Chapter 1

Introduction

This report is about simulation of object-oriented concepts and mechanisms in the
programming language Scheme.! The report addresses the subject from both a
technical and a pedagogical point of view. It is assumed that the reader is familiar
with Scheme as well as with the fundamentals of object-oriented programming,

As observed in [2], Scheme is nearly an object-oriented programming language.
Procedures in Scheme have the power to represent objects (with time-dependent
state) together with a protocol of operations, which may be used to manipulate the
object.

Although much research have been, and still are, centered around object-oriented
concepts and mechanisms, there are many issues that are not fully explored. The
simulation approach described in this report represents one particular easy way
to explore new mechanisms. Besides that, I just find it fascinating to play around
with object-oriented concepts and mechanisms in an “elastic” language like Scheme.
Scheme is, in my opinion, an excellent “object-oriented playground”.

In the rest of this introductory chapter I will first more carefully discuss strengths
and weaknesses of the programming language Scheme, from the perspective of sim-
ulation of object-oriented concepts and mechanism. Next in section 1.2, I will com-
pare the “simulation” strategy with the more well-known “compilation™ and “in-
terpretation” strategies. Section 1.3 contains a brief description of related Scheme- -
oriented work, and section 1.4 contains an outline and a summary of the rest of the
report.

ANl the scheme programs in this report are intended to conform with the Scheme Report [9].
Concretely, the practical programming has been done in MacScheme (version 2.0).

2 CHAPTER 1. INTRODUCTION

1.1 Scheme

Scheme [9, 1] is a dialect of the programming language Lisp. As for this paper, the
most important differences between Scheme and traditional Lisp languages are:

1. Static binding of free names in procedures.
Free names in a Scheme procedure are bound in the context of the procedure
definition. More traditional Lisp dialects bind the names in the context of
the procedure call (dynamic binding).

2. First class procedures.

Being “first class” means that a procedure can be stored and retrieved from

data structures, passed as a parameter, and returned as the result from an-
other procedure.

s

3. Uniform evaluation of all positions in a procedure call form.
If (p a b c) is a procedure call in a traditional Lisp dialect, p is supposed to
be a symbol, and the procedure property of the symbols must be a procedure
object. In Schéme, the p position does not need to be a symbol. The only
important thing in Scheme is that the P position is an expression the value
of which is a procedure object. Variables in Scheme do not have a separate
procedure value besides the “normal” value. All positions in a (non-special)
Scheme form are evaluated in the same way.

4. Program is not data.
In a traditional Lisp dialect, the list representation of a piece of program can
be manipulated (examined, aggregated, and taken appart) via the primitives
of the languages. Furthermore, the main interpreter primitive eval is consid-
ered as part of the language. In Scheme a piece of program cannot easily be
accessed as a list structure, and eval is not part of the language.

Point number one and two make it possible to model objects only using procedures.

To make this more concrete for readers who have not already gained this insight,
look at the following simple example:

(define (a)
(let ((a-var nil))

(define (b x)
(set! a-var x))

b)

1.2. SIMULATION 3

A is a procedure, which has a local variable a-var. Local to a there is also a
procedure b. Due to point number one, the free variable a-var in b is bound to
a-var in a. Due to point number two, b can be returned from a because procedures
are first class objects. If ¢ is defined in the following way

(detine ¢ (a))

< refers to a procedure object, which has access to the local variable a-var in a.
Consequently the local state of a, represented by a-var in the example, cannot
be deallocated upon return from a. C can be thought of as a representation of an
object with state hold by the variable a-var.

I will elaborate a little bit more on the example, in order to illustrate point number

three from above. It is possible to call the local procedure b in an a-object in the
following way

((a) (+ 2 3))

There are two positions in this form. Both positions are evaluated using exactly
the same rules. This is due to point number three from above. The first position is
supposed to return a procedure object, which is applied on the result of the other
position (the number 5)}

In chapter 2 I will describe more carefully how these principles can be used to
simulate classes, instances, and message passing between the instances.

1.2 Simulation

This paper is concerned with simulation of language concepts and mechanisms. 1
find it interesting to compare simulation with the more traditional language imple-
mentation techniques, compilation and interpretation. As a matter of terminology,
I talk about a source language and a implementation language (their roles will be
described in each of the cases below). I lock at the qualities of the three language
implementation techniques in the following way:

1. Compilation.
A program in a source language is transformed to an equivalent program in
the implementation language, which in this case also is known as the target
language. It is possible to execute the target language program via interpre-
tation. When making the transformation tool one usually go for efficiency

4 CHAPTER 1. INTRODUCTION

of the produced target language program. Furthermore, one usually assume
that the source language is stable over a considerable time, mainly because it
is a relatively complex affair to modify the transformation tool.

2. Interpretation.

On a case by case basis, but following some fixed patterns, the source lan-
guage constructs of a program are simulated in an implementation language.
Flexibility during the program development process rather than efficiency
of the end result is emphasized following this scheme. Compared with the
compilation approach, it is usually easier to modify the source language via
changes in the interpreter. However, the source language is still supposed to
be relatively stable.

3. Simulation.
On a case by case basis, constructs in the source language are expressed di-
rectly by equivalent constructs in the implementation language. This provides
for an extreme degree of flexibility, but it also tends to require that the pro-
grammer must deal with many details in a disciplined manner. The identity
of the source language may be weak; in return the source language is allowed
to be non-stable and fluctuating.

Implementation of a language—or some aspects of a language—via simulation is
mainly useful in experimental situations. Using simulation, one is not limited within
the concepts and mechanisms of a single and already frozen language. Rather it is
possible to gain experience by selecting concepts and mechanism from a “spectrum”
of variations, which the implementation language makes attractive.

The simulation approach is also interesting when one wants to explore “the inherent
power” of an implementation language. In this context, “power” means the ability
to express foreign concepts or mechanisms in simple and elegant ways using existing
means of the implementation language.

As mentioned above, the identity of the source language tends to be weak when
using the simulation approach. It is the disciplined application of certain “patterns”
that makes it possible at all to talk about a source language. If the identity of the
source language patterns becomes too weak, one may decide to amplify the identity
via the use of syntactic abstractions over the patterns of the simulation. In the
Lisp world, such abstractions can be defined via macros. In this report I do not
use syntactic abstraction beyond procedures definitions.

1.3. RELATED WORK 5

1.3 Related Work

The paper Object-Oriented Programming in Scheme by Adams and Rees [2] is
probably the most central paper about simulation of object-oriented mechanisms
in Scheme. Compared with the present report, the Adams-Rees paper contains
little or nothing about multiple inheritance, method combination, and metaclasses,
The paper is addressed towards the very skilled Scheme programmer.

SCOOPS is an object-oriented programming system implemented on top of Scheme.
Among the most interesting features, SCOOPS supports multiple superclasses and
active values. SCOOPS extends Scheme with a couple of new special forms for
the definition of classes and methods. SCOOPS was originally developed by Texas
Instruments (and it is delivered as part of MacScheme).

There also exist several Scheme-like programming languages with object-oriented
mechanisms. T [10, 11] and Oaklisp {8, 7] are among the most important of these
languages.

1.4 Outline of this Report

In chapter 2 it is summatized how to define classes and instances of classes. It
is shown how methods in classes can be activated via message passing. More
interesting for all but novices in the field, it is also worked out how to use generic
procedure calls instead of message passing.

Chapter 3 introduces hierarchies of classes and inheritance of methods. Two par-
ticular state variables are introduced, namely self and super. It is discussed how
self can be defined in case we want to simulate virtual-like procedures (in the Sim-
ula sense). Two different representations of objects are discussed in this chapter.
The most elaborate of these is called the object precedence list representation, and
it is really introduced as a preparation for the chapter on multiple inheritance.

Multiple inheritance is the theme of chapter 4. Two different approaches to the
handling of multiple inheritance are discussed. The first of these can be charac-
terized as a natural “first try”. The other one deals with how to avoid multiple
instantiations of parts of objects. In addition 1 discuss in this chapter how a method
combination facility can be simulated. The chapter is concluded with a section on
a simple method caching technique, which speeds up the method lookup process.

In chapter 5 it is discussed how classes themselves can be treated as objects. The
underlying classes of class-objects are traditionally called metaclasses, and the ob-
jects which represent the classes are called meta-objects. I describe an exercise

6 CHAPTER 1. INTRODUCTION

in the definition of the most general classes in a class hierarchy and a metaclass
hierarchy. The purpose of this exercise is to demonstrate how experience in this
enterprise can be collected via simulations in Scheme. As an important part of the
exercise I focus on how object instantiation can be arranged via message passing
to the meta-objects.

Besides a bibliography, there is an program index at the end of the report.

Chapter 2

Classes, Instances, and Message
Passing

In this chapter I will first summarize how classes and instances of classes can be
simulated in Scheme. The techniques that I describe are well-known from the
literature [1, 2], but I chose to introduce the basic simulation techniques quite
carefully because they make up the entire basia for the rest of the report.

Following the introduction of classes and instances of classes, I describe how to
simulate message vnuumu.a. First I introduce the quite well-known send primitive.
Finally, I show how to arrange for what is known as a generic procedure interface
to the objects. ,

2.1 Classes and Instances

A class can be understood as a template, from which it is possible to create objects,
which are instances of the class. The following pattern outlines how a class can be
simulated via a procedure definition in Scheme.

8 CHAPTER 2. CLASSES, INSTANCES, AND MESSAGE PASSING

(define (class-name)
(let ((instance-var init-value)

S2)

(detine (method parameter-list)
method-body)

(detine (self message)
(cond ((eqv? message selector) method)

(else (error “Undefined message" message))))

selt)) i

Here and in the following I use an ellipsis . . . to indicate that the construct in front
of the dots can occur an arbitrary number of times including zero times). Elements
emphasized using the italic font are considered as variables in the presented context.
The elements shown in nermal fonting are regarded as constant.

The name of the class is class-name. The let construct binds a number of instance
variables to their initial values. In the scope of the instance variables a number of
methods are defined. Each method is a procedure in the implementation language.
Self implements the so-called method lookup procedure. Self takes a message as
a parameter, and it represents a table that maps method selectors to the actual
methods.! A message may be any type of objects, for instance symbols, that can
be discriminated by eqv? on their natural denotation. Self is returned from
the procedure that simulates the class definition. Without loss of generality I
will assume that procedures that simulate classes are parameter less. (Possible
parameters play the role of instance variables; and consequently, they can be placed
together with the other instance variables in the let construct.)

!'The mapping of selectors to methods represents a level of indirection in the process of locating
a method. It makes it also poesible to have internal methods, simply by not including the methods
in the mapping. Finally, the name of the selector, via which the method is known from the
outside, is independent of the name of the method. Actually, the method may very well be a
lambda expression placed directly in the conditional expression of self. If all methods are to be
accessible via selectors identical to the method names, the mapping is a one-to-one mapping, and
therefore trivial. In this case it would be much more flexible to be able to calculate the method
given its selector. In Scheme, this is not possible. What is missing is the possibility to evaluate a
symbol in the environment of self. The traditional eval primitive of Lisp is not part of Scheme,
although most Scheme environments support it anyway. Furthermore, in order to use eval, it
must be possible to capture the environment of self, and to pass this environment to eval.

2.2. MESSAGE PASSING 9

The class can be instantiated by calling the procedure, which represents the class:
(detine instance (class-name))

However, I prefer to embed the instantiation into a primitive, which I call
new-instance:

(define (new-instance class)
(class))

Using this primitive, the instantiation of class-name from above can be written in
the following way:

(define instance (new-instance class-name))

Following this definition, instance is a reference to a new ob ject of class class-name.
At the implementation level, instance refers to the procedure self. Self directly
holds on to the operations of the class, and indirectly to the local state of the ob-
ject. One can think of self as identifying the object, and as a handle to the object
from the “outside world”.

Using the class template from above, it is not possible to bypass the method inter-
face in reading or mutating the state of an object. This may be felt as a natural
limitation, because it prbtects the state, as does an abstract datatype. Following
the simulation-oriented and experimental perspective of this report it is, however,
unfortunate to enforce the limited access to the instance variables. It is, of course,
possible to define reader and writer methods that can access and mutate the state,
but it is tedious to do so for every instance variable.?

2.2 Message Passing

In this section [will discuss the activation of methods via so-called message passing.
The possible method selectors of objects of class class-name are enumerated in
the procedure self of the class. If we, for instance, want to activate my-method in
instance, it can be done in the following way.

((instance message) actual-parameter ...)

20ne can attempt to come up with alternative solutions to the “instance variable access prob-
lem”. The procedure self can be extended such that reading and mutation is supported side by
side with method lookup. However, this requires an entry in self for each such transaction, and
it is hardly attractive explicitly to deal with such a wealth of details. If self is generated by the
programming environment, this solution might become attractive.

10 CHAPTER 2. CLASSES, INSTANCES, AND MESSAGE PASSING

provided that message is mapped to my-method in the procedure self.® Again, I
prefer not to use “the raw procedure call syntax”. In order to amplify the message
sending metaphor, I prefer the following equivalent form.

(send instance message actual-parameter ...)

The procedure send can be implemented in the following simple way:

(define (send object message . args)
(let ((method (object message)))
(cond ((procedure? method) (apply method args))
(else (error "Error in method lookup " method)))))

2.3 Procedural Activation of Methods

I will conclude this chapter by &unrwm&nm an alternative to message passing. Assume
that we instead of

(send instance message actual-parameter . ..)
want to activate a method via the following form:
(message instance actual-parameter ...)

Le., we want to activate a method by calling a so-called generic procedure. Following
this approach, we cannot syntactically distinguish an ordinary Lisp procedure call
from an activation of a method in a class.

From the position of the message in-the generic procedure call it is clear that
message must designate a procedure object in Scheme. Besides this, a message
must be an object that can be compared with a method selector using eqv? in
the procedure self. This is not a problem because it makes sense to compare
procedure objects with eqv? in Scheme [9].

It is easy to write a lambda expression in a pseudo notation for the kind of messages
that we need. Such a lambda expression is shown in figure 2.1. There are several
things to notice about this lambda expression:

1. The second actual parameter to send, which is the message position, is a
reference to the entire lambda expression.

2. The third actual parameter to send is a list, which actually must be spliced
into the actual parameter list of send.

3Notice that if the method selectors in the class are symbols, the message should also be a
symbol. In other words, message will be of the form ‘message.

2.3. PROCEDURAL ACTIVATION OF METHODS I

(lambda (instance . parameters)
(send instance _‘ parameters))

Figure 2.1: A pseudo lambda expression of a generic procedure.

3. In the same way as we used a symbol per selector in section 2.1, we now need
a distinct procedure object for each selector.

We are now ready to express the pseudo formulation of the generic vnoﬁ.a._so in
“real Scheme”. Because of point 3, it is convenient to generate the selectors, instead

of writing the needed lambda expressions repeatedly.

(define (make-selector)
(letrec
((selector
(lambda (instance . parameters)
(apply send
(append: .

(1ist instance selector)

parameters)))))
selector))

The procedure make-selector is the desired generator. The purpose of .wm.anon is
to bind a name to the needed procedure, such.that it can be referenced in its own
definition. The apply form used on send makes it possible for parameters to be a
parameter list of unknown length.*

In order to use the described framework, we need explicitly to generate a selector
for each of the entries in self. This has to be done external to the class, because
the selectors play the dual role of generic procedures. Consequently, both the class
definition and the selector generations need to be at the outer level,

The simulation of generic procedures, as described in this paper, is inspired of a
similar techunique described by by Adams and Rees in [2]. Generic procedures are
used uniformly in the Common Lisp Object System (CLOS) (3, 6].

“The use of append and 1ist could have been omitted, if the Scheme dialect in question
supports the non-essential variation of apply, which takes a procedure and a .:5.&3 of arguments
as parameters, the last of which is a list. MacScheme does not support this variant of apply.

Chapter 3

Class Hierarchies and Single
Inheritance

.Cmmnm n.ra framework from the previous section it is possible to model classes, to
Instantiate classes, and to activate methods in the objects. ’

W: this nrwvn.a.. —.i: extend the simulation of classes such that the classes can
e arranged in hierarchies, and such that inheritance is supported. Only single

inheritance is described in this chapte 1 i i
. pter. The single inheritance fra; i
generalized to multiple inheritance in chapter 4. memerk will be

In mmna.mo: 3.1 I describe the basic framework. In section 3.2 I introduce a new repre-
uonaws.on of oEHonnP which turns out to be particularly useful when we are cmzv to
deal with multiple inheritance. Finally, in section 3.3, I change the Fam:vmmnpmﬁ.
of self, compared with the interpretation which I first introduce in section 3.1

3.1 The Introduction of super

Classes can be arranged in a tree struct i i
c 1 ure by introducing a designated stat i-
able, which specifies the superclass of the class being &mmm&. grsted state ven

12

3.1. THE INTRODUCTION OF SUPER 13

(define (class-neme)
(let ((super (new-part super-class))
(self nil))
(let ((instance-variable init-value)

.

(detine (method formal-parameter...)
method-body)

(detine (dispatch message)
(cond ((eaqv? message selector) method)

(else (method~lookup super message))))
(set! self dispatch))

self))

Compared with the class pattern shown in section 2, the variables super and self
are new. Super and self correspond roughly to the Smalltalk [5] pseudo variables
of the same names. (In section 3.3 1 will change the interpretation of self such
that self and super play the same role as in Smalltalk.)

Before 1 explain the remaining new elements of the class pattern from above I will
introduce some terminojogy. If a class C has a superclass S, an object which is an
instance of C is said to have an S object part (or just an S part.) Sometimes I will
talk about an S object part as the super part of a C object.

Using this terminology, an instance of a class with a super class consists of a se-
quence of object parts.! Figure 3.1 shows an object with two super parts, together
with the super and self variables at the three levels. Self refers to the procedure
dispatch, which corresponds to self from chapter 2. Super refers to the “higher
level part”, which is allocated of the primitive new-part.

The procedure new-part is identical to the procedure new-instance, as defined in
section 2.1.

(define (new-part class)
(class))

Later in the report it turns out to be convenient to be able to distinguish the
instantiation of whole classes from the instantiation of parts of classes.

!Actually it would be even closer to reality to describe an object as consisting of nested sbject
parts.

14 CHAPTER 3. CLASS HIERARCHIES AND SINGLE INHERITANCE

super ..._..
self

<]

super
self

>,

super

self ﬂ

Figure 3.1: The internal organization of an object with three parts.

The procedure method-lookup returns the method with a given selector in an
object.

(detine (method-lookup object selector)
(cond ({procedure? object) (object selector))
(else (error "Inappropriate object in method-lookup: " object))))

Given that dispatch in each class propagates unknow messages to its superclass
(if any), method-lookup searches from the most specific to the most general class
for a method with the given selector.

Let me illustrate in some more details what happens when a class with a super class
is instantiated. Externally, an instance of a class is created as explained in section 2.
Internally, the instantiation may start a chain of instantiations of parts, which stops
when a root of the class hierarchy is reached (see below). As already explained,
and as illustrated in figure 3.1, each part of the object contains a reference to the
level above in the object-hierarchy.

Similarly, let me explain what happens during message passing when classes are
organized in hierarchies. If a message message is sent to an object, and if the
message “falls through” the cond-construct in dispatch, the form

(method-lookup super message)

3.2. OBJECT PRECEDENCE LISTS 15

is executed. Super is a reference to the superpart of the object. Eventually, the
method whose selector matches the message is located, or the root of the class
hierarchy is reached without finding a method with the given selector. In the
former case the method is activated with actual parameters supplied in the send
form. In the latter case, we want to get a error message, which signals that there
are no methods that match the message.

To accommodate the behavior just described, the root of the class hierarchy may
be defined in the following simple way:

(detine (object)
(let ((super ())
(self nil))

(define (dispatch message)
0)

(set! self dispatch)
selt))
This defines a trivial class, in which super is bound to the empty list, and with an’
empty dispatch procedure. Given this definition of the root of the hierarchy, the
send primitive from the previous section can be modified to react properly in the
case that a message is unknown to an object:
1
(define (send object message . args)
(Lot ((method (method-lookup object message)))
(cond ((procedure? method) (apply method args))
((null? method) (error "Message not understood: “ message))
(else (error “Inappropriate result of method lookup: * method)))))

Compared with the version of send in section 2.1, this version handles the case
where the method lookup does not return a method (signaled with the empty list,
which is supposed to be returned from dispatch of the root class.) Notice that
this version of send uses method-lookup, which was defined above.

3.2 Object Precedence Lists

As explained above, the description of the method lookup process is dis-
tributed across the various dispatching procedures in the classes, The procedure

2The definition of object may be even simpler if dispatch is defined “inline” in the let
construct at the place of nil. However, I believe that it is easiest to understand the classes and
class patterns, if a standard “style” is being used.

16 CHAPTER 3. CLASS HIERARCHIES AND SINGLE INHERITANCE

method-lookup is only syntactic sugar of the procedure call, which realizes the
method lookup in another object part. If a given procedure dispatch cannot find
a selector that matches a message, it propagates the lookup to the dispatch pro-
cedure of the super part of the object. This is done via a (recursive) call to the
procedure method-lookup. In this section I will describe an alternative represen-

.‘w:onomogggprwnw:oiu;mu propagation process to be described in a single
procedure. ‘

The idea is ..mu represent an object as a list of parts (concretely as a list of dispatch
procedures) instead of as a single part. Let us assume that c, is a class, and that

..r@.m__vﬂ.n_wum of ¢; is ¢i_y, i = l..n. Given these assumptions, we want to represent
an instance of ¢, as the list

(cn-part c,—;-part ... co-part)

where c;-part, at the Scheme level] is the dispatch procedure of a ¢; object part.

H%.mu list will be called the object precedence list (or just the precedence list) of the
object.

Given the new representation of objects, it is necessary to modify both the dispatch
procedure and the assignment of self. Let me show a class template under the
assumption that objects are represented as precedence lists of parts,
(detine (class-name)
(let ((super (new-part super-class))
(selt ()))
(Let ((instance-variable init-value)

|
(define (method formal-parameter. . .)
method-body)
(define (dispatch nessage)
(cond ((eqv? message selecior) method)

(e1se ())))

(set! self (class-handle dispatch super)))
selt))

As of here, class-handle can be defined to be an alias for cons.

(define class-handle cons)

3.2. OBJECT PRECEDENCE LISTS 17

(Class-handle dispatch super) returns a list, the head of which is dispatch,
and with a tail that is the object precedence list of the super part of the object
(returned by another incarnation of class-handle via the procedure new-part.)
In section 4.3, class-handle will be redefined to handle the changes introduced
by having multiple superclasses.

Notice that dispatch no longer propagates messages to the super part of the object.
If a message isn’t mapped to a method in dispatch, the dispatching procedure
returns the empty list.

The procedure method-lookup now has to be redefined. Method-lookup is not
used directly in the class definition any more, but it is, among other places, used
in the send primitive.

(define (method-lookup object-precedence-list message)
(let ((result (linear-search
object-precedence-list
(lambda (object)
(method-lookup-single-part
object
message)))))
(method~-lookup-single-part result message)))

(define (method-lookup-single-part object message)
(object message)) ”

(define (linear-search list found?)
(if (found? (car list))
(car list)
(linear-search (cdr list) found?)))

Method-lookup is implemented as a linear search on object~precedence-list.
The object precedence list is searched for a part, which responds to the given
message. The auxiliary procedure method~lookup-single-part serves a dual role.
It is used rather directly in the predicate passed to the linear search procedure, and
it is used on the result of the search to locate the method. (This is possible in
Scheme, because of the relatively free interpretation of boolean values).

Both the message sending primitive send and the instantiation primitive
new-instance survive the shift of object representation.

The advantages of the precedence list representation of objects, as introduced in this
section, are not great compared with the original representation. If, however, we
introduce multiple inheritance it turns out that the precedence list representation
is better suited than the more simple representation. 1 will come back to that in
section 4.2. Until then the precedence list representation will not be used.

18 CHAPTER 3. CLASS HIERARCHIES AND SINGLE INHERITANCE

7 T

super super
self ”._ self
w...uQH super
self H_ self

super _ super

selt <] - self

(a) (b)

]

Figure 3.2: Two different interpretations of self.
3.3 Another Interpretation of self

In the framework explained in section 3.1, self refers to that part of an object,
in which it textually is contained. Figure 3.2(a) shows an object with three parts,
and it is illustrated to which part of the object self refers.

Figure 3.2(b) shows an alternative way of interpreting self. Following this ap-
proach, self always refers to the object part, which corresponds to the most spe-
cialized class involved. This is the way self is used in Smalltalk-80 [5]. In Simula
terms 4], this makes all methods virtual-like. I will now show how the situation in
figure 3.2(b) can be obtained.

First, I will assume that each class definition contains an operation set-self, and
that the message set-self! activates that operation.

(define (set-self object-part)
(set! self object-part)
(dend super ’‘set-self! object—part))

Set-self assigns a new value to self, and it propagates a similar request to its
super class. In object, which is assumed to be the root of the class hierarchy, no

3.3. ANOTHER INTERPRETATION OF SELF) 19

propagation should take place. Le., (send super ...) should not be included in
the set-self method of the class object.

A call to the procedure virtual-operations defined as

(detine (virtual-operations object)
(send object ’set-self! object))

declares that self in the object parameter, and in its (direct and indirect) super-
parts, follow the new interpretation.

The decision about the role of self can be postponed until class instantiation
time. If we want the new interpretation, the primitive nev-instance from section
2.1 should be changed to the following procedure:?

(define (new-instance class)
(1ot ((instance (class)))
(virtual-operations instance)
instance))

Notice that we don’t want to change new-part in a similar way, because this would

result in a bunch of temporary assignments of self to gradually larger and larger
parts of the object undér construction.

There are other ways to obtain the Smalltalk-like interpretation of self. In [2] it
is proposed that self of the outer part of the object is passed as a parameter to
each method. In that way the methods that I call set-zelf are not necessary, but
in return each method of every class must take an extra parameter.

As the conclusion of this section, let me illustrate how one can take advantage of the
new interpretation of self. I want to implement a method responds-to, which
tells whether a given object responds to a given message. Because every object
should have access to this method, it is natural to place it in the root class. The
method is here shown in context of the whole object class (which is an extension
of the trivial object class shown in section 3.1)

31t is, of course, also possible to have two variations of new-instance; one which results in
objects as those in figure 3.2(a), and one which results in objects as those in figure 3.2(b). It is
also easy to make the decision a parameter of new-instance.

20 CHAPTER 3. CLASS HIERARCHIES AND SINGLE INHERITANCE

(define (object)
(let ((super ())
(self nil))

(define (set-solf obj-part)
(set! selt obj-part))

(detine (responds-to message)
(let ((method (method-lookup self nessage)))
(it method #t #1)))

(define (dispatch nessage)
(cond ((eqv? messages 'set-self!) set-self)

((eqv? message 'Tesponds-to?) responds-to)
(else ())))

(set! self dispatch)
selt)) e

The operation responds-to relies on the fac
“top part” of the object, of which it is a part
searches through an object from the

t that self in object refers to the
- (Method-lookup self message)
most specific part towards the more general
parts. If an operation is found, which responds to message, it is returned from

method-lookup. If not, the search reaches the dispatch procedure in the class
object, which returns the empty list.

It can be concluded that method lookup,

as known from, e.g., Smalltalk, is easy to
simulate in our framework via a change of the interpretation of self,

Chapter 4

Multiple Inheritance

The class hierarchies that I have described in the vwm.io:u chapter have all ~_Von=
strictly tree-structured. Le., for every class there Qauaa. at most one superc nM.u.
and every class inherits properties from at most one .m:mnn superclass. In 4. “m
chapter I will describe how to generalize the framework in such a way that multiple
inheritance is accounted for.

i i i i i Itiple inheritance. Based on
irst I will describe a simple simulation approach a...w mu i 4
M.__unw.uw_w.“mu of the simple approach, I proceed in section w.w and .».u witha pwnrs_a.:m,
which is based on the object precedence list nmvnmcnimsouu as .inﬁmsn& in section
3.2. The chapter is concluded with a description of how to simulate so-called method
combination.

4.1 A Simple Approach

The basic idea behind my simulation of multiple inheritance is to let ...rm <wnmw7_m
super refer to a list of “super object parts” instead of only one part, as in the single
inheritance case.

21

22 CHAPTER 4. MULTIPLE INHERITANCE

(detine (class-name)
(let ((super (new-part-list super-class-name .)]
(self nil))
(let ((instance-variable tnit-value)

-.l)

(detine (method formal-perameter .. .)
method-body)

(define (dispatch message)
(cond ((eqv? message selector) method)

(else (method-leokup super message))))
v

(set! self dispatch))

selt))

The only difference between this template and the class template shown in chapter 3
is that nev-part has been substituted with nevw-part-list, which takes a variable
number of super classes as parameter. New-part-list is a mapping of new-part
on the list of super classes.

(detine (new-part-list . super-class-list)
(mapcar new-part super-class-list))

Furthermore, it is necessary to change the procedure method-lookup such that it
can handle the case where a method js searched for in a list of classes:

(detine (method-lookup objects message)
(cond ((procedure? objects) (objects message))
((null? objects) ())
((pair? objects)
(let ((leftmost-method ((car objects) message)))
(it leftmost-method

leftmost-method
(method-lookup (cdr objects) message))))

(olse (error "Inappropriate objects in method-lookup: " objects))))

This version of method-lookup realizes a left-to-right, depth-first search in the
super object parts. Notice that the new version of method-lookup is an extension
of method-lookup from section 3.1.

4.1. A SIMPLE APPROACH

7N\
N,

143

(a)
a-part-1 a-part-2 a-part
b-part ﬂ cpart * b-part /n-u
super _ ~m=uo._ super super

d-part *q d-part ﬂ \ﬂ

super _\ super _\

(b) (c)

Figure 4.1: The sharing of parts in a “diamond” of four classes.

23

24 CHAPTER 4. MULTIPLE INHERITANCE"

If self is interpreted along the lines described in section 3.3, the methods called
set-self must be sure to propagate the set-self! message to each of the super
parts of the actual object part.

There are two problems with this simple approach to the handling of classes with
multiple superclasses:

L. Multiple instantiation of parts.
If the situation is as in figure 4.1(a), i.e., if two super classes b and ¢ of d are
joined together in a common superclass a, then the a-part will be allocated
twice, as shown in figure 4.1(b). In most situations we want to change the
situation in figure 4.1(b) to that of figure 4.1(c), where the a-part is shared
between the b-part and the c-part.

2. Redundant searching during method lookup.
A search procedure like the one programmed above will make repeated method
lookup in the same object parts, because a given object part can be reached
from different sub-parts. This is clearly not elegant, an it is a waste of time.

In the following section I will describe how the first problem can be solved. It
will be assumed that objects are represented as precedence lists of object parts,
as described in section 3.2. The precedence list representation of objects does not
directly solve problem number one, but the needed mechanism is closely akin to
the precedence list mechanism.

In section 4.3 I will do the actual construction of the precedence list representation
of objects in the E:Ev_o.murmn:wana case. This contribution solves problem num-
ber two from above. In section 4.4 a CLOS-like method combination technique is
elaborated. And finally in section 4.5 I discuss how to make the method lookup
more efficient. This is especially relevant when method combination is in use.

4.2 Shared Object Parts

In order to avoid multiple instantiations of an object part, it is necessary to test
for every instantiation of an object part, whether the part already has been instan-
tiated. This section shows how this problem is dealt with.

Let me as the starting point introduce the template of a class with multiple super
classés, which uses the precedence list representation of objects.

4.2. SHARED OBJECT PARTS . 25

(detine (class-name parts)
(let ((super (super-class-list parts super-class-name ...))
(selt ()))
(let ((instance-variable init-value)
R)

(define (method formal-parameter...)
method-body)

(define (dispatch message)
(cond ((eqv? message class-id) class-name)
((aqv? age super—cl) super)
((eqv? message selector) method)

(else ())))

(set! self (class-handle dispatch super))
self)))

Overall, a class describes how to instantiate the super parts of the class. _H.E.u is
programmed in the procedure super-class-list, which returns a list of object
parts, where each part ib represented as an object precedence list (see 3.2 and 4.3).

If no sharing of parts in involved, super-class-list “ask the super class to in-
stantiate itself” in the normal way (by calling the Scheme procedure underlying
the class). If, however, super~class-1ist finds out that a superclass already has
been instantiated once, the object precedence list representation is reconstructed
from the existing part and, in turn, its super parts.

In more details, there are a number of new elements in the class template compared
with that from section 4.1:

1. The parts parameter.
The procedure which simulates a class takes a parameter called parts. During
the instantiation of the class, this parameter is supposed to contain a list of
already instantiated parts.

1

Super is bound to the result of a call to super-class-1ist.

The procedure super-class~1ist substitutes the procedure new-part-list
in the superclass definition clause. Super-class-1ist instantiates the super
parts of the object, and it controls that no part of the object is instantiated
more than once.

26 CHAPTER 4. MULTIPLE INHERITANCE

had

An object can return its class.

Given the selector class-id!, dispatch responds with the lambda expression
of the procedure, which implements the class. In other words, it is possible
for an object obj to return the class of which it is an instance. It can be done
via the following procedure call: (method-lookup obj class-id), which at
the end of this section will be akatracted to (class-of-object obj).

4. An object can return its super objects.
Similarly, an object can return the list of super objects, which are referred to
by super. This can be done with (method-lookup object super-classes),

or with the procedure supers-of-object, which will be defined later in this
section.

5. Simplified response on non-matching message in dispatch.
In the else clause of dispatch there is no method lookup to the super class.
Rather, dispatch returns the empty list if the message “falls through” the
dispatch procedure. This is because objects are represented as precedence
lists of object parts (see section 3.2.)

e

Change of the assignment of selt,
Self is assigned to the result of (class-handle dispatch super) at the
end of the procedure. Class-handle returns an object precedence list when

the class is instantiated. The description of class-handle is postponed to
section 4.3.

mmnmzso of the parts parameter, it is necessary to introduce a slightly changed
version of the class instantiation primitive, new~instance.

(define (new-instance class)
(let ((instance (claas ()}))

(virtual-operations instance)
instance))

In the rest of this section [will describe how the procedure super-class-list,
together with the procedures on which it depends, can be implemented. Recall
that the purpose of super-class-list is to instantiate the super parts of the
actual object part, and to avoid multiple instantiations of the same object part.

The procedure Super-class-1ist is just syntactic sugar for super-class-list-{,
which is more convenient to work with because it has a fixed number of parameters.

'For improved readability, class-id is a variable, which is bound to a “gensymed symbol”.
The same is true for the variable super-classes.

4.2. SHARED OBJECT PARTS

[+
-]

(define (super-class-list existing-parts . cu..nuu..uwunv
(super-class-list-1 existing-parts class-list))

(define (super-class-1list-1 existing-parts class-list)
(it (null? class-list)

)
Mpon ((parts (instantiate-super—class
existing-parts
(car class-list))))
(cons parts

(super-class-list-1
(append parts existing-parts)
(cdr class-1ist))))))

Super~class-1ist-1 basically maps the vngnn:wn wﬁungnwuaouu_‘uvom.wmwupuwcmm
each class in class-1ist. During this mapping, it keeps track of already ins
ated parts in its first parameter.

Before it is explained how instantiate-super-class io..rJ —m.a ﬁ“ﬂr Mp MrM_MwM“M
i tiation proceeds. The example is on t ;
example of how the class instan . ; e class
i -instance d) first instantiates
i hy shown in figure 4.1(a). The call Auo.t ins istantiat
”_M“Mﬂo_wom the class hierarchy. When instantiating the c v_._g““‘ oxu.m%:-m vw..n.Mm».
i - hich are the already existing parts
fers to a list of the b-part and the a-part, w . .
MMM object. During the instantiation of the ¢ branch it can be discovered that the

a-part shouldn't be instantiated again.

Instantiate-super-class is defined in the following way:

- ing-parts class)
detine (instantiate-super-class exist c
‘ nwon ({prev-i (previous-instantistion class existing-parts)))
(if prev-~i
(class-handle prev-i
(supers-of-object prev-i))

(class existing-parts))))

It uses the procedure previous-instantiation to a.@na Sr.azwma ﬁrqu mth»”nmm_“
instantiation of class in existing-parts. If Bo mcn—w _-mu::.;_wrou wx_mpm, c Um:nr
instantiated and returned. The result of this :_.uawsrwn.._oa is an ov._nn.n _w_..ona ..,:_m
list (see section 4.3). If c1ass already has been Ewow:n_w..&,. a anaeam?_.”n gm.m ».rm.
existing object part is returned. At the mnrﬁ.da._@i...r prev-i vonoasp oun &on:n»
dispatch procedure (self) of the already mx_m..E.m instance: In o_..n_m.. o _.M.noh”a fruct
the object precedence list representation A.v.. the object, I also need in o:MM io about
the super objects of the object. The list of super parts ?wv_.@aai as objec

precedence lists) is returned by the procedure supers-of-object.

28 CHAPTER 4. MULTIPLE INHERITANCE

(detine (supers-ot-object object)
A-onroa|~oow=11-»=uuonocuonn object super-classes))

Aa.»wuo aloaronnwooWBMv-»anQcOVHan object message)
(object message)) ;

Based on “self and super information”, class-handle can reconstruct the prece- =
dence list of the already existing object part.

In o.rn vng.omcn.o previous-instantiation, itis necessary to be able to tell whether
a given object is an instance of a given class.

(define (is-class-of? class object)
(eq? class (class-of-object object)))

(define (class-of-object object)-_#
anoaroniwconnkumﬁﬂp.lOVuonn object class-id))

.Hunnwmuwaomq uses a function class-of-object, which for a given object returns
wﬁu n_wm.ufw lambda expression at the implementation language level. In Scheme, it
is possible to compare two procedures for equality using eqv?.

Previous-instantiation can now test if a class already is instantiated in the following
way:

AaouwuoAvnoqwocniwnun-hnuun»an nunu-onwuawsuuu-nﬁnv
(Lot ((res (memb is-class-of? -

class
existing-parts)))
(if res
(car res)
#1)))

If, according a.o existing-parts, class already has been instantiated it returns
the already existing part (which also serves as frue.) Else it returns false.

Menb is similar to the Scheme primitive menber. Memb test whether an element is a
member of a list using an explicitly passed comparison procedure.

(define (membd comparison obj vw»uwv,
(cond ((null? plist) #2) '
((comparison obj (car plist)) plist) a
(else (memb comparison obj (cdr plist)))))

Hr,:m. (memb is-class-of? ¢ object-parts) tests whether an object in the list
object-parts is an instance of the class c. ’

4.3. THE OBJECT PRECEDENCE LIST REPRESENTATION 29

Ew OE “u

NN

p[EBCA] ' [Gepa]

N

Figure 4.2: A sample class hierarchy with multiple inheritance.

4.3 The Object Precedence List Representation

In section 3.2 1 F»uomanoa_ the precedence list representation of objects in the single-
inheritance case. In this section I will discuss a similar representation when using
multiple inheritance in the class hierarchy. The precedence list representation is
inspired of the class E.onm&nanm lists from the Common Lisp Object System (CLOS)
) T ‘ ,

A class precedence list of a class C is a total ordering of C and all its (direct and
indirect) superclasses. In this ordering of classes, each of the classes occurs exactly
once. If C is a class with the direct super classes), C3; ... Cy (in this order), the
following rules define a class precedence list:

1. C precedes Cy, (3, ... and C, in ihe ordering, and
2. C; precedes Cy,, mon i from lton—1. .

For more details about class precedence lists, see [3].

An object precedence list is similar to a class precedence list. Le., an object prece-
dence list of an instance of a class C is the similar total ordering of the object parts
of the instance, where each part occur only once. The same constraints as described
in the two points above should also hold for the object parts.

Let me illustrate class precedence lists and object precedence list with the example
in figure 4.2. For each class in the figure, precedence lists of the components (classes
or instances) are shown in boxes. Considering for example the class F, an instance
of F consists of the following ordered collection of parts:

30 CHAPTER 4. MULTIPLE INHERITANCE

F-part B-part C-part A-part.

A is the last one, because it must be preceded by both B and C according to (two
applications of) rule number one from above; B precedes C because of rule number
two; F is the first one, again because of rule number one. Using a precedence list
representation of objects, an instance of ihe class F is represented as the list

(F-part B-part C-part A-part)

where each part is a reference to the dispatch procedure of the part.

It is worth noticing, that using this representation of objects, the method lookup
procedure in the multiple-super-class case is the same as in the single-super-class
case. The method lookup procedure which applies has already been shown in section
3.2. Compared with the version of method-lookup from section 4.1 (the so-called
simple approach), in which the search strategy is encoded into the lookup procedure,
the procedure shown in section 3.2 is clearly a simplification. However, there is of
course a price for this simplicity. The price is so to say paied in class-handle,
which is described next.

The procedure class-handle makes and returns a precedence list representation
of an object. Recall that class-handle is used directly in the class definition
template, and it is used in the procedure instantiate-super-class to fake the
instantiation of an object part from already existing parts.

(define (class-handle self super-list)
(cons self (merge-parts super-list)))

This procedure reflects rule number one in the definition of the class precedence
list. Self is supposed to be a dispatch procedure, and super~list is a list of object
precedence lists of the super parts of the object. The procedure must return an
object precedence list of the object, to which self belongs.

The procedure merge-parts reflects rule number two in the definition of the class
precedence list. Merge-parts is defined through an iterative (tail-recursive) helping
procedure called merge-parts-1.

(define (merge-parts lists)
(reverse (merge-parts-1 () lists)))

(define (merge-parts-i result input)
(if (null? input)
result
(let* ((first-list (car input))

4.3. THE OBJECT PRECEDENCE LIST REPRESENTATION 31

(first-el (car first-list))

(rest-lists (cdr input))) .
(merge-parts-1
(if (multi-member object-eq? first-el rest-lists)

result

(cons first-el result))
(it (cdr first-list)

(cons (cdr first-list) rest-lists)

rest-lists)))))

(define (object-eq? x y)
(eq? (class-of-object x) (class-of-object y)))

It is probably easiest to understand these merge procedures through an example
of the merge process. Let us assume that we are about to instantiate an H object,
relative to figure 4.2. In order to do that the three precedence lists of the super parts
of H have to be merged. l.e., input to the procedure marge-parts-1 becomes:

((re PB PA) (PF PB PC P4) (PG PC PD PA)

Merge-parts-1 first checks if pg is a member of either of the lists (pr ps pc pa)
or (pe pc pp pa). 1t is not, and therefore pg is included into result. Next, it is
checked if pg is part of the two lists (pr ps pc pa) or (pc pc Pp pa)- That is the
case, and therefore this Instance of pp is “postponed” until it is met later during the
merge process. Continuing this way, the result of merging the three lists becomes

(pe Pr PB PG Pc PD Pa)?

The remaining procedures are multi-member and, in turn, its helping procedures.
Multi-member tests whether an element is a member of a list, in a list of lists. The
following implementation of multi-member just maps the member-like procedure,
called memb, over the list of lists, and or-reduces the result to an boolean value:

(define (multi-member comparison el list-of-lists)
(reduce or-proc
(map (lambda (1)
(memd comparison el 1))
list-of-lists)
#1))

?For people who are familiar with the details of the definition of class precedence lists in
CLOS 3}, it may be interesting to compare the “merge technique”, as described here, with the
topological sorting procedure used in [3]. First it can be noticed that the “merge procedure” does
not discover inconsistencies in the partial orderings generated by the class definitions. If, however,
there are no inconsistencies, the “merge procedure” seems to give the same class precedence list
as the deterministic topological sorting procedure.

32 CHAPTER 4. MULTIPLE INHERITANCE

Reduce is well-known, and or-proc is or, just on procedure form (in Scheme it is
not possible to use a special form as a parameter to a higher order procedure). For
the sake of completeness, these procedures are shown next:

(define (reduce combiner list initial-value)
(it (null? list)
initial-valne
(combiner (car list)
(reduce combiner
(cdr list)
initial-value))))

(detine (or-proc x y)
(or x y))

R
This concludes the description of how to construct the precedence list representation
of objects in the case of multiple super classes.

4.4 Method Combination

Given the similarities between the precedence list framework described above and
elements of CLOS, I feel that it is interesting to go one step further in the direction
of CLOS, namely to simulate method combination.

It is the purpose of this (and the following) section to show how it is possible to
experiment with an “advanced topic”. I do not, by any means, intend to deal with
all the necessary details of method combination (and an efficient implementation
of method combination).

A method in CLOS has associated a role. “Ordinary methods” are called primary
methods. In addition, there are before methods; after methods, and around methods.
The methods of a generic Junction, say m, contribute to the so-called effective
method of m. Effective methods are activated via the generic function, much along
the lines described in section 2.3 of this report.

Considering only before methods, primary primary, and after methods, the follow-
ing rules represent a simple, but useful method combination strategy.

L. All the before methods of m are called in most-specific-first order.

2. The most specific primary m method is called. The result of the primary
method becomes the result of the effective method.

3. All the m after methods are called in least-specific-first order.

4.4. METHOD COMBINATION : 33

This is similar to the so-called standard method combination of CLOS (without

" around methods). For more details on method combination see [3, 6].

The method definition technique in our simulated object-oriented language must
be changed to account for the roles of method. I chose to .Rvmmman.. the roles of
methods in the dispatch procedure of the class. The following is an example of a
dispatch procedure with a specification of roles.

(define (dispatch message)

(cond ((match? age class-id) class-name)
((match? age ‘set-selt!) set-self)
((match? message ’'(m before)) m)
((match? message ’(n after)) n)

(else ())))

In the class which contains dispatch, the method m is designated as a before
method, and n is designated as an after method. Set-self has not associated a role,
and therefore it is considered as a primary method. Notice that the introduction of
roles is a proper extension of the existing framework, because “role-less” methods
are allowed (they are considered as primary methods).

The procedure match? has the responsibility to match messages against method
selectors, doing the appropriate defaulting. Both messages and selectors may be
two element lists with rolés.

(define (match? message selector)
(cond ((symbol? message)
(or (sq? message selactor) ;(1)
(and (pair? selector) (eq? (cadr selector) ’primary) ;(4)
(eq? (car selector) message))))
((pair? message)
(or (equal? message selector) ;(2)
(and (symbol? selector) (eq? (cadr m ssage) ‘primary) ;(3)
(eq? (car message) selector))))
(else (error "Malformed message in match?"))))

In match? there are four cases to consider (marked in the program above):

1. Both message and selector are symbols, which must be eq? to match. The
selector selects a primary method.

2. Both message and selector are lists, which must be equal? to match.

3. Message is a list of the form (mes primary). The selector mes matches this
message.

34 CHAPTER 4. MULTIPLE INHERITANCE

4. Selector is a list of the form (sel primary). The message sel matches this
selector.

In Scheme it is not difficult to simulate the aggregation of primary, after, and
before methods into an effective method. The following procedure describes the
aggregation proposed above.

(define (method-combination object message)

(2ot ((before-methods (lookup-all-methods object message ’'befors))
(primary-methods (lookup-all-methods object message ‘primary))
(after-methods (lookup-all-methods object ge ’after)))

(it (null? primary-methods)
0
(lambda p2
(for-each
(lambda (m)
(apply = p1))
before-methods)

(let ((result (apply (car primary-methods) P1)))

(foxr-each
(lambda (m)

(apply = p1))
(reverse after-methods))

result)))))

It is easy to make experiments with other combination rules. This can be done
entirely local to the procedure method-combination.

The procedure lookup-all-methods is a “generalization” of the procedure
method-lookup. Lookup-all-methods returns a list of all methods of a partic-
ular role.

(define (lookup-all-methods object-precedence-1ist message . role)
(let ((actual-role (if role (car role) ‘primary)))

(filter

procedure?

(map
(lambda (object)

nioerounpoowuvnup:ﬂuovogcna object message actual-role))

object-precedence-1ist))))

(define (method-lookup-single-object object message . role)
(it role
(object (list message (car role)))
(object messags)))

4.5. CACHING OF EFFECTIVE METHODS 35

If no role is passed as a parameter to 1ookup-all-methods, the role is defaulted to
primary. Method-lockup-single-object is an extension of the similar procedure
from section 3.2, which now supports message roles.

Having defined method-combination, it may play the exact same role as
method-lookup. Le., instead of calling method-lockup in send, we now call
method-combination.

(detine (send object messags . args)
(let ((effective-method (method-combination object message)))
(cond ((procedure? effective-mathod) (apply effective-method args))
((null? effective-method)

(exTor "N ge not understood: * age))
(else (error "Inappropriate result from method lookup: *
etfective-method)))))

4.5 Caching of Effective Methods

The overhead caused by method lookup is present in the single inheritance as well
as in the multiple inheritance case. However, the overhead may be outrageous when
having method combination, along the lines described in section 4.4. A message
sending primitive (a gederic function call) causes extensive searching in the clasa
hierarchy for the necessary methods. In this section I will sketch a simple caching
technique that can alleviate some of these problems.

Instead of using method-combination in, for instance, send, the following proce-
dure with an identical parameter profile is used.

(define (get-method-combination object message)
(1ot ((cached-effective-method (get object nessage)))
(it cached-effective-method
cached-etfective-method
(et ((effective-method (method—combination object message)))
(put object mossage sffective-method)
effective-method))))

The get and put primitives access and mutate a two-dimensional table (see, e.g.,

13)2

The first time a particular method (identified by method) in a particular object is
called, the effective method is being cached. Subsequent activations of the same
method in the same object do not compute the method combination; rather, the
cached value of the effective method is used.

36 CHAPTER 4. MULTIPLE INHERITANCE

It would have been more natural to cach the effective method on the class rather
than on the objects of the class. In that way all instances of the same class could
share the cached method. However, two instances of the same class do not share the
procedure objects, which simulate the methods. Each instance has its own, local
procedure objects. (This is, by the way, what makes it possible to represent an
object as a “dispatch procedure”). In that way also the effective method becomes
specific to one and only one instance of a class. For more details about this problem,
and for elements of a solution, see [2].

Empirical measurements indicate that the caching strategy pays well off with re-
spect to time consumption. In an example where an effective method was formed
by two before methods, three after methods, and a primary method, the caching
technique was 10 to 20 times faster than without caching.3

When a new method that contribiites to an effective method is being introduced,
it is important to get rid of the cached value. In the frameworks of this report, it
would make sense to clear the cach of all methods of an object, upon redefinition
of the class. In turn, this requires that we can get our hand on all instances of a
class. This kind of administration may very well turn out to be more complicated
than the caching proper.

3In the measurement, all methods were empty. In that way only the method lookups affect
the timing.

Chapter 5

Metaclasses

Of several reasons it is attractive and interesting to represent classes as objects that
are on equal footing with the objects that are instantiated from the classes.

1. It is possible to instantiate a class by sending a message to the object, which
represents the class.

2. It is natural to wﬂﬂn@wnun the characteristics of the class in the state vari-
ables (class <w1muu_8v of the object that represents the class. In that way
the characteristics of a class are readily available as data to the surrounding
system.

Point number two provides for so-called metaprogramming, which is particularly
important when making tools in the programming environment.

The class of an object, which represents a class, is usually called a metaclass. In
this section I will discuss how to simulate metaclasses and how to simulate classes
as objects. I will also demonstrate how to simulate the upper part of the class
hierarchy, which ties the whole object-oriented framework together. Finally, I will
show how to instantiate classes via message passing to the object, which represents
the class,

5.1 The pattern of Metaclasses

In this section I will show and discuss the syntactic pattern, which is used to sim-
ulate metaclasses. For simplicity, I assume that only single inheritance is involved.
More specific, this chapter will be based on the framework from section 3.3.

37

38 CHAPTER 5. METACLASSES

A metaclass can be simulated using the following pattern:!
(detine (melaclass-name) ,
(let ((self nil)
(super (new-part swper-mefaclass)))

ii class variables and methods
(Lot ((class-variable init-value)

.22

(detine (class-method formal-perameters. . .)
body)

S
(define (ins tance-description)

(let ((super (new-instance-part super-class))
(self nil))

(Lot ((instance-variable init-value)

.e2)

(detine (instance-method formal- parameter...)
body)

(define (inner-dispatch m)
(cond ((eqv? m selector) method)

(else (method-lookup super m))))

(set! self inner-dispatch))
self))

(define (outer-dispatch m)
(cond ((eqv? m ’instantiator) instance-description)
((eqv? m selector method)

(else (method-lookup super m)))))

(set! self outer-dispatch))
self))

metaclasses.

1
I want to acknowledge Ole Lehrmann Madsen for giving me the idea to this simulation of

5.1. THE PATTERN OF METACLASSES 39

Metaclass

Class variables

Class methods

oo ription
& Instance descrip

Instance variables

Instance methods

Inner-dispatch

O:.o_..&mum.ovlﬁ

Figure 5.1: The main components of a metaclass pattern.

Although this class pattdrn is slightly more complicated than the similar patterns
from the previous chapters, the overall structure of it is quite simple. Figure 5.1
illustrates the main components of the class template from above.

Instances of metaclasses become a “metaobjects”, which represent a class. The
instances of classes are described by the so-called instance description, which is a
class-like description at the level of the class methods. A class object must return
the instance description when it is passed the special message called instantiator.
The class variables and the class methods are visible in the instance description.
Both the metaclass and the instance description have super and self variables, the
latter of which are bound to inner-~dispatch and ocuter-dispatch respectively.

Super parts of a metaclass can be instantiated by new-part, which is described
in section 3.1. Super parts of an “ordinary class”, on the other hand, must be
instantiated by the following primitive.

(define (new-instance-part class)
(let ((instantiator (method-lookup class ‘instantiator)))
(instantiator)))

Nev-instance-part simply exiracts the instance-description of the class. This
instance description is then instantiated. The parameter clasa refers to the meta-

40 CHAPTER 5. METACLASSES

object, which represents the class. In section 5.3 it is described how entire (non-
meta) classes can be instantiated.

I will assume that there is exactly one instance of a metaclass:
(define e-cless (new-instance metaclass-name))

Given this assumption it might be tempting to define metaclasses directly as “sin-
gular instances”:

(define a-class
(let ((self ...)
(super swuper-melaclass))
(1et ((class-variable init-value)
]
L)
self))

If, however, metaclasses are to take part in a metaclass hierarchy, the parts of a
metaclasses will, following this approach, be shared with other metaclasses. This
is probably not what we want. Consequently we will leave it as a discipline only to
instantiate metaclasses once.

5.2 The most General Parts of the Class Hierar-
chy

Let us now illustrate how to construct the most general classes and metaclasses of
the class hierarchy. The purpose of this exercise is twofold. First, it allows us to
experiment with different variations of the hierarchy. Second, it gives us first hand
experience with the problems of dealing with the cyclic dependencies among the
fundamental classes in an object-oriented programming environment.

The class hierarchies to be simulated are shown in figure 5.2. A and B are two sample
classes defined by the user. Object is the root of both the class hierarchy and the
metaclass hierarchy. As in Smalltalk, I will assume that the metaclass hierarchy is
parallel with the class hierarchy. As a matter of naming, a metaclass of a class X
is called X~-class. Furthermore the class class-class is an abstract class, which
is a superclass of all metaclasses. Metaclass is the class of the metaclasses (i.e.,
the metaclasses are considered as instances of metaclass.) In turn, metaclass is
considered to be an instance of itself.

In appendix A the full details of the classes and the metaclasses are listed. Here |
will only concentrate on the following aspects:

5.2. THE MOST GENERAL PARTS OF THE CLASS HIERARCHY 41

Object M/ Metaclass

o_mmm*o_mmm

Object-class

!

g ———4B_class

ﬁ * Signature
A e A class g
X——p Y
Xis a subclass of Y
! Xy
X is an instance of Y

Figure 5.2: A sample class and metaclass hierarchy.

42 CHAPTER 5. METACLASSES

1. The handling of the cyclic dependencies among the classes.

2. The implementation of a class instantiation method, new, in class-class.

Point number two is postponed to section 5.3.

As can be seen from figure 5.2, object is an indirect superclass of object-class.
Thus, object must exist at the time object-class is instantiated. On the
other hand, object is an instance of the metaclass object-class. Consequently,
object-class must exist at the time object is instantiated. This cyclic depen-
dency means that it isn’t possible to create object and object-class in the same
way that we later will create, say, A and A-class.

The overall strategy for the construction of the class hierarchy in figure 5.2 can be
described in the following way: -

1. A temporary version of the metaclass object-class is defined. In this meta-
class definition, there is no link to class-class.

2. The temporary version of the metaclass objact-class from step 1 is instan-
tiated, hereby creating the object, which represents the class object.

3. The class-class part and the object part of object are created. This is
possible because object exists as the result of step 2.

4. Object is repaired such that its super refers to the instance of class-class
created in step 3.

In the rest of this section I will show some more details of the construction of the
hierarchy from figure 5.2. Readers who are not interested in these details can skip
the rest of this section. ’

First, the temporary version of the metaclass object-class is defined

5.2. THE MOST GENERAL PARTS OF THE CLASS HIERARCHY 43

(define (object-class-temporary)
(let ((self nil)
(super ())) ; assigned in the method fix-super .

(define (fix-super super-part)
(set! super super-part)
‘done)

(define (instance-description)

(let ((self nil)
(super ()) ; empty list because root of hierarchy

)]

(set! self outer-dispatch)
self))

The method fix-super is supposed to be activated on an instance of
object-class-temporary, in order to make the connection to the more general
parts of an object-class instance. Class-class is defined in the following way:

(define (class-class)
(let ((self nil)
(super (new-instance-part object)))
. ¢
(let ((instances ()!)) ;; a list of instances made by new

(detine (new)
) ; described in section 5.3

(set! self outer-dispatch))
self))

We are now in a position where we can create the class object by instantiating the
temporary metaclass object-class-temporary

(define object (new-part object-class-temporary))
(send object 'fix-super (new-part class—class))
(virtual-operations object)

The first line sets up an object without a link to a super class. This creates an
object which among other messages responds to fix-super. Next we send the
message fix-super to object with an instance of class-class as a parameter.
Hereby the super part of object becomes a class-class part.

" CHAPTER 5. METACLASSES

When we in the following instantiate object-class (in the process of instantiating
a “user defined” metaclass) we certainly expect the instantiation to have an ob ject-
part, a class-class-part, and an object-class part. Therefore we substitute the
definition of object-class-temporary with

(define (object-class)
(let ((oc (new-part object-class-temporary)))
(send oc ’'fix-super (new-part class-class))
oc))

5.3 Instantiation of Classes via Message Passing

e
Let us finally deal with the instantiation of classes. In this section we are only con-
cerned with instantiation of non-metaclasses. Recall that a meta class is supposed
to be instantiated only once, via the use of the primitive new-instance.

As already mentioned, an important goal of having metaclasses at all is to be able
to instantiate classes by sending messages to the objects that represent classes. If
A refers to the meta-object, which represents the class A, the following shows how
we want to instantiate A.

(define an-A (send A ’'new))

The natural place of the method, which responds to the message new, is in
class-class, because it is a superclass of all metaclasses. Let me explain what
happens in the method new of class class during the instantiation (send A ‘new).
The methed new is defined in the following way:

(define (new)
(let ((instance
(nev-instance
(method-lookup self ‘instantiator))))
(set! instances (cons instance instances))
instance))

Figure 5.3 shows the parts of the object, to which the new message is sent. Self
refers to the most specific part of the object, because we are based on the interpreta-
tion of self from section 3.3 (virtual-like methods). Because of this interpretation
of self, the instantiator passed to new~instance is that belonging to the metaclass
of A. Next, nev-instance allocates the new instance, and it arranges for virtual
operations of the object. The assignment of instances puts the newly allocated

5.3. INSTANTIATION OF CLASSES VIA MESSAGE PASSING 45

object

class-class

object-class

B-class

A-class

{define an-A (send a ‘'new))

Locating the method
new:

Instantiating paris
of A:

Arranging for
virtual operations:

Sending the message new o A-class
Sending the message new lo B-class
Sending the message new o object-class
Sending the message new fo class-class
Result: the method new of class-class
Result: the method new of class-class
Result: the method new of class-class
Resuit; the method new of class-class

Sending the message instantiator fo A-class.

Result: the method instance-description of A-class
Sending the message instantiator to B-class

Result: the method instance-description of B-class
Sending the. message instantiator to object-class.
Result: the method instance-description of object-class

Sending the message set-selfl to A.
Rasult: the method set-self of A
Sending the message set-selfl to B.
Resulit: the method set-self of B
Sending the message set-selfl 10 object
Result: the method set-self of object

Figure 5.3: The parts of an A class and messages involved in its instantiation.

46 CHAPTER 5. METACLASSES

instance into a list of instances, which is kept as a class variable of class-class.
FFinally the new instance is returned.

Figure 5.3 also shows the list of messages that are involved in the creation of a new
A object (relative to figure 5.2). The first category of messages locates and returns
the method new of class-class. The second group of messages stems from the
actviation of new-instance. The instantiators of A-class, B-class, as well as
object-class are located and used during the instantiation. Finally new-instance
sends the message set-self! to the new object. This starts the already described
chain reaction of set-self! messages (see section 3.3).

5.4 Support of Metaprogramming

The metaclasses constitute the natural place of methods that reflcct some knowl-
cdge of the classes. The knowledge that 1 have in mind is, for instance, the list of
methods, the list of instance variables, and the list of class variables.

Given a class, say A from the previous section, it should be possible to say

(send A ’method-list)

for hereby to get a list of methods of A (or perhaps of A and all its superclasses).

It is difficult to obtain a reasonable support of this kind of functionality in Scheme.
It would, of course, be possible to keep track of the constituents of the class in
a manual way, but this is hardly attractive. If a procedure has access to its own
syntactic structure (the lambda expression on list form) it is easy to extract the
desired information. In Scheme it is not possible to get access to this kind of “meta
knowledge” of procedures.

“inally, if classes and methods syntactically are defined via a macro interface, it

would be possible to generate the metaprogramming interface, because the macros
have access to the necessary syntactic constituents.

Chapter 6

Conclusions

The most important conclusion of this work is the ease and relative elegance with
which it is possible to simulate many important and advanced object-oriented mech-
anisms in Scheme.

The purpose of making simulations in Scheme, along the lines described in this
report, is to get quick and practical experience with new ideas in the field. The
purpose is not to make an object-oriented programming language nor to make
object-oriented mvvznwmmonm.

At the more concrete level [find the precedence list representation of objects to be
interesting, especially in connection with multiple inheritance. The possibility to
have generic procedures instead of message passing is also interesting. Furthermore,
I find that the straightforward simulation of method-combination is noteworthy.
The caching of effective methods is very simple to establish, but it is a weakness
that the caching has to be done on instances, and not on classes. The simulation of
metaclasses is complicated, but nevertheless I find that it has been quite rewarding
to solve some of the “classic” problems in the Scheme framework.

As emphasized several times in the report, it is not the purpose of this work to
establish a new object-oriented programming language based on Scheme. However,
it is clearly possible to do so by defining some appropriate syntactical abstractions
(macros) for selected simulation patterns.

47

Appendix A

Program Description of
Metaclasses

In this appendix the detailed program description of the metaclasses from section
5.2 is shown.

(define (object-class-temporary)

ii class variabdbles
(let ((self nil) ;; must be assigned to dispatch
(super ())) ;; Super must refer to class, which in turn refers
i; to object. Fized via the method firx-super.

i3 class variables

(et)

: description of instances
(define (instance-description-object) :
(let ((super ())
(self nil))

(detine (set-self obj-part)
(set! self obj-part))

(define (responds-to operation)
(let ((method (self operation)))
(if method #t #1)))

(detine (id)
"I am an object instance")

(define (class-of)
outer-dispatch-object)

48

(define (inner-dispatch-object op)
(cond ((eq? op ’set-self!) set-self)
((eq? op ’'responds-to?) responds-to)
((eq? op ’class) class-otf)
((eq? op ’id) id)
(else ())))

t! self »unonlmw-mlnmrnoruonov
selt))

;: class methods

(define (fix-super super-part)
(set! super super-part)
'done)

(define (class-of)
metaclass)

(detine (id)
"I am object”)

(define (set-self obj-part)
(set! self obj-part)
(send super 'set-splf! obj-part))

(define (outer-dispatch-object m)
(cond ((eq? m ’instantiator) instance-description-object)

((eq? m ’class) class-of)
((eq? m ’'set-self!) set-self)
((eq? m ’id) id)
((aq? m 'fix-super) fix-super)
(else (method-lookup super m))))

(set! self outer-dispatch-object)

self)))

(define (metaclass-class)

ii class variables
(let ((self nil)

49

50

APPENDIX A. PROGRAM DESCRIPTION OF METACLASSES

(super (new-instance-part object)))

;i class variables

(let ()
33 METACLASS DOES NOT HAVE AN INSTANCE DESCRIPTICN
;i class methods

(detine (class~of)
self) ;; the circularity of the is-a relation.

(detine (id)
"I am metaclass")

(define (set-self object-part)
(set! self object-part)
(send super ’set-self! object-part))

(define (outer-dispatch-metaclass n»)

(cond ((eq? m ’class) class-of)
((eq? m ’set-self!) set-selt)
((eq? » 'id) id)
(else (method-lcokup supez a))))

(set! selt outer-dispatch-metaclass)
sel?)))

(define {class~class)

i Class variables
(let ((self nil)

(super (new-instance-part object)))

;5 class variables
(let ((instances ()))

i; THERE IS NO INSTANCE-DESCRIPTION OF THIS CLASS.
i class methods
(define (new)

(let* ((instance
(new-instance

51

(method-lookup self ‘instantiator))))
(set! instances (cons instance instances))
instance))

(detine (number-of-instances)
(length instances))

(define (class-of)
metaclass)

(detine (id)
"I am class“)

(detine (set-self object-part)
(set! selt object-part)
(send super ’set-self! object-part))

(define (outer-dispatch-class m)

(cond ((eq? m ’new) new)
((eq? m 'class) class-of)
((eq? = ’set-self!) set-self)
((eq? m 'id) id)
((eq? m 'inst) ber-of-ins)

(else (method-lookup super m))))

(set! self outer-didpatch-class)
self)))

(define object (new-part object-class-temporary))
(send object ’'fix~super (new-part class-class))
(virtual-operations object)

(define metaclass (new-instance metaclass-class))

(detine (object-class)

33 return an object class, where the super is fixed.
(1et ((oc (new-part cbject-class-temporary)))

(send oc ’fix-super (new-part class-class))

oc))

