data values that can flow
into a branching instruction, e.g., an if-instruction, since branches that are
never executed need not be analysed. To make this work an abstract evaluation
of the branching condition must be performed to determine when the condition
may evaluate to true. This is analogous to modelling the abstract arithmetic
operators. Since only numbers and references can be meaningfully compared in
Carmel two predicates for abstract evaluation of conditions are defined: one for
numbers and one for references.

For (abstract) numbers the possibility of a top-value, INTN , must be taken
into account. If one of the operands is or contains INTN then the conditional
may succeed immediately. Otherwise the conditional may succeed only if there
exists operands for which the comparison operator evaluates to true:

CONDNum(cmp, A1, A2) ≡
(INTN ∈ A1) ∨ (INTN ∈ A2)∨
(∃zχ1

1 ∈ A1:∃z
χ2

2 ∈ A2: cmp(z1, z2))

where cmp ∈ {eq, ne, gt, ge, lt, le}. By substituting ¬cmp for cmp this predi-
cate can also be used to evaluate when a comparison may fail:

CONDNum(¬cmp, A1, A2) ≡
(INTN ∈ A1) ∨ (INTN ∈ A2)∨
(∃zχ1

1 ∈ A1:∃z
χ2

2 ∈ A2:¬cmp(z1, z2))

For references the situation is even simpler because references can only be com-
pared for equality and non-equality. The lack of a top-value for abstract object

102 Extending the Flow Logic

references simplifies matters further. Since concrete object references are repre-
sented by their respective classes in the analysis, it follows that if two concrete
references are equal (in the sense of the eq comparison operator) then their
corresponding abstract references will be identical. However, the converse, de-
termining if two object references are unequal, is not possible from the abstract
object references alone since there might be two instances of the same object
leading to two different locations with the same abstract representation. This
leads to the following predicate for abstract evaluation of reference comparison:

CONDRef(cmp, A1, A2) ≡
(cmp = eq ⇒ A1 ∩A2 6= ∅)∧
(cmp = ne ⇒ true)

Note that comparison of references is only defined for cmp ∈ {eq, ne}. The
converse predicate is then defined as follows:

CONDRef(¬cmp, A1, A2) ≡
(cmp = eq ⇒ true)∧
(cmp = ne ⇒ A1 ∩A2 6= ∅)

To simplify the analysis specification the predicates defined above are combined
into one, parameterised on the operand type, cf. Section 2.2.10, of the condi-
tional:

CONDt(cmp, A1, A2) ≡
(t ∈ {s, b, i} ⇒ CONDNum(cmp, A1, A2))∧
(t ∈ {r} ⇒ CONDRef(cmp, A1 ∩ ObjRef, A2 ∩ ObjRef))

This predicate also ensures that when it is used to compare references then
only the subsets of A1 and A2 containing object references are compared. The
predicate for comparing numbers implicitly ensures that only numbers are used
for comparison by only quantifying over constants of the form (z, n). All that
remains to be done is to add the combined predicate to the analysis specification
for conditionals in such a way that a branch is not analysed if it cannot possibly
be reached in the semantics. The updated Flow Logic specification for condi-
tionals is shown in Figure 4.4. The analysis specifications of lookupswitch and
tableswitch are amended in a similar manner.

Remark 4.3. A close inspection of the proof of Theorem 4.2 (subject reduction
for the data flow analysis) for the amended instructions is actually sufficient for
also proving the correctness of the amended data flow analysis since the abstract
condition predicate is a conservative approximation of the concrete conditions.

Improving the Exception Analysis

Building on the amended data flow analysis of the previous section the precision
of the exception analysis defined in Section 3.5 can also be improved. Here
improved precision means reducing the number of spurious or false exceptions
that are reported due to the approximative nature of the analysis.

4.1 Data Flow Analysis 103

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : if t cmp goto pc0

iff A1 :: A2 :: X / Ŝ(m, pc) :
CONDt(¬cmp, A1, A2) ⇒

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)
CONDt(cmp, A1, A2) ⇒

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : if t cmp nul goto pc0

iff A :: X / Ŝ(m, pc) :
CONDt(¬cmp, A, {nul}) ⇒

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)
CONDt(cmp, A, {nul}) ⇒

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc0)

Figure 4.4: Updated Flow Logic specification for conditionals

The numerical operators div (division) and rem (remainder) provide a good
example since they throw an ArithmeticExc exception if division by zero is
attempted. Since the exception analysis must provide a sound approximation
to the actual exceptions thrown it is assumed that numerical operations always
may throw an ArithmeticExc exception. However, using the data flow analysis
combined with the abstract conditionals from the previous section it is possible
to check whether division by zero is actually possible and only then throw an
(abstract) exception. This is formalised in the following Flow Logic clause:

(K̂, Ĥ, L̂, Ŝ, Ê) |=DFA (m, pc) : numop t binop [t′]

iff A1 :: A2 :: X / Ŝ(m, pc) :

δbinop(A1, A2) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)
binop ∈ {div, rem} ∧ CONDNum(eq, {00}, A2) ⇒

HANDLE(L̂,Ŝ,Ê)((Ref ArithmeticExc), (m, pc))

where the abstract condition predicate, CONDNum, is used to determine if the
divisor can actually be zero. Note that this approach can trivially be adapted to
also check against null-references in instructions that work on arrays or objects.

The formal statement and proof of correctness is omitted. Similar to the
amended data flow analysis defined in the previous section a close inspection of
the proof for the ordinary data flow analysis suffices, cf. Remark 4.3.

104 Extending the Flow Logic

4.1.6 Implementation

Even though the Succinct Solver lacks convenient, built-in support for arith-
metic operations it is still possible and feasible to implement the data flow anal-
ysis for small maximal modification counts. Such an implementation requires
a “manual” modelling of all the pertinent arithmetic operators and quickly be-
comes unwieldy. The transaction flow analysis discussed in Section 5.1 builds
on a data flow analysis with a maximal modification count of one and has been
implemented in a prototype analysis and verification tool.

A better alternative would be to use a constraint solver that has better
support for arithmetic, e.g., XSB Prolog. As part of the performance benchmark
of XSB Prolog and Succinct Solver described in [Pil03] an automatic conversion
from ALFP constraints to equivalent XSB constraints was developed. It would
therefore be quite simple to use XSB for solving ALFP(-like) constraint possibly
extended with arithmetic.

4.2 Applet Firewall and Ownership Analysis

The Java Card platform is a so-called multi-applet platform which means that
several different applets may run on the same Java smart card, i.e., on the same
Java Card virtual machine. However, with this added flexibility also comes an
increased risk in terms of safety and security because now applets may (try
to) interfere with each other or even attack each other. To prevent this from
happening the Java Card platform isolates each applet in a designated area and
controls access to other areas through the notion of object ownership and an
applet firewall mechanism, cf. [Che00, SJE01]. While total isolation of individual
applets is ideal seen from a security perspective it defeats one of the purposes,
and most interesting uses, of a multi-applet platform, namely to let different
applets cooperate on certain tasks. To (re-)enable cooperation it is possible to
selectively “punch holes” in the firewall and thereby allow objects of specified
classes to be shared between applets.

In this section the semantics of Carmel is extended, based on the approach
in [Han02a], to incorporate object ownership and the applet firewall. It does
not cover the full runtime system and details concerning the special runtime
protocols used when setting up object sharing, cf. Section 4.2.1, are modelled
in a more abstract way. By similarly enhancing the basic control flow analysis
with basic ownership information and ownership analysis is obtained.

4.2.1 Ownership and Sharing

In JCVML and Carmel an applet is owned by the package in which it is de-
fined. Additionally certain special objects and arrays are owned by the runtime
system, usually denoted JCRE short for “Java Card Runtime Environment”,
making them available to all other owners. Each applet is executed in a specific
ownership context corresponding to the owner of the applet. The ownership

4.2 Applet Firewall and Ownership Analysis 105

context of the applet currently executing is called the current ownership con-
text. At any point in time there is only one such current ownership context.
Any objects and arrays created by an applet similarly belong to the ownership
context of the creating applet. To protect applets from harming each other
the applet firewall prevents applets from one ownership context to access or
(directly) communicate with applets in a different ownership context. To al-
low applets from different contexts to cooperate several ways exist in JCVML
for applets to share objects and information, mainly through the use of system
owned arrays or objects. These mechanisms are best suited for exchanging data
between applets or between an applet and the runtime system. Since these
mechanisms rely on special low level JCRE-specific mechanisms they are not
included in the present model. A detailed formalisation is given in [SJE01].

For more complex interaction between applets the concept of sharing pro-
vides a flexible alternative that allows one applet to indicate to the firewall that
some of the methods of a certain class may be invoked by objects belonging
to another context. Specifically a class must implement a special interface, the
Shareable interface, or a sub-interface thereof to indicate that some or all of
the methods in objects of that class may be invoked by “outsiders”. Only the
methods mentioned in the sub-interface are tagged as accessible from other con-
texts. These special methods are then accessed through the invokeinterface

instruction and not through ordinary virtual method invocation. In order for
the runtime system to perform its tasks an exception is made: methods execut-
ing on behalf of the runtime system, in the JCRE context, are exempted from
scrutiny by the firewall and can thus access both fields and methods of both
shared and ordinary objects in any other context. In order to invoke a method
in a shared object a reference to that object is needed. However since commu-
nication between applets, other than through shared objects, is prohibited by
the firewall a special mechanism bypassing the firewall is needed for an applet
to obtain such a reference. In JCVML this is handled through special meth-
ods and objects owned and implemented by the runtime system exploiting the
special access bestowed on methods executing in the JCRE context. In order to
avoid modelling the details of the runtime environment a simpler scheme is im-
plemented for sharing: entry point methods, cf. Section 2.4.2, are invoked with
references to shared objects (in other contexts) as parameters. Thus, sharing is
initially set up when program execution starts. See Section 4.2.3 for details.

The applet firewall acts as a simple filter on which methods can be invoked
across ownership boundaries. No such filtering is done on the applet that is
invoking a method across a boundary: any applet that has a reference to a
shared object may invoke the (shared) methods in that object. In essence the
firewall only protects objects that are not shared. One way to guard against
unwanted access to a shared object is for an applet to try and ensure that
only the intended applets get a reference to the shared object. In JCVML
this is accomplished by using a much simplified version of the stack inspection
technique known from Java and the Java Virtual Machine. For Java Card and
JCVML stack inspection amounts to checking that the last owner (different from
the current) is allowed access which is sufficient for most purposes. However,

106 Extending the Flow Logic

once the object reference is obtained there is nothing to prevent an applet from
accidentally or intentionally leaking the reference to another applet not intended
by the original applet. To overcome this problem it is customary, at least for
security aware applets, to perform the above check not only before handing out
an object reference but every time the object reference is used to invoke a shared
method.

In Section 6 an analysis and a devil’s advocate are designed that can statically
guarantee that certain object references are never leaked even in the presence
of malicious applets; thereby obviating the need to know the whole program,
including possible attackers, beforehand.

4.2.2 Adding Ownership to the Semantic Domains

In JCVML there are two kinds of ownership contexts: individual packages and
the special “JCRE” context indicating that an object is owned by the runtime
system and thus accessible to everyone. This leads to the following simple
domain for ownership information:

Owner = PackageName + {JCRE}

This then leads to the new domain for objects that includes ownership informa-
tion:

ObjectOWN = (class : Class)×
(owner : Owner)×
(fieldValue : Field→ Val)

and similarly for arrays:

ArrayOWN = (type : ElemType)×
(length : N0)×
(owner : Owner)×
(value : N0 → Val)

Finally each method invocation occurs on behalf of an owner. Thus an owner
is added to every stack frame:

FrameOWN = Owner ×Method× PC× LocHeap× Stack

These are the only domains that are changed in a non-trivial way. Domains
that directly or indirectly depend on these are trivially updated to reflect the
new domain as shown in Figure 4.5.

4.2.3 Semantic Rules

Below the reduction rules are discussed for the semantics with ownership in-
formation added. Only the rules that require non-trivial modifications are
listed since the remaining instructions only reads and updates local information.

4.2 Applet Firewall and Ownership Analysis 107

HeapOWN = Ref → (ObjectOWN + ArrayOWN)
CallStackOWN = (FrameOWN + ExcFrame)× Frame∗OWN

RunConfOWN = StaHeap× HeapOWN × CallStackOWN

FinConfOWN = StaHeap× HeapOWN × Val⊥

Figure 4.5: Semantic domains with ownership

Therefore the semantics of these instruction only requires a simple addition to
track the current owner context. In general rules of the form:

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K ′, H, 〈m, pc′, L′, S′〉 :: SF 〉

are replaced with rules of the form:

P ` 〈K,H, 〈own,m, pc, L, S〉 :: SF 〉 =⇒OWN 〈K
′, H, 〈own,m, pc′, L′, S′〉 :: SF 〉

Since the instructions only access local or static information neither the heap
nor the call stack is changed.

For instructions that may access global information, e.g., through method
invocation or instance field manipulation, the virtual machine inserts runtime
checks to ensure that the requested access is in fact allowed. As discussed above
methods that are executed on behalf of the runtime system, i.e., owned by JCRE,
can access everything without restriction whereas other methods can only access
objects that they themselves own. See Section 4.2.1 for more details. The access
control policy is expressed in the semantics as the following predicate:

checkOwner(own, o) ≡ (own = JCRE) ∨ (own = o.owner) (4.9)

In JCVML a failed ownership check would result in a SecurityExc exception
being thrown. Here the semantics is simply stuck when an ownership test fails.
This is consistent with the treatment of other runtime exceptions that are also
not covered in Carmel. However, security exceptions can be added rather easily
since the mechanisms for user defined exceptions are already present to handle
the throw instruction.

Initial Configurations

As already mentioned, sharing in JCVML is set up by a trivial, if tedious,
protocol involving the runtime environment. While there are no real technical
difficulties in modelling this aspect of the runtime environment it would not
add any particular insights to the problems of sharing and ownership. Instead
the initial sharing (necessary to cross the firewall the first time) is integrated
into the initial configurations and require that, in addition to a self reference,
entry point methods are invoked with references to the shared objects they are
allowed to access as parameters.

108 Extending the Flow Logic

Since only main classes are instantiated in an initial configuration all object
references must point to an object of a main class; furthermore since each applet
can only be instantiated once (in the initial configuration) is suffices to define
sharing based on (main) classes. Note that this set up does not prohibit other
forms of “manual” sharing later in the program execution; it only affects the
initial sharing needed to cross the firewall the first time.

The function sharing : Program×Class→ Class∗ is used to specify the initial
sharing: for each (main) class, σ, it returns a list of (main) classes that σ are
allowed to communicate with; this list is called the initial knowledge of σ.

Initial configurations can now be formally defined in the following way:

Definition 4.4 (Initial configurations). For a program, P ∈ Program, the
configuration C ∈ RunConf is an initial configuration if and only if σ ∈ P.main,
mσ = σ.entry, σ.sharing = σ1 :: · · · :: σn, σi ∈ P.main for 1 ≤ i ≤ n, C =
〈K,H, 〈mσ, 0, [0 7→ locσ, 1 7→ locσ1

, . . . , n 7→ locσn
], ε〉 :: ε〉 and ∀τ ∈ P.main :

∃locτ : H(locτ) = τ .

In Chapter 6 the initial knowledge of a class is used to define the idea of leaked
references and an analysis is designed to prevent references from being leaked.

Object Fragment

The updated semantics of the object fragment is shown in Figure 4.6. The
modifications are discussed in some detail below.

A new object is owned by its creator, i.e., by the current ownership context.
The newObject function must be updated to take this into account:

newObject : Class× Owner × Heap→ Location× Heap

newObject(σ, own,H) = (loc, H ′)

where
loc /∈ dom(H) ∧ o ∈ Object ∧H ′ = H[loc 7→ o]∧
o.class = σ ∧H(loc).owner = own

As before, the instance fields of a newly created object must be initiated with
the correct default values:

∀f ∈ σ.fields : ¬f.isStatic ⇒ o.fieldValue(f) = def (f.type)

The runtime type checks, checkcast and instanceof, supported by Carmel
need to take into account whether a target class can be accessed from the current
context either directly or through sharing. This is formalised as the following
predicate:

checkShareable(own, o, iface) ≡ checkOwner(own, o) ∨
(iface ∈ Interface ∧ isShareable(o.class, iface))

where the isShareable determines if a given class implements the Shareable

interface and whether or not access happens through (a sub-interface of) the

4.2 Applet Firewall and Ownership Analysis 109

m.instructionAt(pc) = new σ (loc, H ′) = newObject(σ, own,H)

P ` 〈K,H, 〈own,m, pc, L, S〉 :: SF 〉 =⇒OWN

〈K,H ′, 〈own,m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = checkcast σ
loc 6= null ⇒ (H(loc).class � σ ∧ checkShareable(own,H(loc), σ))

P ` 〈K,H, 〈own,m, pc, L, loc :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = instanceof σ

v =

{
1 if loc 6= null ∧H(loc).class � σ
0 otherwise

loc 6= null ⇒ checkShareable(own,H(loc), σ)

P ` 〈K,H, 〈own,m, pc, L, loc :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = getfield f
loc 6= null o = H(loc) v = o.fieldValue(f) checkOwner(own, o)

P ` 〈K,H, 〈own,m, pc, L, loc :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = putfield f loc 6= null o = H(loc)
o′ = o[fieldValue 7→ o.fieldValue[f 7→ v]] checkOwner(own, o)

P ` 〈K,H, 〈own,m, pc, L, v :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H[loc 7→ o′], 〈own,m, pc + 1, L, S〉 :: SF 〉

Figure 4.6: Ownership semantics: object fragment

Shareable interface:

isShareable(σ, iface) ≡ Shareable ∈ σ.implements ∧
Shareable ∈ iface.super∗

Accessing an instance field, whether for reading or writing, is only allowed
if the field is located in an object that is owned by the current context or if
the current context is JCRE. The above predicate, checkOwner, formalising
ownership check used as access control mechanism is re-used for the getfield

and putfield instructions.

While ownership contexts control all access to instance fields no such con-
trol is extended to static fields or methods. This entails that only the already
mentioned trivial additions are needed for the semantics of getstatic and
putstatic.

110 Extending the Flow Logic

m.instructionAt(pc) = invokestatic m0

n = |m0| L0 = v1 :: · · · :: vn

P ` 〈K,H, 〈own,m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m0, 0, L0, ε〉 :: 〈own,m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0 loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0| checkOwner(own, o)

mv = methodLookup(m0, o.class) F = 〈o.owner,mv, 0, Lv, ε〉

P ` 〈K,H, 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H,F :: 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

m.instructionAt(pc) = invokeinterface m0 loc 6= null

o = H(loc) Lv = loc :: v1 · · · :: v|m0| checkShareable(own, o,m0.class)
mv = methodLookup(m0, o.class) F = 〈o.owner,mv, 0, Lv, ε〉

P ` 〈K,H, 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H,F :: 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

Figure 4.7: Ownership semantics: method fragment

Method Fragment

The updated semantics for the method fragment is displayed in Figure 4.7.
Static methods are executed in the same context as the invoking method and

therefore require no modifications. It is included in Figure 4.7 for completeness.
In contrast virtual methods are executed in the context of the object owning

the method. Thus invoking a virtual method in an object that belongs to
a different owner is not allowed. This is formalised using the CheckOwner

predicate defined in equation (4.9) on page 107. However, if a class implements
the Shareable interface the methods that are members of that class may be
invoked by other owners, cf. 4.2.1.

As discussed in Section 4.2.1 interfaces provide the only way to invoke virtual
methods in an object that belongs to another context. And then only if the
invoked interface is a sub-interface of Shareable and the class of the target
object implements the Shareable interface. This was formalised above as the
checkShareable predicate also used for invokeinterface.

Arrays

The ownership semantics for instructions in the arrays fragment is shown in
Figure 4.8. As for objects newly created arrays are owned by their creator and
the newArray function is updated to reflect this:

newArray : Type× N× Owner × Heap→ Location× Heap

newArray(t, n, own,H) = (loc, H ′)

4.2 Applet Firewall and Ownership Analysis 111

m.instructionAt(pc) = new (array t)
n ≥ 0 (H ′, loc) = newArray(t, n, own,H)

P ` 〈K,H, 〈own,m, pc, L, n :: S〉 :: SF 〉 =⇒OWN

〈K,H ′, 〈own,m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = arraylength

loc 6= null n = H(loc).length checkOwner(own, a)

P ` 〈K,H, 〈own,m, pc, L, loc :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m, pc + 1, L, n :: S〉 :: SF 〉

m.instructionAt(pc) = arrayload t loc 6= null

v = H(loc).value(n) 0 ≤ n < H(loc).length checkOwner(own, a)

P ` 〈K,H, 〈own,m, pc, L, n :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H, 〈own,m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = arraystore t
loc 6= null a = H(loc) a′ = a[value 7→ a.value[n 7→ v]]

H ′ = H[loc 7→ a′] 0 ≤ n < H(loc).length checkOwner(own, a)

P ` 〈K,H, 〈own,m, pc, L, v :: n :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H ′, 〈own, k, pc + 1, L, S〉 :: SF 〉

Figure 4.8: Ownership semantics: arrays

where
loc /∈ dom(H) ∧ a ∈ Array ∧H ′ = H[loc 7→ a]∧
a.type = t ∧ a.length = n ∧H(loc).owner = own

Furthermore, the array is initialised according to its type: ∀i ∈ {0, . . . , n− 1} :
a.value(i) = def (t).

The remaining array instructions are all controlled by the ownership check
implemented by the checkOwner function of equation (4.9).

Exceptions

Only objects that are accessible to the current method may be thrown as
an exception and thus an ownership check is implemented, again using the
checkOwner predicate. Once the exception is thrown the notion of ownership
is ignored when trying to find a handler. The updated semantics for the throw

instruction is displayed in Figure 4.9.

4.2.4 Abstract Domains for Ownership Analysis

The ownership analysis described in this and the following sections approximates
for each abstract object the set of possible owners and for each method the set

112 Extending the Flow Logic

m.instructionAt(pc) = throw

locX 6= null H(locX).class � Throwable checkOwner(own,H(locX))

P ` 〈K,H, 〈m, pc, L, locX :: S〉 :: SF 〉 =⇒OWN 〈K,H, 〈Exc locX〉 :: SF 〉

Figure 4.9: Ownership semantics: exceptions

of possible contexts in which it is executed. It is designed as an extension of
the basic control flow analysis defined in Section 3.2 and follows the extension
of the semantics quite closely.

Abstract owners are modelled simply as a set of concrete owners:

Ôwner = P(Owner)

ordered by subset inclusion

ôwn1 v ôwn2 iff ôwn1 ⊆ ôwn2

A further component is needed in the Flow Logic specification that tracks own-
ership information for every method, i.e., which contexts the given method may
be invoked and executed in:

̂OwnerCache = Method→ Ôwner

Finally an ownership component is added to the abstract objects reflecting a
similar change in the concrete domain:

ÔbjectOWN = (fieldValue : Field→ V̂al)×

(owner : Ôwner)

which leads to the following ordering on abstract objects

ô1 v ô2 iff dom(ô1.fieldValue) ⊆ dom(ô2.fieldValue)∧
∀f ∈ dom(ô1.fieldValue) : ô1.fieldValue(f) ⊆ ô2.fieldValue(f)∧
ô1.owner v ô2.owner

Having changed the definition of abstract objects the definition of abstract heaps
also needs to be updated:

ĤeapOWN = (ObjRef → ÔbjectOWN)× (ArrRef → Ârray)

Using the same notational conventions as defined in Section 3.2.2.
The preceding modifications then lead to the following definition of the ab-

stract domain for ownership analyses:

ÂnalysisOWN = ̂StaHeap× ĤeapOWN× ̂LocHeap× Ŝtack× ̂ExcCache× ̂OwnerCache

This domain is sufficient to specify an ownership analysis that over approximates
the set of owners an object may have and the contexts in which a method may
be executed.

4.2 Applet Firewall and Ownership Analysis 113

4.2.5 Flow Logic Specification

The Flow Logic judgements for ownership analysis are of the general form:

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : instr

where (K̂, Ĥ, L̂, Ŝ, Ê, Ô) ∈ ÂnalysisOWN.
The ownership analysis leverages the ownership controls to increase precision

of the underlying control flow analysis in the same way the data flow analysis
was used in Section 4.1.5. To this end an abstract ownership check is defined:

̂checkOwner(O1, O2) ≡ (JCRE ∈ O1) ∨ (O1 ∩O2 6= ∅)

This predicate models the checkOwner, cf. equation (4.9) on page 107, from
the semantics. The approximative nature of the analysis implies that even in
situations where the ownership controls would prohibit access to a given object
the analysis may yet analyse the program as if access was allowed.

In Section 4.2.7 the ownership analysis is used to verify that no security
violations can occur.

Object Fragment

The Flow Logic specification for the ownership analysis of the instruction in the
object fragment is shown in Figure 4.10 and briefly discussed below.

The analysis for the new instruction must now make sure to update the set
of possible owners with the possible owners of the current method.

For the runtime type-checks a formalisation of the checkShareable predicate
is needed:

̂checkShareable(O1, O2, σ, iface) ≡ ̂checkOwner(O1, O2) ∨
(iface ∈ Interface ∧ isShareable(σ, iface))

Using the above predicate the Flow Logic clauses for runtime type checks, im-
plemented by the checkcast and instanceof instructions, can then be defined.

The analysis of static field access remains unchanged while instance field

access must be controlled by the ̂checkOwner predicate.

Method Fragment

Figure 4.11 shows the specification for the ownership analysis of the method
fragment.

The clause for invoking static methods, invokestatic, need only a sim-
ple modification, the invoked method should inherit the context of the invoker.
Strictly speaking it is not necessary for the analysis to track ownership contexts
for static methods. However even if the runtime firewall does not define own-
ership for static fields and methods the information computed by the analysis
may be used to implement as statically checked access control for static fields
and methods based on ownership.

114 Extending the Flow Logic

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : new σ

iff {(Ref σ)} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default(σ) v Ĥ(Ref σ).fieldValue

Ô(m) v Ĥ(Ref σ).owner

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : checkcast τ

iff B :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ B: ̂checkShareable(Ô(m), Ĥ(Ref σ).owner, σ, τ) ⇒

{(Ref σ)} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : instanceof τ

iff B :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ B: ̂checkShareable(Ô(m), Ĥ(Ref σ).owner, σ, τ) ⇒

{INT} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : getfield f

iff B :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ B: ̂checkOwner(Ô(m), Ĥ(Ref σ).owner) ⇒

(Ĥ(Ref σ)(f)) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : putfield f

iff A :: B :: X / Ŝ :

∀(Ref σ) ∈ B: ̂checkOwner(Ô(m), Ĥ(Ref σ).owner) ⇒

A v Ĥ(Ref σ).fieldValue(f)

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 4.10: Ownership analysis: object fragment

4.2 Applet Firewall and Ownership Analysis 115

As for instance field access, virtual method invocation is controlled by the
̂checkOwner predicate and in addition the ownership cache for the invoked

method must include the current possible contexts.
Interfaces are handled very much like virtual methods except that additional

checks are made to see if access is allowed by the rules for sharing. This is done

using the ̂checkShareable predicate defined above.

Arrays

The analysis for arrays is very similar to that for objects and instance fields.
The specification for analysis of arrays is given in Figure 4.12.

As for objects, whenever a new array is created the set of possible owners
must be updated to contain also the set of current possible contexts. The in-
structions for accessing arrays are simply enhanced with abstract context checks.

Exceptions

For user thrown objects a context check, using ̂checkOwner, is added to ensure
that only accessible objects are used for exceptions. The specification is given
in Figure 4.13.

4.2.6 Semantic Correctness

Analogous to the previous analyses, semantic correctness of the ownership anal-
ysis can be proved by establishing a subject reduction property based on a
number of representation functions. For clarity and brevity the definition of
domains and functions that have not been changed or only changed in a trivial
way are omitted.

Only one extra representation function is needed: the one for owners. Since
the domain of abstract owners is defined to be a set of concrete owners the
representation function is defined simply as the injection of a concrete owner
into a set:

βOwner(own) = {own}

Next the representation function for objects must be changed to reflect the
changes in the underlying domain:

βH
OWN,Object(o) = [fieldValue 7→ βH

Val ◦ o.fieldValue, owner 7→ βOwner(o.owner)]

Finally the correctness relation should take ownership information, i.e., the
current context, into account:

〈own,m, pc, L, S〉 RH
OWN,Frame (L̂, Ŝ, Ô) iff βH

LocHeap(L) v L̂(m, pc) ∧

βH
Stack(S) v Ŝ(m, pc) ∧

βOwner(own) v Ô(m)

116 Extending the Flow Logic

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : invokestatic m0

iff A1 :: · · · :: A|m0| :: X / Ŝ(m, pc) :

A1 :: · · · :: A|m0| v L̂(m0, 0)[0..|m0| − 1]

∀σX ∈ Ê(m0) : HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

Ô(m) v Ô(m0)
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : invokevirtual m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :

∀(Ref σ) ∈ B : ̂checkOwner(Ô(m), Ĥ(Ref σ).owner) ⇒
mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]

∀σX ∈ Ê(mv): HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

Ĥ(Ref σ).owner v Ô(mv)
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : invokeinterface m0

iff A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

̂checkShareable(Ô(m), Ĥ(Ref σ).owner, σ,m0.class) ⇒
mv / methodLookup(m0, σ) :

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]

∀σX ∈ Ê(mv): HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

Ĥ(Ref σ).owner v Ô(mv)
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A :: Y / Ŝ(mv,END) : A :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 4.11: Ownership analysis: method fragment

4.2 Applet Firewall and Ownership Analysis 117

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : new (array t)

iff A :: X / Ŝ(m, pc) :

{(Ref (array t))} :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ô(m) v Ĥ(Ref (array t)).owner

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : arraylength

iff B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B :

̂checkOwner(Ô(m), Ĥ(Ref (array t)).owner) ⇒

{INT} :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : arrayload t

iff A :: B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B:

̂checkOwner(Ô(m), Ĥ(Ref (array t)).owner) ⇒

Ĥ(Ref (array t)) :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : arraystore t

iff A1 :: A2 :: B :: X / Ŝ(m, pc) :
∀(Ref (array t)) ∈ B:

̂checkOwner(Ô(m), Ĥ(Ref (array t)).owner) ⇒

A1 v Ĥ(Ref (array t))

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Figure 4.12: Ownership analysis: arrays

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : throw

iff B :: X / Ŝ(m, pc) :
∀(Ref σX) ∈ B:

̂checkOwner(Ô(m), Ĥ(Ref σX).owner) ⇒
HANDLE(L̂,Ŝ,Ê)((Ref σX), (m, pc))

Figure 4.13: Ownership analysis: exceptions

118 Extending the Flow Logic

Note that only regular stack frames, i.e., non-exception stack frames, need to
be re-defined since ownership is ignored when finding a possible handler for an
exception frame.

Before stating the subject reduction property for the ownership analysis it is
observed that the extended well-formedness lemma also holds for the ownership
semantics:

Lemma 4.5. For P ∈ Program if 〈K,H, SF 〉 is an extended well-formed con-
figuration and P ` 〈K,H, SF 〉 =⇒OWN 〈K

′, H ′, SF ′〉 then 〈K ′, H ′, SF ′〉 is ex-
tended well-formed.

Proof. Extension of the proof for Lemma 3.22 since the semantics underlying
method invocation has not changed.

The proof is a trivial extension of the proof for Lemma 3.22 since the instru-
mented semantics does not provide new ways of creating stack frames.

Using the well-formedness lemma the following theorem can be proved stat-
ing the subject reduction property for the ownership analysis:

Theorem 4.6 (Subject Reduction (OWN)). Let P ∈ Program be a program
such that (K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN P and let C = 〈K,H, SF 〉 be an extended
well-formed semantic configuration such that P ` C =⇒OWN C ′ then

C ROWN,Conf (K̂, Ĥ, L̂, Ŝ, Ê, Ô) ⇒ C ′ ROWN,Conf (K̂, Ĥ, L̂, Ŝ, Ê, Ô)

Proof. Analogous to the proof of Theorem 3.14. The case for invokeinterface
is shown in detail below.

Case invokeinterface: By assumption

m.instructionAt(pc) = invokeinterface m0 loc 6= null

o = H(loc) Lv = loc :: v1 · · · :: v|m0| F = 〈o.owner,mv, 0, Lv, ε〉
checkShareable(own, o,m0.class) mv = methodLookup(m0, o.class)

P ` 〈K,H, 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒OWN

〈K,H,F :: 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

and

(K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN (m, pc) : invokevirtual m0 (4.10)

and for F0 = 〈own,m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉:

〈K,H,F0 :: SF 〉 ROWN,Conf (K̂, Ĥ, L̂, Ŝ, Ê, Ô) (4.11)

From equation (4.11) it follows directly that

βH(K) v K̂ (4.12)

β(H) v Ĥ (4.13)

βH(L) v L̂(m, pc) (4.14)

βH(v1 :: · · · :: v|m0| :: loc :: S) v Ŝ(m, pc) (4.15)

β(own) v Ô(m) (4.16)

4.2 Applet Firewall and Ownership Analysis 119

By definition of the analysis, equation (4.10) implies that Ŝ(m, pc) = A1 ::
· · · :: A|m0| :: B :: X for some Ai, B, and X. Thus from equation (4.16):

βH(vi) v Ai for i ∈ {1, . . . , |m0|} (4.17)

βH(loc) v B (4.18)

βH(S) v X (4.19)

Let σ = o.class then βH(loc) = (Ref σ) and therefore (by equation (4.13)):

βH(o) = βH(H(loc))

v Ĥ(Ref σ)

and thus in particular:

β(o.owner) v Ĥ(Ref σ).owner (4.20)

From the semantics it follows that the checkShareable predicate holds:

checkShareable(own, o,m0.class)

which is equivalent to

checkOwner(own, o) ∨
(m0.class ∈ Interface ∧ isShareable(o.class,m0.class))

Now assume that
checkOwner(own, o)

then by definition of checkOwner:

(own = JCRE) ∨ (own = o.owner)

In either case equations (4.16) and (4.20) implies that the following pred-
icate is true:

̂checkOwner(Ô(m), Ĥ(Ref σ).owner) (4.21)

Now assume instead that the following is true:

(m0.class ∈ Interface ∧ isShareable(o.class,m0.class))

Then, since σ = o.class, it is the case that

(m0.class ∈ Interface ∧ isShareable(σ,m0.class)) (4.22)

and therefore equations (4.18), (4.21), and (4.22) combined ensures that

̂checkShareable(Ô(m), Ĥ(Ref σ).owner, σ,m0.class) (4.23)

Using (4.23) equations (4.10) and (4.18) gives that

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂(mv, 0)[0..|m0|]

120 Extending the Flow Logic

where mv = methodLookup(m0, σ); thus

βH(Lv) v L̂(mv, 0) (4.24)

βH(ε) v Ŝ(mv, 0) (4.25)

Ĥ(Ref σ).owner v Ô(mv) (4.26)

Then from (4.20) and (4.26) it follows that

β(o.owner v Ĥ(Ref σ).owner

v Ô(mv)
(4.27)

The case now follows from the equations (4.12), (4.13), (4.24), (4.25),
and (4.27).

The remaining cases are similar or simpler.

4.2.7 Containment

In order for the analysis defined in the preceding sections to be semantically
correct it must over approximate control flow and ownership information. In
particular this may lead to situations where an abstract ownership check suc-
ceeds but the actual semantic ownership check fails. In this section it is briefly
discussed how the analysis information readily can be used to guarantee that
no semantic ownership checks fail. This property is called containment :

Definition 4.7 (Containment). A program P ∈ Program is said to be con-
tained if the execution of P is never stuck because of a failed owner check.

This is the equivalent of requiring that the program in question never throws a
SecurityExc exception.

Next a set of conditions is defined that must hold of the analysis in order
to guarantee containment. These conditions amount to nothing more than a
(much) stricter version of the abstract ownership conditions already verified in

the analysis. First a strict version of the ̂checkOwner predicate used in the
analysis:

̂strictOwner(O1, O2) ≡ O1 = {JCRE} ∨
(|O1| = |O2| = 1) ∧ (O1 = O2)

Note that |O1| = |O2| = 1 is required, due to the approximative nature of the
analysis, to be able to meaningfully make the necessary comparison: O1 = O2.
For the strict version it is not sufficient to check if O1 ∩O2 6= ∅ since this does
not guarantee that the two owners are identical. Instructions that may obtain
access through sharing need an additional check:

̂strictShareable(O1, O2, σ, iface) ≡ ̂strictOwner(O1, O2) ∨
(iface ∈ Interface ∧ isShareable(σ, iface))

4.2 Applet Firewall and Ownership Analysis 121

̂isContained(P, (K̂, Ĥ, L̂, Ŝ, Ê, Ô)) ≡
∀σ ∈ P.classes : ∀m ∈ σ.methods :

m.instructionAt(pc) = getfield f ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref σ).owner)
m.instructionAt(pc) = putfield f ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref σ).owner)
m.instructionAt(pc) = invokevirtual m0 ⇒

A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref σ).owner)
m.instructionAt(pc) = checkcast τ ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictShareable(Ô(m), Ĥ(Ref σ).owner, σ, τ)
m.instructionAt(pc) = instanceof τ ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictShareable(Ô(m), Ĥ(Ref σ).owner, σ, τ)
m.instructionAt(pc) = invokeinterface m0 ⇒

A1 :: · · · :: A|m0| :: B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictShareable(Ô(m), Ĥ(Ref σ).owner, σ,m0.class)
m.instructionAt(pc) = arraylength ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref (array t)) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref (array t)).owner)
m.instructionAt(pc) = arrayload t ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref (array t)) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref (array t)).owner)
m.instructionAt(pc) = arraystore t ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref (array t)) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref (array t)).owner)
m.instructionAt(pc) = throw ⇒

B :: X / Ŝ(m, pc) ∧

∀(Ref σ) ∈ B : ̂strictOwner(Ô(m), Ĥ(Ref σ).owner)

Figure 4.14: Definition of the ̂isContained predicate

122 Extending the Flow Logic

The formal specification of the verification conditions is shown in Figure 4.14
as a predicate that verifies certain aspects of an analysis.

It can now be stated and proved that the extended checking on the analysis
is sufficient to guarantee containment.

Proposition 4.8. Let P ∈ Program such that (K̂, Ĥ, L̂, Ŝ, Ê, Ô) |=OWN P . Then
̂isContained(P, (K̂, Ĥ, L̂, Ŝ, Ê, Ô)) implies that P is contained.

Proof. Follows immediately from the soundness of the ownership analysis, cf.
Theorem 4.6.

This result demonstrates some of the potential of the ownership analysis even if

the additional checks are rather strict. In particular, if the ̂isContained predicate
does not hold it can be used to pinpoint the location of a possible firewall
violation and thus aid in debugging a program under construction or assist in
understanding the behaviour of a program of unknown or untrusted origin.

4.2.8 Implementation

A prototype implementation of the ownership analysis and the containment
property is briefly described in [Han02a]. The implementation is a straight-
forward extension of the prototype implementation of the control flow analysis
discussed in Section 3.4.

4.3 Summary

In this chapter two extensions of the basic control flow and exception analyses
of Chapter 3 were discussed in detail: a data flow analysis and an ownership
analysis.

The data flow analysis (Section 4.1) demonstrates how traditional program
analyses may be specified in a straightforward and modular way by re-using the
foundation laid by the control flow and exception analyses. In Section 5.1 the
data flow analysis (including the improved analysis of conditionals) is used to
ensure that transactions are used in a manner that does not result in errors.
Data flow analysis is an essential component of modern compilers where it is
primarily used for optimisation purposes, cf. [ASU85, App98]. However, the
Java (Card) bytecode verifier presents a prominent example of an alternative
use of data flow analysis, namely program verification and validation, cf. [Sun00,
LY99]. See [NNH99] for a textbook discussion of data flow analysis.

The ownership analysis (Section 4.2), also specified as a straightforward
extension of the control flow and exception analyses, does not represent a tra-
ditional program analysis. Indeed, it is an analysis of a unique aspect of the
JCVML semantics and the Java Card runtime environment. Furthermore, it
illustrates how advanced and specialised features of JCVML can be added to
the basic Carmel language in a natural and modular way that to a large extent
allows both semantics and analyses to be re-used.

4.3 Summary 123

The notion of ownership and the applet firewall are discussed in [Che00] and
formalised in [Siv04, SJE01]. Other approaches to verifying that a program does
not violate the firewall policy include [MPH01, CHS01, ÉJ02]. In [MPH01] a
type-system is defined for applet isolation that can statically ensure an applet
will not try to access fields or methods of other applets. The type-system is
developed for Java Card rather than JCVML. A constraint based solution to
the same problem, but for (a small subset of) JCVML, can be found in [CHS01].
Here the constraints are used to describe the data flow in JCVML programs.
Based on the solution to the constraints, instructions are classified with respect
to their effect on the applet firewall ans possible violations are detected; this
step is very similar to type checking. Another constraint based approach is dis-
cussed in [ÉJ02] where a control flow analysis is defined for JCVML (converted
to a convenient three-address format similar to Jimple [VRH98, VRCG+99])
and formulated using quantified conditional constraints. Special instructions
are added to the semantics to model the stack inspection mechanism and the
low level protocols for exchanging references to shared objects.

124 Extending the Flow Logic

C h a p t e r 5

Safety and Security

Massive application of faith is not generally
considered a valid security strategy

—David Bailey in [Bai95]

Because of their unique physical properties smart cards are often used in safety
and security critical applications that require a very high degree of assurance.
For such applications it is crucial that special care is taken to protect the safety
and security of programs and data on the card. However, the unpredictable way
and environment in which smart cards are used combined with the somewhat
arcane protocols and conventions used in Java Card programming makes it
extraordinarily difficult to guarantee the safety and security of a program and
its data.

In this chapter two analyses are presented: a Transaction Flow Analysis
for verifying that transactions are used in a well-defined manner, and an Infor-
mation Flow Analysis to ensure that secret information is not leaked. These
analyses serve several purposes: first they are useful tools in their own right for
ensuring that an applet has certain non-trivial desirable properties and thereby
help alleviate the problems and reduce the workload inherent in verifying that
an applet is indeed “well-behaved”. Secondly, the development of these analyses
demonstrate, in a larger perspective, the importance and intrinsic applicability
of static analysis for validation and verification purposes.

5.1 Transaction Flow Analysis

Developing robust and fault-tolerant applications is a non-trivial task under op-
timal conditions. Smart cards rarely provide conditions that approach the op-
timal. The innate unpredictability of the (physical) runtime environment, e.g.,

126 Safety and Security

a card may be torn from the card terminal during an update of critical data on
the card, complicates matters further. To protect the integrity of critical data
under such circumstances special programming techniques and methodologies
must be employed. The JCVML API provides access for developers to an es-
sential tool for maintaining data integrity and mitigating the effects of sudden
disruption of data updates: transactions. Data updates taking place in a trans-
action are guaranteed atomicity, i.e., either all of the updates are successful or
none of them are. This permits an application to recover gracefully from an
acute interruption of program execution and thereby sustain a consistent state
of critical data.

Processing and memory resources on a smart card are severely limited. The
limited resources are apparent in the implementation of the JCVML transac-
tion mechanism in that only one transaction can be active at any point in time
and only a limited amount of data can be held in the commit buffer; violations
result in an exception being thrown at runtime, i.e., if any attempt at opening a
transaction is made while another transaction is active. Conversely an attempt
at closing, either by committing or aborting, a transaction when no transaction
is active also results in an exception. If no transaction on any possible execution
path in a given program violates the above rules the transactions of the program
are said to be well-formed. The limitation imposed by the above transaction
semantics leads to a rather defensive programming style where it is explicitly
checked if a transaction is in progress before starting a new one and similarly
checking that a transaction is active before trying to close it. Furthermore, pro-
grammers often have to “work around” the limitation of not being able to nest
transactions and this leads to a non-trivial control flow for transactions where
a transaction may be started in one method and committed (or aborted) in
another, possibly dependent upon whether or not the first method was invoked
in a context where a transaction was already in progress or not.

The non-trivial flow of transactions and the defensive programming style
conspire to make it very hard for a programmer to ensure that transactions are
indeed well-formed since all possible program executions have to be taken into
account. In this section the control flow analysis for Carmel Core is extended
to a context dependent analysis using transaction status as context. It is then
shown that the analysis can be used to prove that the transactions in a given
program are well-behaved.

5.1.1 Extended Semantics

In this section the basic Carmel Core semantics is extended to model most of the
transaction semantics of JCVML. The extended semantics given here is focused
in modelling well-formedness aspects of transactions and thus no attempt is
made to model the size aspects of the commit buffer. This is, in part, because
the details concerning the size and the implementation of API calls relating to
the size of the commit buffer are left unspecified and implementation dependent.

The JCVML transaction API is comprised by six methods. The first three
are concerned with opening and closing a transaction: beginTransaction,

5.1 Transaction Flow Analysis 127

commitTransaction, abortTransaction. The fourth, getTransactionDepth,
returns the number of currently open transactions, i.e., either 0 or 1. The last
two, getMaxCommitCapacity and getUnusedCommitCapacity, are mentioned
here only for completeness as they return the maximum size of the commit
buffer and how much is still of available of the commit buffer respectively. For
convenience the API calls are incorporated into Carmel Core directly as instruc-
tions:

Instruction ::= . . .
| API.getTransactionDepth

| API.beginTransaction

| API.commitTransaction

| API.abortTransaction

Since the well-formedness property for transactions only depends on the order
in which transactions are opened and closed it is, somewhat surprisingly, inde-
pendent of the actual underlying transaction mechanism. This in turn implies
that in order to establish the well-formedness property of a program, there is
no need to track or even model actual transactions. Instead it is enough to keep
track of the transaction depth, i.e., the number of currently active transactions
which in the case of JCVML and Carmel Core is either 0 or 1.

The concrete semantic domains for Carmel Core only needs minor modifica-
tions to track the current transaction depth. The domain for transaction depths
is quite trivial since only two states are allowed:

TransDepth = {0, 1}

Transaction depths are denoted θ. In anticipation of later uses and to facilitate
the correctness proofs methods are annotated with the transaction depth in
which they were invoked:

MethodTFA = Method× TransDepth

An annotated method, (m, θ) ∈ MethodTFA, is written mθ. Note that these
annotations are different from the modification counts used for the data flow
analysis, cf. Section 4.1, and thus θ is used instead of χ. The current transaction
depth is recorded as part of the stack frames:

FrameTFA = TransDepth×MethodTFA × PC× LocHeap× Stack

The domains for call stacks and semantic configurations are merely updated to
reflect the modified domains for stack frames:

CallStackTFA = Frame∗TFA

ConfTFA = Heap× CallStackTFA

The semantic reduction rules for the ordinary instructions are only changed in
a trivial way to carry along the current transaction depth and annotate invoked

128 Safety and Security

m.instructionAt(pc) = push c

P ` 〈H, 〈θ,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈θ,mθm , pc + 1, L, n :: S〉 :: SF 〉

m.instructionAt(pc) = pop n

P ` 〈H, 〈θ,mθm , pc, L, c :: S〉 :: SF 〉 =⇒TFA 〈H, 〈θ,mθm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0

S = v1 :: · · · :: v|m0| :: loc :: S0 mv = methodLookup(m0, o.class)
o = H(loc) ∧ L′ = [0 7→ loc, 1 7→ v1, . . . , |m0| 7→ v|m0|]

P ` 〈H, 〈θ,mθm , pc, L, S〉 :: SF 〉 =⇒TFA

〈H, 〈θ,mθ
v, 0, L′, ε〉 :: 〈θ,mθm , pc, L, S〉 :: SF 〉

m.instructionAt(pc) = return t

P ` 〈H, 〈θ′,m′θm′ , pc′, L′, v :: S′〉 :: 〈θ,mθm , pc, L, S〉 :: SF 〉 =⇒TFA

〈H, 〈θ′,mθm , pc + 1, L, v :: S〉 :: SF 〉

Figure 5.1: Updated semantic reduction rules

methods. The updated rules are illustrated in Figure 5.1. The full semantics
can be found in Appendix C.

The reduction rules for the instructions modelling the transaction API are
shown in Figure 5.2. The rules implicitly encode the rules for well-formed trans-
actions: an transaction can only be opened, using the API.beginTransaction

instruction, if the current transaction depth is 0 and vice versa for the instruc-
tions API.commitTransaction and API.abortTransaction. Note that since
Carmel Core does not include support for exceptions, the program is simply
stuck when an error occurs.

To conclude the semantics the initial configurations are defined. No trans-
actions are open in the initial configurations:

Definition 5.1 (Initial Configurations). For a program, P ∈ Program, the
configuration C ∈ Conf is an initial configuration if and only if σ ∈ P.main,
mσ = σ.entry, C = 〈H, 〈0,m0

σ, 0, [0 7→ locσ], ε〉 :: ε〉 and ∀τ ∈ P.main : ∃locτ :
H(locτ) = τ .

5.1.2 Well-Formed Transactions

With the semantics in place a formal definition of well-formed transactions can
be given:

Definition 5.2 (Well-Formed Transactions). Let C0 be an initial config-
uration of P ∈ Program then the transactions of P are said to be well-formed
if and only if for all configurations C1 = 〈H, 〈θ,mθm , pc, L, S〉 :: SF 〉 such that
P ` C0 =⇒∗

TFA
C1 the following holds:

1. m.instructionAt(pc) = API.beginTransaction ⇒ θ = 0

5.1 Transaction Flow Analysis 129

m.instructionAt(pc) = API.getTransactionDepth

P ` 〈H, 〈θ,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈θ,mθm , pc + 1, L, θ :: S〉 :: SF 〉

m.instructionAt(pc) = API.beginTransaction

P ` 〈H, 〈0,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈1,mθm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = API.commitTransaction

P ` 〈H, 〈1,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈0,mθm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = API.abortTransaction

P ` 〈H, 〈1,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈0,mθm , pc + 1, L, S〉 :: SF 〉

Figure 5.2: Semantics for transaction API

2. m.instructionAt(pc) = API.commitTransaction ⇒ θ = 1

3. m.instructionAt(pc) = API.abortTransaction ⇒ θ = 1

In essence this definition implies that the transaction instructions always succeed
in a program with well-formed transactions and therefore the program does not
end in a stuck configuration when executing such an instruction.

Example 5.3. In Figure 5.3 an example Carmel method is shown that illus-
trates some of the techniques used to avoid breaking the well-formedness of trans-
actions. The method, named atomicWrapper, is a “wrapper” method for the
method invocation, in line 12, of the method named dosomething. The inten-
tion with the wrapper method is to ensure that the data updates performed in
dosomething are always performed atomically, i.e., the wrapper must ensure
that dosomething is always invoked inside an active transaction. The wrapper
method, however, can not simply start a transaction since a transaction may al-
ready be active when the wrapper method is called. Therefore the wrapper must
first check if a transaction is already active (lines 0–5) and if not, then it must
start one (lines 6–8). Similarly, the wrapper method should only commit the
transaction if it was opened by the wrapper (lines 13–15).

The wrapper method is a simplified Carmel version of a similar wrapper
method found in the Demoney (see [Siv03b, MM02, Mar02]) demo-applet.

It should be clear that the programming style exhibited in the above example
is quite error prone and that it exacerbates the difficulty of verifying the safety
and security of a program. The example also highlights some of the problems
a program analysis of transactions must overcome: transactions started in one
method may be committed or aborted in another method; the analysis must
therefore be able to track inter-procedural control and transaction flow. It must
also include a data flow component since the actual transaction depth is used to

130 Safety and Security

void atomicWrapper(byte [], short)

{

0: API.getTransactionDepth

1: if s le 0 goto 4

2: push s 1

3: goto 5

4: push s 0

5: store s 3

6: load s 3

7: if s ne 0 goto 9

8: API.beginTransaction

9: load r 0

10: load r 1

11: load s 2

12: invokevirtual dosomething(byte[], short)

13: load s 3

14: if s ne 0 goto 16

15: API.commitTransaction

16: return

}

Figure 5.3: Carmel implementation of a wrapper method

guard whether or not a transaction is started/ended. Consequently an analysis
must combine control, data, and transaction flow components.

5.1.3 Abstract Domains

The transaction flow analysis specified in the next section is a combination of the
control and data flow analyses with an analysis that conservatively approximates
the transaction depth throughout a program. The data flow analysis is necessary
to exploit the defensive programming style used by programmers to try to ensure
that the transactions in a program are well-formed. Since 0 and 1 are the
only possible transaction depths a simple instance of the data flow analysis is
sufficient:

NumTFA = Num>
1 = (Z× {0, 1}) ∪ {INTN}

where INTN is the top value for the domain. This choice of abstract domain
has the advantage that there is no need to annotate or instrument the numbers
in the semantics in order to prove the analysis, cf. Section 5.1.5. The changed
domain for abstract numbers is reflected in the domain for abstract values:

ValTFA = ObjRef + NumTFA and V̂alTFA = P(NumTFA)

and for abstract objects:

ÔbjectTFA = Field→ V̂alTFA

5.1 Transaction Flow Analysis 131

In order to use the analysis for verifying well-formedness of transactions in cases
where a transaction is started in one method and ended in another, the invoca-
tions of methods in states with different transaction status must be separated
in the analysis. To achieve this the analysis is made context dependent and the
transaction depth is used as context. Transactions depths are modelled abstract
as follows:

̂TransDepth = {0, 1}

The context dependency is evident in the abstract domains for abstract local
heaps:

̂LocHeapTFA = ̂TransDepth→ Addr→ N0 → V̂al

abstract stacks:

ŜtackTFA = ̂TransDepth→ Addr→ (V̂alTFA
∗)>

and abstract heaps:

ĤeapTFA = ̂TransDepth→ ObjRef → ÔbjectTFA

Finally a transaction cache is needed to track the possible transaction depths
an instruction may be executed in:

T̂rans = ̂TransDepth→ Addr→ P(̂TransDepth)

Intuitively δ′ ∈ T̂δ(m, pc) with T̂δ(m, pc) ∈ T̂rans means that if method m is
invoked in a context with transaction depth δ then the instruction at address
(m, pc) may be executed with a transaction depth of δ′. Note that δ is the
context used to add precision to the analysis (by keeping invocations of a given
method in different transaction depths separate) while δ′ the analysis result for
the given address in the given context. In Section 5.1.6 the T̂ component is used
to guarantee the well-formedness of transactions.

The above then leads to the following base domain for the analysis:

ÂnalysisTFA = ĤeapTFA × ̂LocHeapTFA × ŜtackTFA × T̂rans

A transaction flow analysis based on the above abstract domains is developed
and specified in the next section.

5.1.4 Transaction Flow Logic

The Flow Logic judgements of the transaction flow analysis take the following
form:

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : instr

where (Ĥ, L̂, Ŝ, T̂) ∈ ÂnalysisTFA. For legibility the context of an abstract do-
main is written as a subscript rather than a parameter, e.g., Ŝ(δ)(m, pc) is
written Ŝδ(m, pc). Furthermore, the shorthand notation T̂{0,1}(m, pc) is taken

to mean T̂0(m, pc) ∪ T̂1(m, pc).

132 Safety and Security

Since the analysis is context dependent and the context is the transaction
depth in which the current method was invoked, the Flow Logic specification
for all instructions start by making sure that all possible contexts (in which the
current method was invoked) are taken into account; formally this is done, for
each instruction, by quantifying over all the possible contexts that instruction
can be executed in and then perform the analysis in all those contexts. This is
implemented in the analysis by prefixing all the specifications with the following:

∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒ . . .

The condition that T̂δ(m, pc) 6= ∅ ensures that instructions are not analysed in
contexts that are known to be unreachable.

Below the Flow Logic specifications for a few instructions are discussed in
detail. The full specification can be found in Appendix C.

Arithmetic and Conditionals

Since transactions depths are typically only stored and never used in actual
computations a very simple constant tracking data flow analysis was chosen.
The data flow analysis is unable to track constants through computations. This
is most evident in the specification for numop, see Figure 5.4, since it always
results in the top value, INTN . The specification is also updated to copy forward
the current abstract transaction depth:

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

Conditionals are simply analysed as a context dependent version of the data flow
analysis using the same abstract condition predicate, CONDNum, as specified in
Section 4.1.5.

Method Invocation

The specification for invokevirtual follows the pattern laid from previous anal-
yses. The main difference being that the analysis is extended to take contexts
into account. Further changes are related to ensuring that the abstract trans-
action depth is handled correctly. First the current abstract context is added
as a “base” context for the invoked method:

∀δ′ ∈ T̂δ(m, pc): {δ′} ⊆ T̂δ′(mv, 0)

Similarly the abstract transaction depth when the invoked method returns must
be copied back to the invoking method and used as the current depth:

T̂δ′(mv,END) ⊆ T̂δ(m, pc + 1)

See Figure 5.5 for the full specification of invokevirtual and return.

5.1 Transaction Flow Analysis 133

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : numop t binop

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: A2 :: X / Ŝδ(m, pc) :

{INTN} :: X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : if t cmp goto pc0

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: A2 :: X / Ŝδ(m, pc) :
CONDNum(cmp, A1, A2) ⇒

Ŝδ(m, pc) v Ŝδ(m, pc0)

L̂δ(m, pc) v L̂δ(m, pc0)

T̂δ(m, pc) ⊆ T̂δ(m, pc0)
CONDNum(¬cmp, A1, A2) ⇒

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

Figure 5.4: Flow Logic specification arithmetic and conditionals

Transactions

The Flow Logic specification for the instructions concerned with transactions
can be seen in full in Figure 5.6.

The analysis of API.getTransactionDepth simply specifies that the current
(abstract) transaction depth is pushed on top of the stack:

∀δ′ ∈ T̂δ(m, pc): {δ′} :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

As for other instructions the local heap and current transaction depths are
copied forward.

The API.beginTransaction is analysed in a similar way except that here
the current transaction depth is not copied forward, instead it is changed to 1
to indicate that a transaction is now active:

{1} ⊆ T̂δ(m, pc + 1)

For API.commitTransaction and API.abortTransaction the current transac-
tion depth is, of course, changed to 0 instead of 1. This depends on the fact
that, unless the transaction are not well-formed, the transaction depth is always
either 0 or 1. In particular: after a transaction has been opened or closed trans-
action depth will always be either 1 or 0 respectively. To accommodate deeper
nesting it would be necessary to take the current transaction depth into account
and then add (or subtract) one when opening (or closing) a transaction.

134 Safety and Security

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : invokevirtual m0

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: · · · :: A|m0| :: B :: X / Ŝδ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

∀δ′ ∈ T̂δ(m, pc) :

{δ′} ⊆ T̂δ′(mv, 0)

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂δ′(mv, 0)[0..|m0|]

T̂δ′(mv,END) ⊆ T̂δ(m, pc + 1)
m.returnType 6= void ⇒

A :: Y / Ŝδ′(mv,END) :

A :: X v Ŝδ(m, pc + 1)
m.returnType = void ⇒

X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : return t

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

T̂δ(m, pc) ⊆ T̂δ(m,END)

A :: X / Ŝδ(m, pc) :

A :: ε v Ŝδ(m0,END)

Figure 5.5: Flow Logic specification for method support

5.1 Transaction Flow Analysis 135

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.getTransactionDepth

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

∀δ′ ∈ T̂δ(m, pc) : {δ′} :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.beginTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{1} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.commitTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{0} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.abortTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{0} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

Figure 5.6: Flow Logic specification for transaction API

136 Safety and Security

Programs

The analysis of a full program can then be specified as follows:

(Ĥ, L̂, Ŝ, T̂) |=TFA P iff
∀(m, pc) ∈ P.addresses:

m.instructionAt(pc) = instr ⇒ (Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : instr
∀σ ∈ P.classes: mσ = σ.entry ⇒

(Ref σ) ∈ L̂0(mσ, 0) ∧ {0} ⊆ T̂0(mσ, 0)

5.1.5 Semantic Correctness

Proving semantic correctness follows the same approach as the previous analy-
ses: first the representation functions and correctness relations are defined and
then a subject reduction property is established.

Because of the simple domain for abstract numbers it is sufficient to represent
numbers as themselves:

βTFA,Num(n) = {n}

This is possible because the analysis immediately maps any numerical opera-
tion to the top value, INTN . The representation function for values is changed
accordingly:

βH
TFA,Val(v) =

{
βTFA,Num(v) if v ∈ NumTFA

βH
Ref(v) if v ∈ Ref

as are the functions for stacks:

βH
TFA,Stack(v1 :: · · · :: vn) = βH

TFA,Val(v1) :: · · · :: βH
TFA,Val(vn)

local heaps:
βH

TFA,LocHeap(L)(x) = βH
TFA,Val(L(x))

and objects:
βH

TFA,Object(o)(f) = βH
TFA,Val(o.f)

and finally the representation function for heaps:

βTFA,Heap(H)(Ref σ) =
⊔

loc ∈ dom(H)

βH
TFA,Val(loc) = (Ref σ)

βTFA,Object(H(loc))

The remaining representation functions are the same as those defined in Sec-
tion 3.3. With the representation functions for the basic domains in place, the
correctness relations can be defined. First for stack frames:

〈θ,mθm , pc, L, S〉 RH
TFA,Frame (L̂, Ŝ, T̂) iff θm ∈ T̂{0,1}(m, 0) ∧

θ ∈ T̂θm
(m, pc) ∧

βH
TFA,LocHeap(L) v L̂θm

(m, pc) ∧

βH
TFA,Stack(S) v Ŝθm

(m, pc)

5.1 Transaction Flow Analysis 137

The above correctness relation essentially formalises that the stack frame should
be (abstractly) represented in the analysis in such a way that the context (trans-
action depth) in which the current method, m, was called, θm, is used as a
context for the analysis, e.g., as in Ŝδ(m, pc), and also that it is represented
correctly in the analysis: θm ∈ T̂{0,1}(m, 0). This is easily extended to cover
call stacks:

F1 :: · · · :: Fn R
H
TFA,CallStack (L̂, Ŝ, T̂) iff ∀i : Fi R

H
TFA,Frame (L̂, Ŝ, T̂)

This leads to the following unsurprising correctness relation for semantic con-
figurations:

〈H,SF 〉 RH
TFA,Conf (Ĥ, L̂, Ŝ, T̂) iff βTFA,Heap(H) v Ĥ ∧

SF RH
TFA,CallStack (L̂, Ŝ, T̂)

which is then used to state and prove the semantic correctness of the transaction
flow analysis:

Theorem 5.4 (Soundness). If P ∈ Program such that (Ĥ, L̂, Ŝ, T̂) |=TFA P
and C0 an initial configuration of P with P ` C0 =⇒∗

TFA
C1 and P ` C1 =⇒TFA

C2 then

C1 RTFA,Conf (Ĥ, L̂, Ŝ, T̂) ⇒ C2 RTFA,Conf (Ĥ, L̂, Ŝ, T̂)

Proof. By extension of the proof for Theorem 3.14. Below the proof case for
API.beginTransaction is detailed for illustration.

Case API.beginTransaction: By assumption:

m.instructionAt(pc) = API.beginTransaction

P ` 〈H, 〈0,mθm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈1,mθm , pc + 1, L, S〉 :: SF 〉

and

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.beginTransaction (5.1)

and

〈H, 〈0,mθm , pc, L, S〉 :: SF 〉 RTFA,Conf (Ĥ, L̂, Ŝ, T̂) (5.2)

Equation (5.2) implies that

β(H) v Ĥ (5.3)

βH(L) v L̂θm
(m, pc) (5.4)

βH(S) v Ŝθm
(m, pc) (5.5)

0 ∈ T̂θm
(m, pc) (5.6)

θm ∈ T̂{0,1}(m, 0) (5.7)

138 Safety and Security

Thus since θm ∈ T̂{0,1} and 0 ∈ T̂θm
(m, pc) it follows from the definition

of the analysis and equation (5.1) that

{1} ⊆ T̂θm
(m, pc + 1) (5.8)

Ŝθm
(m, pc) v Ŝθm

(m, pc + 1) (5.9)

L̂θm
(m, pc) v L̂θm

(m, pc + 1) (5.10)

From which the case follows.

The remaining cases are similar.

Note that Lemma 3.11 can be used without modification since neither the trans-
action instruction nor the addition of transaction depths to the stack frames
influence the call stack.

5.1.6 Static Well-Formedness

Having defined the transaction flow analysis and shown that it correctly ap-
proximates the semantics, it is now possible to exploit the subject reduction
property for statically verifying that the transactions in a program are indeed
well-formed. To this end the notion of static well-formedness is defined:

Definition 5.5 (Static Well-Formedness). A program P ∈ Program is said
to have statically well-formed transactions if and only if (Ĥ, L̂, Ŝ, T̂) |=TFA P
and the following holds:

1. m.instructionAt(pc) = API.beginTransaction ⇒ T̂{0,1}(m, pc) ⊆ {0}

2. m.instructionAt(pc) = API.commitTransaction ⇒ T̂{0,1}(m, pc) ⊆ {1}

3. m.instructionAt(pc) = API.abortTransaction ⇒ T̂{0,1}(m, pc) ⊆ {1}

Intuitively, if m.instructionAt(pc) = API.beginTransaction for some (m, pc)
and T̂{0,1}(m, pc) ⊆ {0} then no matter what context method m was invoked

in (indicated by the {0, 1} subscript to T̂) the instruction executed at address
(m, pc) (the opening of a transaction) can only be executed in a context where
the transaction depth is 0 (since T̂{0,1} ⊆ {0}) which is exactly what is required
for well-formedness, cf. Definition 5.2. This is formalised in the following theo-
rem:

Theorem 5.6. Let P ∈ Program such that (Ĥ, L̂, Ŝ, T̂) |=TFA P and let P have
statically well-formed transactions, then P has well-formed transactions.

Proof. Follows immediately from Theorem 5.4 and definitions 5.2 and 5.5.

5.1 Transaction Flow Analysis 139

void atomicWrapper(byte [], short)

{

0: API.getTransactionDepth /* {0} {1} */

1: if s le 0 goto 4 /* {0} {1} */

2: push s 1 /* {} {1} */

3: goto 5 /* {} {1} */

4: push s 0 /* {0} {} */

5: store s 3 /* {0} {1} */

6: load s 3 /* {0} {1} */

7: if s ne 0 goto 9 /* {0} {1} */

8: API.beginTransaction /* {0} {} */

9: load r 0 /* {1} {1} */

10: load r 1 /* {1} {1} */

11: load s 2 /* {1} {1} */

12: invokevirtual dosomething(byte[], short) /* {1} {1} */

13: load s 3 /* {1} {1} */

14: if s ne 0 goto 16 /* {1} {1} */

15: API.commitTransaction /* {1} {} */

16: return /* {0} {1} */

}

Figure 5.7: Carmel implementation of a wrapper method with transaction flow
analysis results

This theorem formally shows that the transaction flow analysis can be used to
statically verify that a given program has well-formed transactions and therefore
that the program does not give rise to transaction-related exceptions.

Example 5.7. In Figure 5.7 the example program from Figure 5.3 is repeated
along with the results of the transaction flow analysis. For convenience the
results are shown as in-lined comments of the form /* X Y */ where X and Y

corresponds to T̂0 and T̂1 respectively.

The first thing to note is that the conditions for statically well-formed trans-
actions set out in Definition 5.5 are fulfilled in the wrapper method (lines 8
and 15). The second thing to note is that the dosomething method is always
invoked with a transaction depth of 1 and thus it is always invoked inside a
transaction and therefore atomicity of the updates performed in dosomething is
guaranteed.

5.1.7 Implementation

A prototype of the transaction flow analysis has been implemented by system-
atically extending implementation of the control flow analysis (Section 3.4) with
context information and a transaction component. The prototype was used to
produce the analysis result shown in Example 5.7.

140 Safety and Security

5.2 Secure Information Flow

The use of smart cards for authentication and high-security applications often
requires highly confidential information to be stored on the card, e.g., personal
information or private cryptographic keys. The on-card programs that manipu-
late confidential data must be designed and implemented very carefully in order
to ensure that secret information is not leaked. Preventing information leaks
in computer applications and information systems is a classic problem that has
been studied extensively, at least in the context of military systems. One of
the earliest security models formalising the notions of security classifications
and confidentiality is the multi-level security (MLS) model (also known as the
Bell/LaPadula model), cf. [BL73a, BL73b], where IT systems are seen as col-
lections of subjects, e.g., users and processes, that actively access and modify
objects, e.g., files and records. Both subjects and objects are assigned security
classifications and security is then guaranteed if no subject can read an object
with a higher security classification than itself, this is called the “no-read-up”
property, and if no subject can write to an object with a lower security classifica-
tion than itself, called the “no-write-down” property. The MLS model provided
the formal basis for the “Trusted Computer Security Evaluation Criteria” (bet-
ter known as the “orange book”) cf. [DoD85], a standard for evaluating the
security of IT systems later succeeded by the Common Criteria [CC99]. While
the MLS model is conceptually simple and easy to apply, the notion of security
guaranteed by the model depends very much on the interpretation and specific
semantics of the underlying operations, sometimes resulting in counter-intuitive
notions of security. This is demonstrated in [McL85] where it is shown how a
patently insecure system can be proved “secure” in the MLS model.

This led to the development of more abstract models such as strong depen-
dency in [Coh77, Coh78] and especially non-interference in [GM82, GM84]. The
notion of non-interference was suggested as an abstract security policy. Rather
than specifying how access to data should be controlled, as in the MLS model,
non-interference takes an end-to-end view of security and only specifies what
information may or may not be observed from various points in the system.
Implementations must then be shown to incorporate adequate security mea-
sures, e.g., access controls, to guarantee non-interference. A major advantage
of non-interference and other information flow based security policies is that all
information channels in the model, including covert channels cf. [Lam73], are
covered by the policy. For access control based models, e.g. MLS, such chan-
nels often have to be modelled explicitly in order to be covered by the policies
and security guarantees. In [Mil87] it is shown that non-interference provides
near perfect secrecy in the sense of Shannon’s information theory [Sha48]. The
papers [McL94, Lan81, McL90] provide good overviews and introductions to
formal information security models. See [Bis03] for a recent and comprehensive
overview.

Originally the security models mentioned above were mostly developed to
formulate and prove the security of operating systems but quickly found use
in language-based security. An early example is [DD77] where an information

5.2 Secure Information Flow 141

flow analysis, based on the lattice model [Den76], is defined for a simple while-
language and used to verify that programs do not leak secret information. Even
though the analysis is specified formally the proof of correctness is informal and
is, in essence, only a proof that programs manipulate data in accordance with
the MLS model, i.e., the no-read-up and no-write-down properties. This was
rectified in [VSI96] where a type-system was developed, based on the analysis
of [DD77], to enforce the security of information flow in a simple while-language
by proving that well-typed programs have the non-interference property. Since
then research into language-based information flow security has been prolific
and found widespread use; see [SM03] for a comprehensive overview.

In this section a notion of non-interference for Carmel Core programs is
defined. Moreover an information flow analysis is developed to automatically
verify that a given Carmel Core program has the non-interference property and
thus can not leak secret information. Only comparatively little research has
been made into secure information flow for low-level languages such as the Java
(Card) bytecode language: [BBR04, GS05, KS02, ABF03]. The notion of non-
interference defined for Carmel Core below is inspired by the work in [FSBJ97,
SBCJ97] for secure information flow in object-oriented systems.

To simplify the proofs in the following sections it is necessary to slightly
restrict the class of programs considered:

Remark 5.8 (Recursion). In this section only programs that do not contain
recursive method invocations are considered.

The lack of support for recursive methods is not a problem in practice since ap-
plets rarely, if ever, use recursion due to the extra complexity and work required
to argue or prove that recursion is used correctly and safely.

5.2.1 Non-Interference for Carmel Core

The notion of security chosen here is based on the observation that the informa-
tion that must be protected on a smart card typically resides in certain instance
fields of objects in memory. This leads to a definition of non-interference that
makes it possible to detect and/or prevent information leaks from instance fields
by assigning security classifications only to instance fields. Furthermore, the way
objects are used in the current generation of smart card applets it is too inflex-
ible to require that entire objects or classes are classified as high security even
if they contain fields that are high security, e.g., as in [ABF03]. This leads to
a definition of security that is loosely inspired by [FSBJ97, SBCJ97] but allow-
ing for more fine-grained security policies since only fields, not entire objects,
have security classifications. Other approaches define security as a (lack of) de-
pendency between a methods parameters (input) and its return value (output),
cf. [KS02, GS05].

For simplicity only two security levels are considered: high (H) and low (L)
with L v H:

Security = ({L,H} ,v)

142 Safety and Security

The main technical results in the following can easily be adapted to allow for
arbitrary lattices of security classifications. A security policy is now defined as
an assignment of security levels to all instance fields:

Definition 5.9 (Security policy). A security policy is a total function, level :
Field→ Security, that assigns a security level to instance fields.

Dynamic allocation of memory on the heap and thus of locations, i.e., through
the new-instruction, and the fact that the dynamically allocated locations are
first class values occurring in programs makes it more complicated to define
non-interference since it can only be defined up to isomorphism on locations.
The following relation compares values in a program up to a mapping π. The
map is required to be bijective (on the subset of Loc on which it is defined);
in the definition of heap equivalence (Definition 5.11) the map must be an
isomorphism on the locations that point to objects containing fields with a low-
security classification:

Definition 5.10 (π-equivalence). Let v1, v2 ∈ Val and π : Loc → Loc be a
bijective partial map and define

v1 ≡π v2 iff

v1 = v2 if v1, v2 /∈ Loc

v2 = π(v1) if v1 ∈ dom(π)
v1 = π−1(v2) if v2 ∈ codom(π)
true if v1 ∈ Loc \ dom(π), v2 ∈ Loc \ codom(π)

As already mentioned, the kind of non-interference of interest here must be
able to prevent leaks from high-security instance fields to low-security instance
fields. Local variables and stack contents are of no concern here since they are
only used temporarily for storing secret information. Thus security, as defined
here, is only concerned with the contents if the heap. The following definition
formalises that two heaps are considered to be equivalent, as seen from a security
perspective, when all fields that have a low security classification are equivalent
(modulo the isomorphism on low heap locations):

Definition 5.11 (Heap-equivalence). Let H1, H2 ∈ Heap, then H1 ≈L H2 if
and only if there exists a bijective partial map, π : Loc→ Loc, such that

∀loc1 ∈ dom(H1) : ∀f ∈ H1(loc1).fields : f.level v L ⇒
H1(loc1).class = H2(π(loc1)).class ∧H1(loc1).f ≡π H2(π(loc1)).f

and

∀loc2 ∈ dom(H2) : ∀f ∈ H2(loc2).fields : f.level v L ⇒
H1(π

−1(loc2)).class = H2(loc2).class ∧H1(π
−1(loc2)).f ≡π H2(loc2).f

A mapping, π, that fulfils the above requirements is called a low-isomorphism
on locations. Note that π is not defined for all locations, only those that point
to objects that contain at least one field of a low security classification. Thus
any object that is composed entirely of high-security fields is “invisible” to a
low security observer. It is now possible to define non-interference for Carmel:

5.2 Secure Information Flow 143

Definition 5.12 (Non-Interference). Let P ∈ Program, H1, H2 ∈ Heap and
let 〈Hi, 〈mi, 0, Li, ε〉〉 for i = 1, 2 be initial configurations for P such that

P ` 〈H1, 〈m1, 0, L1, ε〉〉 =⇒∗ 〈H ′
1, 〈Ret v1〉〉

and
P ` 〈H2, 〈m2, 0, L2, ε〉〉 =⇒∗ 〈H ′

2, 〈Ret v2〉〉

then P is said to be non-interfering if and only if

H1 ≈L H2 ⇒ H ′
1 ≈L H ′

2

Intuitively this interpretation of non-interference states that if a given program
is started in two different initial configurations with equivalent heaps, then the
program is non-interfering if both executions terminate and the heaps in the
final configurations are equivalent. This guarantees that no high-security field
could have influenced any low-security field. Note that only the heap is needed
to achieve the (informal) notion of security discussed in the previously in this
section.

The definition of non-interference has a number of noteworthy implications.
First, it only applies to terminating programs and thus cannot prevent informa-
tion leaks through termination (or timing) behaviour. See [KJJ99, Koc96] for
actual attacks exploiting timing behaviour and power-consumption. In [Aga00a]
a program transformation that can eliminate such timing leaks is discussed; an
implementation of this program transformation for Java bytecode is detailed
in [Aga00b]. The second thing to note is the definition of non-interference, and
thus security, could be extended to also cover return values and thus implement
an aspect of input/output non-interference as well as heap-equivalence.

5.2.2 Information Flow Analysis

As noted in the preceding section it is quite hard to manually inspect and
prove that a given program has the non-interference property. In the following
an information flow analysis is defined that can automatically verify that a
Carmel Core program is non-interfering. Intuitively the analysis must track
information from high-security fields and make sure that such information is
not stored in a low-security field. Information transfers of this kind are called
direct flows. However, information can also be leaked through implicit flows
where it is less obvious that there even is an information transfer. In Carmel
Core the two major sources of implicit flows are conditionals and the use of
references. A conditional can give rise to an implicit flow if the branching of
the conditional depends on high-security information. Figure 5.8 shows a code
snippet exemplifying an implicit flow through a conditional. Assuming that
f.level = H and contains a numerical value, then the top of the stack will contain
a zero if f has the value zero and a one otherwise. In that way information about
the values of the field f can be leaked in small bits and conceivably be stored in
a low-security field. The use of object references for instance fields and method

144 Safety and Security

0: load r 0

1: getfield f

2: if eq 0 goto 5

3: push s 1

4: goto 6

5: push s 0

6: ...

Figure 5.8: Example of implicit flow

invocations is also a source of implicit flows since different fields or methods
would be accessed/invoked depending on the specific object reference used thus
leaking information about the object reference itself.

One of the main problems for an information flow analysis to overcome is
to take implicit flows into account and ensure that they are handled correctly.
The information flow analysis developed below incorporates a special component
specifically to track the implicit flow of a program. However, there is another
problem related to the implicit flows: conditionals in Carmel, and other low
level languages, are basically conditional jumps and, in contrast to higher level
languages, there is no program structure to indicate or even suggest the scope
of a conditional statement. In order to recover (some of) that structure the
analysis computes the post-dominators or forward dominators for all program
points; such post-dominators represent program points where every terminat-
ing execution from the corresponding conditional must pass through regardless
of the branch taken. In other words: the post-dominators are program points
that do not depend on the actual result of the conditional and consequently no
information, implicit or explicit, can be leaked from the conditional to the post-
dominators. This technique has long been known and used in compilers, e.g.,
to construct the control dependence graph necessary for certain program opti-
misations, cf. [App98, ASU85]. A similar approach is taken in [KS02, ABF03].
For a configuration 〈H, 〈m, pc, L, S〉 :: SF 〉 let C.address = (m, pc). The post-
dominator can then be formally defined in the current setting as follows:

Definition 5.13 (Post-dominator). For P ∈ Program the program counter pc
is a post-dominator for (m1, pc1), written (m1, pc1) y pc′1, if for all reduction
sequences with C1.address = (m1, pc1) and of the form:

P ` C0 =⇒∗ C1 =⇒ · · · =⇒ Cn =⇒ 〈H, 〈Ret v〉〉

there exists an i ∈ {2, . . . , n} such that Ci.address = (m1, pc′1).

which leads to the definition of immediate post-dominators:

Definition 5.14 (Immediate post-dominator). A program counter pc is an
immediate post-dominator for (m1, pc1), written (m1, pc1) yi pc, if and only
if (m1, pc1) y pc and there does not exist a pc′ such that (m1, pc1) y pc′ and
(m1, pc′) y pc.

5.2 Secure Information Flow 145

Note that for simplicity only post-dominators in the same method as the dom-
inated address are considered. This makes the analysis and proofs simpler at
the cost of losing precision in the analysis.

Since the post-dominators are used directly in the analysis to handle implicit
flows they must be represented explicitly in the Flow Logic specification. To
this end the following domain is defined:

Dominators = Addr→ P(PC)

with the intended meaning that if (m1, pc1) y pc′1 then pc′1 ∈ DOM (m1, pc1).
Several efficient algorithms exist for computing the set of post-dominators

and the corresponding immediate post-dominators, see [App98] for details. Here
a less efficient but more readable alternative is chosen, based on the following
(abstract) equations that define the set of post-dominators for a given control
flow graph:

DOM (m,END) = {ENDm}

DOM (m, pc) = {pc} ∪
⋂

pc′∈succ(pc)

DOM (m, pc′)

where succ is the set of successor nodes in the corresponding control flow graph.
These equations can then be specialised to the structure of a Carmel Core
program:

Definition 5.15. Let P ∈ Program and DOM ∈ Dominators, then DOM is the
set of post-dominators for P , written DOM (P), if and only if

∀m ∈ P.methods : DOM (m, pc) =

{pc} ∪ (DOM (m, pc + 1) ∩DOM (m, pc0))
if m.instructionAt(pc) = if t cmp goto pc0

{ENDm} if m.instructionAt(pc) = return

{pc} ∪DOM (m, pc + 1) otherwise

Since most of the instructions do not change the control flow of a program
the corresponding post-dominator is quite simple. Only the if and return

instructions have more complex rules; even for the invokevirtual-instruction
a trivial rule for post-dominators is sufficient since the notion of post-dominator
defined here is always local to a method. In Section 5.2.4 a few of the rules are
discussed in more detail in conjunction with the Flow Logic specification and in
Section 5.2.5 the soundness of the above definition is proved (Lemma 5.16).

Given the dominator sets it is easy to determine the immediate dominator
for a given address. First define

DOM 2(m, pc) = {pc′′ | pc′′ ∈ DOM (m, pc′), pc′ ∈ DOM (m, pc) \ {pc}}

then the immediate post-dominator for (m1, pc1) can be calculated as follows:

(DOM (m1, pc1) \ {pc1}) \DOM 2(m1, pc1)

Note that every node except the exit node has exactly one immediate post-
dominator, cf. [App98, pages 407–409], and therefore the above formula is well-
defined.

146 Safety and Security

5.2.3 Abstract Domains

The abstract domains for the information flow analysis are mainly extensions
of the abstract domains for the control flow analysis with security information.
In addition a abstract domains are needed to compute the post-dominators, as
discussed in the previous section, and to track the implicit flow.

First the abstract stack is extended to hold a security level for each stack
position:

ŜtackIFA = Addr→ ((V̂al× Security)∗)>

and similar changes are made to the local heap:

̂LocHeapIFA = Addr→ N0 → (V̂al× Security)

and for the instance fields of objects:

ÔbjectIFA = Field→ (V̂al× Security)

The domain for abstract heaps must then be updated to reflect the changes:

ĤeapIFA = ObjRef → ÔbjectIFA

Finally, tracking implicit flow requires keeping track of the security label of the
implicit flow and also the origin of the implicit flow, i.e., the program point of
the conditional or method invocation that gave rise to the implicit flow:

̂Implicit = Addr→ P(Security × Addr)

The least upper bound of the security levels of the possible implicit flows at
an address, i.e., t{`′| (`′, (m′, pc′)) ∈ Ĉ(m, pc)}, is called the security context of
that address and is written t Ĉ(m, pc).

Implicit flows originating at program point pc must be propagated through-
out the program until a post-dominator for pc is encountered. This is formalised

as follows for Ĉ1, Ĉ2 ∈ ̂Implicit and DOM ∈ Dominators:

Ĉ1(m1, pc1) vDOM Ĉ2(m2, pc2) iff

{(`, (m, pc)) ∈ Ĉ1(m1, pc1)|m2 6= m ∨ pc2 /∈ DOM (m, pc)} ⊆ Ĉ2(m2, pc2)

Note that implicit flows can only be removed in the method in which they are
added. This results in an analysis where any implicit flows that are present when
a new method is invoked will be copied into the invoked method as implicit flows
for that method that can not be removed.

The domain for the information flow analysis can then be defined as:

ÂnalysisIFA = ĤeapIFA × ̂LocHeapIFA × ŜtackIFA × ̂Implicit× Dominators

Elements of the analysis domain are written (Ĥ, L̂, Ŝ, Ĉ;DOM) where the semi-
colon serves as a reminder that the dominator component, DOM , is a parameter
to the Flow Logic specification and is not, as such, part of the analysis.

5.2 Secure Information Flow 147

5.2.4 Flow Logic Specification

The information flow analysis is composed of three mostly independent com-
ponents: a control flow analysis, tracking of implicit flows, and calculation of
dominators. The control flow analysis could be divided into further two sub-
components: the pure control flow analysis, identical to previous control flow
analyses, and a security label analysis that tracks the security levels of data ma-
nipulated by the program. For succinctness the three components are combined
into a single specification with judgements of the form:

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : instr

The full specification is shown in Figures 5.9, 5.10, and 5.11.
To enhance the readability of the Flow Logic specification several notational

conveniences are used: the pattern match notation for abstract stacks is adapted
for computing the current security level and bind it to a temporary variable, e.g.,
`/t Ĉ(m, pc)t `1. For local heaps the notation L̂↓1(m, pc)(x) and L̂↓2(m, pc)(x)
is used to indicate the first component (abstract value) and second component
(security level) of L̂(m, pc)(x) respectively. A similar notation is adopted for
operand stacks and heaps.

When instantiating a new object the fields of the object must be filled with
the default values and default security labels. The default security label for a
field must be greater than or equal to the level given by the security policy, i.e.,
f.level. but it must also be greater than or equal to the level of the security
context in which it is created otherwise the creation of an object could be used
as a covert channel. Therefore the default function is modified to take a security
label as an additional parameter:

∀f ∈ σ.fields: ∃`′:
`t f.level v `′ ∈ Security∧

default`(σ)(f) = βConst(def (f.type))`′

Below the Flow Logic specification (and calculation of post-dominators) is dis-
cussed in details for a few instructions.

Local Variables

Analysing the load-instruction first requires a calculation of the current security
context:

` / t Ĉ(m, pc)t L̂↓2(m, pc)(x) :

Next the value of the local variable, L̂↓1(m, pc)(x), is pushed on top of the stack,
annotated with the new security label `:

L̂↓1(m, pc)(x)` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

The local heap was not modified and is simply copied forward

L̂(m, pc) v L̂(m, pc + 1)

148 Safety and Security

the same holds for the implicit flows:

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

The load-instruction only has one post-dominator (in addition to itself), namely
the immediately following instruction:

DOM (m, pc) = {pc} ∪DOM (m, pc + 1)

Conditionals

The information flow analysis for conditionals is very similar to the control flow
analysis. First the two top values on the stack and their security labels are
matched:

A1
`1 :: A2

`2 :: X / Ŝ(m, pc)

Based on the security levels of the stack values and the implicit flows the security
level for the current instruction is calculated:

` / t Ĉ(m, pc)t `1 t `2

Next the rest of the stack is pushed forward to the two possible jump destina-
tions:

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

and similarly for the local heap:

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

Since conditionals give rise to new implicit flows that must be tracked, the
current conditional is added to the set of tracked conditionals (and method
invocations), all of which must also be copied forward:

{(`, pc)} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

{(`, pc)} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0)

The if-instruction is the only instruction that has non-trivial post-dominators.
Since control flow may branch at a conditional the post-dominators for a con-
ditional must be calculated as the intersection of the possible successor instruc-
tions (in addition to the node itself):

DOM (m, pc) = {pc} ∪ (DOM (m, pc + 1) ∩DOM (m, pc0))

5.2 Secure Information Flow 149

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : push t n

iff ` / t Ĉ(m, pc) :

{INT}` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : pop

iff A` :: X / Ŝ(m, pc) :

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : load t x

iff ` / t Ĉ(m, pc)t L̂↓2(m, pc)(x) :

L̂↓1(m, pc)(x)` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : store x

iff A`1 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 :

A` v L̂(m, pc + 1)(x)

X v Ŝ(m, pc + 1)

L̂(m, pc) v{x} L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : numop t binop

iff A1
`1 :: A2

`2 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 t `2 :

{INT}` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Figure 5.9: Information Flow Analysis (1)

150 Safety and Security

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : if t cmp goto pc0

iff A1
`1 :: A2

`2 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 t `2 :

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : new σ

iff ` / t Ĉ(m, pc) :

{(Ref σ)}` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default`(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : getfield f

iff B`1 :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

` / t Ĉ(m, pc)t `1 t Ĥ↓2(Ref σ)(f) :

Ĥ↓1(Ref σ)(f)` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : putfield f

iff A`1 :: B`2 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 t `2 :

∀(Ref σ) ∈ B : A` v Ĥ(Ref σ)(f)

X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Figure 5.10: Information Flow Analysis (2)

5.2 Secure Information Flow 151

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : invokevirtual m0

iff A1
`1 :: · · · :: A|m0|

`|m0| :: B`0 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc) :
∀(Ref σ) ∈ B :

mv / methodLookup(m0, σ) :

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)
m0.returnType = void ⇒

X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A`A :: Y / Ŝ(mv,END) :

A`A t ` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : return

iff A` :: X / Ŝ(m, pc) :

A` :: X v Ŝ(m, pc)(m,END)

Figure 5.11: Information Flow Analysis (3)

Instance Fields

For the getfield instruction a reference to the target object must first be
obtained from the top of the stack:

B`1 :: X / Ŝ(m, pc) :

For each of the (abstract) object references found the pertinent security level is
computed and the relevant heap value is pushed on top of the stack:

∀(Ref σ) ∈ B :

` / t Ĉ(m, pc)t `1 t Ĥ↓2(Ref σ)(f) :

Ĥ↓1(Ref σ)(f)` :: X v Ŝ(m, pc + 1)

Note that the computed security level also takes the security level of the used
object reference into account in order to prevent information about the object
reference from leaking; thus preventing an implicit flow from the object refer-
ence.

Finally the local variables and implicit flows are computed in the usual way:

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

152 Safety and Security

as are the post-dominators for the instruction:

DOM (m, pc) = {pc} ∪DOM (m, pc + 1)

Method Invocation

The information flow analysis for method invocation proceeds like the control
flow analysis by matching stack parameters:

A1
`1 :: · · · :: A|m0|

`|m0| :: B`0 :: X / Ŝ(m, pc) :

and calculating the security level of the context:

` / t Ĉ(m, pc) :

As for the control flow analysis all object references found on the stack are used
for method lookup:

∀(Ref σ) ∈ B : mv = methodLookup(m0, σ) . . .

Next the parameters are transferred annotated with the updated security con-
text:

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

and the implicit flows are also copied to the invoked method:

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)

Since the specific method invoked depends on the object reference used, method
invocation can be used for starting an implicit flow. Note however that such im-
plicit flows only lasts for the duration of the method invocation since no matter
which method was invoked they must all continue at the same instruction when
they return, namely the instruction immediately following the invokevirtual-
instruction. For the same reason it is not necessary to copy any implicit flows
back from the invoked method since there is only one return statement in
each method which is then trivially a post-dominator for all instructions in
the method.

Any return values from the method invocation are handled as in the control
flow analysis updated with the security level of the current context:

A`A :: Y / Ŝ(mv,END) : A`A t ` :: X v Ŝ(m, pc + 1)

Then the local heaps and (local) implicit flows are copied forward as usual:

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Finally the dominator component is calculated:

DOM (m, pc) = {pc} ∪DOM (m, pc + 1)

5.2 Secure Information Flow 153

Note that dominators are strictly local to a method and thus the dominators of
a method invocation does not include any instructions in the invoked method.
In security terms this means that methods invoked in a high security context
can only modify fields, stack positions, and local variables classified as high
security.

5.2.5 Soundness and Non-Interference

Proving that the information flow analysis is semantically sound amounts to
showing that it can be used to show that a program is non-interfering in the
sense of Definition 5.12. The previous analyses have been first-order analyses,
cf [NNH99], where abstract values (properties) are used to directly describe
sets of concrete values. In contrast, the information flow analysis is a second-
order analysis where the abstract properties represent relations between values.
This is a consequence of non-interference being a property on the set of all
program executions rather than a property of individual program executions.
Correspondingly the proof of correctness for the analysis is quite different and
technically rather more involved than the proofs for previous analyses. For
convenience the proof is staged through a number of technical definitions and
lemmas that are discussed and proved in some detail in this section. In order
to prove the main non-interference theorem (Theorem 5.24) it must first be
established that the control flow and dominator parts of the analysis are correct.
However, as already noted, the control flow part of the analysis is identical to
the control flow analysis in Section 3.2 and thus the correctness was proved by
Theorem 3.14. This leaves the dominator part which is proved correct by the
following lemma:

Lemma 5.16. Let P ∈ Program such that DOM (P) and such that

P ` C1 =⇒ C2 =⇒ · · · =⇒ Cn =⇒ 〈H, 〈Ret v〉〉

where C1 = 〈H1, 〈m1, pc1, L1, S1〉 :: SF1〉 then

∀pc′1 ∈ DOM (m1, pc1): ∃i ∈ {1, . . . , n} : Ci = 〈Hi, 〈mi, pc′1, Li, Si〉 :: SFi〉

Proof. By induction in n, the length of the reduction sequence. For the base
step n = 0 the lemma holds vacuously. Now assume for the induction hypothesis
that the lemma holds for n = k and prove that it also holds for n = k +1. Thus
assume that

P ` C1 =⇒ · · · =⇒ Ck =⇒ Ck+1 =⇒ 〈H, 〈Ret v〉〉

and apply the induction hypothesis to the sub-sequence

P ` C2 =⇒ · · · =⇒ Ck =⇒ Ck+1 =⇒ 〈H, 〈Ret v〉〉

which implies that

∀pc′2 ∈ DOM (m2, pc2):
∃i ∈ {2, . . . , k + 1} : Ci = 〈Hi, 〈mi, pc′2, Li, Si〉 :: SFi〉

(5.11)

The result now follows from a case analysis on the instruction performed in C1:

154 Safety and Security

Case load: It follows trivially from the semantics that m2 = m1. Now consider
pc′1 ∈ DOM (m1, pc1). From DOM (P) it follows that DOM (m1, pc1) =
{pc1} ∪ DOM (m1, pc2). If pc′1 = pc1 the lemma holds trivially. As-
sume that pc′1 6= pc1 then it holds that pc′1 ∈ DOM (m1, pc1) \ {pc1} ⊆
DOM (m1, pc2) and thus the case follows from equation (5.11).

Case if: It follows trivially from the semantics that m1 = m2. Let pc′1 ∈
DOM (m1, pc1). By inspection of the semantics it follows that pc2 =
pc1 + 1 or pc2 = pc0 (for some pc0) and from DOM (P) it follows that
DOM (m1, pc1) = {pc1} ∪ (DOM (m1, pc1 + 1) ∩DOM (m1, pc0)). If pc′1 =
pc1 the lemma holds trivially. If pc′1 6= pc1 then

pc′1 ∈ (DOM (m1, pc1 + 1) ∩DOM (m1, pc0)) \ {pc1}
⊆ (DOM (m1, pc1 + 1) ∩DOM (m1, pc0))

From equation (5.11) it follows that

∀pc′ ∈ DOM (m1, pc1 + 1):
∃i ∈ {2, . . . , k + 1} : Ci = 〈Hi, 〈mi, pc′, Li, Si〉 :: SFi〉

and
∀pc′ ∈ DOM (m1, pc0):
∃i ∈ {2, . . . , k + 1} : Ci = 〈Hi, 〈mi, pc′, Li, Si〉 :: SFi〉

and thus

∀pc′ ∈ DOM (pc1 + 1) ∩DOM (pc0):
∃i ∈ {2, . . . , k + 1} : Ci = 〈Hi, 〈mi, pc′, Li, Si〉 :: SFi〉

and therefore the case holds.

Case invokevirtual: It follows from the semantics that S1 = v1 :: · · · :: vn ::
loc :: S′

1 for some n. Since all programs considered here are terminating the
method invocation must return at some point and thus there must exist
an i such that Ci = 〈Hi, 〈m1, pc1 + 1, L1, S

′′
1 〉 :: SF1〉 where S′′

1 = v :: S′
1

or S′′
1 = S′

1 depending on whether or not the invoked returns a value or
not. It now holds that DOM (m1, pc1) = {pc1} ∪ DOM (m1, pc1 + 1) and
the case proceeds in the same way as for the load-instruction.

The remaining cases are analogous and thus the lemma holds.

The above lemma shows that the equations in Definition 5.15 do indeed specify
the post-dominators for all addresses in a given program.

The proofs carried out in the preceding chapters rely on being able to define
representation functions and correctness relations establishing that the analysis
correctly (over-)approximates the data in a particular semantic configuration.
For the information flow analysis the correctness relations must instead establish
that the analysis correctly approximates the relation between data in two (or
more) configurations and, by extension, program runs. For non-interference this

5.2 Secure Information Flow 155

amounts to showing that all the “low data” of the two configurations is equiva-
lent. Defining equivalence is complicated by the dynamic allocation of memory
on the heap and therefore the equivalence is defined only up to isomorphism on
the memory locations containing data of low security. Since locations are also
data values that may occur in a program this isomorphism must also be taken
into account when comparing values. This is formalised in the definition of the
≡π-equivalence, cf. Definition 5.10. With the above in mind the equivalence of

two stack frames, modulo A ∈ ÂnalysisIFA, is defined as follows:

Definition 5.17. Let Fi = 〈mi, pc0, Li, Si〉 for i = 1, 2 be stack frames and let

A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then F1 and F2 are A-equivalent, written
F1 ≈

π
A F2, if and only if π : Loc → Loc is a bijective partial map and the

following conditions hold:

1. m1 = m2

2. pc1 = pc2

3. ∀x : L̂↓2(m1, pc1)(x) v L ⇒ L1(x) ≡π L2(x)

4. ∀i : Ŝ↓2(m1, pc1)|i v L ⇒ S1|i ≡π S2|i

This is trivially extended to call stacks: SF1 ≈
π
A SF2 if and only if ∀i : SF1|i ≈

π
A

SF2|i. Note that this requires the two call stacks to be of equal length. Now

the equivalence of two semantic configurations, modulo A ∈ ÂnalysisIFA, can be
defined:

Definition 5.18 (A-equivalence). Let Ci = 〈Hi, SFi〉 for i = 1, 2 be semantic

configurations and let A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then C1 and C2 are
A-equivalent, written C1 ≈A C2, if and only if there exists an bijective partial
map, π : Loc→ Loc, such that SF1 ≈

π
A SF2 and for all (Ref σ) ∈ dom(Ĥ) and

f ∈ σ.fields the following holds:

Ĥ↓2(Ref σ)(f) v L ⇒
∀loc1: H1(loc1).class = H2(π(loc1)).class

H1(loc1).f ≡π H2(π(loc1)).f
∀loc2: H2(loc2).class = H1(π

−1(loc2)).class
H2(loc2).f ≡π H1(π

−1(loc1)).f

Note that this definition is very similar to that for heap equivalence, cf. Defini-
tion 5.11, with added requirements on the local heap and the operand stack.

The pushing and popping on the operand stack introduces a minor technical
problem since changes in the stack height also changes the (top-)indexing of
stack positions leading to complex formulations of properties and proofs. To
avoid this, special notation is introduced to index a stack from the bottom
instead of from the top: let Ŝ = A0 :: · · · :: An and define Ŝ|i = Ŝ|n−i = An−i

for i ∈ {0, . . . , n}. The lemma below shows that the two formulations are
interchangeable for stacks of equal length:

156 Safety and Security

Lemma 5.19. If |Ŝ(m, pc1)| = |Ŝ(m, pc2)| and

∀i : Ŝ↓2(m, pc2)|
i v L ⇒ Ŝ↓2(m, pc1)|

i v L

then

∀i : Ŝ↓2(m, pc2)|i v L ⇒ Ŝ↓2(m, pc1)|i v L

Proof. Trivial.

The next two lemmas show that variables and stack positions that are modified
in a high security context will be marked as high-security in the analysis:

Lemma 5.20. Let P ∈ Program and (Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA P such that P `
C1 =⇒ C2 with Ci.address = (m, pci) for i = 1, 2 and m.instructionAt(pc1) 6=
invokevirtual. If t Ĉ(m, pc1) = H then

∀i : Ŝ↓2(m, pc2)|
i v L ⇒ Ŝ↓2(m, pc1)|

i v L

and

∀x : L̂↓2(m, pc2)(x) v L ⇒ L̂↓2(m, pc1)(x) v L

Proof. By case analysis.

Case push: By definition of the analysis it follows that L̂(m, pc1) v L̂(m, pc2)
and therefore in particular:

∀x : L̂↓2(m, pc1)(x) v L̂↓2(m, pc2)(x)

which implies that

∀x : L̂↓2(m, pc2)(x) v L ⇒ L̂↓2(m, pc1)(x) v L

Now write Ŝ(m, pc1) = A0 :: · · ·Am and Ŝ(m, pc2) = A′
0 :: · · · :: A′

n

where n = m + 1 then it follows from the definition of the analysis that
{INT}` :: Ŝ(m, pc1) v Ŝ(m, pc2) where ` = H because t Ĉ(m, pc1) = H

and thus

{INT}` :: A0 :: · · · :: Am v A′
0 :: · · · :: A′

n

which leads to the conclusion that

∀i : Ŝ↓2(m, pc2)|
i v L ⇒ Ŝ↓2(m, pc1)|

i v L

The remaining cases are similar and thus the lemma holds.

5.2 Secure Information Flow 157

Lemma 5.21. Let P ∈ Program and (Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA P such that

P ` C1 =⇒ · · · =⇒ Cn =⇒ C ′
1 =⇒∗ 〈H ′′

1 , 〈Ret v′′
1 〉〉

with Cj .address = (mj , pcj) and C ′
1.address = (m1, pc′1). If (H, (m1, pc′′1)) ∈

Ĉ(m1, pc1), (m1, pc′′1) yi pc′1, and mj = m1 ⇒ (m1, pc′′1) 6y pcj for j ∈
{1, . . . , n} then for j ∈ {1, . . . , n}:

1. t Ĉ(mj , pcj) = H

2. L̂↓2(m1, pc′1)(x) v L ⇒ L̂↓2(m1, pc1)(x) v L

3. Ŝ↓2(m1, pc′1)|
i v L ⇒ Ŝ↓2(m1, pc1)|

i v L

Proof. By induction in the length of the derivation sequence, n.

Base case n = 0: For n = 0 the lemma reduces to P ` C1 =⇒ C ′
1, such that

(H, (m1, pc′′1)) ∈ Ĉ(m1, pc1), (m1, pc′′1) yi pc′1 with (m1, pc′′1) 6y pc1 and
thus (H, (m1, pc′′1)) ∈ Ĉ(m1, pc1) ⇒ t Ĉ(m1, pc1). Since it trivially holds
that m1.instructionAt(pc1) can not be a method invocation, the case fol-
lows from Lemma 5.20.

Induction Step n = k + 1: For n = k + 1 it is assumed that P ` C1 =⇒ · · · =⇒
Ck+1 =⇒ C ′

1, (H, (m1, pc′′1)) ∈ Ĉ(m1, pc1), (m1, pc′′1) yi pc′1, mj = m1 ⇒
(m1, pc′′1) 6y pcj for j ∈ {1, . . . , k + 1}. There are two sub-cases:

Sub-case m1.instructionAt(pc1) 6= invokevirtual: It follows that m1 =
m2 and thus that (m1, pc′′1) 6y pc2 and therefore (H, (m1, pc′′1)) ∈
Ĉ(m1, pc2). Thus the induction hypothesis can be applied to P `
C2 =⇒ · · · =⇒ Ck+1 =⇒ C ′

1 which results in t Ĉ(mj , pcj) = H for

j ∈ {2, . . . , k + 1} (and by assumption also t Ĉ(m1, pc1) = H) and

∀x : L̂↓2(m1, pc′1)(x) v L ⇒ L̂↓2(m1, pc2)(x) v L

and
∀i : Ŝ↓2(m1, pc′1)|

i v L ⇒ Ŝ↓2(m1, pc2)|
i v L

The case now follows from Lemma 5.20.

Sub-case m1.instructionAt(pc1) = invokevirtual: It follows from the se-
mantics that m1 6= m2 and from the definition of the analysis that
(H, (m1, pc′′1)) ∈ Ĉ(m2, 0). Since recursive method invocations are
not allowed (see Remark 5.8) and since the execution sequence termi-
nates by assumption the invoked method must return at some point
and thus there must exist an i ∈ {3, . . . , n} such that Ci.address =
(m2, pc′2) containing a return instruction: m2.instructionAt(pc′2) =
return t and such that Ci+1.address = (m1, pc1 + 1). The case now
follows from applying the induction hypothesis to P ` Ci+1 =⇒∗ C ′

1

and thus obtain

∀x : L̂↓2(m1, pc′1)(x) v L ⇒ L̂↓2(m1, pc1 + 1)(x) v L

158 Safety and Security

P ` C1 ≈A P ` C2

C ′′
1

∗

C ′′
2

∗C ′
1 ≈A C ′

2

Figure 5.12: Diamond property

and
∀i : Ŝ↓2(m1, pc′1)|

i v L ⇒ Ŝ↓2(m1, pc1 + 1)|i v L

From the definition of the analysis it follows that

∀x : L̂↓2(m1, pc1 + 1)(x) v L ⇒ L̂↓2(m1, pc1)(x) v L

and
∀i : Ŝ↓2(m1, pc1 + 1)|i v L ⇒ Ŝ↓2(m1, pc1)|

i v L

Note that the invoked method will execute all its instructions in a
high-context since, by definition of ‘vDOM ’, implicit flow can only be
removed in the method where they originate. Thus all local variables,
stack positions, and heap references modified by the invoked method
will all be marked as high-security and thus have no influence on the
low-equivalence.

This concludes the proof.

It is now possible to state and prove the main technical lemma of this section.
The lemma (called a “hexagon lemma” in [CKP03]) shows thatA-equivalence on
configurations is preserved by reduction or, more precisely, that A-equivalence
is preserved by sufficiently long reduction sequences. Figure 5.12 summarises
the lemma and illustrates the source of its name. Note that this proof works
on the assumption that programs are bytecode verified and thus that the stack
height is fixed for each instruction.

Lemma 5.22 (Diamond property). Let P ∈ Program, A ∈ ÂnalysisIFA,
C1, C2 ∈ Conf such that A |=IFA P and P ` C1 =⇒ C ′′

1 =⇒∗ 〈H ′′′
1 , 〈Ret v′′′

1 〉〉,
P ` C2 =⇒ C ′′

2 =⇒∗ 〈H ′′′
2 , 〈Ret v′′′

2 〉〉 with C1 ≈A C2 then ∃C ′
1, C

′
2 such that

P ` C ′′
1 =⇒∗ C ′

1, P ` C ′′
2 =⇒∗ C ′

2, and C ′
1 ≈A C ′

2.

Proof. By case analysis.

Case load: By assumption Ci = 〈Hi, 〈m, pc, Li, Si〉 :: SFi〉 and for a load

instruction this results in C ′′
i = 〈Hi, 〈m, pc + 1, Li, Li(x) :: Si〉 :: SFi〉 for

i = 1, 2. There are two sub-cases:

5.2 Secure Information Flow 159

Sub-case Ŝ↓2(m, pc + 1) = H: It is trivially true that

∀i : Ŝ↓2(m, pc + 1)|i v L ⇒ (L1(x) :: S1)|i ≡π (L2(x) :: S2)|i

since by assumption ∀i : Ŝ↓2(m, pc)|i v L ⇒ S1|i ≡π S2|i.

Sub-case Ŝ↓2(m, pc1 + 1) v L: By definition of the information flow anal-
ysis it follows that

t Ĉ(m, pc)t L̂↓2(m, pc)(x) v Ŝ↓2(m, pc + 1)|0

and thus L̂↓2(m, pc)(x) v L but by assumption it then follows that
L1(x) ≡π L2(x) and thus

∀i : Ŝ↓2(m, pc + 1)|i v L ⇒ (L1(x) :: S1)|i ≡π (L2(x) :: S2)|i

Thus C ′′
1 ≈A C ′′

2 . The lemma now holds by taking C ′
1 = C ′′

1 and C ′
2 = C ′′

2 .

Case new: It follows from the assumptions that C ′′
i = 〈Hi[loci 7→ oi], 〈m, pc +

1, Li, loci :: Si〉 :: SFi〉 such that loci /∈ dom(Hi) for i = 1, 2. Let π be
the map existing by the assumptions and define π′ = π[loc1 7→ loc2] then
H1(loc1).class = σ = H2(π(loc1)).class and since o1 and o2 are newly
instantiated objects of the same class:

∀f : H1(loc1).f = H2(loc2).f

Thus C ′′
1 ≈A C ′′

2 and the lemma holds.

Case if: By assumption Ci = 〈Hi, 〈m, pc, Li, vi :: wi :: Si〉 :: SFi〉 and thus
C ′′

i = 〈Hi, 〈m, pc′′i , Li, Si〉〉 where either pc′′i = pc + 1 or pc′′i = pc0 for
i = 1, 2. There are two sub-cases: pc′′1 = pc′′2 or pc′′1 6= pc′′2 . The former
is straightforward and only the latter is detailed here. Since pc′′1 6= pc′′2 it
must be the case that v1 6≡π v2 or w1 6≡π w2 and thus that

Ŝ↓2(m, pc)|0 t Ŝ↓2(m, pc)|1 = H

and thus by definition of the analysis that (H, (m, pc)) ∈ Ĉ(m, pc+1) and
(H, (m, pc)) ∈ Ĉ(m, pc0). Then by choosing C ′

1 and C ′
2 such that pc′1 = pc′2

(and thus the stack heights of C ′
1 and C ′

2 are equal as required by the
bytecode verifier) and (m, pc) yi pc′1, i.e., by choosing the first confluence
point of the two reduction sequences, it follows from lemmas 5.19 and 5.21
that C ′

1 ≈A C ′
2. Note that since only terminating execution sequences are

considered all instructions must have an immediate post-dominator.

Case invokevirtual: By assumption Ci = 〈Hi, 〈m, pc, Li, vi,1 :: · · · :: vi,|m0| ::
loci :: Si〉 :: SFi〉 and thus

C ′′
i = 〈Hi, 〈m

′′
i , 0, [0 7→ loci, 1 7→ vi,1, . . . , |m0| 7→ vi,|m0|], ε〉 :: SF ′′

i 〉

160 Safety and Security

If m′′
1 = m′′

2 the case is straightforward and follows from the definition of
the analysis. Therefore only the case m′′

1 6= m′′
2 is detailed here. From

m′′
1 6= m′′

2 it follows that loc1 6≡π loc2 and thus (H, (m, pc)) ∈ Ĉ(m′′
1 , 0)

and (H, (m, pc)) ∈ Ĉ(m′′
2 , 0). Now note that (m, pc) yi pc + 1 and define

C ′
i = 〈H ′

i, 〈m, pc + 1, L′
i, S

′
i〉 :: SFi〉. Since only terminating execution

sequences are considered it follows that

P ` C ′′
1 =⇒∗ C ′

1 and P ` C ′′
2 =⇒∗ C ′

2

It then follows from lemmas 5.19 and 5.21 that C ′
1 ≈A C ′

2.

The remaining cases are similar.

Having established the diamond property for A-equivalence all that remains is
to relate the security policy for a program to the security levels found by the
information flow analysis:

Definition 5.23 (Security compatible). For a program, P ∈ Program, such
that (K̂, Ĥ, L̂, Ŝ) |=CFA P the analysis, (Ĥ, L̂, Ŝ, Ĉ;DOM), is said to be security
compatible with P if

∀σ ∈ P.classes: ∀f ∈ σ.fields: f.level = L ⇒ Ĥ↓2(Ref σ)(f) = L

Finally, the main non-interference result can be stated and proved:

Theorem 5.24 (Non-Interference). Let P ∈ Program and A ∈ ÂnalysisIFA
such that A |=CFA P and A is security compatible with P . If C0 and C ′

0 are
initial configurations for P such that C0 ≈A C ′

0 and P ` C0 =⇒∗ 〈H, 〈Ret v〉〉
and P ` C ′

0 =⇒∗ 〈H ′, 〈Ret v′〉〉 then P is non-interfering, i.e., H ≈L H ′.

Proof. Follows directly by application of Lemma 5.22 and Definition 5.18.

The theorem shows that if the security level found by the information flow
analysis agrees with those of the given security policy for a given program, then
the program is non-interfering and thus no secret information can be leaked.

5.3 Summary

The analyses developed in this chapter fall within the main themes of this
dissertation: safety and security.

Section 5.1 presented a transaction flow analysis that computes an over-
approximation of the possible transaction depths in which a given instruction
is execute. The analysis is then used to verify that the use of transactions in
a program is well-formed and does not lead to runtime errors. In order to be
useful for such verification the analysis is made context dependent with trans-
action used as context. The transaction flow analysis was developed for Carmel
Core. In [HS05] the analysis is extended to cover Carmel Core with excep-
tions. The well-formedness of transactions is also examined in [PBB+04] as an

5.3 Summary 161

example of using the Java Modelling Language (JML), cf. [BCC+, JML05], to
specify different high-level security properties and automatically derive appro-
priate JML annotations. Verification of a property is then done using a theorem
prover on the JML annotations. For simple annotations, like those for nested
transactions, it is possible to obtain fully automated proofs. The JML approach
works at the level of Java Card, not Java Card bytecode (JCVML). The Java
Card transaction model in general is described in [Siv03a, Sun00] and [Oes99]
discusses various shortcomings and implementation strategies for transaction on
Java smart cards.

The information flow analysis presented in Section 5.2 tracks the possible
flow of information to and from instance fields. In particular the analysis ensures
that no instance field with a low security classification depends on any instance
field with a high security classification, i.e., that the high security fields are non-
interfering with the low security fields. By concentrating on information flow
between fields, rather than between local variables or method parameters and
return values, the notion of non-interference defined here differ from those used
in other work, cf. [KS02, ABF03, GS05]. This leads to a notion of security that
closer, at least conceptually, to that of [FSBJ97, SBCJ97]. The purpose being
to obtain a more flexible and practical definition of security easier to apply to
real-world problems and thereby meet some of the points raised in [RMMG01].

In [BCG+00] model checking is used to guarantee that no “illicit” applet
interactions can take place and thereby leak secret information. A type-system
for guaranteeing non-interference (and pointer-confinement) for a Java Card
like subset of Java is specified and proved correct in [BN02]. Similarly a (non-
standard) type-system is used in [BS99] to perform information flow analysis
and guarantee non-interference for the FOb1≤: object calculus. An overview of
language-based information flow security is given in [SM03] and [Rus92] gives a
thorough introduction to non-interference (both transitive and in-transitive).

162 Safety and Security

C h a p t e r 6

The Devil’s Advocate
Better the devil you know than the devil you don’t know

—English Proverb

The analyses presented in the previous chapters all work under the proviso
that the whole program to be analysed is known and available a priori. Such a
requirement is becoming increasingly untenable as more and more systems allow
or even encourage extensions to be added dynamically. This is especially true for
the Java Card platform that expressly allows and supports dynamic download of
applets onto a Java smart card even after it has been issued to an end user. The
flexibility afforded by these systems enables the development of highly adaptable
and versatile solutions where additional functionality is implemented by simply
adding new applets. However, that flexibility also greatly impacts the design and
development of analyses and tools for optimisation and verification since it has
become impossible, in general, to know the specific context in which an applet
may run. A analogous problem is encountered when analysing runtime libraries
where the “client” of a library is unknown beforehand. Therefore analysis of
systems that can be extended dynamically at runtime (and analysis of libraries)
presents a fundamental problem for solutions based on whole-program analysis.

In this chapter a so-called devil’s advocate (or hardest attacker), cf. [NN00,
Han04], is presented for a simplified control flow analysis. A devil’s advocate
is an abstract representation of (the analysis result of) all possible dynamic
extensions of the system under analysis (relative to a given analysis), i.e., the
abstract behaviour of all possible extensions as seen from the perspective of a
simplified control flow analysis. Consequently the devil’s advocate can be used
to represent the applets that are downloaded dynamically and thus it provides
a solution to the above mentioned problem. In the following this approach
is illustrated by applying it to the problem of leaking references discussed in
Section 4.2: by analysing a system in conjunction with the concomitant devil’s

164 The Devil’s Advocate

advocate it can be guaranteed that certain object references are never leaked to
any other applet. This approach is inspired by the work on firewall validation
in the ambient calculus [NNH02, NNHJ99].

6.1 Carmel Core and Program Extensions

To facilitate the presentation this chapter is based on Carmel Core, rather than
full Carmel. To further simplify the presentation packages are dispensed with
and thus an applet is comprised directly by a set of classes. The notion of sharing
defined in Section 4.2.3 is re-defined accordingly as are initial configurations:

Definition 6.1 (Initial configurations). For a program, P ∈ Program, the
configuration C ∈ RunConf is an initial configuration if and only if σ ∈ P.main,
mσ = σ.entry, σ.sharing = σ1 :: · · · :: σn, σi ∈ P.main for 1 ≤ i ≤ n, C =
〈H, 〈mσ, 0, [0 7→ locσ, 1 7→ locσ1

, . . . , n 7→ locσn
], ε〉 :: ε〉 and ∀τ ∈ P.main :

∃locτ : H(locτ) = τ .

Note that since Carmel Core does not include instructions for manipulating the
static heap it is not included in the semantic configurations, cf. Section 2.6.

Remark 6.2 (Syntactic conventions). Figure 6.1 shows an example Carmel
Core program that illustrates the syntactic conventions used in this chapter:

1. All classes are main classes.

2. The entry point of class σ is called m σ, e.g., Bob.entry = m Bob.

3. Parameters to entry point methods indicate sharing, e.g., m Alice(Bob)

means Alice.sharing = Bob.

Example 6.3. In Figure 6.1 an example Carmel program, PAB, is shown that
illustrates a typical situation for Java Card applications: two applets (repre-
sented by the classes Alice and Bob respectively) wish to communicate in the
form of a method invocation from Alice to Bob. The method invocation requires
Alice to have access to an object reference to Bob which is obtained by sharing.
As noted in Remark 6.2 Alice uses a reference parameter to Bob in the entry
method m Alice to indicate that it wants to obtain a reference to Bob through
sharing.

Note that by passing an Alice-reference on to Bob, Alice grants Bob access
to Alice. Once the two applets are done communicating Alice wants to make
sure that Bob does not leak the Alice-reference to any other applets.

The analyses of the previous chapters were developed with the underlying
assumption that the whole program is available a priori for analysis. As men-
tioned in the introduction to this chapter such as assumption is rather restrictive
for a platform like JCVML where post-issuance dynamic download of applets is
supported directly by the platform. In this chapter that restriction is lifted and
a control flow analysis is developed to handle dynamic program extensions.

First the semantics must be extended to cover program extensions. For the
present purpose a relatively simple definition will suffice:

6.1 Carmel Core and Program Extensions 165

class Alice { class Bob {

void m_Alice(Bob) { Object cache;

0: load r 1

1: load r 0 void m_Bob() {

2: invokevirtual Bob.update(Object) 0: return

3: return }

} void update(Object) {

/* ... */ 0: load r 0

} 1: load r 1

2: putfield Bob.cache

/* ... */

3: return

}

}

Figure 6.1: Example program PAB

class Mallet {

void m_Mallet(Bob) {

0: load r 1

1: getfield Bob.cache

2: return

}

}

Figure 6.2: “Malicious” program
PM .

class Charlie {

void m_Charlie(Bob) {

0: load r 1

1: invokevirtual Bob.m_Bob()

2: return

}

}

Figure 6.3: “Innocuous” program
PC .

Definition 6.4 (Program extension). For P,Q ∈ Program such that ∀σ ∈
P.classes:∀τ ∈ Q.classes:σ 6� τ , P.sharing = σ1 :: · · · :: σm ⇒ σi ∈ P.main

for 1 ≤ i ≤ m, and Q.sharing = τ1 :: · · · :: τn ⇒ τj ∈ P.main ∪ Q.main for
1 ≤ j ≤ n, the extension of P with Q, written P 〈Q〉 ∈ Program, is defined as
P 〈Q〉.classes = P.classes ∪Q.classes.

A program extension is the union of the classes defined in the program and its
extension with the added requirement that none of the main programs classes
inherit from any of the classes in the extension, i.e., the class hierarchy of the
main program can not be changed only extended. Note that the methodLookup

does not need to be changed since it works “bottom up”, i.e., from classes and
methods up to packages and programs.

Example 6.5. Figures 6.2 and 6.3 each show an applet used to extend the
program PAB in Figure 6.1. The security properties of the extended programs
PABC = PAB〈PC〉 and PABM = PAB〈PM 〉 will be examined in the next section.

166 The Devil’s Advocate

6.2 Leaking References

Intuitively a class, τ , is said to have been leaked to another class, σ, if there is
an object of class σ that contains either in an instance field or in the local heap
or on the operand stack a reference to τ . Formalising this intuition v A S is
used as a shorthand for an operand stack S ∈ Stack if S = v1 :: · · · :: vn and
∃i: v = vi. Similarly v A L is written for L ∈ LocHeap if ∃x ∈ dom(L):L(x) = v.
It can now formally be defined when a class has been leaked in a given semantic
configuration:

Definition 6.6 (Leaked). Given a configuration 〈H,SF 〉 ∈ Conf a class τ is
said to be leaked to class σ in 〈H,SF 〉, written 〈H,SF 〉 ` τ σ, if and only
if ∃locτ :∃locσ:∃f :H(locτ).class = τ ∧H(locσ).class = σ ∧H(locσ).f = locτ or
∃locτ :∃〈m, pc, L, S〉 ∈ SF :H(locτ).class = τ ∧m.class = σ ∧ (locτ A S ∨ locτ A
L).

This definition can then be extended to cover program executions:

Definition 6.7 (Leaks). A program P ∈ Program is said to leak the class τ
to class σ, written P ` τ σ, if and only if there exists configurations C0

and C such that C0 is an initial configuration for P and P ` C0 =⇒∗ C with
C ` τ σ.

The notation P ` τ 6 σ denotes that program P does not leak τ to σ.

Example 6.8. By executing the program PABM , i.e., program PAB in Fig-
ure 6.1 extended with program PM from Figure 6.2, in such a way that both
Alice and Mallet may communicate with Bob: PABM .sharing(Alice) = Bob

and PABM .sharing(Mallet) = Bob. Then by executing the program it is easy
to see that PABM ` Alice Mallet. The leak is made possible because Bob

caches the Alice-reference in an instance field that is suddenly accessible to and
read by the program extension Mallet.

Consider on the other hand program PC that does not read the cache field
of Bob (even though is has access to do so) and therefore, intuitively PABC `
Alice 6 Charlie. However, in order to prove that Alice is not leaked to
Charlie all possible program executions must be tried and checked.

It should be evident that since the control flow analysis defined in Section 3.2
specifies a conservative approximation of all possible executions of a program
it can be used in an obvious way to check if a given program, e.g., PABC in the
above example, leaks a particular reference by inspecting the analysis results.
This is discussed further in Section 6.3.3 below.

6.3 Control Flow Analysis

In this section a special control flow analysis is designed for Carmel Core.
While it is somewhat simpler and less precise than the analysis defined in Sec-
tion 3.2 it has the additional feature of being parameterised on two equiva-
lence relations: one on classes, ≡C⊆ Class × Class, and the other on methods,

6.3 Control Flow Analysis 167

≡M⊆ Method ×Method. The corresponding characteristic maps takes a class
or a method respectively to its equivalence class:

[·]C : Class→ Class/≡C
[·]M : Method→ Method/≡M

In a later section these equivalence relations are used to partition the infinite
sets of classes and methods into a finite number of equivalence classes thereby
enabling us to define a finite devil’s advocate. Moreover, the partitioning can
be used to fine tune the precision of the analysis: by choosing fewer equivalence
classes the less precise the analysis and vice versa.

6.3.1 Abstract Domains

The abstract domains are quite similar to those of previous analyses, however,
modified to take the equivalence relations into account.

For abstract object references the equivalence relation over classes is incor-
porated by taking the set of equivalence classes to be the domain of abstract
object references:

ObjRefDA = Class/≡C

Abstract object references are written [Ref σ]C .
The domains for abstract values are changed to reflect the new definition of

abstract object references:

ValDA = ObjRefDA + {INT} V̂alDA = P(ValDA)

A very simple representation is chosen for abstract objects:

ÔbjectDA = V̂alDA

In contrast to previous definitions the above does not distinguish between the
different instance fields of an object and simply represents an object as the union
of all its fields.

The abstract heap is updated accordingly:

ĤeapDA = ÔbjRefDA → ÔbjectDA

In contrast to previous analyses where an abstract local heap is assigned to
each instruction in a method, this analysis only tracks local heaps for each of
the equivalence classes over the domain of methods:

̂LocHeapDA = Method/≡M
→ V̂alDA

And similarly for operand stacks:

ŜtackDA = Method/≡M
→ V̂alDA

Combining all of the above results in the following domain for the devil’s advo-
cate analysis:

ÂnalysisDA = ĤeapDA × ̂LocHeapDA × ŜtackDA

In the next section the specification of a control flow analysis based on the above
abstract domains is defined and discussed.

168 The Devil’s Advocate

(Ĥ, Ŝ, L̂) |=DA (m, pc) : new σ iff {[Ref σ]C} ⊆ Ŝ([m]M)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : load t x iff L̂([m]M) ⊆ Ŝ([m]M)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : store t x iff Ŝ([m]M) ⊆ L̂([m]M)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : push t n iff {INT} ⊆ Ŝ([m]M)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : pop n iff true

(Ĥ, Ŝ, L̂) |=DA (m, pc) : numop op t iff true

(Ĥ, Ŝ, L̂) |=DA (m, pc) : if t cmp goto pc0 iff true

(Ĥ, Ŝ, L̂) |=DA (m, pc) : getfield f

iff ∀[Ref σ]C ∈ Ŝ([m]M): Ĥ([Ref σ]C) ⊆ Ŝ([Ref σ]C)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : putfield f

iff ∀[Ref σ]C ∈ Ŝ([m]M): Ŝ([Ref σ]C) ⊆ Ĥ([Ref σ]C)

(Ĥ, Ŝ, L̂) |=DA (m, pc) : return t iff true

(Ĥ, Ŝ, L̂) |=DA (m, pc) : invokevirtual m0

iff ∀[Ref σ]C ∈ Ŝ([m]M):
∀[mv]M ∈ methodLookup/≡(m0, [Ref σ]C):

Ŝ([m]M) ⊆ L̂([mv]M)

[mv]M .returnVal ⇒ Ŝ([mv]M) ⊆ Ŝ([m]M)

Figure 6.4: Flow Logic specification for devil’s advocate analysis

6.3.2 Flow Logic Specification

The judgements of the devil’s advocate analysis are of the form:

(Ĥ, Ŝ, L̂) |=DA (m, pc) : instr

where (Ĥ, Ŝ, L̂) ∈ ÂnalysisDA, (m, pc) ∈ Addr, and instr ∈ Instruction. The
full Flow Logic specification is given in Figure 6.4 and a few of the clauses are
examined in detail in the following.

The new instruction allocates space for an object in the heap and puts a
reference to that space on top of the stack. In the analysis only the latter is
modelled:

{[Ref σ]C} ⊆ Ŝ([m]M)

Note that since this analysis does not model stack positions and merges the
abstract stack for all instructions in a given method there is no need to copy
forward the stack as was the case for the previous analyses. Similarly for local
heaps.

Modelling the load instruction in this analysis simply means copying the
entire abstract local heap into the abstract stack:

L̂([m]M) ⊆ Ŝ([m]M)

6.3 Control Flow Analysis 169

Conversely for the store instruction:

Ŝ([m]M) ⊆ L̂([m]M)

Since push is only allowed to push numerical constants, and not the null-
reference, the analysis of push is reduced to the following:

{INT} ⊆ Ŝ([m]M)

The simple structure of the abstract stack, i.e., the lack of stack positions, means
that the pop instruction has no discernible effect in the analysis. This is specified
by defining the analysis of pop to be true, meaning that this instruction does
not add any requirements on the analysis result. A similar argument holds for
the numop, if, and return instructions.

The analyses designed earlier were able to leverage the methodLookup func-
tion, defined in the semantics, when analysing the invokevirtual instruction.
However, the introduction of equivalence relations over methods and classes
makes the direct use of methodLookup impossible. Instead an abstract model
of dynamic dispatch must be modelled taking the equivalence relations into
account:

methodLookup/≡(m0, [σ]C) =

{[mv]M |mv = methodLookup(m0, σ
′), σ′ ∈ [σ]C }

(6.1)

The methodLookup≡ function is a trivial over-approximation of the semantic
methodLookup function in the sense that mv = methodLookup(m0, σ) implies
[mv]M ∈ methodLookup/≡(m0, [σ]C).

This, however, introduces another problem concerning the return values of
methods: it is no longer possible to directly check if a given method has a
return type different from void. Again an over-approximation is defined for the
underlying semantic functions:

[m]M .returnVal =

{
true if ∃m′ ∈ [m]M :m′.returnType 6= void

false otherwise
(6.2)

With the above auxiliary functions in place the analysis of invokevirtual is
straightforward. First all object references on the stack are located

∀[Ref σ]C ∈ Ŝ([m]M): . . .

these are then used to look up the actual method to be invoked:

∀[mv]M ∈ methodLookup/≡(m0, [Ref σ]C): . . .

Once a method is located the arguments are transferred to the local heap of the
invoked method:

Ŝ([m]M) ⊆ L̂([mv]M)

and finally any return values are copied back:

[mv]M .returnVal ⇒ Ŝ([mv]M) ⊆ Ŝ([m]M)

170 The Devil’s Advocate

In Figure 6.4 the full Flow Logic specification is shown.
For programs the specification is extended to handle the sharing introduced

in initial configurations:

(Ĥ, Ŝ, L̂) |=DA P iff
∀(m, pc) ∈ P.addresses:

m.instructionAt(pc) = instr ⇒ (Ĥ, Ŝ, L̂) |=DA (m, pc) : instr
∀σ ∈ P.main:

mσ = σ.entry ⇒ [Ref σ]C ∈ L̂([mσ]M)

σ.sharing = σ1 :: · · · :: σn ⇒ {[Ref σ1]C , . . . , [Ref σn]C} ⊆ L̂([mσ]M)

6.3.3 Semantic Correctness

Proving the semantic correctness of the devil’s advocate analysis follows the
pattern of the previous analyses: first representation functions and correctness
relations are defined; these are then used to establish a subject reduction prop-
erty for the analysis.

All numbers are represented by the same abstract value:

βDA,Num(n) = {INT} for n ∈ Num

Carmel Core does not support arrays and so only object references need be
represented:

βH
DA,Ref(loc) = {[Ref σ]C} if H(loc).class = σ

Basic values in Carmel Core comprises numbers and object references:

βDA,Val(v) =

{
βDA,Num(v) if v ∈ Num

βDA,Ref(v) if v ∈ Ref

As a consequence of the simple abstract domains objects are represented as a
single abstract value, namely the union of all its fields:

βH
DA,Object(o) =

⋃

f∈dom(o)

βH
DA,Val(o.f)

Local heaps are also represented as the union of the value of all the local vari-
ables:

βH
DA,LocHeap(L) =

⋃

x∈dom(L)

βH
DA,Val(L(x))

Likewise, all stack positions are merged:

βH
DA,Stack(S) =

⋃

1≤i≤|S|

βH
DA,Val(S|i)

The representation function for heaps is very similar to previous definitions:

βDA,Heap(H)([Ref σ]C) =
⋃

loc ∈ dom(H)

βH
DA,Val(loc) = [Ref σ]C

βH
DA,Object(H(loc))

6.3 Control Flow Analysis 171

With the above representation functions in place the correctness relations are
easily defined and contain no surprises:

(m, pc, L, S) RH
DA,Frame (L̂, Ŝ) iff βH

DA,LocHeap(L) v L̂([m]M) ∧

βH
DA,Stack(S) v Ŝ([m]M)

SF RH
DA,CallStack (L̂, Ŝ) iff ∀i ∈ {1, . . . , |SF |} : SF |i R

H
DA,Frame (L̂, Ŝ)

〈H,SF 〉 RDA,Conf (Ĥ, Ŝ, L̂) iff βDA,Heap(H) v Ĥ ∧

SF RH
DA,CallStack (L̂, Ŝ)

This then allows us to state and prove the soundness of the analysis:

Theorem 6.9 (Soundness). If P ∈ Program such that (Ĥ, Ŝ, L̂) |=DA P , and
C1, C2 ∈ Conf with P ` C1 =⇒ C2 then

C1 RDA,Conf (Ĥ, Ŝ, L̂) ⇒ C2 RDA,Conf (Ĥ, Ŝ, L̂)

Proof. Trivial adaptation of the proof for Theorem 3.14.

Note that for the proof Lemma 3.11 can be re-used without modification since
it trivially covers Carmel Core.

As a simple consequence of the above theorem it is possible to prove the
corollary below showing that the control flow analysis can be used to guarantee
that a given program does not leak references. For notational convenience define
[m]M .class = {[σ]C |m

′ ∈ [m]M , σ ∈ m′.class }:

Corollary 6.10. Let P ∈ Program such that (Ĥ, Ŝ, L̂) |=DA P . Assume that
[Ref τ]C /∈ Ĥ([Ref σ]C) and for all [mv]M such that [σ]C ∈ [mv]M .class it is the
case that [Ref τ]C /∈ (Ŝ([mv]M) ∪ L̂([mv]M)) then P ` τ 6 σ.

The corollary shows that if an abstract reference to τ is not found in any heap
location belonging to σ or in any local heap or operand stack of a method that
is a member of σ, then τ is not leaked to σ.

Example 6.11. Using the control flow analysis on the example programs PABM

and PABC results in analyses such that (ĤABM , ŜABM , L̂ABM) |=DA PABM and
(ĤABC , ŜABC , L̂ABC) |=DA PABC . Below the analysis results for the classes
Mallet and Charlie are shown. The corresponding results for Alice and Bob

are of no consequence, cf. Corollary 6.10:

ŜABM ([Mallet.m Mallet]M) = {[Ref Alice]C , [Ref Bob]C , [Ref Mallet]C}

L̂ABM ([Mallet.m Mallet]M) = {[Ref Bob]C , [Ref Mallet]C}

Ĥ([Ref Mallet]C) = ∅

ŜABC([Charlie.m Charlie]M) = {[Ref Bob]C , [Ref Charlie]C}

L̂ABC([Charlie.m Charlie]M) = {[Ref Bob]C , [Ref Charlie]C}

Ĥ([Ref Charlie]C) = ∅

172 The Devil’s Advocate

Since [Ref Alice]C ∈ Ŝ([Mallet.m Mallet]M) it can be deduced that possibly
PABM ` Alice Mallet which is consistent with earlier observations. On
the other hand Corollary 6.10 can be used to conclude that PABC ` Alice 6
Charlie.

6.4 The Devil’s Advocate

In this section a solution is presented to a problem posed earlier: how to guaran-
tee that a given applet does not leak object references, regardless of what other
malicious applets run in the same environment. In Section 6.2 it was discussed
how the control flow analysis could be used to verify that a given set of applets
running in a given environment does not leak references, which is not sufficient
to deal with applets that are loaded after this analysis has been performed.
Thus a different approach is needed. Following [Han04, NNH02, NN00] the
devil’s advocate (or hardest attacker) with respect to the control flow analysis
defined in this chapter is identified. The devil’s advocate is an attacker with the
property that is no less “effective” than any other attacker and therefore, if the
devil’s advocate cannot perpetrate a successful attack then no other attacker
can. Rather than try and find a finite characterisation of the infinitely many
possible attackers (possibly in the form of a “universal” Carmel program) the
key observation is that it only needs to be a devil’s advocate relative to the con-
trol flow analysis. This has the major advantage that irrelevant details in the
semantics can be abstracted away and thereby greatly facilitate the construction
of the devil’s advocate.

The basic idea behind the devil’s advocate presented here is that, modulo
names, a program only gives rise to finitely many “types” of Flow Logic clauses
as determined by the instructions of the program. It is therefore possible to
specify a finite set of clauses that contains or implies all the clauses a given
program may give rise to (again modulo names). Such a set of clauses is then
called the devil’s advocate. Since the clauses do not rely on particular names
that are used, but rather on the equivalence classes of names, the equivalence
relations on classes and methods can be used to handle the possibly infinitely
many names used in an attacker by simply choosing an equivalence relation that
partitions names into finitely many equivalence classes.

In order to be able to define when an object reference is leaked, it is necessary
to define a sharing policy that specifies which classes are allowed to be shared
and which classes (and methods) that should not be shared (or leaked):

Definition 6.12 (Sharing Policy). A sharing policy is a map, S:Class ∪
Method → {private, shareable, public} that partitions classes and methods into
private, shareable, and public in such a way that

∀σ ∈ Class : ∀m ∈ σ.methods : S(m) = public ⇒ S(σ) = public

Thus, a sharing policy does not allow public classes to contain (or inherit) non-
public methods. The restriction on inherited methods can be removed by using

6.4 The Devil’s Advocate 173

static inheritance where inherited methods are syntactically duplicated in the
inheriting class instead of being looked up dynamically.

A program, P ∈ Program, that only defines and creates public classes and
methods is called a public program:

Definition 6.13 (Public Program). Given a sharing policy, S, a program,
P ∈ Program, is said to be a public program with respect to S if the following
holds:

1. ∀σ ∈ P.classes : S(σ) = public

2. ∀m ∈ P.methods : S(m) = public

3. ∀(m, pc) ∈ P.addresses : m.instructionAt(pc) = new σ ⇒ S(σ) = public

4. ∀σ ∈ P.main : σ.sharing = σ1 :: · · · :: σn ⇒ ∀i ∈ 1, . . . , n : S(σi) =
shareable

The set of public programs with respect to S is denoted ProgramS
• .

A special equivalence relation, called the discrete equivalence, can now be defined
with the intention of partitioning the names in a program in accordance with
the sharing policy:

Definition 6.14 (Discrete Equivalence). Let P ∈ Program and S be a shar-
ing policy. The discrete equivalence relations on classes and methods, written
[·]SC and [·]SM respectively, is then defined as follows

∀σ ∈ Class : S(σ) = private ⇒ [σ]SC = {σ}
∀σ ∈ Class : S(σ) = shareable ⇒ [σ]SC = {σ}
∀σ ∈ Class : S(σ) = public ⇒ [σ]SC = •C

∀m ∈ Method : S(σ) = private ⇒ [m]SM = {σ}
∀m ∈ Method : S(σ) = shareable ⇒ [m]SM = {σ}
∀m ∈ Method : S(σ) = public ⇒ [m]SM = •M

The following lemma characterises the interaction of method lookups with pro-
gram extensions:

Lemma 6.15. Given Q ∈ ProgramS
• for a sharing policy S. Then the following

holds:

∀m ∈ Method: : ∀σ ∈ Q.classes:
methodLookup/≡(m, [Ref σ]SC) = {•M}

Proof. Follows from the fact that Q is a public program and therefore, by def-
inition, does not define or inherit non-public methods. Any method looked up
in a (public) class of Q must therefore be public.

174 The Devil’s Advocate

Based on the above lemma it is now possible to entirely remove the dependence
on actual method names in the analysis by replacing methodLookup/≡ with a
conservative approximation of it:

̂methodLookup/≡([Ref σ]SC) ={ ⋃
m ∈ P.methods methodLookup/≡(m, [Ref σ]SC) if [Ref σ]SC 6= •C
{•M} otherwise

The abstract method lookup simply merges all the methods of all the classes
belonging to the equivalence class for a given object reference. In other words:
a method lookup for a given reference will return a conservative estimate of
all the methods accessible through the given object reference, regardless of the
method names and thus the dependency on method names is dispensed with.
This approach is sufficient for the intended use, where a private program is
extended with a public program, because a public program can only define (and
inherit) public methods. It is possible to accommodate a more relaxed notion of
public programs that are allowed to inherit (but not define) non-public methods.
A more general, and precise, alternative is to completely dispense with the
dynamic method lookup and replace it by static inheritance, i.e., syntactically
duplicating inherited method definitions and thereby obviating the need for the
methodLookup/≡ function. Using static inheritance would, however, require
changing the source program which may not be acceptable in all situations.

The following lemma formalises that the abstract method lookup is a sound
approximation of the concrete method lookup used in the semantics:

Lemma 6.16. Let S be a sharing policy and [·]SC and [·]SM , the corresponding
discrete equivalence. Then for all σ ∈ Class and m0 ∈ Method

∀[Ref σ]SC : ∀m0 :

methodLookup/≡(m0, [Ref σ]SC) ⊆ ̂methodLookup/≡([Ref σ]SC)

Proof. For all σ such that S(σ) 6= public it is the case that [Ref σ]C 6= •C and
the result follows trivially from the definition. For σ with S(σ) = public the
class σ, by definition of a public class, does not contain any non-public methods
and the result follows, cf. Lemma 6.15.

This leads to the formal definition of the devil’s advocate below. Note how the
individual clauses are very similar to the corresponding clauses for the analysis.
This suggests the possibility that the construction of a devil’s advocate for a
given analysis can be done in a systematic, if not automatic, manner.

Definition 6.17 (The Devil’s Advocate). Let P ∈ Program and S a shar-
ing policy and let [·]SC and [·]SM be the discrete equivalence. Then the Devil’s

6.4 The Devil’s Advocate 175

Advocate with respect to P and S is then defined as:

(Ĥ, Ŝ, L̂) |=DA D
S
P

iff {•C} ⊆ Ŝ(•M) ∧

L̂(•M) ⊆ Ŝ(•M) ∧

Ŝ(•M) ⊆ L̂(•M) ∧

{INT} ⊆ Ŝ(•M) ∧

∀[Ref σ]SC ∈ Ŝ(•M) : Ĥ([Ref σ]SC) ⊆ Ŝ(•M) ∧

∀[Ref σ]SC ∈ Ŝ(•M) : Ŝ(•M) ⊆ Ĥ([Ref σ]SC) ∧

∀σ ∈ P.main : S(σ) = shareable ⇒
{
[Ref σ]SC

}
⊆ L̂(•M) ∧

∀[Ref σ]SC ∈ Ŝ(•M) :

∀[mv]SM ∈ ̂methodLookup/≡([Ref σ]SC)

Ŝ(•M) ⊆ L̂([Ref σ]SC)

[mv]SM .returnVal ⇒ Ŝ([mv]SM) ⊆ Ŝ(•M)

The following lemma establishes that the devil’s advocate defines an acceptable
analysis for all public programs:

Lemma 6.18. Let P ∈ Program and let S be a sharing policy. Then ∀Q ∈
ProgramS

• : (Ĥ, Ŝ, L̂) |=DA D
S
Q ⇒ (Ĥ, Ŝ, L̂) |=DA Q.

Proof. By definition of (Ĥ, Ŝ, L̂) |=DA Q it must be shown that:

∀σ ∈ Q.main :

mσ = σ.entry ⇒ [Ref σ]C ∈ L̂([mσ]M)

σ.sharing = σ1 :: · · · :: σn ⇒ {[Ref σ1]C , . . . , [Ref σn]C} ⊆ L̂([mσ]M)

(6.3)

and

∀(m, pc) ∈ Q.addresses :

m.instructionAt(pc) = instr ⇒ (Ĥ, Ŝ, L̂) |=DA (m, pc) : instr
(6.4)

However, since Q is a public program it is the case that for all σ ∈ Q.classes :
[Ref σ]C = •C and [mσ]M = •M . Furthermore for all the σi it holds that
S(σi) = shareable and thus equation (6.3) is equivalent to

∀σ ∈ Q.main :

mσ = σ.entry ⇒ {•C} ⊆ L̂(•M)

σ.sharing = σ1 :: · · · :: σn ⇒ {[Ref σ1]C , . . . , [Ref σn]C} ⊆ L̂(•M)

which easily follows from (Ĥ, Ŝ, L̂) |=DA D
S
Q.

The requirements of equation (6.4) are shown by case analysis on the in-
struction in Q:

Case new: Assume that (m, pc) ∈ Q.addresses : m.instructionAt(pc) = new σ.
Since Q is a public program it follows from Definition 6.13 that S(m) =
public and S(σ) = public, thus thus [m]SM = •M and [σ]SC = •C . From

(Ĥ, Ŝ, L̂) |=DA D
S
Q it follows that {•C} ⊆ Ŝ(•M). In combination this

implies that (Ĥ, Ŝ, L̂) |=DA (m, pc) : new σ.

176 The Devil’s Advocate

Case invokevirtual: Assume m.instructionAt(pc) = invokevirtual m0 for
some (m, pc) ∈ Q.addresses . Since Q is a public program it follows that
[m]SM = •M . From (Ĥ, Ŝ, L̂) |=DA D

S
Q it follows that

∀[Ref σ]SC ∈ Ŝ(•M) :

∀[mv]SM ∈ ̂methodLookup/≡([Ref σ]SC) :

Ŝ(•M) ⊆ L̂([Ref σ]SC)

[mv]SM .returnVal ⇒ Ŝ([mv]SM) ⊆ Ŝ(•M)

Using Lemma 6.16 the above implies

∀[Ref σ]SC ∈ Ŝ(•M) :
∀[mv]SM ∈ methodLookup/≡(m0, [Ref σ]SC) :

Ŝ(•M) ⊆ L̂([Ref σ]SC)

[mv]SM .returnVal ⇒ Ŝ([mv]SM) ⊆ Ŝ(•M)

which is equivalent to (Ĥ, Ŝ, L̂) |=DA invokevirtual m0.

The remaining cases are analogous or trivial.

The main theorem for the devil’s advocate analysis can now be stated and
proved:

Theorem 6.19. Let P ∈ Program and S a sharing policy then (Ĥ, Ŝ, L̂) |=DA P
and (Ĥ, Ŝ, L̂) |=DA DS implies that ∀Q ∈ ProgramS

• : (Ĥ, Ŝ, L̂) |=DA P 〈Q〉.

Proof. Follows from lemmas 6.16 and 6.18.

It is an immediate corollary that the control flow analysis and the devil’s ad-
vocate can be used to verify that a (non-public) program does not leak certain
references to any public program:

Corollary 6.20. Let P ∈ Program and let S be a sharing policy such that
(Ĥ, Ŝ, L̂) |=DA P and (Ĥ, Ŝ, L̂) |=DA DS . Assume that [Ref τ]SC /∈ Ĥ([Ref σ]SC)
and for all [m]SM such that [Ref σ]SC ∈ [m]SM .class implies that [Ref σ]SC /∈

(Ŝ([m]SM) ∪ L̂([m]SM)) then ∀Q ∈ ProgramS
• : P 〈Q〉 ` τ 6 σ.

In other words: if τ is not leaked to σ when analysing P in conjunction with
the devil’s advocate, then P will never leak τ to σ in any public program Q.

Example 6.21. In Figure 6.5 an analysis result, (ĤAB , ŜAB , L̂AB), for the
example program PAB, i.e., (ĤAB , ŜAB , L̂AB) |=DA PAB. As can be seen the
analysis is very imprecise. However, the results do indicate that the program
may leak an Alice-reference to a public program:

[Ref Alice]SC ∈ (Ŝ(•M) ∩ L̂(•M) ∩ Ĥ(•C))

This is consistent with earlier observations.

6.4 The Devil’s Advocate 177

ŜAB([Alice.m Alice]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ŜAB([Bob.update]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ŜAB(•M) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

L̂AB([Alice.m Alice]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

L̂AB([Bob.m Bob]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

L̂AB([Bob.update]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

L̂AB(•M) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ĤAB([Ref Alice]SC) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ĤAB([Ref Bob]SC) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ĤAB(•C) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

Figure 6.5: Analysis result for PAB in conjunction with the devil’s advocate

class Alice { class Bob {

void m_Alice(Bob) { void m_Bob() {

0: load r 1 0: return

1: load r 0 }

2: invokevirtual Bob.update(Object) void update(Object) {

3: return /* ... */

} 0: return

/* ... */ }

} }

Figure 6.6: Program PAB′ : a corrected version of PAB

Example 6.22. In Figure 6.6 a corrected version of program PAB is shown.
The update method of the Bob class no longer caches the Alice-reference.

The corresponding analysis result, (ĤAB′ , ŜAB′ , L̂AB′) |=DA PAB′ , for the
corrected program in conjunction with the devil’s advocate can be seen in Fig-
ure 6.7. The main feature of the analysis result is that no Alice-reference can
be leaked to a public program:

(Ŝ(•M) ∪ L̂(•M) ∪ Ĥ(•C)) ∩
{
[Ref Alice]SC

}
= ∅

6.4.1 Implementation

Both the simplified control flow analysis and the devil’s advocate has been im-
plemented in a prototype analysis and verification tool. The simplified control
flow analysis was implemented by adding relevant lookups (into encodings of
the equivalence relations) to the implementation of the “normal” control flow

178 The Devil’s Advocate

ŜAB′([Alice.m Alice]SM) =
{
[Ref Alice]SC , [Ref Bob]SC

}

ŜAB′([Bob.update]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

ŜAB′(•M) =
{
[Ref Bob]SC , •C

}

L̂AB′([Alice.m Alice]SM) =
{
[Ref Alice]SC , [Ref Bob]SC

}

L̂AB′([Bob.m Bob]SM) =
{
[Ref Bob]SC , •C

}

L̂AB′([Bob.update]SM) =
{
[Ref Alice]SC , [Ref Bob]SC , •C

}

L̂AB′(•M) =
{
[Ref Bob]SC , •C

}

ĤAB′([Ref Bob]SC) =
{
[Ref Bob]SC , •C

}

ĤAB′(•C) =
{
[Ref Bob]SC , •C

}

Figure 6.7: Analysis result for PAB′ and the devil’s advocate

analysis described in Section 3.4. The equivalence relations were encoded “man-
ually” for each example program. The prototype implementation was used to
obtain the analysis result in Example 6.22.

6.5 Summary

In this chapter the devil’s advocate was developed for a simplified control flow
analysis and was shown to adequately simulate the behaviour of all public pro-
grams and in particular all dynamically downloaded applets. The devil’s advo-
cate was used to verify that certain sensitive object references were not leaked
to any public program including any applets loaded at a later stage. The gen-
eral technique of defining a devil’s advocate can be adapted to other Flow Logic
based analyses and properties in a straightforward manner.

In [BGH02] a proof system is developed in which it is possible to decompose
a global security property (or basically any property that can be formulated
in the modal µ-calculus) into local properties that must be proved (or model
checked) for the individual applets resulting in a compositional proof system
capable of handling dynamically downloaded applets. The local properties can
be model checked whereas the proof of correct decomposition must be proved by
hand. These ideas are further studied in [HGSC04] where the notion of maximal
applet is introduced as a way to lift some of the restrictions of the earlier paper,
in particular it is now possible to automatically very (by model checking) that
the decomposition is correct thus allowing a fully automated verification. The
maximal applet is conceptually very similar to the devil’s advocate albeit in a
rather different setting (model checking).

A different approach to solving a related problem, library analysis, is taken
in [BBFG04]. Here an access control sensitive control flow analysis for the Com-
mon Language Runtime (CLR) is developed. The analysis is used to guarantee

6.5 Summary 179

that no untrusted code can ever obtain sufficient runtime permissions to reach
certain sensitive methods directly. In this approach there is no equivalent of a
devil’s advocate; it is instead an intrinsic part of the analysis which makes it
difficult to assess how hard it would be to adapt the technique to other analyses
and properties.

180 The Devil’s Advocate

C h a p t e r 7

Conclusions
You can’t trust code that you did not totally create yourself.

(Especially code from companies that employ people like me.)
—Ken Thompson in [Tho84]

In the preceding chapters the Carmel language, a low-level stack-based Java
Card bytecode-like language, was introduced and its semantics formally spec-
ified. A number of analyses were developed and formally proved correct with
respect to the semantics and then used as basis for statically verifying and
validating a selection of safety and security properties. In the remainder of the
chapter related work is briefly discussed and it is argued how this work supports
the main thesis of the dissertation.

7.1 Related Work

In the summary section of each chapter the most relevant directly related work
is discussed. Here the focus is on related general approaches to verifying safety
and security properties.

The work in this dissertation grew from the SecSafe project whose goal
was to investigate the use of static analysis to verification and validation of
security properties of JCVML. See [Siv03b] for a comprehensive description
and a publication list.

Java smart cards were also the target for the VerifiCard project, cf. [ver05].
The project mainly focused on using model checking and theorem proving rather
than static analysis. However, the project verified the correctness of not only
individual applets but also important components of the Java Card infrastruc-
ture, e.g., the bytecode verifier and the virtual machine. Both Java Card proper
and JCVML were targeted in the VerifiCard project.

182 Conclusions

The KeY project, cf. [key05], uses a commercial CASE tool as a starting
point. The tool is then enhanced with support for formal specification and ver-
ification. The tool for verification is a theorem prover based on a variant of dy-
namic logic, cf. [HKT00], specifically tailored to Java Card programs, cf. [Bec01].
The specialised dynamic logic is used to specify both an abstract model of the
target applet and the property to be proved.

By annotating Java Card programs with extra information, e.g., precon-
ditions and postconditions for methods, the Java Modelling Language (JML),
cf. [JML05, BCC+], enables external tools to verify a wide range of safety and
security properties. Some tools use static analysis to automatically add and/or
propagate relevant annotations, cf. [PBB+04], and thus achieve a high degree
of automation. The underlying idea of JML is quite similar to that of the
SPARK approach [Bar03] which is based on a safe subset of Ada, SPARK Ada,
rather than Java Card. The SPARK approach also combines the use of anno-
tations, static analysis, and a simple theorem prover to develop and validate
high-assurance applications.

The above represents only a small sample of the many projects that work
with verification of some variant of Java. For a comprehensive overview of
research in this field see [HM01].

The notion of language-based safety and security used in this dissertation
falls within the definition used in [SMH01] and is influenced from the early
work in this field, i.e., [VSI96, Mil81, DD77, Den76, AR80]. In recent years the
notion of language-based security has come to include approaches based on other
ideas from the programming language community, e.g., certifying compilers (in
the form of proof-carrying code) [Nec97] and in-lined reference monitors [ES00,
ES99].

The use of tools and techniques from programming language theory also
raises the question of the formal limits for automating safety and security veri-
fication. An early paper [HRU76] proves that in general the problem of deter-
mining whether or not a system (modelled using the access matrix model) can
end in an in-secure state is undecidable. More recently this has been studied
in [HMS03, Sch00] using a model based on security automata.

7.2 Conclusions

The main thesis of the present work is that:

The Flow Logic framework for static analysis is a powerful tool for
language-based safety and security.

In order to support this thesis, the Flow Logic framework was examined with
respect to the following five properties (or axes): versatility, flexibility, robust-
ness, scalability, and implementability, cf. Chapter 1. In the following it is
discussed how the Flow Logic framework exhibits the above properties.

Versatility. The non-standard language features of Carmel include subrou-
tines, applet firewall, and transactions. All of which are supported within

7.2 Conclusions 183

the framework: subroutines as an integral part of the control flow analysis
(Section 3.2), the applet firewall by the ownership analysis (Section 4.2),
and transactions by the transaction flow analysis (Section 5.1).

Flexibility. While the flexibility of the framework is demonstrated by the wide
range of properties covered by the analyses, the development of the devil’s
advocate in Chapter 6 further emphasises the usefulness of the framework
as a platform for exploring novel properties and concepts.

Robustness. The development of the data flow analysis (Section 4.1) and the
ownership analysis (Section 4.2) as simple extensions of the basic control
flow analysis illustrates the robustness of the framework. It is even more
evident for the proofs of correctness for the two analyses: both are realised
as slightly modified versions of the proof for the control flow analysis.
This allows analyses to be developed in a staged manner where additional
language constructs or concepts can be added without having to start from
scratch. The advanced analyses of Chapter 5 also re-use large parts of
both analysis specification and proof of correctness for the earlier analyses
further illustrating the robustness.

Scalability. The control flow analysis (Section 3.2) covers all of the standard
features of Carmel including exceptions and subroutines. Non-standard
features, e.g., ownership and transactions, are covered by specialised anal-
yses. Thus the full Carmel (CarmelEXC actually) language is covered by
the analyses.

Implementability. Implementation issues have only been mentioned or dis-
cussed incidentally in this dissertation. However, most of the analyses
have been implemented as prototypes by converting the abstract analysis
specification into a constraint generator over ALFP, as described in Sec-
tion 3.4, and then using the Succinct Solver to solve the constraints and
obtain the analysis result.

The above is presented as evidence that the thesis is indeed correct. In addi-
tion to the main thesis the developments of this dissertation also illustrates the
usefulness of static analysis for language-based safety and security and indeed
of language-based safety and security in general. To support these additional
propositions it is argued below how a large subset of the safety and security
properties, identified in [MM01] as the relevant properties for smart card vali-
dation and verification from an industrial point of view, can be verified using
the analyses developed in the previous chapters.

Information Flow Control. This property is directly targeted by the infor-
mation flow analysis (Section 5.2).

Service Control. Using the control flow analysis (Section 3.2) and/or the ex-
ception analysis (Section 3.5) it is possible verify that certain instructions
are only reachable if a specific set of conditionals are true.

184 Conclusions

Error Prediction. The exception analysis (Section 3.5) combined with the
ownership analysis (Section 4.2) and the transaction flow analysis (Sec-
tion 5.1) is sufficient to verify that only certain specified exceptions reach
the top-level.

Atomic Updates. Using the transaction flow analysis (Section 5.1) to calcu-
late the transaction depth of each instruction it is possible to verify that
certain sets of operations are performed in the same transaction. It is rel-
atively easy to obtain a more precise transaction flow analysis by tracking
not only transaction depth but also place of origin for active transactions.

Overflow Control. The data flow analysis (Section 4.1) can be used to verify
that numeric operations do not give rise to (silent) overflows. For numeric
operations using arrays it may be necessary to enhance the data flow
analysis with a more precise notion of abstract array.

The devil’s advocate (Chapter 6) points to a way of extending verification based
on static analysis to cope with dynamic environments such as smart cards and
mobile code in general.

While there is little doubt that language-based techniques can and will play
an essential part in the development of safe and secure systems for future com-
puting paradigms, it is important to remember that language-based techniques
are not a panacea. This is demonstrated very convincingly in [GA03] where the
type safety of the Java virtual machine is attacked using a light-bulb to intro-
duce runtime type-errors; a special attack-applet can then exploit the runtime
type-error to gain unrestricted access to the entire memory.

A p p e n d i x A

Carmel Semantics

A.1 Full Semantics for Runtime Exceptions

A.1.1 Imperative Core

m.instructionAt(pc) = numop t op [t′]
op ∈ {div, rem} v2 = 0 σX = ArithmeticExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈K,S, F :: SF 〉

A.1.2 Object Fragment

m.instructionAt(pc) = checkcast σ
loc 6= null ⇒ H(loc).class 6� σ σX = ClassCastExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = getfield f
loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = putfield f
loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

186 Carmel Semantics

m.instructionAt(pc) = getfield this f
L(0) = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = putfield this f
L(0) = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

A.1.3 Method Fragment

m.instructionAt(pc) = invokevirtual m0

loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈Exc locX〉 :: SF 〉

m.instructionAt(pc) = invokeinterface m0

loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈K,H, 〈Exc locX〉 :: SF 〉

A.1.4 Arrays

m.instructionAt(pc) = new (array t)
n < 0 σX = NegArraySizeExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, n :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = arraylength

loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = arrayload t

σX =

{
NullPointerExc if loc = null

IndexOutOfBoundsExc if n < 0 ∨ n ≥ H(loc).length

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, n :: loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

m.instructionAt(pc) = arraystore t

σX =

{
NullPointerExc if loc = null

IndexOutOfBoundsExc if n < 0 ∨ n ≥ H(loc).length

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, v :: n :: loc :: S〉 :: SF 〉 =⇒ 〈K,H ′, F :: SF 〉

A.2 Carmel Core Semantics 187

A.1.5 Exceptions

m.instructionAt(pc) = throw

loc = null σX = NullPointerExc

locX = excLocation(H,σX) F = nextFrame(m, pc, L, S, locX , σX)

P ` 〈K,H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈K,H,F :: SF 〉

A.2 Carmel Core Semantics

m.instructionAt(pc) = push t n

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, c :: S〉 :: SF 〉

m.instructionAt(pc) = pop n

P ` 〈H, 〈m, pc, L, v1 :: · · · :: vn :: S〉 :: SF 〉 =⇒
〈H, 〈m, pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ BinaryOp v = op(v1, v2) op ∈ {div, rem} ⇒ v2 6= 0

P ` 〈H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈S, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = numop t op [t′]
op ∈ UnaryOp v = op(v1)

P ` 〈H, 〈m, pc, L, v1 :: S〉 :: SF 〉 =⇒ 〈S, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = goto pc0

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc0, L, S〉 :: SF 〉

m.instructionAt(pc) = if t cmp goto pc0

pc1 =

{
pc0 if cmp(v1, v2) = true
pc + 1 otherwise

P ` 〈H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc1, L, S〉 :: SF 〉

m.instructionAt(pc) = if t cmp nul goto pc0

pc′ =

{
pc0 if cmp(v1,nul) = true
pc + 1 otherwise

P ` 〈H, 〈m, pc, L, v1 :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc′, L, S〉 :: SF 〉

m.instructionAt(pc) = load t x

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, L(x) :: S〉 :: SF 〉

m.instructionAt(pc) = store t x

P ` 〈H, 〈m, pc, L, v :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L[x 7→ v], S〉 :: SF 〉

188 Carmel Semantics

m.instructionAt(pc) = new σ σ ∈ Class (loc, H ′) = newObject(σ,H)

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H ′, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = getfield f
loc 6= null o = H(loc) v = o.fieldValue(f)

P ` 〈H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = putfield f
loc 6= null o = H(loc)

o′ = o[fieldValue 7→ o.fieldValue[f 7→ v]]

P ` 〈H, 〈m, pc, L, v :: loc :: S〉 :: SF 〉 =⇒
〈H[loc 7→ o′], 〈m, pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0

loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0|mv = methodLookup(m0, o.class)

P ` 〈H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

m.instructionAt(pc) = return

S′ = v′
1 :: · · · :: v′

|m| :: loc :: S′′

P ` 〈H, 〈m, pc, L, S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈H, 〈m′, pc′ + 1, L′, S′′〉 :: SF 〉

m.instructionAt(pc) = return t
S′ = v′

1 :: · · · :: v′
|m| :: loc :: S′′

P ` 〈H, 〈m, pc, L, v :: S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈H, 〈m′, pc′ + 1, L′, v :: S′′〉 :: SF 〉

A p p e n d i x B

Constraint Generator

For convenience and ease of reference the two auxiliary predicates are repeated
here:

COPYSTACK(m0, pc0, i, pc1, j) ≡
∀x : ∀y : ∀v : SPj−i(x, y) ∧ S(m0, pc0, x, v) ⇒ S(m0, pc1, y, v)

COPYLOCHEAP(m0, pc0, pc1) ≡
∀x : ∀v : L(m0, pc0, x, v) ⇒ L(m0, pc1, x, v)

G[[(m, pc) : nop]] =
1

G[[(m, pc) : push t n]] =
S(m, pc + 1, [[0]], INT)∧
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : pop n]] =
COPYSTACK(m, pc, n, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

190 Constraint Generator

G[[(m, pc) : dup i j]] =
∀v : S(m, pc, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
...
∀v : S(m, pc, [[j − 1]], v) ⇒ S(m, pc + 1, [[j − 1]], v)
∀v : S(m, pc, [[0]], v) ⇒ S(m, pc + 1, [[j]], v)
...
∀v : S(m, pc, [[i− 1]], v) ⇒ S(m, pc + 1, [[i− 1 + j]], v)
COPYSTACK(m, pc, j, pc + 1, j + i)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : swap i j]] =
∀v : S(m, pc, [[0]], v) ⇒ S(m, pc + 1, [[j]], v)
...
∀v : S(m, pc, [[i− 1]], v) ⇒ S(m, pc + 1, [[i− 1 + j]], v)
∀v : S(m, pc, [[i]], v) ⇒ S(m, pc + 1, [[0]], v)
...
∀v : S(m, pc, [[j − 1 + i]], v) ⇒ S(m, pc + 1, [[j − 1]], v)
COPYSTACK(m, pc, i + j, pc + 1, i + j)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : numop unop t [t′]]] =
S(m, pc + 1, [[0]], INT)
COPYSTACK(m, pc, 1, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : numop binop t [t′]]] =
S(m, pc + 1, [[0]], INT)
COPYSTACK(m, pc, 2, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : goto pc0]] =
COPYSTACK(m, pc, 0, pc0, 0)
COPYLOCHEAP(m, pc, pc0)

G[[(m, pc) : if t cmp goto pc0]] =
COPYSTACK(m, pc, 2, pc + 1, 0)
COPYSTACK(m, pc, 2, pc0, 0)
COPYLOCHEAP(m, pc, pc + 1)
COPYLOCHEAP(m, pc, pc0)

191

G[[(m, pc) : if t cmp goto pc0]] =
COPYSTACK(m, pc, 1, pc + 1, 0)
COPYSTACK(m, pc, 1, pc0, 0)
COPYLOCHEAP(m, pc, pc + 1)
COPYLOCHEAP(m, pc, pc0)

G[[(m, pc) : lookupswitch t (ki=>pci)
n
1 default=>pcn+1]] =

COPYSTACK(m, pc, 1, pc0, 0)
...
COPYSTACK(m, pc, 1, pcn, 0)
COPYLOCHEAP(m, pc, pc0)
...
COPYLOCHEAP(m, pc, pcn)

G[[(m, pc) : tableswitch t l=>(pci)
n
0 default=>pcn+1]] =

COPYSTACK(m, pc, 1, pc0, 0)
...
COPYSTACK(m, pc, 1, pcn+1, 0)
COPYLOCHEAP(m, pc, pc0)
...
COPYLOCHEAP(m, pc, pcn+1)

G[[(m, pc) : load t x]] =
∀v : L(m, pc, x, v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, 1, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : store t x]] =
∀v : S(m, pc, [[0]], v) ⇒ L(m, pc + 1, x, v)∧
∀y : ∀v : (y 6= x) ∧ L(m, pc, y, v) ⇒ L(m, pc + 1, y, v)
COPYSTACK(m, pc, 1, pc + 1, 0)

G[[(m, pc) : inc t x c]] =
COPYSTACK(m, pc, 0, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : new σ]] =
S(m, pc + 1, [[0]], (Ref σ))
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

192 Constraint Generator

G[[(m, pc) : instanceof σ]] =
COPYSTACK(m, pc, 0, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : checkcast σ]] =
S(m, pc + 1, [[0]], INT)∧
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : getfield f]] =
∀r : ∀v : S(m, pc, [[0]], r) ∧ H(r, f, v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, 1, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : getfield this f]] =
∀r : ∀v :

L(m, pc, 0, r) ∧ H(r, f, v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : putfield f]] =
∀r : ∀v : S(m, pc, [[1]], r) ∧ S(m, pc, [[0]], v) ⇒ H(r, f, v)
COPYSTACK(m, pc, 2, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : putfield this f]] =
∀r : ∀v : L(m, pc, 0, r) ∧ S(m, pc, [[0]], v) ⇒ H(r, f, v)
COPYSTACK(m, pc, 1, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : getstatic f]] =
∀v : K(f, v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, 0, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : putstatic f]] =
∀v : S(m, pc, [[0]], v) ⇒ K(f, v)
COPYSTACK(m, pc, 1, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : return]] =
1

G[[(m, pc) : return t]] =
∀v : S(m, pc, [[0]], v) ⇒ S(m,END, [[0]], v)

193

G[[(m, pc) : invokevirtual m0]] =
∀r : ∀mv :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv) ⇒ L(mv, 0, 0, r)
∀r : ∀mv : ∀v :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧
S(m, pc, [[0]], v) ⇒ L(mv, 0, 1, v)

...
S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(m, pc, [[|m0| − 1]], v) ⇒ L(mv, 0, |m0|, v)
COPYLOCHEAP(m, pc, pc + 1)
if m0.returnType = void then

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0)
if m0.returnType 6= void then
∀r : ∀mv : ∀v : S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(mv,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

G[[(m, pc) : invokeinterface m0]] =
∀r : ∀mv :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv) ⇒ L(mv, 0, 0, r)
∀r : ∀mv : ∀v :

S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧
S(m, pc, [[0]], v) ⇒ L(mv, 0, 1, v)

...
S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(m, pc, [[|m0| − 1]], v) ⇒ L(mv, 0, |m0|, v)
COPYLOCHEAP(m, pc, pc + 1)
if m0.returnType = void then

COPYSTACK(m, pc, |m0|+ 1, pc + 1, 0)
if m0.returnType 6= void then
∀r : ∀mv : ∀v : S(m, pc, [[|m0|]], r) ∧ML(m, r,mv)∧

S(mv,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, |m0|+ 1, pc + 1, 1)

G[[(m, pc) : invokestatic m0]] =
∀v : S(m, pc, [[0]], v) ⇒ L(m0, 0, 0, v)
...
∀v : S(m, pc, [[|m0| − 1]], v) ⇒ L(m0, 0, (|m0| − 1), v)
COPYLOCHEAP(m, pc, pc + 1)
if m0.returnType = void then

COPYSTACK(m, pc, |m0|, pc + 1, 0)
if m0.returnType 6= void then
∀v : S(m0,END, [[0]], v) ⇒ S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, |m0|, pc + 1, 1)

194 Constraint Generator

G[[(m, pc) : new (array t)]] =
S(m, pc + 1, [[0]], (Ref (array t)))
COPYSTACK(m, pc, 1, pc + 1, 1)

G[[(m, pc) : arraylength]] =
S(m, pc, [[0]], INT)
COPYSTACK(m, pc, 1, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : arrayload t]] =
∀r : ∀v : S(m, pc, [[1]], r) ∧ H(r, ARRAY, v) ⇒

S(m, pc + 1, [[0]], v)
COPYSTACK(m, pc, 2, pc + 1, 1)
COPYLOCHEAP(m, pc, pc + 1)

G[[(m, pc) : arraystore t]] =
∀r : ∀v : S(m, pc, [[2]], r) ∧ S(m, pc, [[0]], v) ⇒

H(r, ARRAY, v)
COPYSTACK(m, pc, 3, pc + 1, 0)
COPYLOCHEAP(m, pc, pc + 1)

A p p e n d i x C

Transaction Flow Analysis

C.1 Semantic Reduction Rules

m.instructionAt(pc) = push c

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc + 1, L, n :: S〉 :: SF 〉

m.instructionAt(pc) = pop n

P ` 〈H, 〈τ,mτm , pc, L, c :: S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = load t x

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc + 1, L, L(x) :: S〉 :: SF 〉

m.instructionAt(pc) = store t x

P ` 〈H, 〈τ,mτm , pc, L, v :: S〉 :: SF 〉 =⇒TFA

〈H, 〈τ,mτm , pc + 1, L[x 7→ v], S〉 :: SF 〉

m.instructionAt(pc) = numop op v = v1 op v2

P ` 〈H, 〈τ,mτm , pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒TFA

〈H, 〈τ,mτm , pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = goto pc0

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc0, L, S〉 :: SF 〉

m.instructionAt(pc) = if t cmpOp goto pc0 ¬cmp(v1, v2)

P ` 〈H, 〈τ,mτm , pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒TFA

〈H, 〈τ,mτm , pc + 1, L, S〉 :: SF 〉

196 Transaction Flow Analysis

m.instructionAt(pc) = if t cmp goto pc0 cmpOp(v1, v2)

P ` 〈H, 〈τ,mτm , pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc0, L, S〉 :: SF 〉

m.instructionAt(pc) = new σ σ ∈ Class (loc, H ′) = newObject(σ,H)

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H
′, 〈τ,mτm , pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = getfield f v = H(loc).f

P ` 〈H, 〈τ,mτm , pc, L, loc :: S〉 :: SF 〉 =⇒TFA

〈H, 〈τ,mτm , pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = putfield f
H ′ = H[loc 7→ o′] ∧ o′ = H(loc)[f 7→ v]

P ` 〈H, 〈τ,mτm , pc, L, v :: loc :: S〉 :: SF 〉 =⇒TFA

〈H ′, 〈τ,mτm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m′

S = v1 :: · · · :: v|m′| :: loc :: S0 mv = methodLookup(m′, o.class)
o = H(loc) ∧ L′ = [0 7→ loc, 1 7→ v1, . . . , |m

′| 7→ v|m′|]

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA

〈H, 〈τ,mτ
v , 0, L′, ε〉 :: 〈τ,mτm , pc, L, S〉 :: SF 〉

m.instructionAt(pc) = return

P ` 〈H, 〈τ ′,m′τm′ , pc′, L′, v :: S′〉 :: 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA

〈H, 〈τ ′,mτm , pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = API.getTransactionDepth

P ` 〈H, 〈τ,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈τ,mτm , pc + 1, L, τ :: S〉 :: SF 〉

m.instructionAt(pc) = API.beginTransaction

P ` 〈H, 〈0,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈1,mτm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = API.commitTransaction

P ` 〈H, 〈1,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈0,mτm , pc + 1, L, S〉 :: SF 〉

m.instructionAt(pc) = API.abortTransaction

P ` 〈H, 〈1,mτm , pc, L, S〉 :: SF 〉 =⇒TFA 〈H, 〈0,mτm , pc + 1, L, S〉 :: SF 〉

C.2 Transaction Flow Analysis 197

C.2 Transaction Flow Analysis

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : push t n

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{n} :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : pop n

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: · · · :: An :: X / Ŝδ(m, pc) :

X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : load t x

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

L̂δ(m, pc)(x) :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : store x

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A :: X / Ŝδ(m, pc) :

X v Ŝδ(m, pc + 1)

A v L̂δ(m, pc + 1)(x)

L̂δ(m, pc) v{x} L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : numop t binop

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: A2 :: X / Ŝδ(m, pc) :

{INT} :: X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : new σ

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{(Ref σ)} :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

198 Transaction Flow Analysis

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : if t cmpOp goto pc0

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: A2 :: X / Ŝδ(m, pc) :

ĉond(cmpOp, A1, A2) ⇒

Ŝδ(m, pc) v Ŝδ(m, pc0)

L̂δ(m, pc) v L̂δ(m, pc0)

T̂δ(m, pc) ⊆ T̂δ(m, pc0)

ĉond(¬cmpOp, A1, A2) ⇒

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : getfield f

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

B :: X / Ŝδ(m, pc) :

∀(Ref σ′) ∈ B : (Ĥ(Ref σ′)(f)) :: X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : putfield f

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A :: B :: X / Ŝδ(m, pc) :

∀(Ref σ′) ∈ B : A v Ĥ(Ref σ′)(f)

X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

T̂δ(m, pc) ⊆ T̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : invokevirtual m0

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

A1 :: · · · :: A|m0| :: B :: X / Ŝδ(m, pc) :
∀(Ref σ) ∈ B :

mv = methodLookup(m0, σ)

∀δ′ ∈ T̂δ(m, pc) :

{δ′} ⊆ T̂δ′(mv, 0)

{(Ref σ)} :: A1 :: · · · :: A|m0| v L̂δ′(mv, 0)[0..|m0|]

T̂δ′(mv,END) ⊆ T̂δ(m, pc + 1)

A :: Y / Ŝδ′(mv,END) :

A :: X v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

C.2 Transaction Flow Analysis 199

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : return

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

T̂δ(m, pc) ⊆ T̂δ(m,END)

A :: X / Ŝδ(m, pc) :

A :: ε v Ŝδ(m0,END)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.getTransactionDepth

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

T̂δ(m, pc) v T̂δ(m, pc + 1)

∀δ′ ∈ T̂δ(m, pc) : {δ′} :: Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.beginTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{1} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.commitTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{0} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

(Ĥ, L̂, Ŝ, T̂) |=TFA (m, pc) : API.abortTransaction

iff ∀δ ∈ T̂{0,1}(m, 0): T̂δ(m, pc) 6= ∅ ⇒

{0} ⊆ T̂δ(m, pc + 1)

Ŝδ(m, pc) v Ŝδ(m, pc + 1)

L̂δ(m, pc) v L̂δ(m, pc + 1)

200 Transaction Flow Analysis

Bibliography

[ABF03] Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta De Francesco.
Java bytecode verification for secure information flow. SIGPLAN
Notices, 38(12):20–27, December 2003.

[Aga00a] Johan Agat. Transforming out Timing Leaks. In Conference Record
of the Annual ACM Symposium on Principles of Programming
Languages, POPL’00, pages 40–53, Boston, Massachusetts, Jan-
uary 2000. ACM Press.

[Aga00b] Johan Agat. Type Based Techniques for Covert Channel Elimina-
tion and Register Allocation. PhD thesis, Chalmers University of
Technology and Göteborg University, 2000.

[AJP95] Marshall D. Abrams, Sushil Jajodia, and Harold J. Podell, editors.
Information Security: An Integrated Collection of Essays. IEEE
Computer Society, 1995. Available online at http://www.acsac.

org/secshelf/book001/book001.html.

[Ame02] Peter Amey. Correctness by Construction: Better Can Also Be
Cheaper. CrossTalk Magazine, pages 24–28, March 2002.

[App98] Andrew W. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, 1998.

[AR80] Gregory R. Andrews and Richard P. Reitman. An Axiomatic Ap-
proach to Information Flow in Programs. ACM Transactions on
Programming Languages and Systems, 2(1):56–76, 1980.

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers —
Principles, Techniques, and Tools. Addison Wesley, 1985.

[Bai95] David Bailey. A Philosophy of Security Management. In Abrams
et al. [AJP95], essay 3, pages 98–110. Available online at http:

//www.acsac.org/secshelf/book001/book001.html.

202 Bibliography

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to
Safety and Security. Addison Wesley, 2003.

[BBD+03] Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming
Nielson, and Hanne Riis Nielson. Automatic Validation of Protocol
Narration. In Proc. of the 16th IEEE Computer Security Founda-
tions Workshop, pages 126–140, California, USA, June 2003. IEEE
Computer Society.

[BBFG04] Frédéric Besson, Tomasz Blanc, Cédric Fournet, and Andrew D.
Gordon. From Stack Inspection to Access Control: A Security
Analysis for Libraries. In Proc. of the 17th IEEE Computer Secu-
rity Foundations Workshop, pages 61–75. IEEE Computer Society,
June 2004.

[BBR04] Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security Types
Preserving Compilation. In B. Steffen and G. Levi, editors, Proc.
of the International Conference on Verification, Model Checking
and Abstract Interpretation, VMCAI’04, volume 2937 of Lecture
Notes in Computer Science, pages 2–15. Springer Verlag, 2004.

[BCC+] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technoogy Transfer (STTT). To
appear. Preprint available at ftp://ftp.cs.iastate.edu/pub/

leavens/JML/sttt04.pdf.

[BCG+00] Pierre Bieber, Jacques Cazin, Pierre Girard, Virginie Wiels Jean-
Louis Lanet, and Guy Zanon. Checking Secure Interactions of
Smart Card Applets. In European Symposium on Research in Com-
puter Security, ESORICS 2000, volume 1895 of Lecture Notes in
Computer Science, pages 1–16. Springer Verlag, 2000.

[BDNN98] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Control Flow Analysis for the π-calculus. In
D. Sangiorgi and R. de Simone, editors, Proc. of conference on
Concurrency Theory, CONCUR’98, volume 1466 of Lecture Notes
in Computer Science, pages 84–98, Nice, France, September 1998.
Springer Verlag.

[BDNN99] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Static Analysis of Processes for No Read-Up
and No Write-Down. In Wolfgang Thomas, editor, Proc. of Foun-
dations of Software Science and Computational Structures, FoS-
SaCS’99, volume 1578 of Lecture Notes in Computer Science, pages
120–134, Amsterdam, The Netherlands, March 1999. Springer Ver-
lag. Held as Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS’99).

203

[BDNN01a] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Static Analysis for Secrecy and Non-
Interference in Networks of Processes. In Proc. of PACT’01, vol-
ume 2127 of Lecture Notes in Computer Science, pages 27–41.
Springer Verlag, 2001.

[BDNN01b] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Static Analysis for the Pi-Calculus with Ap-
plications to Security. Information and Computation, 168:68–92,
2001.

[Bec01] Bernhard Beckert. A Dynamic Logic for the Formal Verification
of Java Card Programs. In I. Attali and T. Jensen, editors, Java
on Smart Cards: Programming and Security. Revised Papers, Java
Card 2000, International Workshop, Cannes, France, volume 2041
of Lecture Notes in Computer Science, pages 6–24. Springer Verlag,
2001.

[Ber97] Peter Bertelsen. Semantics of Java Byte Code. Student project
report, Technical University of Denmark, 1997.

[Ber98] Peter Bertelsen. Dynamic semantics of Java byte-code. In Work-
shop on Principles of Abstract Machines, Pisa, Italy, September
1998. Proceedings published as a technical report of the computer
science department of Universität des Saarlandes. Full version ap-
pears as [Ber97].

[BGH02] Gilles Barthe, Dilian Gurov, and Marieke Huisman. Compositional
Verification of Secure Applet Interactions. In R.-D. Kutsche and
H. Weber, editors, Proc. of FASE’02, volume 2306 of Lecture Notes
in Computer Science, pages 15–32. Springer Verlag, 2002.

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison Wes-
ley, 2003.

[BL73a] David Elliot Bell and Leonard J. LaPadula. Secure Computer
Systems: Mathematical Foundations. Technical Report ESD-TR-
73-278, ESD/AFSC, Hanscom AFB, Bedford, Mass., November
1973. Also appears as MTR-2547, vol. 1, Mitre Corp., Bedford
Mass. Digitally reconstructed in 1996.

[BL73b] David Elliott Bell and Leonard J. LaPadula. Secure Computer
Systems: A Mathematical Model. MITRE Technical Report 2547,
Vol. 2, MITRE Corporation, May 1973. Digitally recontructed in
1996.

[BN02] Anindya Banerjee and David A. Naumann. Secure Information
Flow and Pointer Confinement in a Java-like Language. In Proc.
of the 15th IEEE Computer Security Foundations Workshop. IEEE
Computer Society, 2002.

204 Bibliography

[BNN02] Mikael Buchholtz, Hanne Riis Nielson, and Flemming Nielson. Ex-
periments with Succinct Solvers. SECSAFE-IMM-002-1.0. Also
published as DTU Technical Report IMM-TR-2002-4, February
2002.

[BS99] Gilles Barthe and Bernard P. Serpette. Partial evaluation and
non-interference for object calculi. In A. Middeldorp and T. Sato,
editors, Proc. of FLOPS’99, volume 1722 of Lecture Notes in Com-
puter Science, pages 53–67. Springer Verlag, 1999.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lat-
tice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. In Conference Record of the An-
nual ACM Symposium on Principles of Programming Languages,
POPL’77, pages 238–252. ACM Press, 1977.

[CC99] Common Criteria Project Sponsoring Organisations. Common
Criteria for Information Technology Security Evaluation, Au-
gust 1999. Version 2.1. Also appears as International Standard
ISO/IEC 15408:1999. Available for download at http://www.

commoncriteria.org.

[CfP04] Centre for Pervasive Computing. Web page: http://www.

pervasive.dk, January 2004.

[Che00] Zhiqun Chen. Java Card Technology for Smart Cards. The Java
Series. Addison Wesley, 2000.

[CHS01] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Context
Inference for Static Analysis of Java Card Object Sharing. In I. At-
tali and T. Jensen, editors, Smart Card Programming and Security:
Conference on Research in Smart Cards, E-smart 2001, volume
2140 of Lecture Notes in Computer Science, pages 43–57, Cannes,
France, September 2001. Springer Verlag.

[CJPR04] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu.
Extracting a Data Flow Analyser in Constructive Logic. In David
Schmidt, editor, Proc. of European Symposium on Programming,
ESOP’04, volume 2986 of Lecture Notes in Computer Science,
pages 385–400, Barcelona, Spain, March/April 2004. Springer Ver-
lag.

[CKP03] Karl Crary, Aleksey Kliger, and Frank Pfenning. A Monadic Anal-
ysis of Information Flow Security with Mutable State. Technical
Report CMU-CS-03-164, School of Computer Science, Carnegie
Mellon University, July 2003.

205

[Coh77] Ellis S. Cohen. Information transmission in computational sys-
tems. In Proc. of ACM Symposium on Operating Systems Prin-
ciples, SOSP’77, pages 133–139, West Lafayette, Indiana, USA,
1977. ACM Press.

[Coh78] Ellis S. Cohen. Information transmission in sequential programs.
In Richard A. DeMillo, Devid P. Dobkin, Anita K. Jones, and
Richard J. Lipton, editors, Foundations of Secure Computing,
pages 297–335. Academic Press, 1978.

[DD77] Dorothy Denning and Peter Denning. Certification of Programs for
Secure Information Flow. Communications of the ACM, 20(7):504–
513, 1977.

[Den76] Dorothy Denning. A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5):236–242, 1976.

[DoD85] Department of Defense. Department of Defense Trusted Computer
System Evaluation Criteria, December 1985. DOD 5200.28-STD.
Also known as “The Orange Book” and/or TCSEC. Obsoleted by
[CC99].

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[ÉJ02] Marc Élouard and Thomas Jensen. Secure object flow analysis
for Java Card. In Proc. of Smart Card Research and Advanced
Application Conference, Cardis’02, 2002.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI Enforcement of Secu-
rity Policies: A Retrospective. In New Security Paradigms Work-
shop 1999, pages 87–95, Ontario, Canada, September 1999. ACM
Press.

[ES00] Úlfar Erlingsson and Fred B. Schneider. IRM Enforcement of Java
Stack Inspection. Technical Report TR2000-1786, Department of
Computer Science, Cornell University, 2000.

[FM98] Stephen N. Freund and John C. Mitchell. A Type System for Ob-
ject Initialization in the Java Bytecode Language. In Conference
on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA’98, pages 310–328, Vancouver, British Columbia,
Canada, 1998. ACM Press.

[FM99] Stephen N. Freund and John C. Mitchell. A Formal Framework for
the Java Bytecode Language and Verifier. In Conference on Ob-
ject Oriented Programming Systems Languages and Applications,
OOPSLA’99, pages 147–166, Denver, CO, USA, November 1999.
ACM Press.

206 Bibliography

[Fre98] Stephen N. Freund. Workshop on Formal Underpinnings of Java
(FUJ’98). Available for download from http://www-dse.doc.ic.

ac.uk/~sue/oopsla/freund.f.ps, October 1998.

[FSBJ97] Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajo-
dia. Providing Flexibility in Information Flow Control for Object-
Oriented Systems. In Proc. of the IEEE Symposium on Security
and Privacy 1997, pages 130–140, Oakland, CA, USA, May 1997.
IEEE Computer Society.

[GA03] Sudhakar Govindavajhala and Andrew W. Appel. Using Memory
Errors to Attack a Virtual Machine. In Proc. of the IEEE Sympo-
sium on Security and Privacy 2003. IEEE Computer Society, May
2003.

[GM82] Joseph A. Goguen and José Meseguer. Security Policies and Se-
curity Models. In Proc. of the IEEE Symposium on Security and
Privacy 1982, pages 11–20, Oakland, California, USA, April 1982.

[GM84] Joseph A. Goguen and José Meseguer. Unwinding and Inference
Control. In Proc. of the IEEE Symposium on Security and Privacy
1984, pages 75–86, 1984.

[GNN97] K.L.S. Gasser, F. Nielson, and H. Riis Nielson. Systematic realisa-
tion of control flow analyses for CML. In Proc of ICFP’97, pages
38–51. ACM Press, 1997.

[GS05] Samir Genaim and Fausto Spoto. Information flow analysis for java
bytecode. In Proc. of the International Conference on Verification,
Model Checking and Abstract Interpretation, VMCAI’05, volume
3385 of Lecture Notes in Computer Science, Paris, France, January
2005. Springer Verlag.

[Han02a] René Rydhof Hansen. A Prototype Tool for JavaCard Firewall
Analysis. In Proc. of the 7th Nordic Workshop on Secure IT-
Systems, NordSec’02, pages 35–53, November 2002. Proceedings
published as Karlstad University Studies 2002:31.

[Han02b] René Rydhof Hansen. Extending the Flow Logic for Carmel.
SECSAFE-IMM-003-1.0, 2002.

[Han02c] René Rydhof Hansen. Flow Logic for Carmel. SECSAFE-IMM-
001-1.5, 2002.

[Han02d] René Rydhof Hansen. Implementing the Flow Logic for Carmel.
SECSAFE-IMM-004-1.0, 2002.

[Han04] René Rydhof Hansen. A Hardest Attacker for Leaking Refer-
ences. In David Schmidt, editor, Proc. of European Symposium

207

on Programming, ESOP’04, volume 2986 of Lecture Notes in Com-
puter Science, pages 310–324, Barcelona, Spain, March/April 2004.
Springer Verlag.

[HBL99] Pieter H. Hartel, Michael J. Butler, and Moshe Levy. The op-
erational semantics of a Java Secure Processor. In J. Alves-Foss,
editor, Formal Syntax and Semantics of Java, volume 1523 of Lec-
ture Notes in Computer Science, pages 313–352. Springer Verlag,
1999.

[HGSC04] Marieke Huisman, Dilian Gurov, Christoph Sprenger, and Gen-
nady Chugunov. Checking Absence of Illicit Applet Interactions:
A Case Study. In Proc of Formal Aspects of Software Engineer-
ing, FASE’04, volume 2984 of Lecture Notes in Computer Science,
pages 84–98, Barcelona, Spain, March/April 2004. Springer Verlag.

[HJNN99] René Rydhof Hansen, Jacob Grydholt Jensen, Flemming Nielson,
and Hanne Riis Nielson. Abstract Interpretation of Mobile Am-
bients. In Agostino Cortesi and Gilbert Filé, editors, Proc. Static
Analysis Symposium, SAS’99, volume 1694 of Lecture Notes in
Computer Science, pages 134–148, Venice, Italy, September 1999.
Springer Verlag.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
The MIT Press, 2000.

[HM01] Pieter H. Hartel and Luc Moreau. Formalising the Safety of Java,
the Java Virtual Machine and Java Card. ACM Computing Sur-
veys, 33(4):517–558, December 2001.

[HMS03] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Com-
putability Classes for Enforcement Mechanisms. Technical Report
TR2003-1908, Computing and Information Science, Cornell Uni-
versity, August 2003.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman.
Protection in Operating Systems. Communications of the ACM,
19(8):461–471, August 1976.

[HS05] René Rydhof Hansen and Igor A. Siveroni. Towards Verification of
Well-Formed Transactions in Java Card Bytecode. In Workshop on
Bytecode Semantics, Verification, Analysis and Transformation,
BYTECODE’05, Electronic Notes in Theoretical Computer Sci-
ence, Edinburgh, Scotland, April 2005. Elsevier. To appear.

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight Java — A Minimal Core Calculus for Java and GJ. In Con-
ference on Object Oriented Programming Systems Languages and
Applications, OOPSLA’99, Denver, CO, USA, November 1999.
ACM Press.

208 Bibliography

[JML05] The Java Modeling Language (JML). Web page: http://www.cs.
iastate.edu/~leavens/JML/, January 2005.

[key05] The key project. Web page: http://i12www.ilkd.

uni-karlsruhe.de/~key/, January 2005.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Advances in Cryptology — CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397, Santa Bar-
bara, California, USA, August 1999. Springer Verlag.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Neal Koblitz, editor,
Advances in Cryptology — CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 104–113, Santa Barbara, Cali-
fornia, USA, August 1996. Springer Verlag.

[Koz99] Dexter Kozen. Language-Based Security. In M. Kutylowski,
L. Pacholski, and T. Wierzbicki, editors, Proc. Conf. Mathematical
Foundations of Computer Science, MFCS’99, volume 1672 of Lec-
ture Notes in Computer Science, pages 284–298. Springer Verlag,
1999.

[KS02] Naoki Kobayashi and Keita Shirane. Type-Based Information
Analysis for Low-Level Languages. In Proc. of Asian Symposium
on Programming Languages and Systems, APLAS’02, pages 302–
316, Shanghai, China, November/December 2002.

[Lam73] Butler W. Lampson. A Note on the Confinement Problem. Com-
munications of the ACM, 16(10):613–615, October 1973.

[Lan81] Carl E. Landwehr. Formal Models for Computer Security. ACM
Computing Surveys, 13(3):247–278, September 1981.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifi-
cation. Addison Wesley, second edition edition, 1999. Available for
download at http://java.sun.com/docs/books/vmspec/index.
html.

[Mar00] Renaud Marlet. Typical Code Patterns Found in Java Card Ap-
plets To Be Used as Targets for Program Analysis. SECSAFE-TL-
003-1.0, December 2000.

[Mar01] Renaud Marlet. Syntax of the JCVM Language To Be Studied in
the SecSafe Project. SECSAFE-TL-005-1.7, May 2001.

[Mar02] Renaud Marlet. Demoney: Java Card Implementation. SECSAFE-
TL-008-0.8, November 2002.

209

[McL85] John McLean. A Comment on the “Basic Security Theorem” of
Bell and LaPadula. Information Procesing Letters, 20(2):67–70,
February 1985.

[McL90] John McLean. The Specification and Modeling of Computer Secu-
rity. Computer, 23(1), January 1990.

[McL94] John McLean. Security Models. In John Marciniak, editor, Ency-
clopedia of Software Engineering. Wiley Press, 1994.

[Mil81] Jonathan K. Millen. Information Flow analysis of Formal Specifi-
cations. In Proc. of the IEEE Symposium on Security and Privacy
1981, pages 3–8. IEEE Computer Society, 1981.

[Mil87] Jonathan K. Millen. Covert Channel Capacity. In Proc. of the
IEEE Symposium on Security and Privacy 1987, pages 60–66.
IEEE Computer Society, 1987.

[MM01] Renaud Marlet and Daniel Le Métayer. Security Properties and
Java Card Specificities To Be Studied in the SecSafe Project.
SECSAFE-TL-006-1.2, August 2001.

[MM02] Renaud Marlet and Cédric Mesnil. Demoney: A Demonstra-
tive Electronic Purse (Card Specification). SECSAFE-TL-007-0.8,
November 2002.

[MPH01] P. Müller and A. Poetzsch-Heffter. A type system for checking
applet isolation in Java Card. In Formal Techniques for Java Pro-
grams, 2001.

[Nec97] George C. Necula. Proof-Carrying Code. In Conference Record of
the Annual ACM Symposium on Principles of Programming Lan-
guages, POPL’97, pages 106–119, Paris, France, January 1997.
ACM, ACM Press.

[Neu95] Peter G. Neumann. Computer Related Risks. ACM Press/Addison
Wesley, 1995.

[NHN03] Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson.
Abstract Interpretation of Mobile Ambients. Science of Computer
Programming, (47):145–175, 2003.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Appli-
cations – A Formal Introduction. Wiley Press, 1992. Out of print.
Revised edition (July 1999) available from http://www.imm.dtu.

dk/~riis/Wiley_book/wiley.html.

[NN97] F. Nielson and H. Riis Nielson. Infinitary control flow analysis: a
collecting semantics for closure analysis. In Conference Record of
the Annual ACM Symposium on Principles of Programming Lan-
guages, POPL’97, pages 332–345. ACM Press, 1997.

210 Bibliography

[NN98a] F. Nielson and H. Riis Nielson. The flow logic of imperative objects.
In Proc. Conf. Mathematical Foundations of Computer Science,
MFCS’98, number 1450 in Lecture Notes in Computer Science,
pages 220–228. Springer Verlag, 1998.

[NN98b] F. Nielson and H. Riis Nielson. Flow Logics and Operational Se-
mantics. Electronic Notes in Theoretical Computer Science, 10,
1998.

[NN98c] H. Riis Nielson and F. Nielson. Flow logics for constraint based
analysis. In Proc. International Conference on Compiler Construc-
tion, CC’98, number 1383 in Lecture Notes in Computer Science,
pages 109–127. Springer Verlag, 1998.

[NN00] Hanne Riis Nielson and Flemming Nielson. Hardest Attackers. In
Workshop on Issues in the Theory of Security, WITS’00, 2000.

[NN02] H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic
approach to static analysis. In The Essence of Computation: Com-
plexity, Analysis, Transformation, volume 2566 of Lecture Notes in
Computer Science, pages 223–244. Springer Verlag, 2002.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Springer Verlag, 1999.

[NNH02] Flemming Nielson, Hanne Riis Nielson, and René Rydhof Hansen.
Validating Firewalls using Flow Logics. Theoretical Computer Sci-
ence, 283(2):381–418, 2002.

[NNHJ99] Flemming Nielson, Hanne Riis Nielson, René R. Hansen, and Ja-
cob G. Jensen. Validating Firewalls in Mobile Ambients. In Proc.
of conference on Concurrency Theory, CONCUR’99, volume 1664
of Lecture Notes in Computer Science, pages 463–477. Springer
Verlag, August 1999.

[NNS02a] F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis
in cubic time. Electronic Notes in Theoretical Computer Science,
62, 2002.

[NNS02b] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. A Suc-
cinct Solver for ALFP. Nordic Journal of Computing, 2002(9):335–
372, 2002.

[NNS+04] Flemming Nielson, Hanne Riis Nielson, Hongyan Sun, Mikael
Buchholtz, René Rydhof Hansen, Henrik Pilegaard, and Helmut
Seidl. The Succinct Solver Suite. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS)04, volume 2988
of Lecture Notes in Computer Science, pages 251–265, Barcelona,
Spain, 2004. Springer Verlag.

211

[NS01] Flemming Nielson and Helmut Seidl. Succinct solvers. Technical
Report 01-12, University of Trier, Germany, 2001.

[Oes99] Marcus Oestreicher. Transactions in Java Card. In Proc. of the
Annual Computer Security Applications Conference, ACSAC’99,
pages 291–298, Phoenix, Arizona, USA, December 1999. IEEE
Computer Society.

[PBB+04] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman,
and Jean-Louis Lanet. Enforcing High-Level Security Properties
for Applets. In J.-J. Quisquater, P. Paradinas, Y. Deswarte, and
A.A. El Kalam, editors, Proc. of Smart Card Research and Ad-
vanced Application Conference, Cardis’04, pages 1–16. Kluwer,
2004.

[PCC01] I. Pollet, B. Le Charlier, and A. Cortesi. Distinctness and Shar-
ing Domains for Static Analysis of Java Programs. In European
Conference on Object-Oriented Programming, ECOOP’01, volume
2072 of Lecture Notes in Computer Science, pages 77–98, Bu-
dapest, Hungary, June 2001. Springer Verlag.

[Pie02] Benjamin Pierce. Types and Programming Languages. The MIT
Press, 2002.

[Pil03] Henrik Pilegaard. A feasibility study. SECSAFE-IMM-008-1.0,
September 2003.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Se-
mantics. DAIMI FN-19, Computer Science Department (DAIMI),
Aarhus University, September 1981.

[RIS] The ACM Committee on Computers and Public Policy. The
RISKS Digest: The ACM Forum on Risks to the Public in Com-
puters and Related Systems. Moderated by Peter G. Neumann.
Digests available from http://www.risks.org.

[RMMG01] Peter Ryan, John McLean, Jon Millen, and Virgil Gligor. Non-
interference, who needs it? In Proc of the 14th IEEE Computer Se-
curity Foundations Workshop, pages 237–238, Cape Breton, Nova
Scotia, Canada, June 2001. IEEE Computer Society. Opening
statement for panel discussion.

[RR98] Eva Rose and Kristoffer Høgsbro Rose. Lightweight Bytecode Ver-
ification. In FUJ’98, 1998. Extended abstract.

[Rus92] John Rushby. Noninterference, Transitivity, and Channel-Control
Security Policies. Technical Report CSL-92-02, SRI International,
December 1992.

212 Bibliography

[SBCJ97] Pierangela Samarati, Elisa Bertino, Alessandro Ciampichetti, and
Sushil Jajodia. Information Flow Control in Object-Oriented Sys-
tems. IEEE Transactions on Knowledge and Data Engineering,
9(4):524–538, July/August 1997.

[Sch00] Fred B. Schneider. Enforceable Security Policies. ACM Transac-
tions on Information and System Security, 3(1):30–50, February
2000.

[SH01] Igor Siveroni and Chris Hankin. A Proposal for the JCVMLe Op-
erational Semantics. SECSAFE-ICSTM-001-2.2, October 2001.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communica-
tion. The Bell System Technical Journal, 27:329–423,623–656,
July,October 1948. Reprinted with corrections.

[Siv03a] Igor Siveroni. Formalisation of the Semantics of Java Card.
SECSAFE-ICSTM-014-2.0, October 2003.

[Siv03b] Igor Siveroni. SecSafe. Web page: http://www.doc.ic.ac.uk/

~siveroni/secsafe/, 2003.

[Siv04] Igor Siveroni. Operational Semantics of the Java Card Virtual
Machine. Journal of Logic and Algebraic Programming, 58(1–2):3–
25, January–March 2004. Special issue on Formal Methods for
Smart Cards.

[SJ03a] Igor Siveroni and Luke Jackson. Prototype Implementation of
an Integrated Interpreter and Analyser of Carmel Programs.
SECSAFE-ICSTM-015-1.0, October 2003.

[SJ03b] Fausto Spoto and Thomas Jensen. Class Analyses as Abstract In-
terpretations of Trace Semantics. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 25(5):578–630, Septem-
ber 2003.

[SJE01] Igor Siveroni, Thomas Jensen, and Marc Eluard. A Formal Spec-
ification of the Java Card Firewall. In Hanne Riis Nielson, edi-
tor, Proc. of Nordic Workshop on Secure IT-Systems, NordSec’01,
pages 108–122, Lyngby, Denmark, November 2001. Proceedings
published as DTU Technical Report IMM-TR-2001-14.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-Based
Information-Flow Security. IEEE Journal on Selected Areas in
Communication, 21(1):5–19, January 2003.

[SMH01] Fred B. Schneider, Greg Morrisett, and Robert Harper. A
Language-Based Approach to Security. In R.Wilhelm, editor, In-
formatics: 10 Years Back, 10 Years Ahead, volume 2000 of Lecture
Notes in Computer Science, pages 86–101. Springer Verlag, 2001.

213

[Ste98] Karen Stephenson. Towards an Algebraic Specification of the Java
Virtual Machine. In B. Moeller and J.V. Tucker, editors, Prospects
for Hardware Foundations, volume 1546 of Lecture Notes in Com-
puter Science, pages 236–277. Springer Verlag, 1998.

[Sun00] Sun Microsystems. Java Card 2.1.1 Virtual Machine Specification,
May 2000.

[Tho84] Ken Thompson. Reflections on Trusting Trust. Communications
of the ACM, 27(8):761–763, August 1984. Turing Award Lecture.

[TP00] Frank Tip and Jens Palsberg. Scalable Propagation-Based Call
Graph Construction Algorithms. In Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’00,
pages 281–293, Minneapolis, MN, USA, October 2000. ACM Press.

[ver05] The VerifiCard Project. Web page: http://www.verificard.

org/, January 2005.

[VHU92] Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-Time
Analysis of Object-Oriented Programs. In Proc. International Con-
ference on Compiler Construction, CC’92, volume 641 of Lecture
Notes in Computer Science. Springer Verlag, 1992.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot — a Java Bytecode
Optimization Framework. In CASCON99, September 1999.

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam,
Patrice Pominville, and Vijay Sundaresan. Optimizing Java Byte-
code using the Soot Framework: Is it Feasible? In Proc.
International Conference on Compiler Construction, CC’2000,
March/April 2000.

[VRH98] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java
Bytecode for Analyses and Transformations. Technical Report
SABLE-TR-1998-4, McGill University, July 1998.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A Sound
Type System for Secure Flow Analysis. Journal of Computer Se-
curity, 4(3):167–187, December 1996.

[WR99] John Whaley and Martin Rinard. Compositional Pointer and Es-
cape Analysis for Java Programs. In Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’99,
pages 187–206, Denver, CO, USA, November 1999. ACM Press.

[ZR02] Karen Zee and Martin Rinard. Write barrier removal by static
analysis. In Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’02, pages 191–210, Seattle,
Washington, USA, 2002. ACM Press.

