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14.  Introduction to higher-order functions 

Higher-order functions is another key area in the functional programming paradigm; Perhaps the 
most important at all. In this chapter we will explore this exiting area, and we will give a number of 
web-related examples.  

  

14.1.  Higher-order functions 
Lecture 4 - slide 2 

The idea of higher-order functions is of central importance for the functional programming 
paradigm. As we shall see on this and the following pages, this stems from the fact that higher-order 
functions can be further generalized by accepting functions as parameters. In addition, higher-order 
functions may act as function generators, because they allow functions to be returned as the result 
from other functions. 

Let us first define the concepts of higher-order functions and higher-order languages. 

 A higher-order function accepts functions as arguments and is able to return a function 
as its result  

A higher-order language supports higher-order functions and allows functions to be 
constituents of data structures  

 

When some functions are 'higher-order' others are bound to be 'lower-order'. What, exactly, do we 
mean by the 'order of functions'. This is explained in below.  

 • The order of data 
• Orde r 0: Non function data 
• Order 1: Functions with domain and range of order 0 
• Order 2: Functions with domain and range of order 1 
• Order k: Functions with domain and range of order k-1 

 

Order 0 data have nothing to do with functions. Numbers, lists, and characters are example of such 
data. 

Data of order 1 are functions which work on 'ordinary' order 0 data. Thus order 1 data are the 
functions we have been concerned with until now. 

Data of order 2 - and higher - are example of the functions that have our interest in this lecture. 

With this understanding, we can define higher-order functions more precisely. 
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 Functions of order i, i >= 2, are called higher-order functions 
 

 

  

 

14.2.  Some simple and general higher-order functions 
Lecture 4 - slide 3 

It is time to look at some examples of higher-order functions. We start with a number of simple 
ones. 

The flip function is given in two versions below. flip takes a function as input, which is returned 
with reversed parameters, cf. Program 14.1. 

The first version of flip uses the shallow syntactic form, discussed in Section 8.12. The one in ??? 
uses the raw lambda expression, also at the outer level. 

(define (flip f) 
  (lambda (x y) 
    (f y x))) 

 
Program 14.1    The function flip changes the order of it's parameters. The function takes a function 
of two parameters, and returns another function of two parameters. The only difference between the 
input and output function of flip is the ordering of their parameters. 

 
 

The read expression in Program 14.1 and ??? are the values returned from the function flip. 

(define flip 
  (lambda (f) 
    (lambda (x y) 
      (f y x)))) 

 Program 14.2    An alternative formulation of flip without use of the sugared define syntax.    

The function negate, as shown in Program 14.3, takes a predicate p as parameter. negate returns 
the negated predicate. Thus, if (p x) is true, then ((negate p) x) is false. 

(define (negate p) 
  (lambda (x)  
    (if (p x) #f #t))) 

 
Program 14.3    The function negate negates a predicate. Thus, negate takes a predicate function 
(boolean function) as parameter and returns the negated predicate. The resulting negated predicate 
returns true whenever the input predicate returns false, and vise versa. 

 
 

The function compose in Program 14.4 is the classical function composition operator, known by all 
high school students as 'f o g' 
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(define (compose f g) 
  (lambda (x) 
    (f (g x)))) 

 

Program 14.4    The function compose composes two functions which both are assumed to take a 
single argument. The resulting function composed of f and g returns f(g(x)), or in Lisp (f (g 
x)), given the input x . The compose function from the general LAML library accepts two or 
more parameters, and as such it is more general than the compose function shown here. 

 

 
 

 Exercise 4.1. Using flip, negate, and compose 

Define and play with the functions flip, negate, and compose, as they are defined on this page . 

Define, for instance, a flipped cons function and a flipped minus function. 

Define the function odd? in terms of even? and negate. 

Finally, compose two HTML mirror functions, such as b and em, to a new function. 

Be sure you understand your results. 

 

  

14.3.  Linear search in lists 
Lecture 4 - slide 4 

Let us program a simple, but useful higher-order function which searches a list by linear search. The 
function find-in-list, shown in Program 14.5 takes a predicate pred and a list lst as 
parameters. This predicate is applied on the elements in the list. The first element which satisfy the 
predicate is returned.  

 Search criterias can be passed as predicates to linear search functions  
 

;; A simple linear list search function. 
;; Return the first element which satisfies the predicate pred. 
;; If no such element is found, return #f. 
(define (find-in-list pred lst) 
  (cond ((null? lst) #f) 
        ((pred (car lst)) (car lst)) 
        (else (find-in-list pred (cdr lst))))) 

 

Program 14.5    A linear list search function. A predicate accepts as input an element in the list, and 
it returns either true ( #t) or false (#f). If the predicate holds (if it returns true), we have found what 
we searched for. The predicate pred is passed as the first parameter to find-in-list. As it is 
emphasized in blue color, the predicate is applied on the elements of the list. The first successful 
application (an application with true result) terminates the search, and the element is returned. If 
the first case in the conditional succeeds (the brown condition) we have visited all elements in the 
list, and we conclude that the element looked for is not there. In that case we return false. 
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The dialogue below shows examples of linear list search with find-in-list. 

1> (define hair-colors (pair-up '(ib per ann) '("black" "green" "pink"))) 
 
2> hair-colors 
((ib . "black") (per . "green") (ann . "pink")) 
 
3> (find-in-list (lambda (ass) (eq? (car ass) 'per)) hair-colors) 
(per . "green") 
 
4> (find-in-list (lambda (ass) (equal? (cdr ass) "pink")) hair-colors) 
(ann . "pink") 
 
5> (find-in-list (lambda (ass) (equal? (cdr ass) "yellow")) hair-colors) 
#f 
 
6> (let ((pink-person 
          (find-in-list 
            (lambda (ass) (equal? (cdr ass) "pink")) hair-colors))) 
    (if pink-person (car pink-person) #f)) 
ann 

 

Program 14.6    A sample interaction using find-in-list. We define a simple association list 
which relates persons (symbols) and hair colors (strings). The third interaction searches for per's 
entry in the list. The fourth interaction searches for a person with pink hair color. In the fifth 
interaction nothing is found, because no person has yellow hair color. In the sixth interaction we 
illustrate the convenience of boolean convention in Scheme: everything but #f counts as true. From 
a traditional typing point of view the let expression is problematic, because it can return either a 
person (a symbol) or a boolean value. Notice however, from a pragmatic point of view, how useful 
this is.  

 

 
 
 

 
 Exercise 4.2. Linear string search 

Lists in Scheme are linear linked structures, which makes it necessary to apply linear search 
techniques. 

Strings are also linear structures, but based on arrays instead of lists. Thus, strings can be linearly 
searched, but it is also possible to access strings randomly, and more efficiently. 

First, design a function which searches a string linearly, in the same way as find-in-list. Will 
you just replicate the parameters from find-in-list, or will you prefer something different? 

Next program your function in Scheme. 

 
 Exercise 4.3. Index in list 

It is sometimes useful to know where in a list a certain element occurs, if it occurs at all. Program 
the function index-in-list-by-predicate which searches for a given element. The comparion 
between the given element and the elements in the list is controlled by a comparison parameter to 
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index-in-list-by-predicate. The function should return the list position of the match (first 
element is number 0), or #f if no match is found. 

Some examples will help us understand the function: 

 
   (index-in-list-by-predicate '(a b c c b a) 'c eq?) => 2 
 
   (index-in-list-by-predicate '(a b c c b a) 'x eq?) => #f 
 
   (index-in-list-by-predicate '(two 2 "two") 2  
     (lambda (x y) (and (number? x) (number? y) (= x y)))) => 1 
      

Be aware if your function is tail recursive. 

 
 Exercise 4.4. Binary search in sorted vectors 

Linear search, as illustrated by other exercises, is not efficient. It is often attractive to organize 
data in a sorted vector, and to do binary search in the vector. 

This exercise is meant to illustrate a real- life higher-order function, generalized with several 
parameters that are functions themselves. 

Program a function binary-search-in-vector, with the following signature: 

 
  (binary-search-in-vector v el sel el-eq? el-leq?) 

v is the sorted vector. el is the element to search for. If v-el is an element in the vector, the 
actual comparison is done between el and (sel v-el). Thus, the function sel is used as a 
selector on vector elements. Equality between elements is done by the el-eq? function. Thus, 
(el-eq? (sel x) (sel y)) makes sense on elements x and y in the vector. The ordering of 
elements in the vector is defined by the el-leq? function. (el-leq? (sel x) (sel y)) makes 
sense on elements x and y in the vector. 

The call (binary-search-in-vector v el sel el-eq? el-leq?) searches the vector via 
binary search and it returns an element el-v from the vector which satisfies (el-eq? (sel el-v) el). 
If no such element can be located, it returns #f. 

Here are some examples, with elements being cons pairs: 

 
  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 7 car = <=)    => 
  (7 . i) 
 
  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 2 car = <=)    => 
  (2 . x) 
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  (binary-search-in-vector '#( (2 . x) (4 . y) (5 . z) (7 . i) (9 . c)  
                               (11 . c)) 10 car = <=)   => 
  #f 

Be sure to program a tail recursive solution. 

 

  

14.4.  Generation of list selectors 
Lecture 4 - slide 5 

The function find-in-list took a function as parameter. In this section we will give an example 
of a higher-order function which returns a function as result. 

 It is attractive to generate generalizations of the list selector functions car, cadr, etc 
 

 

The function make-selector-function generates a list selector function which returns element 
number n from a list. It should be noticed that the first element in a list is counted as number one. 
This is contrary to the convention of the function list-ref and other similar Scheme function, 
which counts the first element in a list as number zero. This explains the (- n 1) expression in 
Program 14.7. 

(define (make-selector-function n) 
  (lambda (lst) (list-ref lst (- n 1)))) 

 Program 14.7    A simple version of the make-selector-function function.    

In the web version of the material (slide view or annotated slide view) you will find yet another 
version of the function make-selector-function, which provides for better error messages, in 
case element number n does not exist in the list. We have taken it out of this version because of its 
size and format. 

The dialogue below shows examples of definitions and uses of list selector functions generated by 
make-selector-function. 

1> (define first (make-selector-function 1 "first")) 
 
2> (first '(a b c)) 
a 
 
3> (first '()) 
The selector function first: The list () is is too short for selection.  
It must have at least 1 elements. 
>  
 
4> (define (make-person-record firstname lastname department)  
      (list 'person-record firstname lastname department)) 
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5> (define person-record  
      (make-person-record "Kurt" "Normark" "Computer Science")) 
 
6> (define first-name-of (make-selector-function 2 "first-name-of")) 
 
7> (define last-name-of (make-selector-function 3 "last-name-of")) 
 
8> (last-name-of person-record) 
"Normark" 
 
9> (first-name-of person-record) 
"Kurt" 

 

Program 14.8    Examples usages of the function make-selector-function. In interaction 1 through 3 
we demonstrate generation and use of the first function. Next we outline how to define accessors of 
data structures, which are represented as lists. In reality, we are dealing with list-based record 
structures. In my every day programming, such list structures are quite common. It is therefore 
immensely important, to access data abstractly (via name accessors, instead of via the position in 
the list (car, cadr, etc). In this context, the make-selector-function comes in handy. 

 

 

  

14.5.  References 

[-] Foldoc: higher order function 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=higher+order+function 
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15.  Mapping and filtering 

In this chapter we will focus on higher-order functions that work on lists. It turns out that the 
appropriate combinations of these make it possible to solve a variety of different list processing 
problems. 

  

15.1.  Classical higher-order functions: Overview 
Lecture 4 - slide 7 

We start with an overview of the classical higher-order functions on lists, not just mapping and 
filtering, but also including reduction and zipping functions which we cover in subsequent sections. 

 There exists a few higher-order functions via which a wide variety of problems can be 
solved by simple combinations 

 

 
 

   

 • Overview: 
• Mapping : Application of a function on all elements in a list 
• Filtering : Collection of elements from a list which satisfy a particular condition 
• Accumulation: Pair wise combination of the elements of a list to a value of 

another type 
• Zipping : Combination of two lists to a single list 

 
  

 The functions mentioned above represent abstractions of algorithmic patterns in the 
functional paradigm  

 

The idea of patterns has been boosted in the recent years, not least in the area of object-oriented 
programming. The classical higher-order list functions encode recursive patterns on the recursive 
data type list. As a contrast to many patterns in the object-oriented paradigm, the patterns encoded 
by map, filter, and others, can be programmed directly. Thus, the algorithmic patterns we study 
here are not design patterns. Rather, they are programming patterns for the practical functional 
programmer. 

  

15.2.  Mapping 
Lecture 4 - slide 8 

The idea of mapping is to apply a function on each element of a list, hereby collecting the list of the 
function applications 
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 A mapping function applies a function on each element of a list and returns the list of 
these applications 

The function map is an essential Scheme function 
 

 

The idea of mapping is illustrated below. 

 
Figure 15.1    Mapping a function m on a list. m is applied on every 
element, and the list of these applications is returned. 

  

15.3.  The mapping function 
Lecture 4 - slide 9 

It is now time to study the implementation of the mapping function. We program a function called 
mymap in order not to redefine Scheme's own mapping function (a standard function in all Scheme 
implementations). 

(define (mymap f lst) 
  (if (null? lst) 
      '() 
       (cons (f (car lst)) 
             (mymap f (cdr lst))))) 

 
Program 15.1    An implementation of map. This is not a good implementation because the recursive 
call is not a tail call. We leave it as an exercise to make a memory efficient implementation with tail 
recursion - see the exercise below. 

 
 

 
 Exercise 4.5. Iterative mapping function 

In contrast to the function mymap on this page , write an iterative mapping function which is tail 
recursive. 

Test your function against mymap on this page, and against the native map function of your 
Scheme system. 

 
 Exercise 4.6. Table exercise: transposing, row elimination, and column elimination. 

In an earlier section we have shown the application of some very useful table manipulation 



 105

functions. Now it is time to program these functions, and to study them in further details. 

Program the functions transpose, eliminate-row, and eliminate-column, as they have been 
illustrated earlier. As one of the success criteria of this exercise, you should attempt to use higher-
order functions as much and well as possible in your solutions. 

Hint: Program a higher-order function, (eliminate-element n). The function should return a 
function which eliminates element number n from a list. 

 

 15.4.  Examples of mapping 
Lecture 4 - slide 10 

We will now study a number of examples. 

Expresion Value  
(map  
  string? 
  (list 1 'en "en" 2 'to "to")) 

(#f #f #t #f #f #t) 

(map  
   (lambda (x) (* 2 x)) 
   (list 10 20 30 40)) 

(20 40 60 80) 

(ul 
  (map  
   (compose li b 
     (lambda (x) (font-color red x))) 
   (list "a" "b" "c") 
  ) 
) 

(ul (map (compose li (compose b (lambda (x) 
(font-color red x)))) (list "a" "b" "c") ) ) 

Same as above 

(ul 
  (map  
   (compose li  
    (compose b  
     (lambda (x) (font-color red x)))) 
   (list "a" "b" "c") 
  ) 
) 

Table 15.1    In the first row we map the string? predicate on a list of 
atoms (number, symbols, and strings). This reveals (in terms of boolean 
values) which of the elements that are strings. In the second row of the 
table, we map a 'multiply with 2' function on a list of numbers. The third 
row is more interesting. Here we map the composition of li , b  , and red 
font coloring on the elements a, b, and c. When passed to the HTML 
mirror function ul , this makes an unordered list with red and bold i tems. 
Notice that the compose function used in the example is a higher-order 
function that can compose two or more functions. The function compose 
from lib/general.scm is such a function. Notice also that the HTML 
mirror function ul receives a list, not a string. The fifth and final row 
illustrates the raw HTML output, instead of the nicer rendering of the 
unordered list, which we used in the third row.  
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15.5.  Filtering 
Lecture 4 - slide 11 

As the name indicates, the filter function is good for examining elements of a list for a certain 
property. Only elements which possess the property are allowed through the filter. 

 A filtering function applies a predicate (boolean function) on every element of a list. 
Only elements on which the predicate returns true are returned from the filtering 
function. 

The function filter is not an essential Scheme function - but is part of the LAML 
general library  

 

   

The figure below illustrates the filtering idea. 

 
Figure 15.2    Filtering a list with a predicate f. The resulting list is the 
subset of the elements which satisfy f (the elements on which f returns 
true). 

 

  

15.6.  The filtering function 
Lecture 4 - slide 12 

The next item on the agenda is an implementation of filter . 

 For practical purposes it is important to have a memory efficient filter function 
 

 

As a consequence of the observation above, we now program a tail recursive version of filter. 
Notice that it is the function filter-help, which does the real filtering job. 
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(define (filter pred lst) 
  (reverse (filter-help pred lst '()))) 
 
(define (filter-help pred lst res) 
  (cond ((null? lst) res) 
        ((pred (car lst))  
           (filter-help pred (cdr lst)  (cons (car lst) res))) 
        (else  
           (filter-help pred (cdr lst)  res)))) 

 
Program 15.2    An implementation of filter which is memory efficient. If the predicate holds on an 
element of the list (the red fragment) we include the element in the result (the brown fragment). If 
not (the green fragment), we drop the element from the result (the purple fragment).  

 
 

 

 
 Exercise 4.7. A straightforward filter function 

The filter function illustrated in the material is memory efficient, using tail recursion. 

Take a moment here to implement the straightforward recursive filtering function, which isn't tail 
recursive. 

 

  

15.7.  Examples of filtering 
Lecture 4 - slide 13 

As we did for mapping, we will also here study a number of examples. As before, we arrange the 
examples in a table where the example expressions are shown to the left, and their values to the 
right. 
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Expression Value  
(filter  
  even? 
 '(1 2 3 4 5)) 

(2 4) 

(filter  
  (negate even?) 
  '(1 2 3 4 5)) 

(1 3 5) 

(ol  
 (map li 
  (filter string? 
   (list 1 'a "First" "Second" 3)))) 

1. First 
2. Second 

Same as above <ol><li>First</li> <li>Second</li></ol> 

Table 15.2    In the first row we filter the first five natural numbers with 
the even? predicate. In the second row, we filter the same list of 
numbers with the odd? predicate. Rather than using the name odd? we 
form it by calculating (negate even?) . We have seen the higher-
order function negate earlier in this lecture. The third and final 
example illustrates the filtering of a list of atoms with the string? 
predicate. Only strings pass the filter, and the resulting list of strings is 
rendered in an ordered list by means of the mirror function of the ol 
HTML element. 

  

15.8.  References 

[-] Foldoc: filter 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=filter 

[-] The LAML general library 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/man/general.html 

[-] Foldoc: map 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=map 
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16.  Reduction and zipping 

The reduction and zipping functions work on lists, like map and filter from Chapter 15. 

  

16.1.  Reduction 
Lecture 4 - slide 15 

List reduction is useful when we need somehow to 'boil down' a list to a 'single value'. The boiling 
is done with a binary function, as illustrated in Figure 16.1. 

 Reduction of a list by means of a binary operator transforms the list to a value in the 
range of the binary operator.  

 

 
Figure 16.1    Left and right reduction of a list. Left  reduction is - quite 
naturally - shown to the left, and right reduction to the right. 
 
 

 There is no natural value for reduction of the empty list. Therefore we assume as a 
precondition that the list is non-empty.  

 

 
 

  

The intuitive idea of reduction will probably be more clear when we meet examples in Table 16.1 
below. 

Examples of left and right reduction are given in the table below. Be sure to understand the 
difference between left and right reduction, when the function, with which we reduce, is not 
commutative. 
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Expression Value  
(reduce-left - '(1 2 3 4 5)) -13 
(reduce-right - '(1 2 3 4 5)) 3 
(reduce-left string-append (list "The" " 
" "End")) "The End" 

(reduce-left append (list (list 1 2 3) 
(list 'a 'b 'c))) (1 2 3 a b c) 

Table 16.1    Examples of reductions. The - left reduction of the list 
corresponds to calculating the expression (- (- (- (- 1 2) 3) 4) 5). The - 
right reduction of the list corresponds to calculating the expression (- 1 (- 
2 (- 3 (- 4 5)))).  

  

16.2.  The reduction functions 
Lecture 4 - slide 16 

We will now implement the reduction functions introduced above in Section 16.1. Both right 
reduction and left reduction will be implemented, not least because they together illustrate a good 
point about iterative and tail recursive processing of lists. The explanations of this is found in the 
captions of Program 16.1 and Program 16.2. 

 The function reduce-right is a straightforward recursive function 

The function reduce-left is a straightforward iterative function 
 

 

   
(define (reduce-right f lst) 
  (if (null? (cdr lst)) 
      (car lst) 
      (f (car lst)  
         (reduce-right f (cdr lst))))) 

 Program 16.1    The function reduce-right. Notice the fit between the composition of the list and the 
recursive pattern of the right reduction.  

 
(define (reduce-left f lst) 
  (reduce-help-left f (cdr lst) (car lst))) 
 
(define (reduce-help-left f lst res) 
  (if (null? lst) 
      res 
      (reduce-help-left f (cdr lst) (f res (car lst))))) 

 
Program 16.2    The function reduce-left. There is a misfit between left reduction and the recursive 
composition of the list with heads and tails. However, an iterative process where we successively 
combine e1 and e2 (giving r1), r1 and e3 etc., is straightforward. As we have seen several times, this 
can be done by a tail recursive function, here reduce-help-left. 
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In summary, right reduction is easy to program with a recursive function. The reason is that we can 
reduce the problem to (f (car lst) X), where X a right reduction of (cdr lst) with f. The right 
reduction of (cdr lst) is smaller problem than the original problem, and therefore we eventually 
meet the case where the list is trivial (in this case, a single element list). 

The left reduction combines the elements one after the other, iteratively. First we calculate (f (car 
el) (cadr el)), provided that the list is of length 2 or longer. Let us call this value Y. Next (f Y 
(caddr el)) is calculated, and so on in an iterative way. We could easily program this with a 
simple loop control structure, like a for loop. 

  

16.3.  Accumulation 
Lecture 4 - slide 17 

In this section we introduce a variation of reduction, which allows us also to reduce the empty list. 
We chose to use the word accumulation for this variant.  

 It is not satisfactory that we cannot reduce the empty list 

We remedy the problem by passing an extra parameter to the reduction functions 

We call this variant of the reduction functions for accumulation  

 

It also turns out that the accumulation function is slightly more useful than reduce-left and 
reduce-right from Section 16.2. The reason is that we control the type of the parameter init to 
accumulate-right in Program 16.3. Because of that, the signature of the accumulate function 
becomes more versatile than the signatures of reduce-left and reduce-right. Honestly, this is 
not easy to spot in Scheme, whereas in languages like Haskell and ML, it would have been more 
obvious. 

Below we show the function accumulate-right, which performs right accumulation. In contrast to 
reduce-right from Program 16.1accumulate-right also handles the extreme case of the empty 
list. If the list is empty, we use the explicitly passed init value as the result. 

(define (accumulate-right f init lst) 
  (if (null? lst) 
      init 
      (f (car lst) (accumulate-right f init (cdr lst))))) 

 Program 16.3    The function accumulate-right. The recursive pattern is similar to the pattern of 
reduce-right.  

 

The table below shows a few examples of right accumulation, in the sense introduced above. 
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Expression Value  
(accumulate-right - 0 '()) 0 
(accumulate-right - 0 '(1 2 3 4 5)) 3 
(accumulate-right append '() 
  (list (list 1 2 3) (list 'a 'b 'c))) (1 2 3 a b c) 

Table 16.2    Examples of right accumulations. The first row illustrates 
that we can accumulate the empty list. The second and third rows are 
similar to the second and third rows in Table 15.1.  
 

 In relation to web programming we most often append accumulate lists and strings 

accumulate-right is part of the general LAML library 

Due to their deficiencies, the reduction functions are not used in LAML 
 

 

  

16.4.  Zipping 
Lecture 4 - slide 18 

The zipping function is named after a zipper, as known from pants and shirts. The image below 
shows the intuition behind a list zipper. 

 Two equally long lists can be pair wise composed to a single list by means of zipping 
them  

 

 
Figure 16.2    Zipping two lists with the function z. The head of the 
resulting list is (z e i f i), where the element e i comes from the first list, 
and f i comes from the other. 

We implement the zipping function in the following section. 

  

16.5.  The zipping function 
Lecture 4 - slide 19 

The zip function in Program 16.4 takes two lists, which are combined element for element. As a 
precondition, it is assumed that both input list have the same size. 
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(define (zip z lst1 lst2) 
  (if (null? lst1) 
      '() 
      (cons  
        (z (car lst1) (car lst2)) 
        (zip z (cdr lst1) (cdr lst2))))) 
       

 Program 16.4    The function zip.    

Below we show examples of zipping with the zip function. For comparison, we also show an 
example that involves string-merge, which we discussed in Section 11.7. 

Expression Value  
(zip cons '(1 2 3) '(a b c)) ((1 . a) (2 . b) (3 . c)) 
(apply string-append 
 (zip  
  string-append 
  '("Rip" "Rap" "Rup") 
  '(", " ", and " ""))) 

"Rip, Rap, and Rup" 

(string-merge  
  '("Rip" "Rap" "Rup") '(", " ", and ")) "Rip, Rap, and Rup" 

Table 16.3    Examples of zipping.  
 
 

 Zip is similar to the function string-merge from the LAML general library 

However, string-merge handles lists of strings non-equal lengths, and it concatenates 
the zipped results  
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17.  Currying 

Currying is an idea, which is important in contemporary functiona l programming languages, such as 
Haskell. In Scheme, however, the idea is less attractive, due to the parenthesized notation of 
function calls.  

Despite of this, we will discuss the idea of currying in Scheme via some higher-order functions like 
curry and uncurry. We will also study some ad hoc currying of Scheme functions, which has 
turned out to be useful for practical HTML authoring purposes, not least when we are dealing with 
tables. 

  

17.1.  The idea of currying 
Lecture 4 - slide 21 

Currying is the idea of interpreting an arbitrary function to be of one parameter, which returns a 
possibly intermediate function, which can be used further on in a calculation. 

 Currying allows us to understand every function as taking at most one parameter. 
Currying can be seen as a way of generating intermediate functions which accept 
additional parameters to complete a calculation  

 

The illustration below shows what happens to function signatures (parameter profiles) when we 
introduce currying. 

 
Figure 17.1    The signatures of curried functions. In the upper frame we 
show the signature of a function f, which takes three parameters. The 
frames below show the signature when f is curried. In the literature, the 
notation shown to the bottom right is most common. The frame to the left 
shows how to parse the notation (the symbol -> associates to the right). 
 
 

 Currying and Scheme is not related to each other. Currying must be integrated at a more 
basic level to be elegant and useful  
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17.2.  Currying in Scheme 
Lecture 4 - slide 22 

Despite the observations from above, we can explore and play with currying in Scheme. We will 
not, however, claim that it comes out as elegant as, for instance, in Haskell. 

 It is possible to generate curried functions in Scheme. 

But the parenthesis notation of Lisp does not fit very well with the idea of currying  

 

The function curry2 generates a curried version of a function, which accepts two parameters. The 
curried version takes one parameter at a time. Similarly, curry3 generates a curried version of a 
function that takes three parameters. 

The functions uncurry2 and uncurry3 are the inverse functions. 

It is worth a consideration if we can generalize curry2 and curry3 to a generation of curryn via a 
higher-order function curry, which takes n as parameter. We will leave that as an open question. 

(define (curry2 f) 
  (lambda(x) 
    (lambda(y) 
      (f x y)))) 
 
(define (curry3 f) 
  (lambda(x) 
    (lambda(y) 
      (lambda(z) 
       (f x y z))))) 
 
(define (uncurry2 f) 
  (lambda (x y) 
    ((f x) y))) 
 
(define (uncurry3 f) 
  (lambda (x y z) 
    (((f x) y) z))) 
 
 

 Program 17.1    Generation of curried and uncurried functions in Scheme.    
 

 Exercise 4.8. Playing with curried functions in Scheme 

Try out the functions curry2 and curry3 on a number of different functions. 

You can, for instance, use then curry functions on plus (+) and map. 

Demonstrate, by a practical example, that the uncurry functions and the curry functions are 
inverse to each other. 
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17.3.  Examples of currying 
Lecture 4 - slide 23 

Let us here show a couple of examples of the curry functions from Section 17.2. 

 Curried functions are very useful building blocks in the functional paradigm 

In particular, curried functions are adequate for mapping and filtering purposes  

 

The function font-1 is assumed to take three parameters. The font size (an integer), a color (in some 
particular representation that we do not care about here) and a text string on which to apply the font 
information. We show a possible implementation of font-1 in terms of the font mirror function in 
Program 17.2. 

Expression Value  
(font-1 4 red "Large red text") Large red text 
(define curried-font-1 (curry3 font-1)) 
(define large-font (curried-font-1 5)) 
((large-font blue) "Very large blue 
text") 

Very large blue text 

(define small-brown-font ((curried-font-
1 2) brown)) 
(small-brown-font "Small brown text") 

Small brown text  

(define large-green-font ((curried-font-
1 5) green)) 
(list-to-string (map large-green-font 
(list "The" "End")) " ") 

The End 

Table 17.1    Examples of currying in Scheme.  
 
 

(define (font-1 size color txt) 
  (font 'size (as-string size) 
        'color (rgb-color-encoding color) 
        txt)) 

 Program 17.2    A possible implementation of font-1 in terms of the font HTML mirror function.    

  

17.4.  Ad hoc currying in Scheme (1) 
Lecture 4 - slide 24 

In some situations we would wish that the map function, and similar functions, were curried in 
Scheme. But we cannot generate an f- mapper by evaluating the expression (map f). We get an 
error message which tells us that map requires at least two parameters. 
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In this section we will remedy this problem by a pragmatic, ad hoc currying made via use of a 
simple higher-order function we call curry-generalized. 

 It is possible to achieve 'the currying effect' by generalizing functions, which requires 
two or more parameters, to only require a single parameter  

 

In order to motivate ourselves, we will study a couple of attempts to apply a curried mapping 
function. 

Expression Value  

(map li (list "one" "two" "three")) 
("<li>one</li>" 
 "<li>two</li>" 
 "<li>three</li>") 

(define li-mapper (map li)) map: expects at least 2 arguments, given 1 

(define li-mapper ((curry2 map) li)) 
(li-mapper (list "one" "two" "three")) 

("<li>one</li>" 
 "<li>two</li>" 
 "<li>three</li>") 

Table 17.2    A legal mapping and an impossible attempt to curry the 
mapping function. The last example shows an application of curry2 to 
achieve the wanted effect, but as it appears, the solution is not very 
elegant. 

In Program 17.3 we program the function curry-generalized. It returns a function that 
generalizes the parameter f. If we pass a single parameter to the resulting function, the value of the 
red lambda expression is returned. If we pass more than one parameter to the resulting function, f is 
just applied in the normal way.  

(define (curry-generalized f) 
  (lambda rest 
    (cond ((= (length rest) 1) 
             (lambda lst (apply f (cons (car rest) lst)))) 
          ((>= (length rest) 2) 
             (apply f (cons (car rest) (cdr rest))))))) 

 
Program 17.3    The function curry-generalized. This is a higher-order function which generalizes 
the function passed as parameter to curry-generalized. The generalization provides for just 
passing a single parameter to f, in the vein of currying. 

 
 

The blue expression aggregates the parameters - done in this way to be compatible with the inner 
parts of the red expression. In a simpler version (cons (car rest) (cdr rest)) would be 
replace by rest. 

In the next section we see an example of curry generalizing the map function. 
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17.5.  Ad hoc currying in Scheme (2) 
Lecture 4 - slide 25 

We may now redefine map to (curry-generalized map). However, we usually bind the curry 
generalized mapping function to another name, such as gmap (for generalized map). 

This section shows an example, where we generate a li mapper, by (gmap li). 

Expression Value  
(define gmap (curry-generalized map)) 
(define li-mapper (gmap li)) 
(li-mapper (list "one" "two" "three")) 

("<li>one</li>"  
 "<li>two</li>"  
 "<li>three</li>") 

(gmap li (list "one" "two" "three")) 
("<li>one</li>"  
 "<li>two</li>" 
 "<li>three</li>") 

Table 17.3    Examples of curry generalization of map. Using curry-
generalized it is possible to make a li-mapper in an elegant and 
satisfactory way. The last row in the table shows that gmap can be used 
instead of map. Thus, gmap can in all respect be a substitution for map, 
and we may chose to redefine the name map to the value of (curry-
generalized map).  

If we redefine map to (curry-generalized map), the new mapping function can be used instead 
of the old one in all respects. In addition, (map f) now makes sense; (map f) returns a function, 
namely an f mapper. Thus ((map li) "one" "two" "three") does also make sense, and it gives 
the result shown in one of value cells to the right of Table 17.3. 

  

17.6.  References 

[-] Foldoc: curried function 
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=curried+function 
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18.  Web related higher-order functions 

We finish our coverage of higher-order functions with a number of examples from the web domain. 

  

18.1.  HTML mirror generation 
Lecture 4 - slide 27 

In this section we will, in a principled way, show how to generate simple HTML mirror functions in 
Scheme. Please notice that the HTML mirror functions in LAML are more sophisticated and 
elaborate than the ones discussed here. 

 There are three different cases to consider: double tag elements, single tag elements, and 
tags that can be both single and double.  

 

A well-known tag, that can be both single and double is the p tag. 

The higher-order functions generate-double-tag-function and generate-single-tag-
function are the top level functions. They rely on a couple of other functions, which we program 
in Program 18.2 - Program 18.4. 

(define (generate-double-tag-function tag-name) 
  (lambda (contents . attributes) 
    (double-tag tag-name contents attributes))) 
 
(define (generate-single-tag-function tag-name) 
  (lambda attributes 
    (single-tag tag-name attributes))) 

 Program 18.1    The two higher-order functions for the HTML mirror generation. This version 
corresponds to the an earlier version of LAML's HTML mirror.   

 
 
(define (single-tag name attributes) 
 (start-tag name attributes)) 
 
(define (double-tag name contents attributes) 
 (string-append (start-tag name attributes) 
                (as-string contents) 
                (end-tag name))) 
 

 Program 18.2    Functions that generate single and double tags.    
 

The functions start-tag and end-tag are used in Program 18.2 and implemented in Program 18.3. 
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(define (start-tag kind attributes) 
  (if (null? attributes)  
      (string-append "<" kind ">") 
      (let ((html-attributes (linearize-attributes attributes))) 
         (string-append "<" kind " " html-attributes " >")))) 
 
(define (end-tag kind) 
  (string-append "</" kind ">")) 

 Program 18.3    Functions that generate individual single and double tags.    

The missing aspect at this point is the attribute handling stuff. It is made in Program 18.4. 

(define (linearize-attributes attr-list) 
  (string-append   
    (linearize-attributes-1 
      (reverse attr-list) "" (length attr-list)))) 
 
(define (linearize-attributes-1 attr-list res-string lgt) 
  (cond ((null? attr-list) res-string) 
        ((>= lgt 2)  
          (linearize-attributes-1  
           (cddr attr-list) 
           (string-append  
            (linearize-attribute-pair 
             (car attr-list) (cadr attr-list)) " " res-string) 
           (- lgt 2))) 
        ((< lgt 2)  
          (error "The attribute list must have even length")))) 
 
(define (linearize-attribute-pair val attr) 
  (string-append (as-string attr) 
                  " = " (string-it (as-string val)))) 

 Program 18.4    Functions for attribute linearization. The parameter attr-list is a property list.    

Recall that property lists, as passed to the function linearize-attributes in Program 18.4 have 
been discussed in Section 6.6. 

There are several things to notice relative to LAML. First, the HTML mirror in LAML does not 
generate strings, but an internal representation akin to abstract syntax trees. 

Second, the string concatenation done in Program 18.1 through Program 18.4, where a lot of small 
strings are aggregated, generates a lot of 'garbage strings'. The way this is handled (by the render 
functions in LAML) is more efficient, because we write string parts directly into a stream (or into a 
large, pre-allocated string). 

You will find more details about LAML in Chapter 25 and subsequent chapters. 
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18.2.  HTML mirror usage examples 
Lecture 4 - slide 28 

Let us now use the HTML mirror generation functions, which we prepared via generate-double-
tag-function and generate-single-tag-function in Section 18.1. 

 The example assumes loading of laml.scm and the function map-concat, which 
concatenates the result of a map application. 

The real mirrors use implicit (string) concatenation  

 

As noticed above, there some differences between the real LAML mirror functions and the ones 
programmed in Section 18.1. The functions from above require string appending of such 
constituents as the three tr element instances in the table; This is inconvenient. Also, the mirror 
functions from above require that each double element gets exactly one content string followed by a 
number of attributes. The real LAML mirror functions accept pieces of contents and attributes in 
arbitrary order (thus, in some sense generalizing the XML conventions where the attributes come 
before the contents inside the start tag). Finally, there is no kind of contents nor attribute validation 
in the mirror functions from above. The LAML mirror functions validate both the contents and the 
attributes relative to the XML Document Type Definition (DTD). 
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Expression Value  
(let* ((functions 
         (map generate-double-tag-
function  
              (list "table" "td" 
"tr"))) 
       (table (car functions)) 
       (td (cadr functions)) 
       (tr (caddr functions))) 
 (table 
  (string-append 
   (tr  
     (map-concat td (list "c1" "c2" 
"c3")) 
     'bgcolor "#ff0000") 
   (tr 
     (map-concat td (list "c4" "c5" 
"c6"))) 
   (tr 
     (map-concat td (list "c7" "c8" 
"c9")))) 
  'border 3)) 

<table border="3"> 
   <tr bgcolor="#ff0000"> 
     <td> c1 </td> 
     <td> c2 </td>  
     <td> c3 </td>   
   </tr> 
   <tr>  
     <td> c4 </td>  
     <td> c5 </td> 
     <td> c6 </td> 
   </tr> 
   <tr>  
     <td> c7 </td> 
     <td> c8 </td> 
     <td> c9 </td> 
   </tr> 
</table> 

Same as above 
c1 c2 c3 
c4 c5 c6 

c7 c8 c9 
 

Table 18.1    An example usage of the simple HTML mirror which we 
programmed on the previous page. The bottom example shows, as in 
earlier similar tables, the HTML rendering of the constructed table. The 
map-concat function used in the example is defined in the general 
LAML library as (define (map-concat f lst) (apply 
string-append (map f lst))). In order to actually evaluate the 
expression you should load laml.scm of the LAML distribution first. 

To show the differences between the simple mirror from Section 18.1 and the real mirror we will 
show the same example using the XHTML mirror functions in Section 18.3. 

  

18.3.  Making tables with the real mirror 
Lecture 4 - slide 29 

 The real mirror provide for more elegance than the simple mirror illustrated above 

Here we will use the XHTML1.0 transitional mirror  

 

In the example below there is no need to string append the tr forms, and there is no need to use a 
special string appending mapping function, like map-concat from Table 18.1. Attributes can appear 
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before, within, or after the textual content. This makes the HTML mirror expression simpler and 
less clumsy. The rendering result is, however, the same. 

Expression Rendered value  

(table 
  'border 3 
   (tr  
     (map td (list "c1" "c2" "c3")) 
     'bgcolor "#ff0000") 
   (tr 
     (map td (list "c4" "c5" "c6"))) 
   (tr 
     (map td (list "c7" "c8" "c9"))) 
) 

<table border = "3"> 
  <tr bgcolor = "#ff0000"> 
   <td>c1</td> 
   <td>c2</td> 
   <td>c3</td> 
  </tr>  
  <tr> 
   <td>c4</td>  
   <td>c5</td>  
   <td>c6</td> 
  </tr>  
  <tr> 
    <td>c7</td> 
    <td>c8</td> 
    <td>c9</td> 
  </tr> 
</table> 

Same as above 
c1 c2 c3 
c4 c5 c6 

c7 c8 c9 
 

Table 18.2    A XHTML mirror expression with a table corresponding to 
the table shown on the previous page and the corresponding HTML 
fragment. Notice the absence of string concatenation. Also notice that the 
border attribute is given before the first tr element. The border attribute 
could as well appear after the tr elements, or in between them.  

You might think, that the example above also could be HTML4.01. But, not quite, in fact. In 
HTML4.01 there need to be a tbody (table body) form in between the tr instances and the table 
instance. Without this extract level, the table expression will not be valid. Try it yourself! It is easy. 

[How, you may ask. In Emacs do M-x set-interactive-laml-mirror-library and enter html-
4.01. Then do M-x run-laml-interactively. Copy the table expression from above, and try it 
out. You can shift to XHTML1.0 by M-x set-interactive-laml-mirror-library and asking 
for xhtml-1.0-transitional, for instance. Then redo M-x run-laml-interactively. Be sure to 
use xml-render on the result of (table ...) to make a textual rendering. ] 

  

18.4.  Tables with higher-order functions 
Lecture 4 - slide 30 

In the context of higher-order functions there are even better ways to deal with tables than the one 
shown in Table 18.2 from Section 18.3. 

The table expression in the last line in Table 18.3 shows how. 
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 Instead of explicit composition of td and tr elements we can use a mapping to apply tr 
to rows and td to elements 

 

 

   

Expression Value  
(define rows  
  '(("This" "is" "first" "row") 
   ("This" "is" "second" "row") 
   ("This" "is" "third" "row") 
   ("This" "is" "fourth" "row")) 
) 
 
(table 'border 5 
    (gmap (compose tr (gmap td)) 
rows)) 

This is first row 
This is second row 

This is third row 
This is fourth row 

 

Table 18.3    In the table expression we map - at the outer level - a 
composition of tr and a td-mapper. The td-mapper is made by (gmap 
td). 

Recall that we already have discussed the ad hoc currying, which is involved in gmap, cf. the 
discussion in Section 17.4. 

 The last example illustrates that (gmap td) is a useful building block, which can be 
composed with other functions. 

The last example depends on the fact that the HTML mirror functions accept lists of 
elements and attributes. 

 

 

You should consult Chapter 26 to learn about the exact parameter passing rules of the HTML mirror 
functions in LAML. 

  

18.5.  HTML element modifications 
Lecture 4 - slide 31 

It is often useful in some context to bind an attribute of a HTML mirror function (or a number of 
attributes) to some fixed value(s). This can be done by the higher-order function modify-element, 
which we discuss below. 

 The idea behind the function modify-element is to perform an a priori binding of some 
attributes and some of the contents of a mirror function. 

 

 

The function modify-element is simple. First notice that it accepts a function, namely the element 
parameter. It also returns a function; In effect, it returns element with attributes-and-contents 
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appended to the parameters of the modified element. As another possibility, we could have 
prepended it. 

(define (modify-element element . attributes-and-contents) 
  (lambda parameters  
   (apply element  
    (append parameters attributes-and-contents)))) 

 Program 18.5    The function modify-element.    

In the table below we illustrate three examples where td, ol, and ul are modified with a priori 
bindings of selected attributes. 

Expression Value  

(define td1  
 (modify-element td  
  'bgcolor (rgb-color-list red) 
  'width 50)) 
 
(table 'border 5  
  (map (compose tr (gmap td1)) rows)) 

This is first row 
This is second row 

This is third row 
This is fourth row 

 

(define ol1  
  (modify-element ol 'type "A")) 
 
(ol1  
 (map 
   (compose li as-string) 
   (number-interval 1 10))) 

A. 1 
B. 2 
C. 3 
D. 4 
E. 5 
F. 6 
G. 7 
H. 8 
I. 9 
J. 10 

(define ul1  
  (modify-element ul 'type "square")) 
 
(ul1  
 (map 
  (compose li as-string) 
  (number-interval 1 10))) 

§ 1 
§ 2 
§ 3 
§ 4 
§ 5 
§ 6 
§ 7 
§ 8 
§ 9 
§ 10 

Table 18.4    Examples of element modification using the function 
modify-element. 

LAML supports two related, but more advanced functions called xml-in-laml-parametrization 
and xml-in-laml-abstraction. The first of these is intended to transform an 'old style function' to 
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a function with XML-in-LAML parameter conventions, as explained in Chapter 26. The second 
function is useful to generate functions with XML-in-LAML parameter conventions in general. 

  

18.6.  The function simple-html-table 
Lecture 4 - slide 32 

We will now show show an implementation of the function simple-html-table 

 In an earlier exercise - 'restructuring of lists' - we have used the function simple-html-
table 

We will now show how it can be implemented  

 

   
(define simple-html-table  
 (lambda (column-widht list-of-rows) 
  (let ((gmap (curry-generalized map)) 
        (td-width  
          (modify-element td 'width 
                          (as-string column-widht)))) 
    (table  
      'border 1 
      (tbody  
       (gmap (compose tr (gmap td-width)) list-of-rows)))))) 

 

Program 18.6    The function simple-html-table. Locally we bind gmap to the curry generalized map 
function. We also create a specialized version of td, which includes a width attribute the value of 
which is passed as parameter to simple-html-table . In the body of the let construct we 
create the table in the same way as we have seen earlier in this lecture.  

 

 

  

 

18.7.  The XHTML mirror in LAML 
Lecture 4 - slide 33 

In order to illustrate the data, on which the HTML mirrors in LAML rely, the web edition of the 
material includes a huge table with the content model and attribute details of each of the 77 
XHTML1.0 strict elements. 

 LAML supports an exact mirror of the 77 XHTML1.0 strict elements as well as the 
other XHTML variants 

The LAML HTML mirror libraries are based on a parsed representation of the HTML 
DTD (Document Type Definition). The table below is automatically generated from the 
same data structure. 
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The table is too large to be included in the paper version of the material. Please take a look in the 
corresponding part of the web material to consult the table. 

  

18.8.  Generation of a leq predicate from enumeration 
Lecture 4 - slide 34 

As the last example related to higher-order functions we show the function generate-leq, see 
Program 18.7. 

The idea is to generate a boolean 'less than or equal' (leq) function based on an explicit enumeration 
order, which is given as input to the function generate-leq. A number of technicalities are 
involved. You should read the details in Program 18.7 to grasp these details. 

 In some contexts we wish to specify a number of clauses in an arbitrary order 

For presentational clarity, we often want to ensure that the clauses are presented in a 
particular order 

Here we want to generate a leq predicate from an enumeration of the desired order  

 

   
;; Generate a less than or equal predicate from the 
;; enumeration-order. If p is the generated predicate, 
;; (p x y) is true if and only if (selector x) comes before 
;; (or at the same position) as (selector y) in the 
;; enumeration-order. Thus, (selector x) is assumed to give a 
;; value in enumeration-order. Comparison with elements in the 
;; enumeration-list is done with eq? 
(define (generate-leq enumeration-order selector) 
  (lambda (x y) 
     ; x and y supposed to be elements in enumeration order 
     (let ((x-index (list-index (selector x) enumeration-order)) 
           (y-index (list-index (selector y) enumeration-order))) 
       (<= x-index y-index)))) 
 
; A helping function of generate-leq. 
; Return the position of e in lst. First is 1 
; compare with eq? 
; if e is not member of lst return (+ 1 (length lst)) 
(define (list-index e lst) 
 (cond ((null? lst) 1) 
       ((eq? (car lst) e) 1) 
       (else (+ 1 (list-index e (cdr lst)))))) 

 Program 18.7    The functions generate-leq and the helping function list-index .    

The table below shows a very simple example, in which we use simple-leq?, which is generated 
by the higher-order function generate-leq from Program 18.7. 
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Expression Value  
(define simple-leq?  
  (generate-leq '(z a c b y x) id-1)) 
 
(sort-list '(a x y z c c b a) simple-
leq?) 

(z a a c c b y x) 

Table 18.5    A simple example of an application of generate-leq. 

The fragment in Program 18.8 gives a more realistic example of the use of generated 'less than or 
equal' functions. In Program 18.9 we show how the desired sorting of manual-page subelements is 
achieved. 

(manual-page  
 (form '(show-table rows)) 
 (title "show-table") 
 (description "Presents the table, in terms of rows") 
 (parameter "row" "a list of elements") 
 (pre-condition "Must be placed before the begin-notes clause") 
 (misc "Internally, sets the variable lecture-id") 
 (result "returns an HTML string") 
) 

 
Program 18.8    A hypothetical manual page clause. Before we present the clauses of the manual 
page we want to ensure, that they appear in a particular order, say title, form, description, pre-
condition, result, and misc. In this example we will illustrate how to obtain such an ordering in an 
elegant manner. 

 

 
(define (syntactic-form name) 
  (lambda subclauses (cons name subclauses))) 
 
(define form (syntactic-form 'form)) 
(define title (syntactic-form 'title)) 
(define description (syntactic-form 'description)) 
(define parameter (syntactic-form 'parameter)) 
(define pre-condition (syntactic-form 'pre-condition)) 
(define misc (syntactic-form 'misc)) 
(define result (syntactic-form 'result)) 
 
(define (manual-page . clauses) 
 (let ((clause-leq?  
         (generate-leq 
           '(title form description  
             pre-condition result misc) 
           first)) 
      ) 
  (let ((sorted-clauses (sort-list clauses clause-leq?))) 
    (present-clauses sorted-clauses)))) 
 
 
 
 
 

 Program 18.9    An application of generate-leq which sorts the manual clauses.    
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18.9.  References 

[-] The XHTML1.0 frameset validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-frameset-mirror.html 

[-] The XHTML1.0 transitional validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-transitional-mirror.html 

[-] The XHTML1.0 strict validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/xml-in-
laml/mirrors/man/xhtml10-strict-mirror.html 

[-] The HTML4.01 transitional validating mirror 
http://www.cs.auc.dk/~normark/scheme/distribution/laml/lib/html4.01-transitional-
validating/man/surface.html 

 


