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ABSTRACT
Networked communication systems and the data they make avail-
able have, over the last decades, made their way to the very core
of both society and business. Not only do they support everyday
life and day-to-day operations, in many cases they enable them in
the first place, and often are among the most valuable assets. The
flexibility that makes them so valuable in the first place, is also
their primary vulnerability: via the network, an entity’s data is ac-
cessible from almost everywhere, often without the need of phys-
ical presence in the entity’s perimeter. In this work we propose a
new security paradigm, that aims at using the network’s flexibility
to move data and applications away from potential attackers. We
also present a possible realization of the proposed paradigm, based
on recent advances in language-based security and static analysis,
where data and applications are partitioned ahead-of-time and can
be moved automatically based on activity both in the network as
well as the real world.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software

General Terms
Security, Design

1. INTRODUCTION
At the very core of businesses and society, information systems

pervade our daily life. They are essential at all levels of actions,
from meaningless “surfing” to decisions that potentially can influ-
ence the well-being of companies, economies, or even whole pop-
ulations.

Not only do these information systems support everyday life
and day-to-day operations, in many cases they enable them in the
first place, and often are among the most valuable assets. Offer-
ing seamless access to computing resources and data from virtually
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any location around the globe is one of the most outstanding fea-
tures of these systems. This flexibility makes them so valuable,
but at the same time is the reason for their major vulnerability: via
the network, an entity’s data is accessible from almost everywhere,
often without the need of physical presence in the entity’s perime-
ter. With upcoming techniques such as cloud computing, owners of
data and applications are not even able to physically enforce access
control to their assets any longer.

This risk of data possibly being accessible without proper au-
thorization has lead to a wide range of access control mechanisms,
which are supposed to restrict access to data. Protection usually
consists of an onion-like layering of firewalls, encryption, and other
kinds of access control mechanisms. However, with every combi-
nation of protections like these, eventually the layers are breached
and data is leaked.

While we do not claim that the paradigm suggested in this pa-
per is insurmountable, it is to our knowledge the first approach
to moving the data away from potentially insecure locations. The
new security paradigm proposed in this work aims at using the net-
work’s flexibility to move data and applications away from poten-
tial attackers. The paradigm is based on our belief that in order
to counter threats to mission-critical data we need an infrastructure
that makes it possible to dynamically distribute and move data and
applications.

Overall our approach is closely related to risk analysis—an or-
ganization will need to assess how much risk it is willing to take
as to making (possibly protected) data accessible to anybody with
access to the location where it is stored. Even worse, this does not
only hold for data, but also for applications. If one has access to
a host that runs (parts of) an application that deals with sensitive
data, then one should either be trusted not to try to get access to
that application’s memory slice, or the application should either be
stopped or relocated and the memory slice be erased. This is ex-
actly what the suggested paradigm is designed to address.

We also present a possible realization of the proposed paradigm,
based on recent advances in language-based security and static anal-
ysis, where data and applications are partitioned ahead-of-time and
can be moved automatically based on activity both in the network
as well as the real world.

The partitioning is based on programming languages such as Jif
that support the annotation of data and code in an application with
owners and admitted accessors [15]. The usual targets of Jif are
applications with mutually distrusting owners of data and applica-
tions, who want to ensure that unauthorized accesses to their assets
are disallowed by the underlying system. The program is executed
on a network of hosts operated by the principals, and the runtime
system ensures by construction that the distribution of the applica-
tion onto the network obeys all access-control annotations of the
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original code. In previous work [11, 23] this approach has been
adapted to deal with dynamically changing networks, where both
the network and/or the group of principals can change.

In the suggested paradigm we use static analysis techniques [17]
to guide the computation of partitions. We use the information on
principals in the system along with their access rights to code and
data to compute possible partitionings ahead-of-time. An analy-
sis similar to the one presented in [21] allows us to pre-compute
which principals can reach which location, and which data should
or should not be accessible. Note that in the grid, users and hosts
may change dynamically (and frequently) and so the static parti-
tioning must be based, e.g., on roles or the organization to which
an actor belongs.

Combining these two approaches allows the system to automat-
ically move data and code away from both physical and virtual lo-
cations based on physical and virtual actors. Since the hosts in the
network as well as the actors are known ahead-of-time, possible
scenarios can be pre-computed as well, and thus more effectively
disallowing access to data if the actor performing the access does
not have the necessary rights.

Compare this to the tactics of guerrilla armies. Guerrilla warfare
usually is characterized by a considerably sized army, that when
under attack splits up in small, independent units. These units con-
tinue to follow the original goal, partly independent, partly collab-
orating with other units. What makes these tactics so successful is
the high flexibility, and the ease of splitting and re-uniting units.

The overall goal of both guerrilla tactics and the suggested para-
digm can be compared to the experiment of nailing a pudding to a
wall [7]—whenever one tries to nail the pudding (access the code
or data), it slips away (is relocated) to another host. Another anal-
ogy are magnetic poles pushing equal poles away. This approach
has supposedly been used quite successfully by Scrooge McDuck
to move his vault away from the Beagle Boys.

The rest of this paper is organized as follows. In the rest of this
section we lay out two scenarios where our paradigm would be
able to provide better protection of data. In the next section we
present the paradigm and its constituents, followed in Section 3 by
a more detailed description of the paradigm’s constituents, and a
discussion of how to strengthen (or weaken) the approach, as well
as of approaches for enforcing its success. Section 4 and Section 5
discuss drawbacks and benefits in a system based on the suggested
paradigm and implementation issues, respectively. Section 6 briefly
discusses related work, followed by a conclusion and an outlook on
future work in Section 7.

1.1 Example Scenarios
Before introducing the paradigm of fluid information systems,

we briefly discuss some example cases and how they could benefit
from the paradigm. The setting of our example scenarios are a
bank, representing a traditional, administrative domain, and a grid-
computing service with remotely managed resources.

A banking system.
Consider a bank department that deals with loans and credit re-

ports. To protect the bank against malicious actions by an inside
actor, each document and contract must be signed by (at least) two
people. In this “traditional” setting, the document in question can
either first be signed by one actor, and then by the other, or it can
be signed by the same actor, using two different signatures.

Assuming a network-based document-storage system, sensitive
data will (again in the traditional setting) be available on the host(s)
where it is stored, independent of whether an actor accessing the
system needs to have or has access to the data or not. This means

that with every actor having access to the location but not to the
data, the risk of the data being accessed illicitly may increase. There-
fore, sensitive data should be re-located whenever a user with insuf-
ficient rights enters or gets access to the location. This scenario is
gaining special importance with the spreading of technologies such
as cloud computing, where the data owner has little, if any control
over where data is stored.

The cases discussed so far rely on internal events that are poten-
tially easy to detect by hooking up a door with a badge reader to
a logging service or checking computer logs, thus detecting, e.g.,
robots entering the system or users entering a room or logging into
a system. Beyond these cases, there will also be events that may
not always be detectable. For example, consider a spyware or virus
scanner, that triggers an event in the case of detecting an intrusion.
While quarantining the piece of software in question is a viable op-
tion on user machines, this may be unacceptable on servers, where
it would be preferable to simply move any potentially threatened
data.

A grid-computing service.
In the previous scenario, the bank has complete overall control

of the IT-system. Moving to a cloud or grid based system this is
no longer the case. Indeed, the system underlying the cloud (or
grid) may be owned by one or more entities completely different
from the users of the copmuting services provided by the cloud.
This makes it very challenging to provide security for computations
taking place in the cloud and even more challenging to guarantee
relevant security properties.

As an example, consider a biotech company that outsources com-
putationally complex tasks to a grid, e.g., analysis of genomes.
Typically the data produced by such analysis is highly sensitive and
must be kept confidential1. Obviously the biotech company wants
some assurance that its data and computations are adequately pro-
tected. However, since data and computations can be moved be-
tween nodes in the grid dynamically, e.g., for better load balancing
or to compensate for failing nodes, it is impossible to predict where
specific data items or computations end up and in particular what
other data and computations a given node is shared with. The dy-
namic nature of this scenario makes it difficult to use and apply
traditional security measures and policies in a meaningfiul way.

2. FLUID INFORMATION SYSTEMS
Before presenting more details, we state the paradigm proposed

by this work. We believe that in order to counter threats to mission-
critical data and applications in networked systems, we need an
infrastructure that makes it possible to dynamically distribute and
move data and applications on hosts in the network:

Instead of simply protecting data and applications by
static and stationary defense mechanisms, e.g., fire-
walls and access control, with an (often implicit) un-
derlying assumption of a fixed and relatively stable in-
frastructure, resulting in a security paradigm not unlike
a digital Maginot Line, we need a paradigm-shift to-
wards systems that protect data and applications through
decentralization, decomposition, and high mobility of
data and resources.

It should be noted that this is not supposed to replace our current
protection mechanisms, but to enhance them with a mechanism to
move the data and applications away once they are threatened.
1This sensitivity of data, which, in principle, is incommensurate
with the idea of cloud computing, is exactly one of the threats to the
idea of cloud computing, but that is a completely different story.
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Figure 1: Elements in an instance of the suggested paradigm.
The circles represent nodes in the physical or virtual domain,
where data and applications are stored and executed. When-
ever events occur they are forwarded to the middle ware com-
ponent, which then decides, based on the configuration compo-
nents shown on the bottom of the figure, whether or not data
and application parts should be re-located.

The idea is that, based on access-control mechanisms, both data
and applications should only be available on those network nodes
where only users are present who may access them, and even more
importantly no users are present, who may not access them. To this
end, data and applications should be moved away from nodes that
do not fulfill these properties, thus also moving (or being moved)
away from possible attackers. This can be compared to trying to
nail a pudding to the wall [7]—whenever the attacker tries to nail
the data or application, it already has vanished.

It is important to note that the idea is to distribute the application
and data, and keep them distributed. This means that during actual
operation there is no need to re-unite all bits and pieces, but instead
the application is executed in a distributed manner, ensuring correct
access to other parts of the application and data.

One shortcoming of the paradigm as just described is that it is too
“black and white”. Assume the bank scenario as described above.
If Alice needs to access a document, Bob can hinder her from doing
so simply by logging into the system, or entering the room. If the
system did not have any shades of gray, Alice would never be able
to access the document as long as Bob is in the room or logged in.
This goes back to the brief mention of risk analysis in the Introduc-
tion. In principle each piece of information should be associated
with a value to the organization, and each actor with a risk value.
Information’s value expresses the information’s importance to the
organization, and in the end determines how big a risk the organi-
zation is willing to take with respect to this information. Together
with the risk value(s) of the actor(s) being present at the location
where the data is stored, the suggested paradigm allows the system
to determine whether or not the data should be re-located.

2.1 Elements of the Paradigm
In order to implement a system living up to the goals of the sug-

gested paradigm, it needs to support certain operations and features.
Before presenting a concrete instantiation in the next section, we
briefly discuss the paradigm’s building blocks. The overall struc-
ture is shown in Figure 1.

• System Configuration. The elements shown at the bottom
of Figure 1 constitute the core information on the system.
They determine the structure of the underlying infrastructure
(both physical and virtual), the users in the system and the ac-
cess control specification, as well as the risk associated with
individual users and the value of information items.

• Actors and Events. These elements are tightly coupled—
actors have certain access rights on data (and applications),
and they cause events, that can have many different sources.
For example, actors might log into systems, enter locations,
access data, etc. In principle, the kind of events, which can
trigger a system response, is only limited by the support of
the environment. As discussed above, they might also in-
clude triggers from spyware software or virus checkers, in-
clude proximity sensors, etc.

• Data. We subsume both information and applications under
data, since they should be dealt with uniformly. Data can
be re-located to other hosts, and, in principle, could also be
split across hosts if different parts had different access re-
strictions. Applications should also be re-locatable, and can
be split into parts dealing with certain groups of data that has
similar restrictions and owners.

• Middle ware. The middle ware is the building block in real-
izing the paradigm. It ensures that data and applications are
split and re-located based on the events triggered by actors in
the system.

2.2 Example Scenarios Revisited

A banking system.
The banking scenario presents a straightforward application of

Fluid Information Systems: here sensitive data is simply moved
away from network nodes accessed by non-trusted actors, be it
users or automated administrative processes such as malware scan-
ners.

A grid-computing service.
For grid based services, Fluid Information Systems may offer

an approach to security that is more directly applicable and eas-
ily related to the underlying grid structure. The notion of making
data and computations more decentralized and mobile seems to be
a very good fit to the paradigm of grid-computing.

In the case of the biotech company performing sensitive cop-
mutations on confidential data, Fluid Information Systems enables
the company to specify a security policy, e.g., guaranteeing that
sensitive computations are only performed on nodes that are not
shared with other, potentially malicious, agents. This approach
may be taken even further by requiring that during an attack the
most sensitive computations must be split into smaller, and presum-
ably less sensitive, computations that are then scattered across the
entire grid. Once the attack is over, the computations may gather
and aggregate again into fewer but larger computations that make
better use of the provided resources.
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To prevent “shepherding attacks” (see below) and similar attacks
to drive data into specific parts of the grid or to isolate computa-
tions at particular nodes, it would be possible to specify that par-
ticularly sensitive data or computations must always be moving be-
tween randomly chosen nodes. This would make it very hard for
an attacker to locate and attack individual computations.

3. AN INSTANCE OF THE PARADIGM
In this section we present in more detail the constituents of an

instance of the system suggested by the paradigm. It uses program
partitioning as introduced by Myers et al. [27, 28] to realize the re-
partitioning and re-location of applications, and insider threat anal-
yses as introduced by Probst et al. [21, 19] to identify which loca-
tions can be reached by which user. It should be noted that all com-
putations of reachability and partitions can be performed off-line,
thereby reducing the run-time overhead. At run-time, the middle
ware is only concerned with catching events, and uses these events
to re-locate data and applications. The description in this section is
closely based on the techniques presented in [21] and [23].

3.1 Program Partitioning
Information-flow policies have been used for specifying con-

fidentiality and integrity requirements. Their success is mostly
based on the ability to specify how information may be used in
the system as opposed to which principals may access or modify
the data. Security-typed languages [14, 22] have been used to im-
plement these policies in programming languages. By annotating
data in programs, the programmer explicitly specifies how the flow
of information allowed by the language semantics should be con-
strained. The benefit of these explicit annotations is that programs
that violate the restrictions will be rejected either during compila-
tion or during execution. Thus, the program itself does not have
to be trusted—instead, only the reused components (compiler and
run-time system) must be trusted.

Secure Program Partitioning [27, 28] is a language-based tech-
nique for distributing confidential data and computation across a
distributed system of mutually untrusted hosts. The program to
be distributed is annotated with security types that constrain per-
missible information flow as described above. The resulting con-
fidentiality and integrity policies are used to guide the partitioning
of application and data across the network. The resulting commu-
nicating sub-programs not only implement the original program,
but at the same time satisfy all security requirements of principals,
including trust relations to other principals as well as hosts. The
results reported in [27, 28] with respect to the performance of the
distributed code suggest that this is a feasible way to obtain secure
distributed computation.

The main drawback in Secure Program Partitioning (SPP) is that
the framework contains two static components—the trust relation
and the hosts in the network. While a static trust relation is nec-
essary to ensure system integrity, the second restriction not only
seems to be superfluous, but also hinders the system from mov-
ing data or computations to newly available hosts that might allow
a better fulfillment of a principal’s requirements. Thus, by allow-
ing the partitioning to be adjusted after a host joins or leaves the
network, the overall trust of the principals in the partitioning—and
thus in the security of the distributed system—can be increased.

In an ideal world, hosts should not store any references to items
that have been moved to another host after data and computations
have been redistributed in the enhanced network. The recently in-
troduced mechanism of Erasure Policies [6] allows one to design
systems where programmers annotate their data with policies that
describe exactly this kind of behavior. Erasure Policies state ex-

plicit erasure and declassification requirements, and in our frame-
work would be enforced by each client’s portion of the framework.

While [11] and [23] are based on dynamically changing net-
works and sets of principals, in realizing the paradigm we turn the
tables—in an information system we know statically which nodes
are available, and who operates them, and we know statically which
actors or access rights are assigned in the system. The exception to
this are nodes that are mobile such as laptops, or nodes that are only
available intermittently.

The benefit of SPP is that participants do not need to fully trust
each others’ hosts to enable the distributed execution of a program
dealing with their data. As Figure 2 depicts, in the original frame-
work introduced by Myers et al. in [27], the compiler receives two
inputs: the program source code, which uses a security-typed lan-
guage, and the trust declarations of all participants. These declara-
tions state each principal’s trust in hosts and other principals. They
are used to guide the compilation and splitting of the security-typed
program into sub-programs that are executed on (some of) the hosts
in the network. By communicating, these sub-programs perform
the same computation as the original program, however, the splitter
ensures that all trust and security policies are fulfilled. As stated by
Myers et al. [27], the splitter ensures that if a host h is subverted,
only the confidentiality or integrity of data owned by principals that
trust h is threatened.

The main component in the programming model used in SPP
is the principal, who can express confidentiality or integrity con-
cerns with respect to data. Principals can be named in information-
flow policies and also define the authority possessed by the pro-
gram being executed. Security labels [15] express confidentiality
policies on data. A label l1 = {o : r1, r2, · · · , rn} means that
data labeled with l1 is owned by a principal o and that o permits
readers r1, · · · , rn (and o) to read the data. Data can also have
multiple owners, each expressing its concerns with respect to the
data. E.g., l2 = {o1 : r1, r2; o2 : r2, r3; } expresses that owner
o1 allows readers r1 and r2 to read data labeled with l2, and owner
o2 does so for readers r2 and r3. Of course each annotation must
be obeyed by the system, that is only r2 will be allowed to access
data labeled with l2. Additionally, labels may specify integrity.
l3 = {? : p1, · · · , pn} specifies which principals trust the data
labeled with l3.

3.1.1 Application to the Paradigm
In the scenario targeted by the paradigm suggested here, we face

a different situation. We know precisely which nodes are available
in the network, namely which hosts are trusted to store data and/or
execute code. This is an important distinction to the general setting
described above, since it allows one to make much stronger as-
sumptions as to where to put data and code. Furthermore, since all
this information is known beforehand and statically, the partition-
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Figure 2: Structure of the Secure Program Partitioning Frame-
work.

128



ings described above can be pre-computed for all or at least many
possible scenarios as to which user might be at which location (or
execute a program at which location).

For obvious reasons, the number of partitionings to compute can
easily become intractable, due to large numbers of principals, hosts,
and data in any information system of reasonable size. In order
to actually make realizations of the suggested paradigm feasible,
we suggest combining program partitioning with a static-analysis
technique such as the technique suggested in [21] that effectively
allows the system to pre-compute which actor can access which
locations and which data in a network.

3.2 Threat Analysis
In previous work [21, 19, 20] we have developed a static-analysis

technique based on a formal model of a system. This technique al-
lows us to analyze the system model for potential insider threats [3].
Most often the primary measure taken to protect against insider at-
tacks is still a posteriori auditing of log files when an insider inci-
dent has been detected [4].

In instantiating the paradigm, we are in a situation where we
have a model of the system as described above, and have the con-
figuration of access control available. This enables application of
techniques such as the ones described in [20, 21], where a static
analysis is used to pre-determine which actors might reach which
locations, and which data might be accessed. Together with the
system’s access control configuration, this analysis can be used to
determine when data and code must be re-located to which other
nodes. Our previous analyses [20, 21] are based on a model that
allows one to define a notion of insider attacks, and thereby to
study systems and analyze the potential consequences of such an
attack. Formal modeling and analysis is increasingly important in
a modern computing environment with widely distributed systems,
computing grids, and service-oriented architectures, where the line
between insider and outsider is more blurred than ever—which is
especially true for the kind of information systems targeted by the
suggested paradigm.

The formal model [19] also suggested for this work has two
parts: an abstract high-level system model based on graphs, and
a process calculus, called acKlaim, providing formal semantics for
the abstract model. As the name suggests, the acKlaim calculus
belongs to the Klaim family of process calculi [16] that are all
designed around the tuple-space paradigm, making them ideally
suited for modeling distributed systems like the interact/cooperate
and service-oriented architectures. Specifically, acKlaim is an ex-
tension of the µKlaim calculus with access-control primitives. In
addition to this formal model we also show how techniques from
static program analysis can be applied to automatically compute a
sound estimate, i.e., an over-approximation, of the potential conse-
quences of an insider attack. This result has two immediate applica-
tions—on the one hand it can be used in designing access controls
and assigning security clearances in such a way as to minimize the
damage an insider can do. On the other hand, it can direct the au-
diting process after an attack has occurred, by identifying before
the incident which events should be monitored. This flexibility is
exactly what makes it so suitable for the application suggested here.

An important property of the suggested model is that it enables
the formalization of many soft aspects of the system. The degree
of abstraction in the system model is sufficiently high to allow easy
modeling of real-world systems, yet low enough that technical de-
tails relevant to security can also be modeled with relative ease.
The acKlaim process calculus is used to formalize the semantics of
the system model itself and can be used to formally reason about
properties of the system. The system model is based on a system

consisting of locations and actors. While locations are static, actors
can move around in the system. To support these movements, lo-
cations can be connected by directed edges, which define freedoms
of movements of actors.

3.2.1 Application to the Paradigm
As described above, the analysis just described is ideally suited

to be applied in the setting of the suggested paradigm. It effec-
tively allows one to model the information system, and thus forms
the basis for limiting the number of potential partitionings to be
computed by the program partitioning framework.

At the same time, the result of the analysis can be used to identify
shortcomings in the overall system setup. Obviously, one of the
prerequisites for realizing the paradigm is the ability to sense the
arrival, presence, and departure of an actor at a location, since this
capability is essential for starting re-location of data and code, if
necessary. This relates closely to, e.g., work on data tethers [2],
which aim at enabling the automatic protection of data based on
environmental circumstances.

3.3 Strengthening the Paradigm
The core of the suggested paradigm is to ensure that data and

code are not accessible at a node if they could be accessed by an
actor who is present at that node (or can access it) but should not
have access to this very data or code. To make the paradigm accept-
able, a proof of this denial of success seems to be necessary—and
is exactly what can be achieved by means of techniques such as
the recently introduced mechanism of Erasure Policies [6]. Era-
sure policies allow to design systems where programmers annotate
their data with policies that describe exactly this kind of behavior.
Erasure Policies state explicit erasure and declassification require-
ments, and formal methods can then prove that these annotations
are actually obeyed. Applying Erasure Policies means that one can
formally prove, once and for all, that a framework is strong enough
to uphold the paradigm, for example, by erasing all code and data
from, e.g., a node’s memory whenever the code and data have been
repartitioned to another node.

As mentioned above, data tethers [2] can be used to further streng-
then the suggested paradigm, by increasing the possible interac-
tions between the system and its environment. Examples might in-
clude disallowing certain documents to be stored on the same host
at the same time. Data tethers would also allow to realize policies
at a higher level, such as, e.g., the four-eyes principle, where data
may only be accessed by two authorized persons simultaneously.
In the setting of the paradigm this would mean that once the first
actor enters a location, the framework ensures that the data to be
accessed is partitioned to another host. Once a second actor en-
ters the location, and if and only if this actor has sufficient rights
to allow access to the document, the data is scheduled back to the
location. Note that data tethers can be realized by many different
means, e.g., logging mechanisms.

Another approach for strengthening the paradigm is to make data
and code disappear in situations that would be considered espe-
cially dangerous. This could be combined with approaches such
as [12], which aims at securing critical data in hard-to-attack re-
gions of a system until it is safe to make the data available more
freely again. Clearly, also this extension would benefit from data
tethers to allow more fine-grained sensing of both the beginning of
a dangerous situation as well as its dissolving.

3.4 Weakening the Paradigm
One of the strengths of the paradigm described above is its ability

to reason about the underlying system at a very detailed level. This
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ability allows one to model and capture even smallest nuances of
the critical aspects of the system under consideration, but at the
same time can result in an overwhelming number of little details.

While this is a typical risk with static analysis techniques, they
also provide a solution—the selection of more coarse-grained ab-
stractions that allow to treat bigger systems in less time. Once the
(less precise) result has been obtained, interesting system parts can
be chosen to be re-analyzed with a more fine-grained abstraction.
Now, since the sub-system in question is smaller than the whole
system, the analysis time will be shortened.

3.5 Enforcing Paradigm Success
Beyond the requirements discussed above, there is one major ob-

stacle to overcome, which is the challenge of enforcing the para-
digm’s success. Often, new approaches are challenged to argue for
how they can ensure to be able to operate under attack. For obvi-
ous reason, this would be an important feature of a new paradigm
or technology. On the other hand, the authors think that this prop-
erty might be highly overrated, since also for existing technologies
it often is unclear as to how they ensure such a property. If, for
example, the cable to the red phone is disconnected, then it will
be hard to argue that this is a failure per se of the idea of the red
phone [26].

For this reason we believe that the only really important condi-
tion for the presented paradigm’s success (as well as the success
of other approaches) is that the infrastructure described above is
in place and operational. While many direct threats to the system
itself will not be preventable, we think that the benefits gained out-
weigh this. Even more importantly this property is very similar to
that of real systems as described above, so at least it does not rep-
resent a worsening of the status quo. In the next section we briefly
discuss some of these issues.

4. SECURITY ISSUES
In this section we discuss briefly some of the risks faced in a

system implementing the suggested paradigm.

Trapping data.
An important question is how to prevent data from being “trap-

ped”, or access being denied by a not-authorized user being present
in a location (physically or being logged in) where an authorized
user wants to access the information. As discussed above, this can
easily happen in a “black and white” instantiation of the paradigm,
which can not distinguish between different levels of risk posed
by users, or value of information. Therefore, in principle, each
piece of information should be associated with a value to the or-
ganization, and each actor with a risk value. Information’s value
expresses the information’s importance to the organization, and in
the end determines how big a risk the organization is willing to take
with respect to this information. Together with the risk value(s) of
the actor(s) being present at the location where the data is stored,
the suggested paradigm allows the system to determine whether or
not the data should be re-located.

Beyond this, users should also be associated with the trust the
organization has into them. If a user is very trustworthy it may
very well be acceptable that he accesses data even though non-
trustworthy actors are present and potentially could access the data.

Shepherding Attack.
With this new paradigm also come new attack strategies. One

strategy in particular must be dealt with by any instance of the pa-
radigm, what we call the “Shepherding Attack”. The Shepherding

Attack is an attempt at driving data into “dead ends”, i.e., places
where data is of little or no use or maybe not even accessible to
legitimate users of a given system resulting in a denial-of-service
attack. Alternatively an attacker may try and drive data into loca-
tions that are controlled by the attacker or at least more susceptible
to other means of attack.

Preventing shepherding attacks in practice depends on a number
of things including the specific nature of the data to be protected,
what the data has to be protected against, and the underlying net-
work. For some applications, e.g., the banking example described
in the introduction, it would make sense for sensitive data to be
moved into a highly secure storage node whenever a non-trusted
user is logged into the system. In contrast, in the grid example also
discussed earlier, it might be better to split a computation into sev-
eral smaller computations, and possibly replicate some of them,
and then distribute the smaller computations even further in the
grid thereby making it harder to prevent the overall computation
to finish. As these examples show, the security requirements and
strategies imposed by different instances of Fluid Information Sys-
tems can vary greatly. Therefore every specific instance of a Fluid
Information System must also include a security policy, based on
rigorous threat analysis and risk assessment, that specifies how the
system should act in during an attack, e.g., a Shepherding Attack.

Threat Model and Events.
The threat model clearly depends on the scenario where the pa-

radigm is being applied, and on the organization’s general risk as-
sessment. Depending on this assessment, the risks to consider can
for example, when considering accessibility of the local infrastruc-
ture, range from purely local threats to remote threats; when con-
sidering the execution environment they may include threats due to
data made available on the cloud. The important point is that there
is no universal threat model built-into the paradigm, but that the
paradigm can be adapted to the current situation.

The same is true for the types of events to deal with, which could
range from simple access-control or IDS events to major disaster
alerts such as terrorist attacks.

In both cases the paradigm can be used to realize a flexible re-
sponse, meaning that for events and threats classified as being “or-
dinary” the application and data are re-distributed as described above;
this can be imagined to be the unauthorized user entering a room or
logging into a work station. In the case of an extraordinary event or
threat, the application might react completely different, for exam-
ple moving data and applications to a safe area, which subsequently
is disconnected from the network.

The Cloud.
With respect to the suggested paradigm, cloud computing or “the

cloud” can play different roles. A cloud infrastructure could be the
obvious target place for moving (parts of) applications and data,
potentially making it available to a wide selection of nodes in the
organization’s network at the same time. This would significantly
ease the burden on the splitter and the mover. On the other hand, the
cloud also complicates ensuring the paradigm’s success, since the
ability to observe actions of actors on remote machines relies on the
cloud’s operator. Similarly whether observed actions can be trusted
or not relates to the trust into the cloud’s operator. Therefore, the
overall contribution of a cloud-computing environment depends on
the specific system setup.

Availability.
A clear issue is that of availability of data. While in the “origi-

nal” system, data would be stored at a single host, it now may be
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distributed over a large number of machines. This makes it much
more likely that part of the data can be accessed be an adversary,
and it makes it much harder to protect all machines that store parts
of the application and data.

Clearly there exist two attacks of major concern; obtaining a
complete data item or making a data item unusable by destroying
one or more parts of it. The former attack is obviously becoming
less and less likely the more hosts the data is distributed across.
The latter can be countered by using data redundancy approaches
when performing the splitting.

When comparing a system implementing the paradigm to a sys-
tem not implementing it, it should be noted that the chance of an
attacker to either obtain the complete data item or make it unus-
able is significantly lower in the paradigm system because of the
distribution of data. This could enable system operators to give
protection guarantees for data and applications.

5. SETUP AND ADMINISTRATION
While there are often numerous challenges to overcome when

implementing new security technology, not least when this repre-
sents a change in paradigm, two areas seem to be of special concern
to a successful implementation:

• Movement of data. The paradigm by nature relies heavily
on being able to move substantial amounts of data between
network locations, in order to keep the data secure. Under
certain circumstances it may not be possible to actually move
all the sensitive data in time, e.g., if all network connections
are down or because the amount of data simply is too big.

• Administration. Clearly, administering a system where data
may not be where the administrators expects it to be, or in-
deed where data may be moved without notice, may present
even experienced system administrators with an interesting
challenge.

Data.
One implementation strategy for overcoming the problem of data

movement is to encrypt, partition, and replicate all data that is to be
protected. This may help solve the data movement problem in sev-
eral ways: by requiring that all data must be encrypted it is now
possible to “move” data simply by first moving the decryption key.
In a more elaborate scheme data could be encrypted and forwarded
to potential next locations; once the data needs to be moved initially
only the key is moved, and the data and the previous location can
then be deleted. While this poses new problems with respect to syn-
chronization, this is a fairly well understood problem in databases.
Further, by partitioning and replicating data this scheme may also
allow to move a relatively small partition rather than a full data set.

Another approach to deal with especially very large data sets is
to make certain parts of the system immobile. Consequently they
will always be scheduled to the same node, and will thus not be
moved around.

Administration.
Solving the problem of administration may require a more radi-

cal approach, e.g., a “friendly” worm designed to perform adminis-
trative tasks. On the other hand, since the replication, partitioning,
encryption and moving of data would be handled by some middle
ware, this could also be used to keep an up-to-date abstract view
of the system—this would not be location centric, but data centric,
consequently not showing which hosts store which data, but which
data is located at which hosts, in which status. The middle ware

could also be used to keep a log of events that caused the system to
take a certain action.

Technical Issues.
The example instantiation for our paradigm already discusses

some possible elements in a realization of the paradigm. To ex-
tend this example one could consider using hypervisor techniques
such as those implemented in the Xen architecture [1]. Virtualiza-
tion could thus be used to separate parts of applications and data
even if they are distributed to the same machine, using operating
system mechanisms for ensuring protection.

6. RELATED WORK
In [24] an early example of using mobility specifically to counter

an attack is described. Here a light-weight process migration is pro-
posed as an end-to-end solution to Denial-of-Service attacks. The
process under attack is moved within a specified overlay network.

Other directly related work has been covered in the sections above.
Additionally, one can look at research in the area of modeling and
analysis of systems, such as [5, 10, 8, 18, 25]. It should be noted
that, in principle, each of these techniques could be used to replace
the second component of the suggested realization of our paradigm.

Finally, an important related area is that of self-healing systems
in which autonomy and adaptability is essential. See [13] for a
critical overview of the state-of-the-art in self-healing systems with
a special focus on security.

7. CONCLUSION AND FUTURE WORK
At the very core of businesses and society, information systems

pervade our daily life. They are essential at all levels of actions,
from meaningless “surfing” to decisions that potentially can influ-
ence the well-being of companies, economies, or even whole pop-
ulations. In these information systems an entity’s data is accessible
from almost everywhere, often without the need of physical pres-
ence in the entity’s perimeter.

This risk that data might be accessible without proper legitima-
tion, has led to a wide range of access control mechanisms, which
are supposed to restrict access to data.

In this work we propose a new security paradigm that aims at
using the network’s flexibility to move data and applications away
from potential attackers:

Instead of simply protecting data and applications by
firewalls, encryption, and access control, we need a
paradigm-shift towards systems that protect data and
applications from direct access by unauthorized users.

We also present a possible realization of the proposed paradigm,
based on recent advances in language-based security and analysis,
where data and applications are partitioned ahead-of-time and can
be moved automatically based on activity both in the network as
well as the real world.

We believe that this kind of protection is urgently needed as a
kind of overlay on top of the always-on networks we are dealing
with today, where it becomes increasingly difficult to determine
who has access to a location where sensitive data is being stored,
thereby posing a risk for that data.

The suggested paradigm combines well-established techniques
and new approaches from many different areas, such as program
partitioning [15, 11, 23], static analysis [21], erasure policies [6],
data tethers [2], and other security mechanisms such as [12].

As argued above, the mechanisms suggested can easily be incor-
porated in more high-level policies such as the four-eyes principle,
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and other policies can certainly be added, possibly requiring addi-
tion of resources for sensing the environment.
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