14. Introduction to higher-order functions

Higher-order functions is another key areain the functional programming paradigm; Perhaps the
most important at all. In this chapter we will explore this exiting area, and we will give a number of
web-related examples.

14.1. Higher-order functions

Lecture 4 - slide 2

The idea of higher-order functionsis of central importance for the functional programming
paradigm. As we shall see on this and the following pages, this stems from the fact that higher-order
functions can be further generalized by accepting functions as parameters. In addition, higher-order
functions may act as function generators, because they allow functions to be returned as the result
from other functions.

Let usfirst define the concepts of higher-order functions and higher-order languages.

A higher-order function accepts functions as arguments and is able to return a function
as its result

A higher-order language supports higher-order functions and allows functions to be
constituents of data structures

When some functions are 'higher-order' others are bound to be 'lower-order'. What, exactly, do we
mean by the 'order of functions. Thisis explained in below.

The order of data
Order 0: Non function data
Order 1: Functions with domain and range of order O
Order 2: Functions with domain and range of order 1
Order k: Functions with domain and range of order k-1

Order 0 data have nothing to do with functions. Numbers, lists, and characters are example of such
data.

Data of order 1 are functions which work on 'ordinary' order O data. Thus order 1 data are the
functions we have been concerned with until now.

Data of order 2 - and higher - are example of the functions that have our interest in this lecture.

With this understanding, we can define higher-order functions more precisely.

95

Functions of order i, i >= 2, are called higher-order functions

14.2. Some simple and genera higher-order functions

Lecture 4 - slide 3

It istime to look at some examples of higher-order functions. We start with a number of simple
Ones.

Thef1ip function is given in two versions below. f 1 i p takes a function as input, which is returned
withreversed parameters, cf. Program 14.1.

Thefirst version of f1i p uses the shallow syntactic form, discussed in Section 8.12. The onein ?7??
uses the raw lambda expression, also at the outer level.

(define (flip f)
(lambda (x y)
(f y x)))
Program 14.1 The function flip changes the order of it's parameters. The function takes a function
of two parameters, and returns another function of two parameters. The only difference between the
input and output function of flip isthe ordering of their parameters.

The read expression in Program 14.1 and ??? are the values returned from the function flip.

(define flip

(lanmbda (f)
(lambda (x y)
(fy x))))

Program 14.2 An alternative formulation of flipwithout use of the sugared define syntax.

The function negat e, as shown in Program 14.3, takes a predicate p as parameter. negat e returns
the negated predicate. Thus, if (p x) istrue, then ((negate p) x) isfase

(define (negate p)
(I ambda (x)
(if (p x) #f #t)))

Program 14.3 The function negate negates a predicate. Thus, negate takes a predicate function
(boolean function) as parameter and returns the negated predicate. The resulting negated predicate
returns true whenever the input predicate returnsfalse, and vise versa.

The function conpose in Program 14.4 is the classical function composition operator, known by all
high school studentsas'f o g

96

(define (conpose f Q)
(I ambda (x)
(f (g9 x))))

Program 14.4 The function compose composes two functions which both are assumed to take a
single argument. The resulting function composed of f and g returnsf (g(x)),orinLisp(f (g
X)), giventheinputx . Theconpose function fromthe general LAML library accepts two or
mor e parameters, and as such it is more general than the compose function shown here.

Exercise4.1. Usingfl i p, negat e, and conpose

Define and play with the functionsf 1 i p, negat e, and conpose, asthey are defined on this page .
Define, for instance, aflipped cons function and a flipped minus function.

Define the function odd? interms of even? and negat e.

Finaly, compose two HTML mirror functions, such as b and em to a new function.

Be sure you understand your results.

14.3. Linear search in lists

Lecture 4 - slide 4

Let us program a simple, but useful higher-order function which searches alist by linear search. The
functionfi nd-i n-1i st, shown in Program 14.5 takes a predicate pr ed and alist | st as

parameters. This predicate is applied on the elements in the list. The first element which satisfy the
predicate is returned.

]Search criterias can be passed as predicates to linear search functions

;7 Asinple linear |ist search function.
;; Return the first elenment which satisfies the predicate pred.
;; If no such elenment is found, return #f.
(define (find-in-list pred |st)
(cond ((null? Ist) #f)
((pred (car Ist)) (car Ist))

(else (find-in-list pred (cdr Ist)))))

Program 14.5 Alinear list search function. A predicate accepts asinput an element in the list, and
it returnseither true (#t) or false (#f). If the predicate holds (if it returns true), we have found what
we searched for. The predicate pr ed is passed asthe first parameter tof i nd-i n-1i st. Asitis
emphasized in blue color, the predicate is applied on the elements of the list. The first successful
application (an application with true result) terminates the search, and the element is returned. If
thefirst case in the conditional succeeds (the brown condition) we have visited all elementsin the
list, and we conclude that the element looked for is not there. In that case we return false.

97

The dialogue below shows examples of linear list search with fi nd-in-1i st.

1> (define hair-colors (pair-up '(ib per ann) '("black" "green" "pink")))

2> hair-colors
((ib . "black") (per . "green") (ann . "pink"))

3> (find-in-list (lanbda (ass) (eq? (car ass) 'per)) hair-col ors)
(per . "green")

4> (find-in-list (lanbda (ass) (equal? (cdr ass) "pink"™)) hair-colors)
(ann . "pink")

5> (find-in-list (lanbda (ass) (equal ? (cdr ass) "yellow')) hair-colors)
#f

6> (let ((pink-person
(find-in-1ist
(I anbda (ass) (equal ? (cdr ass) "pink")) hair-colors)))
(i f pink-person (car pink-person) #f))
ann

Program 14.6 A sampleinteraction usingfi nd-i n-1i st . Wedefinea simple association list
which relates persons (symbols) and hair colors (strings). The third interaction searches for per's
entry in the list. The fourth interaction searches for a person with pink hair color. In thefifth
interaction nothing is found, because no person has yellow hair color. In the sixth interaction we
illustrate the convenience of boolean convention in Scheme: everything but #f counts astrue. From
atraditional typing point of view thel et expressionis problematic, becauseit can return either a
person (a symbol) or a boolean value. Notice however, from a pragmatic point of view, how useful
thisis.

Exercise 4.2. Linear string search

Listsin Scheme are linear linked structures, which makes it necessary to apply linear search
technigues.

Strings are also linear structures, but based on arrays instead of lists. Thus, strings can be linearly
searched, but it is aso possible to access strings randomly, and more efficiently.

First, design a function which searches a string linearly, in the same way asfi nd-in-1ist. Will
you just replicate the parameters from i nd-i n-1i st, or will you prefer something different?

Next program your function in Scheme.

Exercise 4.3. Indexin list
It is sometimes useful to know wherein a list a certain element occurs, if it occurs at al. Program

the function i ndex-i n-1i st - by- predi cat e which searches for a given element. The comparion
between the aiven e ement and the elements in the list is controlled bv a combarison parameter to

98

i ndex-in-1ist-by-predi cate. The function should return the list position of the match (first
element is number 0), or # if no match is found.

Some examples will help us understand the function:

(index-in-list-by-predicate '"(a b cc b a) 'c eq?) => 2
(index-in-list-by-predicate '(a b c c b a) 'x eq?) => #f

(index-in-list-by-predicate '(tw 2 "two") 2
(lambda (x y) (and (nunber? x) (nunber? y) (= xvy)))) =>1

Be aware if your function is tail recursive.

Exercise 4.4. Binary search in sorted vectors

Linear search, asillustrated by other exercises, is not efficient. It is often attractive to organize
data in a sorted vector, and to do binary search in the vector.

This exercise is meant to illustrate a real- life higher-order function, generalized with several
parameters that are functions themselves.

Program afunction bi nar y- sear ch-i n-vect or, with the following signature:

(bi nary-search-in-vector v el sel el-eq? el-leq?)

v isthe sorted vector. el isthe element to search for. If v-el isan element in the vector, the
actual comparison is done between el and (sel v-el). Thus, the function sel isused asa
selector on vector elements. Equality between elementsis done by the el - eq? function. Thus,
(el -eq? (sel x) (sel y)) makessenseon elementsx andy in the vector. The ordering of
elements in the vector is defined by the el -1 eq? function. (el -1 eq? (sel x) (sel y)) makes
sense on elements x and y in the vector.

Thecal (bi nary-search-in-vector v el sel el-eq? el-leq?) searchesthe vector via
binary search and it returns an element el - v from the vector which satisfies (el-eq? (sel el-v) d).
If no such element can be located, it returns #f.

Here are some examples, with elements being cons pairs:

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. i) (9. ¢

(11 . c)) 7 car = <= =>

(7 . 1)

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. 1) (9. ¢
(11 . ¢)) 2 car = <9 =>

(2 . x)

99

(bi nary-search-in-vector "#((2 . x) (4 . y) (5. z) (7. 1) (9. ¢
(11 . ¢)) 10 car = <9 =>
#f

Be sure to program atail recursive solution.

14.4. Generation of list selectors

Lecture 4 - slide 5

Thefunction fi nd-i n-1i st took afunction as parameter. In this section we will give an example
of a higher-order function which returns a function as result.

It is attractive to generate generalizations of the list selector functionscar, cadr, etc

The function make- sel ect or - f unct i on generates a list selector function which returns element
number n from alist. It should be noticed that the first element in alist is counted as number one.
Thisis contrary to the convention of the function 1i st - r ef and other similar Scheme function,
which counts the first element in alist as number zero. Thisexplainsthe (- n 1) expressionin
Program 14.7.

(define (nmake-sel ector-function n)
(lambda (Ist) (list-ref Ist (- n 1))))

Program 14.7 Asimpleversion of themake- sel ect or - f uncti on function.

In the web version of the materia (dide view or annotated dide view) you will find yet another
version of the function make- sel ect or - f unct i on, which provides for better error messages, in
case element number n does not exist in the list. We have taken it out of this version because of its
size and format.

The dialogue below shows examples of definitions and uses of list selector functions generated by
meke- sel ect or-functi on.

1> (define first (make-selector-function 1 "first"))

2> (first "(a b c))
a

3> (first '())

The sel ector function first: The list () is is too short for selection
It nust have at |east 1 elements.

>

4> (define (make-person-record firstnane |astnanme departnent)
(l'ist 'person-record firstnane |astnanme departnent))

100

5> (define person-record
(make- person-record "Kurt" "Nornmark" "Conputer Science"))

6> (define first-nanme-of (nmake-selector-function 2 "first-nane-of"))
7> (define |ast-name-of (nmake-selector-function 3 "|ast-nanme-of"))

8> (| ast - name- of person-record)
" Nor mar k"

9> (first-nane-of person-record)
"Kurt"

Program 14.8 Examples usages of the function make-sel ector-function. In interaction 1 through 3
we demonstrate generation and use of the first function. Next we outline how to define accessors of
data structures, which are represented aslists. In reality, we are dealing with list-based record
structures. In my every day programming, such list structures are quite common. It istherefore
immensely important, to access data abstractly (via name accessors, instead of via the positionin
thelist (car, cadr, etc). In this context, the make-sel ector-function comesin handy.

14.5. References

[-] Foldoc: higher order function
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=higher+order+function

101

102

15. Mapping and filtering

In this chapter we will focus on higher-order functions that work on lists. It turns out that the
appropriate combinations of these make it possible to solve a variety of different list processing
problems.

15.1. Classica higher-order functions. Overview

Lecture 4 - slide 7

We start with an overview of the classical higher-order functions on lists, not just mapping and
filtering, but aso including reduction and zipping functions which we cover in subsequent sections.

There exists a few higher-order functions viawhich awide variety of problems can be
solved by ssimple combinations

Overview:
Mapping: Application of afunction on all elementsin alist
Filtering: Collectionof elements from alist which satisfy a particular condition
Accumulation: Pair wise combination of the elements of alist to avalue of
another type
Zipping: Combination of two liststo asingle list

[The functions mentioned above represent abstractions of algorithmic patternsin the
functional paradigm

The idea of patterns has been boosted in the recent years, not least in the area of object-oriented
programming. The classical higher-order list functions encode recursive patterns on the recursive
data type list. As a contrast to many patterns in the object-oriented paradigm, the patterns encoded
by map, filter, and others, can be programmed directly. Thus, the algorithmic patterns we study
here are not design patterns. Rather, they are programming patterns for the practical functional
programmer.

15.2. Mapping

Lecture 4 - slide 8

The idea of mapping is to apply a function on each element of alist, hereby collecting the list of the
function applications

103

A mapping function applies a function on each element of alist and returns the list of
these applications

The function map is an essential Scheme function

The idea of mapping is illustrated below.

ﬁi1 H’j‘1 !?31 ﬂ‘l‘—¢ H‘I‘1

£ e, €, By i e
v oy v !
((me,)(me,) (me;) (me,).... (me))

Figure 15.1 Mapping a function mon alist. misapplied on every
element, and the list of these applicationsis returned.

15.3. The mapping function

Lecture 4 - slide 9

It is now time to study the implementation of the mapping function. We program a function called
mymap in order not to redefine Scheme's own mapping function (a standard function in al Scheme
implementations).

(define (nymap f Ist)
(if (null? Ist)
"0
(cons (f (car Ist))
(mymap f (cdr Ist)))))
Program 15.1 Animplementation of map. Thisis not a good implementation because the recursive

call isnot atail call. We leave it as an exercise to make a memory efficient implementation with tail
recursion - see the exercise below.

Exercise 4.5. Iterative mapping function

In contrast to the function mymap on this page , write an iterative mapping function which is tail
recursive.

Test your function against mymap on this page, and against the native map function of your
Scheme system.

Exercise 4.6. Table exercise: transposing, row elimination, and column elimination.

Inan earlier sectior we have shown the annlication of some verv useful table manipulation

104

functions. Now it is time to program these functions, and to study them in further details.

Program the functiorst r anspose, el i m nat e-r ow, and el i m nat e- col urm, asthey have been
illustrated earlier. As one of the success criteria of this exercise, you should attempt to use higher-
order functions as much and well as possible in your solutions.

Hint: Program a higher-order function, (el i m nat e- el ement n) . The function should return a
function which éiminates el ement number n from a list.

15.4. Examples of mapping

Lecture 4 - dide 10

We will now study a number of examples.

[Expresion \Value
(map
string? (#f #f #t #f #f #t)
(list 1 "en "en" 2 "to "to"))
(map
(lanbda (x) (* 2 X)) (20 40 60 80)
(list 10 20 30 40))
(ul
(Enap .
compose 1 (ul (map (compose li (compose b (lambda (X)
(st S St eoter red 90 ont-color red X)) (list "a "b" "c’)))
)
)
(ul
(map
(conpose i
Same as above (compose b

(lambda (x) (font-color red x))))
(I I St n a.II n bll n CII)
)

)

Table15.1 Inthefirstrowwemapthest ri ng? predicateon alist of
atoms (number, symbols, and strings). Thisreveals (in terms of boolean
values) which of the elements that are strings. In the second row of the
table, we map a 'multiply with 2' function on a list of numbers. The third
row is more interesting. Here we map the compositionof | i ,b , and red
font coloring on the elements a, b, and c. When passed to the HTML
mirror function ul , this makes an unordered list with red and bold i tems.
Notice that the conpose function used in the exampleis a higher-order
function that can compose two or more functions. The functionconpose
froml i b/ gener al . scmissuch a function. Notice also that the HTML
mirror functionul receivesalist, not astring. The fifth and final row
illustrates the raw HTML output, instead of the nicer rendering of the
unordered list, which we used in the third row.

105

15.5. Filtering

Lecture 4 - dlide 11

As the name indicates, thefi I t er function is good for examining elements of alist for a certain
property. Only elements which possess the property are allowed through the filter.

A filtering function applies a predicate (boolean function) on every element of alist.
Only elements on which the predicate returns true are returned from the filtering
function.

Thefunction filter isnot an essential Scheme function - but is part of the LAML
generd library

The figure below illustrates the filtering idea.

(e, ‘Eg\ e h\ e)

L 4 v v v L
true fal e true falze ... frue

Figure 15.2 Filtering alist with a predicatef. Theresulting list isthe
subset of the elements which satisfy f (the elements onwhich f returns
true).

15.6. Thefiltering function

Lecture 4 - slide 12

The next item on the agenda is an implementation of filter .

|For practical purposes it is important to have a memory efficient fi | t er function

As a consequence of the observation above, we now program atail recursive version of fi | ter.
Notice that it isthe function fi I t er - hel p, which does the real filtering job.

106

(define (filter pred Ist)
(reverse (filter-help pred Ist "())))

(define (filter-help pred Ist res)
(cond ((null? Ist) res)
((pred (car Ist))
(filter-help pred (cdr Ist) (cons (car Ist) res)))
(

(filter-help pred (cdr Ist) res))))

Program 15.2 Animplementation of filter which is memory efficient. If the predicate holds on an
element of thelist (the red fragment) we include the element in the result (the brown fragment). If
not (the green fragment), we drop the element from the result (the purple fragment).

Exercise 4.7. A straightforward filter function
Thefilter function illustrated in the material is memory efficient, using tail recursion.

Take a moment here to implement the straightforward recursive filtering function, which isn't tail
recursive.

15.7. Examples of filtering

Lecture 4 - slide 13

Aswe did for mapping, we will also here study a number of examples. As before, we arrange the
examples in a table where the example expressions are shown to the left, and their values to the

right.

107

[Expression \Value

(filter
even? (2 4)
'(1 23 405))

(filter
(negate even?) (13 5)
"(12 3 45))

Orap 1 1. Firg
map |i
(filter string? 2. Second

(list 1 "a "First" "Second" 3))))
\Sanxaasabove ‘<0I><Ii>First</Ii> <l i >Second</ | i ></ ol >

Table15.2 Inthefirst row wefilter thefirst five natural numberswith
theeven? predicate. In the second row, wefilter the same list of
numberswith the odd? predicate. Rather than using the name odd? we
formit by calculating(negat e even?) . We have seen the higher-
order functionnegat e earlier in thislecture. The third and final
exampleillustratesthefiltering of a list of atomswiththest ri ng?
predicate. Only strings pass the filter, and the resulting list of stringsis
rendered in an ordered list by means of the mirror function of the ol
HTML element.

15.8. References

[-] Foldoc: filter
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=filter
[-] The LAML general library
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general .html
[-] Foldoc: map

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=map

108

16. Reduction and zipping

The reduction and zipping functions work on lists, like map and filter from Chapter 15.

16.1. Reduction

Lecture 4 - dide 15

List reduction is useful when we need somehow to 'boil down' alist to a'single value'. The boiling
is done with abinary function, asillustrated in Figure 16.1.

[Reduction of alist by means of a binary operator transforms the list to avalue in the
range of the binary operator.

(e; & € ey €) ‘CF{]--“ €3 S € ©)
R\\t | ,."I r/ H/r / \H‘ , 1\ \'\L‘ . X
op |/ / \ \oooop
\\\. r."Ilr /I I,."l \\ \ f
w | O\
ﬁx If If.* \ .\‘ J(r
op : ;
.,f % IFP
ap \c};_';

Figure 16.1 Left and right reduction of alist. Left reductionis- quite
naturally - shown to the left, and right reduction to theright.

There is no natural value for reduction of the empty list. Therefore we assume as a
precondition that the list is non-empty.

The intuitive idea of reduction will probably be more clear when we meet examplesin Table 16.1
below.

Examples of left and right reduction are given in the table below. Be sure to understand the

difference between left and right reduction, when the function, with which we reduce, is not
commutative.

109

[Expression \Value

((reduce-left - ' (1 2 3 4 5)) -13

((reduce-right - '(1 2 3 4 5)) 3

(rs:ducs:-l eft string-append (list "The" "The End"
End"))

(reduce-left append (list (list 1 2 3)

(list 'a'b 'c))) (£ zeabe)

Table16.1 Examples of reductions. The - left reduction of the list
corresponds to calculating the expression (- (- (- (-1 2) 3) 4) 5). The -
right reduction of thelist corresponds to calculating the expression (- 1 (-

2(-3(-45))-

16.2. The reduction functions

Lecture 4 - dide 16

We will now implement the reduction functions introduced above in Section 16.1. Both right
reduction and left reduction will be implemented, not least because they together illustrate a good
point about iterative and tail recursive processing of lists. The explanations of thisis found in the
captions of Program 16.1 and Program 16.2.

The function r educe-ri ght isastraightforward recursive function

Thefunction r educe- | ef t isastraightforward iterative function

(define (reduce-right f |st)
(if (null? (cdr Ist))
(car Ist)
(f (car Ist)
(reduce-right f (cdr Ist)))))

Program 16.1 The function reduce-right. Notice the fit between the composition of thelist and the
recursive pattern of the right reduction.

(define (reduce-left f Ist)
(reduce-hel p-left f (cdr Ist) (car Ist)))

(define (reduce-help-left f Ist res)
(if (null? Ist)
res
(reduce-help-left f (cdr Ist) (f res (car Ist)))))

Program 16.2 The function reduce-left. Thereisa misfit between left reduction and the recursive
composition of the list with heads and tails. However, an iterative process where we successively
combineel and e2 (giving r1), r1 and e3 etc., is straightforward. As we have seen several times, this
can be done by a tail recursive function, here reduce-hel p-left.

110

In summary, right reduction is easy to program with a recursive function. The reason is that we can
reduce the problemto (f (car Ist) X),whereXaright reductionof (cdr Ist) withf. Theright
reduction of (cdr 1st) issmaller problem than the original problem, and therefore we eventually
meet the case where the list istrivia (in this case, a single e ement list).

The left reduction combines the elements one after the other, iteratively. First we calculate (f (car
el) (cadr el)), provided that the list is of length 2 or longer. Let us call thisvalue Y. Next (f Y
(caddr el)) iscaculated, and so onin an iterative way. We could easily program this with a
simple loop control gructure, like a for loop.

16.3. Accumulation

Lecture 4 - dlide 17

In this section we introduce a variation of reduction, which allows us aso to reduce the empty list.
We chose to use the word accumulation for this variant.

It is not satisfactory that we cannot reduce the empty list

We remedy the problem by passing an extra parameter to the reduction functions

We call this variant of the reduction functions for accumulation

It also turns out that the accumulation function is slightly more useful than r educe-1 ef t and
reduce-ri ght from Section 16.2. The reason is that we control the type of the parameteri ni t to
accunul at e-ri ght in Program 16.3. Because of that, the signature of the accumulate function
becomes more versatile than the signatures of r educe-1 eft andreduce-ri ght . Honestly, thisis
not easy to spot in Scheme, whereas in languages like Haskell and ML, it would have been more
obvious.

Below we show the function accunul at e- ri ght , which performs right accumulation. In contrast to
reduce-ri ght from Program 16.1laccunul at e- ri ght aso handles the extreme case of the empty
list. If the list is empty, we use the explicitly passed i ni t value as the resuilt.

(define (accunul ate-right f init Ist)
(if (null? |st)
init
(f (car Ist) (accurmulate-right f init (cdr Ist)))))
Program 16.3 The function accumulate-right. The recursive patternissimlar to the pattern of
reduce-right.

The table below shows a few examples of right accumulation, in the sense introduced above.

111

[Expression \Value

\(accunul ate-right - 0 '()) 0

(accunul ate-right - 0 ' (1 2 3 4 5)) 3

(accunul ate-ri ght append ' ()

(list (list 123) (list 'a‘'b'c))) [(L23abc)

Table16.2 Examples of right accumulations. Thefirst row illustrates
that we can accumulate the empty list. The second and third rows are
similar to the second and third rowsin Table 15.1.

In relation to web programming we most often append accumulate lists and strings

accunul ate-ri ght ispart of the general LAML library

Due to their deficiencies, the reduction functions are not used in LAML

16.4. Zipping

Lecture 4 - slide 18

The zipping function is named after a zipper, as known from pants and shirts. The image below
shows the intuition behind a list zipper.

Two equally long lists can be pair wise composed to asingle list by means of zpping
them

& & & B

Figure 16.2 Zipping two lists with the function z. The head of the
resulting listis(z e f j), wherethe element e ; comes fromthefirst list,
and f ; comesfromthe other.

We implement the zipping function in the following section.

16.5. The zipping function

Lecture 4 - slide 19

Thezi p function in Program 16.4 takes two lists, which are combined element for element. Asa
precondition, it is assumed that both input list have the same size.

112

(define (zip z Istl Ist2)
(if (null? Istl)
()
(cons
(z (car Istl) (car Ist2))
(zip z (cdr Istl) (cdr I1st2)))))

Program 16.4 The function zip.

Below we show examples of zipping with the zi p function. For comparison, we aso show an
example that involves st ri ng- mer ge, which we discussed in Section 11.7.

[Expression \Value
((zip cons '(1 2 3) '(ab c)) ((1. a) (2. b) (3. ¢c))
(apply string-append
(zip
"Ri p, Rap, and Rup"”

string-append
'("Rip" "Rap" "Rup")
(" and T M)

(string-nerge "Ri p, Rap, and Rup"

"("Rip" "Rap" "Rup") '(", " ", and "))

Table16.3 Examples of zipping.

Zi p issimilar to the function st ri ng- ner ge from the LAML generdl library

However, st ri ng- mer ge handles lists of strings nortequal lengths, and it concatenates
the zipped results

113

114

17. Currying

Currying is an idea, which is important in contemporary functional programming languages, such as
Haskell. In Scheme, however, the ideais less attractive, due to the parenthesized notation of
function calls.

Despite of this, we will discuss the idea of currying in Scheme via some higher-order functions like
curry anduncurry. Wewill also study some ad hoc currying of Scheme functions, which has
turned out to be useful for practical HTML authoring purposes, not least when we are dealing with
tables.

17.1. Theideaof currying

Lecture 4 - dide 21

Currying is the idea of interpreting an arbitrary function to be of one parameter, which returns a
possibly intermediate function, which can be used further on in a calculation.

Currying alows us to understand every function as taking at most one parameter.

Currying can be seen as a way of generating intermediate functions which accept
additional parameters to complete a calculation

The illustration below shows what happens to function signatures (parameter profiles) when we
introduce currying.

f AxBxC->D non curried.
ffA->B ->C->D curried.

£ A->@B ->(C->D) | [f A->B ->C->D
fa: B ->{(C->D) fa: B -»>C->D
fab: C->D fab: C->D

Figure 17.1 Thesignatures of curried functions. In the upper frame we
show the signature of a function f, which takes three parameters. The
frames bel ow show the signature when f iscurried. In theliterature, the
notation shown to the bottom right is most common. The frame to the left
shows how to par se the notation (the symbol -> associates to theright).

Currying and Scheme is not related to each other. Currying must be integrated at a more
basic level to be elegant and useful

115

17.2. Currying in Scheme

Lecture 4 - dlide 22

Degspite the observations from above, we can explore and play with currying in Scheme. We will
not, however, claim that it comes out as elegant as, for instance, in Haskell.

It is possible to generate curried functions in Scheme.,

But the parenthesis notation of Lisp does not fit very well with the idea of currying

The function cur ry2 generates a curried version of a function, which accepts two parameters. The
curried version takes one parameter at atime. Similarly, cur r y3 generates a curried version of a
function that takes three parameters.

The functions uncur ry2 and uncur ry3 are the inverse functions.

It is worth a consideration if we can generalizecurry2 and cur ry3 to ageneration of currynviaa
higher-order function cur ry, which takes n as parameter. We will leave that as an open question.

(define (curry2 f)
(I ambda(x)
(I ambda(y)
(f xy))))

(define (curry3 f)
(1 anbda(x)
(I ambda(y)
(I anmbda(z)
(f xy z)))))

(define (uncurry2 f)
(lanmbda (x y)

((f x) v)))

(define (uncurry3 f)
(lambda (x y z)
(((f x) y) 2)))

Program 17.1 Generation of curried and uncurried functionsin Scheme.

Exercise 4.8. Playing with curried functionsin Scheme
Try out the functions cur ry2 and cur ry3 on a number of different functions.
You can, for instance, use then curry functions on plus (+) and map.

Demonstrate, by a practical example, that the uncurry functions and the curry functions are
inverse to each other.

116

17.3. Examples of currying

Lecture 4 - dlide 23

Let us here show a couple of examples of the curry functions from Section 17.2.

Curried functions are very useful building blocks in the functional paradigm

In particular, curried functions are adequate for mapping and filtering purposes

The function font-1 is assumed to take three parameters. The font size (an integer), a color (in some
particular representation that we do ot care about here) and a text string on which to apply the font
information. We show a possible implementation of font-1 in terms of the font mirror function in
Program 17.2.

\Expron \Value
‘(font-l 4 red "Large red text") ‘Large red text

(define curried-font-1 (curry3 font-1))
(define large-font (curried-font-1 5))

((large-font blue) "Very |large blue Very Iarge bl ue text

text™)

(define small-brown-font ((curried-font-

1 2) brown)) Small brown text
(smal |l -brown-font "Small brown text")

(define large-green-font ((curried-font-
1 5) green))

(list-to-string (map | arge-green-font
(list "The" "End")) " ")

Table17.1 Examplesof currying in Scheme.

(define (font-1 size color txt)
(font 'size (as-string size)
‘col or (rgb-color-encodi ng col or)
txt))

Program 17.2 A possible implementation of font-1 in terms of the font HTML mirror function.

17.4. Ad hoc currying in Scheme (1)

Lecture 4 - slide 24

In some situations we would wish that the map function, and similar functions, were curried in
Scheme. But we cannot generate an f- mapper by evaluating the expression(map f) . Weget an
error message which tells us that map requires at least two parameters.

117

In this section we will remedy this problem by a pragmatic, ad hoc currying made via use of a
simple higher-order function we call curry- general i zed.

It is possible to achieve 'the currying effect’ by generalizing functions, which requires
two or more parameters, to only require a single parameter

In order to motivate ourselves, we will study a couple of attempts to apply a curried mapping
function.

[Expression Value
("<l'i>one</Ii>"
(map I'i (list "one" "two" "three")) "two</Ii>"
"three")
(define Ii-mapper (map Ii)) Imap: expects at least 2 arguments, given 1
(define li-mapper ((curry2 map) li)) (:<I?>0ne</|?>:
(l'i-mapper (list "one" "two" "three")) two</1i>
"three")

Table17.2 Alegal mapping and an impossible attempt to curry the
mapping function. The last example shows an application of curry2 to
achieve the wanted effect, but asit appears, the solution is not very
elegant.

In Program 17.3 we program the function cur ry- gener al i zed. It returns a function that
generalizesthe parameter 1 . If we pass a single parameter to the resulting function, the value of the
red lambda expression is returned. If we pass more than one parameter to the resulting function, f is
just applied in the normal way.

(define (curry-generalized f)
(I anbda rest
(cond ((= (length rest) 1)
(lambda Ist (apply f (cons (car rest) Ist))))
((>= (length rest) 2)
(apply f (cons (car rest) (cdr rest)))))))

Program 17.3 The function curry-generalized. Thisis a higher-order function which generalizes
the function passed as parameter tocur r y- gener al i zed. The generalization provides for just
passing a single parameter tof , in the vein of currying.

The blue expression aggregates the parameters - done in this way to be compatible with the inner
parts of the red expression. In asimpler version (cons (car rest) (cdr rest)) would be
replaceby rest .

In the next section we see an example of curry generalizing the map function.

118

17.5. Ad hoc currying in Scheme (2)

Lecture 4 - dlide 25

We may now redefine map to (curry-general i zed map) . However, we usually bind the curry
generalized mapping function to another name, such as gmap (for generalized nap).

This section shows an example, where we generate al i mapper, by (gmap 1i).

‘Expron |VaJue

(define gmap (curry-generalized map)) ("one</1i>"
(define li-mapper (gmap li)) "two</Ii>"
(l'i-mapper (list "one" "two" "three")) "three")

("one</I|i>"
(gmap i (list "one" "two" "three")) "two"
"three")

Table17.3 Examples of curry generalization of map. Usingcur ry-
general i zed itispossibleto makeal i -mapper in an elegant and
satisfactory way. The last row in the table shows that gnap can be used
instead of map. Thus, gmap canin all respect be a substitution for map,
and we may chose to redefine the name nap to the value of (curry-
general i zed map).

If we redefine map to (curry-general i zed map), the new mapping function can be used instead
of the old onein al respects. In addition, (map f) now makes sense; (map f) returns afunction,

namely an f mapper. Thus((map i) "one" "two" "three") doesaso make sense, and it gives
the result shown in one of value cellsto the right of Table 17.3.

17.6. References

[-] Foldoc: curried function
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi ?query=curried+function

119

120

18. Web related higher-order functions

We finish our coverage of higher-order functions with a number of examples from the web domain.

18.1. HTML mirror generation

Lecture 4 - dide 27

In this section we will, in a principled way, show how to generate ssimple HTML mirror functionsin
Scheme. Please notice that the HTML mirror functionsin LAML are more sophisticated and
elaborate than the ones discussed here.

There are three different cases to consider: double tag e ements, single tag elements, and
tags that can be both single and double.

A well-known tag, that can be both single and double is the p tag.

The higher-order functions gener at e- doubl e-t ag- f unct i on and gener at e- si ngl e-t ag-
functi on arethe top level functions. They rely on a couple of other functions, which we program
in Program 18.2 - Program 18.4.

(define (generate-doubl e-tag-function tag-nane)
(lanbda (contents . attributes)
(doubl e-tag tag-name contents attributes)))

(define (generate-single-tag-function tag-nane)
(I anbda attributes
(single-tag tag-nanme attributes)))

Program 18.1 The two higher-order functions for the HTML mirror generation. Thisversion
correspondsto the an earlier version of LAML'sHTML mirror.

(define (single-tag name attributes)
(start-tag nane attributes))

(define (double-tag name contents attributes)
(string-append (start-tag name attributes)
(as-string contents)
(end-tag nane)))

Program 18.2 Functionsthat generate single and double tags.

The functionsst art - t ag and end- t ag are used in Program 18.2 and implemented in Program 18.3.

121

(define (start-tag kind attributes)
(if (null? attributes)
(string-append "<" kind ">")
(let ((html -attributes (linearize-attributes attributes)))
(string-append "<" kind " " html-attributes " >"))))

(define (end-tag kind)
(string-append "</" kind ">"))

Program 18.3 Functionsthat generate individual single and double tags.

The missing aspect at this point is the attribute handling stuff. It is made in Program 18.4.

(define (linearize-attributes attr-1ist)
(string-append
(l'ineari ze-attributes-1
(reverse attr-list) "" (length attr-list))))

(define (linearize-attributes-1 attr-list res-string |gt)
(cond ((null? attr-list) res-string)

((>=1Tgt 2)
(linearize-attributes-1
(cddr attr-1ist)
(string-append
(l'inearize-attribute-pair
(car attr-list) (cadr attr-list)) " " res-string)
(- gt 2)))
((<lgt 2)
(error "The attribute |list nmust have even Il ength"))))

(define (linearize-attribute-pair val attr)
(string-append (as-string attr)
" =" (string-it (as-string val))))

Program 18.4 Functionsfor attribute linearization. The parameter attr-list isa property list.

Recall that property lists, as passed to the function I i neari ze-at t ri but es in Program 18.4 have
been discussed in Section 6.6.

There are several things to notice relative to LAML. First, the HTML mirror in LAML does not
generate strings, but an internal representation akin to abstract syntax trees.

Second, the string concatenation done in Program 18.1 through Program 18.4, where a lot of small
strings are aggregated, generates a lot of 'garbage strings. The way thisis handled (by the r ender
functionsin LAML) is more efficient, because we write string parts directly into a stream (or into a
large, pre-allocated string).

Y ou will find more details about LAML in Chapter 25 and subsequent chapters.

122

18.2. HTML mirror usage examples

Lecture 4 - dlide 28

Let us now use the HTML mirror generation functions, which we prepared viagener at e- doubl e-
tag-functi on and gener at e- si ngl e-t ag-f uncti on in Section 18.1.

The example assumes loading of | anl . scmand the function map- concat , which
concatenates the result of a map application.

The real mirrors use implicit (string) concatenation

As noticed above, there some differences between the real LAML mirror functions and the ones
programmed in Section 18.1. The functions from above require string appending of such
condtituents as the three t r element instances in the table; This is inconvenient. Also, the mirror
functions from above require that each double element gets exactly one content string followed by a
number of attributes. The real LAML mirror functions accept pieces of contents and attributesin
arbitrary order (thus, in some sense generalizing the XML conventions where the attributes come
before the contents inside the start tag). Finally, there is no kind of contents nor attribute validation
in the mirror functions from above. The LAML mirror functions validate both the contents and the
attributes relative to the XML Document Type Definition (DTD).

123

[Expression Value

(let* ((functions
(map gener at e-doubl e-t ag-
function <tabl e border="3">
(list "table" "td" <tr bgcol or="#ff0000" >
"tr"))) <td> cl </td>
(table (car functions)) <td> c2 </td>
(td (cadr functions)) <td> c3 </td>
(tr (caddr functions))) </[tr>
(table <tr>
(string-append <td> c4 </td>
(tr <td> c5 </td>
(map-concat td (list "cl" "c2" <td> c6 </td>
"c3")) </tr>
" bgcol or "#ff0000") <tr>
(tr <td> c7 </td>
(map-concat td (list "c4" "cb5" <td> c8 </td>
"c6"))) <td> c9 </td>
(tr </tr>
(map-concat td (list "c7" "c8" </tabl e>
"c9"))))
"border 3))
Same as above

Table18.1 An example usage of the simple HTML mirror which we
programmed on the previous page. The bottom example shows, asin
earlier similar tables, the HTML rendering of the constructed table. The
map- concat function used in the exampleis defined in the general
LAML libraryas(defi ne (map-concat f Ist) (apply
string-append (map f |st))).Inordertoactually evaluate the
expression you should load| am . scmof the LAML distribution first.

To show the differences between the simple mirror from Section 18.1 and the real mirror we will
show the same example using the XHTML mirror functions in Section 18.3.

18.3. Making tables with the real mirror

Lecture 4 - dlide 29

The real mirror provide for more elegance than the smple mirror illustrated above

Here we will use the XHTML1.0 transitional mirror

In the example below there is no need to string append the tr forms, and there is no need to use a
special string appending mapping function, like map- concat from Table 18.1. Attributes can appear

124

before, within, or after the textual content. This makes the HTML mirror expression ssmpler and
less clumsy. The rendering result is, however, the same.

[Expression IRendered value
<tabl e border = "3">
<tr bgcol or = "#ff0000">

<td>cl</td>
<td>c2</td>

(tabl e
'border 3 <td>c3</td>
(tr </tr>
<tr>

(map td (list "c1" "c2" "c3"))
" bgcol or "#ff0000")
(tr
(map td (list "c4" "cb5" "c6")))
(&0 <tr>
) (map td (list "c7 c8 c9"))) <t d>c7</ t d>
<t d>c8</td>
<td>c9</td>
</tr>
</tabl e>

<td>c4</td>

<t d>ch</td>

<td>c6</td>
</[tr>

Same as above

Table18.2 A XHTML mirror expression with a table corresponding to
the table shown on the previous page and the corresponding HTML
fragment. Notice the absence of string concatenation. Also notice that the
border attribute is given beforethefirst tr element. The border attribute
could aswell appear after the tr elements, or in between them.

Y ou might think, that the example above aso could be HTML4.01. But, not quite, in fact. In
HTMLA4.01 there need to be at body (table body) form in between the t r instances and the t abl e
instance. Without this extract level, the table expression will not be valid. Try it yourself! It is easy.

[How, you may ask. In Emacsdo M x set-interactive-lam -mirror-Iibrary andenterhtm -
4.01. ThendoM x run-1an -interactivel y. Copy the table expression from above, and try it
out. You can shift to XHTML1.0 by M x set-interactive-lam -mirror-1ibrary andasking
forxhtm - 1. 0-transi tional, for instance. Thenredo M x run-1anl -interactivel y. Besureto
usexm -render ontheresult of (table ...) to make atextua rendering. |

18.4. Tableswith higher-order functions

Lecture 4 - dide 30

In the context of higher-order functions there are even better ways to deal with tables than the one
shown in Table 18.2 from Section 18.3.

The table expression in the last line in Table 18.3 shows how.

125

Instead of explicit compositionof t d andt r elements we can use a mapping to apply tr
torowsandt d to e ements

[Expression \Value
(define rows
"(("This™ "is"™ "first" "row") :
("This" "is" "second" "row') This E|first |I‘OW
("This® “is" "third" "row') ——
("This" "is" "fourth" "row')) This ’E_|Second |rOW
) This|is [third [row
(table 'border 5 This E|fourth |row
(gmap (conpose tr (gmap td))
rows))

Table18.3 Inthetable expression we map - at the outer level - a
compositionof t r and at d-mapper. Thet d-mapper is made by (gmap

td).

Recall that we already have discussed the ad hoc currying, which isinvolved in gmap, cf. the
discussion in Section 17.4.

The last example illustrates that (gmap t d) isauseful building block, which can be
composed with other functions.

The last example depends on the fact that the HTML mirror functions accept lists of
elements and attributes.

Y ou should consult Chapter 26 to learn about the exact parameter passing rules of the HTML mirror
functions in LAML.

18.5. HTML element modifications

Lecture 4 - dide 31

It is often useful in some context to bind an attribute of aHTML mirror function (or a number of
attributes) to some fixed value(s). This can be done by the higher-order function nodi f y- el enent
which we discuss below.

The idea behind the function nodi f y- el enent isto perform an a priori binding of some
attributes and some of the contents of amirror function.

The function modi fy- el enent issimple. First notice that it accepts a function, namely the el enent
parameter. It also returns a function; In effect, it returns el enent with at t ri but es- and- cont ent s

126

appended to the parameters of the modified e ement. As another possibility, we could have
prepended it.

(define (nmodify-el ement el ement . attributes-and-contents)
(I anbda paraneters
(apply el ement
(append paraneters attributes-and-contents))))

Program 18.5 The function modify-element.

In the table below we illustrate three examples wheret d, ol , and ul are modified with apriori
bindings of selected attributes.

[Expression \Value

defi di : :
(oo oy el erent T s fit
"b I b-col or-1li d
ecoler (rob-eolor-tist vea N I
(table 'border 5 ---
(map (conpose tr (gmap tdl)) rows))

A1l

B. 2

(define ol 1 C. 3
(nodi fy-elenent ol 'type "A")) D. 4
E 5

(ol1 F. 6
(map _ _ G 7
(conmpose |i as-string) H. 8
(nunber-interval 1 10))) I. 9

J 10

- 1

- 2

(define ull - 3
(nodi fy-el ement ul 'type "square")) : g’
(ul'l = 6
(mep - 7
(conpose |i as-string) = 8
(nunber-interval 1 10))) 9

= 10

Table18.4 Examples of element modification using the function
nodi fy-el ement .

LAML supports two related, but more advanced functions called xmi -i n-1 am - paramet ri zati on
andxn -in-1am -abstraction. Thefirst of these isintended to transform an 'old style function' to

127

afunction with XML-inrLAML parameter conventions, as explained in Chapter 26. The second
function is useful to generate functions with XML-in-LAML parameter conventions in general.

18.6. The function simple-html-table

Lecture 4 - slide 32

We will now show show an implementation of the function si npl e-ht mi -t abl e

In an earlier exercise - 'restructuring of lists' - we have used the function si npl e- ht ni -
tabl e

We will now show how it can be implemented

(define sinple-htn -tabl e
(I anbda (col umm-wi dht |i st-of -rows)
(let ((gmap (curry-generalized map))
(td-width
(modi fy-elenment td 'width
(as-string colum-wi dht))))
(tabl e
'border 1

(t body
(gmap (conpose tr (gmap td-width)) list-of-rows))))))

Program 18.6 The function simple-html -table. Locally we bind grmap to the curry generalized map
function. We also create a specialized version of t d, which includes awi dt h attribute the value of
which is passed as parameter tosi npl e- ht nl -t abl e . Inthe body of thel et construct we
create the table in the same way as we have seen earlier in thislecture.

18.7. The XHTML mirror in LAML

Lecture 4 - slide 33

In order to illustrate the data, on which the HTML mirrorsin LAML rely, the web edition of the
material includes a huge table with the content model and attribute details of each of the 77

XHTML1.0 strict elements.

LAML supports an exact mirror of the 77 XHTML 1.0 strict elements as well as the
other XHTML variants

The LAML HTML mirror libraries are based on a parsed representation of the HTML
DTD (Document Type Definition). The table below is automatically generated from the
same data structure.

128

The table is too large to be included in the paper version of the material. Please take alook in the
corresponding part of the web material to consult the table.

18.8. Generation of aleq predicate from enumeration

Lecture 4 - side 34

As the last example related to higher-order functions we show the function gener at e- | eq, See
Program 18.7.

The ideais to generate a boolean 'less than or equal’ (leq) function based on an explicit enumeration
order, which is given as input to the function gener at e- 1 eq. A number of technicalities are
involved. You should read the details in Program 18.7 to grasp these details.

In some contexts we wish to specify a number of clausesin an arbitrary order

For presentational clarity, we often want to ensure that the clauses are presented in a
particular order

Here we want to generate a leq predicate from an enumeration of the desired order

Cenerate a |l ess than or equal predicate fromthe
enuneration-order. If p is the generated predicate,
(p xy) istrue if and only if (selector x) cones before
(or at the sane position) as (selector y) in the
enuner ati on-order. Thus, (selector x) is assuned to give a
value in enuneration-order. Conparison with elenents in the
;; enuneration-list is done with eq?
(deflne (generate-1eq enuneration-order sel ector)
(lambda (x vy)
; X and y supposed to be elenments in enuneration order
(let ((x-index (list-index (selector x) enuneration-order))
(y-index (list-index (selector y) enuneration-order)))
(<= x-index y-index))))

A hel ping function of generate-|eq.
Return the position of e in Ist. First is 1
conpare with eq?
if e is not member of Ist return (+ 1 (length [st))
(deflne (list-index e |st)
(cond ((null? Ist) 1)
((eq? (car Ist) e) 1)
(else (+ 1 (list-index e (cdr Ist))))))

Program 18.7 The functionsgener at e- | eq and the helping function! i st - i ndex .

The table below shows a very simple example, in which we use si npl e- 1 eq?, which is generated
by the higher-order function gener at e- | eq from Program 18.7.

129

[Expression \Value

(define sinple-Ileq?
(generate-leq '(z ac by x) id-1))
(zaaccbyXx
(sort-list '"(axy zcc b a) sinple-
| eq?)

Table18.5 A simple example of an application of generate-leq.

The fragment in Program 18.8 gives a more redlistic example of the use of generated 'less than or
equal’ functions. In Program 18.9 we show how the desired sorting of manual - page subelementsis
achieved.

(manual - page

(form "' (showtable rows))

(title "showtable")

(description "Presents the table, in terns of rows")
(parameter "row' "a list of elenents")

(pre-condition "Must be placed before the begin-notes cl ause")
(msc "Internally, sets the variable lecture-id")

(result "returns an HTM. string")

)

Program 18.8 A hypothetical manual page clause. Before we present the clauses of the manual
page we want to ensure, that they appear in a particular order, say title, form, description, pre-
condition, result, and misc. In this example we will illustrate how to obtain such an ordering in an
elegant manner.

(define (syntactic-form nane)
(I anbda subcl auses (cons nanme subcl auses)))

(define form (syntactic-form'form)

(define title (syntactic-form'title))

(define description (syntactic-form ' description))
(define paranmeter (syntactic-form' paranmeter))
(define pre-condition (syntactic-form' pre-condition))
(define msc (syntactic-form'msc))

(define result (syntactic-form'result))

(defi ne (manual - page . cl auses)
(let ((clause-1eq?
(generate-| eq
"(title form description
pre-condition result m sc)
first))

(let ((sorted-clauses (sort-list clauses clause-1eqg?)))
(present-clauses sorted-clauses))))

Program 18.9 An application of gener at e- | eq which sorts the manual clauses.

130

18.9. References

[-]

[-]

[-]

The XHTML 1.0 frameset validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-frameset-mirror.html

The XHTML1.0 transitional validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-transitional-mirror.html

The XHTML1.0 strict validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml -in-
laml/mirrors/man/xhtml 10-strict-mirror.html

The HTMLA4.01 transitional validating mirror
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/html4.01-transitional-
validating/man/surface.html

131

