17. Accessing Data in Objects

This is the start of the lectures about data acaedperations.

In this and the following sections we will discile various operations in classes, in particulav tw
access data which is encapsulated in objects. Byat@ess we mean both reading (getting) and gritin
(setting).

In this material we use the woogeration as a conceptual term. There is nothing callecbaerations” in
C#. Rather, there are methods, properties, inde@pesators etc. Thus, when we in this teachingeriadt
use the word operation it covers - in a broad sensethods, properties, indexers, operators, eyvents
delegates, and lambda expressions.

17.1. Indirect data access

Lecture 5 - slide 2

It is not a good idea to access the instance asalf a class directly from client classes. Weehalveady
discussed this issue in relatively great detailSection 11.3 and Section 11.5.

Data encapsulated in a class is not accedised|y from other classes

Rather, data is accessedlirectly via operations

So the issue is indirect data access instead eftdilata access, when we work on a class fromutsee
(from other classes, the client classes). Whenseendirect data access, the data are accessedlthsome
procedure or function. This procedure or functierves as thindirection in between the client, which
makes use of the data, and the actual data indks. @ his "place of indirection" allows us to gaout
checks and other actions in the slipstream of datass. In addition, the procedures and functicaisserve
as indirection, makes it possible to program certampensations if the data representation is neoblit a
later point in time. With this, the client classds class C are more likely to survive future nficdtions of
the data, which C encapsulates. It is possiblalcuate the data instead of accessing it fromawdes in the
memory.

The following summarizes why indirect data accedsetter than direct data access.

« Protects and shields the data
« Possible to check certain conditions each timedttie is accessed
« Possible to carry out certain actions each timedtia is accessed
« Makes it easier - in the future - to change the depresentation
« Via "compensations" programmed in the accessingabp@as
« Makes it possible to avoid the allocation of sterémy some data
« Calculating instead of storing

Protection and shielding may cause the data tetesaed in a conditional data structure. One pdaitic
shielding is provided by the precondition of anmien. If the condition does not hold, we may ckmaot
to access the data. In this material, we discussomditions in the context of contracts in Chapter

133

In some circumstances it may be convenient to cautysome action whenever the data of a classcessaed.
This is probably most relevant when the data incthes is mutated (assigned to new values). Dateya
for which we activate a procedure upon data aceesessometimes callezttive values.

Accessor compensation as a remedy of changinggregentation of data is undoubtedly the most
important issue. We illustrated this issue in thagifications of Program 11.2, as suggested in Eser8.3.
In a nutshell, we can often fix the consequencesdfift in data representation by modifying thtelinals of
the operations. By keeping the class interface aimgéd all the direct and indirect clients of theeted
class will survive. No changes are needed in tleaictlasses. This is the effect of firewalls, leady
discussed in Section 11.5.

17.2. Overview of data access in C#

Lecture 5 - slide 3

Below we summarize the various kinds of data ac@sssupported by operations in C#:

« Directly via public instance variables
* Never dothat!
« Indirectly via properties
« Clients cannot tell the difference between accespnoperties and direct access of
instance variables
« Indirectly via methods
« Should be reserved for "calculations on objects"
« Indirectly via indexers
» Provides access by means of the notation known fraditional array indexing
« Indirectly via overloaded operators
« Provides access by means of the language-defirmdtop symbols

In the next chapter we will discuss properties #h Chapter 19 is about indexers. Methods will Ised$sed
next in Chapter 20. Overloaded operators are tidat€hapter 21.

134

18. Properties

When a client of a class C accesses data in Crof@epies, the client of C may have the illusioatti
accesses data directly. From a notational pointeaf, the client of C cannot tell the differencavibeen
access to a variable in C and access via a property

Properties have not been invented in the processeating C#. Properties have, in some forms, lised in
Visual Basic and Delphi (which is a language inBascal family). Properties, in the sense disculsstxlv,
are not present in Java or C++. Java only allows tbabe accessed directly or via methods. Thesefor
Java, it is always possible for clients of a clads tell if data is accessed directly from a vialean C or
indirectly via a method i C. In C#, it is not.

In this material we classify properties as operegjside by side with methods and similar abstasti
Underneath - in the Common Intermediate Languaayeperties are in fact treated as (getter andrette
methods.

18.1. Properties in C#

Lecture 5 - slide 7

When we use a property it looks like direct aca#ssvariable. But it is not. A variable referentes
stored location. A property activates a calculatigrich is encapsulated in abstraction. The calculations
that access data in a class C via properties steuédficient. If not, the clients of C are easilisled.
Complicated, time consuming operations should l@émented in methods, see Chapter 20.

Let us first present a very simple, but at the siime a very typical example of properties. In Rerg 18.1
theBalance property accesses the private instance varigilece . Notice that the name of the property is
capitalized, and that the name of the instancelbiis not. This is a widespread convention inyr@ding
styles.

using System;
public class BankAccount {

private string owner;
private decimal bal ance;

public BankAccount(string owner, decimal balance) {
this.owner = owner;
this.balance = balance;

}

publ i c deci mal Bal ance {
get {return bal ance;}

}

public void Deposit(decimal amount){
balance += amount;

}

public void Withdraw(decimal amount){
balance -= amount;

}

135

public override string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 18.1 A BankAccount classwith a trivial Balance
property together with Deposit and Withdraw methods.

In classBankAccount it is natural to read the balance via a propdaty,is problematic to write the balance
via a property. Therefore, there is no setter @Bthiance property. Insteadjeposit andwithdraw
operations (methods) are used. In general we stauédully consider the need for readability andadality
of individual instance variables.

The publicBalance property as programmed in Program 18.1 providesefad-access to the private
instancevalance Vvariable. You may complain that this is a comgkcbway of making the instance variable
public. What is important, however, is that attadgoint in the program evolution process we ntagnge
the private data representation. We may, for irtgaaliminate the instance variabkgance entirely, but
keep the interface to clients - teglance property - intact. This is illustrated in Progrd@2 below.

using System;
public class BankAccount {

private string owner;
private decimal[] contributions;
private int nextContribution;

public BankAccount(string owner, decimal balance) {
this.owner = owner;
contributions = new decimal[100];
contributions[0] = balance;
nextContribution = 1;

}

publ i c deci mal Bal ance {
get {decimal result = O;
foreach(decimal ctr in contributions)
result += ctr;
return result;
}
}

public void Deposit(Decimal amount){
contributions[nextContribution] = amount;
nextContribution++;

}

public void Withdraw(Decimal amount){
contributions[nextContribution] = -amount;
nextContribution++;

}

public override string ToString() {
return owner + "'s account holds " +
+ Balance + " kroner";

Program 18.2 A BankAccount class with a Balance property -
without a balance instance variable.

136

The interesting thing to notice is that the balaoicthe bank account now is represented by themigdarray
calledcontributions in line 6 of Program 18.2. TiBalance property in line 16-22 accumulates the
contributions in order to calculate the balancthefaccount.

From a client point of view we can still read trednce of the bank account via twance property.
Underneath, however, the implementation ofglience getter in line 16-22 of Program 18.2 has changed a
lot compared to line 14 of Program 18.1. We shaingple client program in Program 18.3, and its ouip
Listing 18.4 (only on web).

The client program in Program 18.3 can both be tsgekther wittBankAccount in Program 18.1 and
Program 18.2. Thus, the client program has no awarseof the different representation of the balamtiee
two versions of clasBankAccount . The only thing that matters in the relation betwelas®ankAccount
and its client class is the client interface ofskBankAccount .

using System;
class C{
public static void Main(){
BankAccount ba = new BankAccount("Peter", 1000)

Console.WriteLine(ba);

ba.Deposit(100);

Console.WriteLine("Balance: {0}", ba. Bal ance);
ba.Withdraw(300);
Console.WriteLine("Balance: {0}", ba. Bal ance);

ba.Deposit(100);
Console.WriteLine("Balance: {0}", ba. Bal ance);

Program 18.3 A client program.

Above we have discussedtting of instance variables in objects. In th@ankAccount class we have seen
how to access to thelance instance variable via a getter in the propetynce . Technically, it is also
possible to change the value of the balance instaagable by @etter. Conceptually, we would rather
prefer to update the bank accounts by use of thbhadsDeposit andwithbraw . Nevertheless, here is the
Balance property with both a getter and a setter.

public decimal Balance {
get {return balance;}
set {balance = value;}

}

The setter is activated in an assignmentiiBalance = expression; The important thing to notice is that
the propertyBalance is located at the left-hand side of the assignrmpetator. The value @kpression is
bound to the pseudo variablgue in the property, and as it appears in the sdtteryalue ofialue is
assigned to the instance variabdénce .

Properties can also be used for getting and sdigtusg of struct values. In addition, propertiesde used
to get and set static variables in both classestaudts.

137

This ends the essential examples ofghience property of clas8ankAccount . In the web version of the
material we provide yet another variation of Bagnce property in classankAccount . In this example, we
enforce astrict alternation between getting and setting the balance of a bank account. Please consultébe
edition for details.

This ends our discussion of the exotic variatioslagsBankAccount .

Exercise 5.1. A funny BankAccount

In this exercises we provide a version of cBsskAccount with a "funny version" of thealance
property. You should access the exercise via theweesion, in order to get access to the sourcgranas
involved.

Study theBalance property of the funny version of claBsnkAccount .
Explain the behaviour of the given client of thariy BankAccount.
Next test-run the program and confirm your undeditag of the two classes.

Please notice how difficult it is to follow the déds when properties - likBalance in the given version of
classBankAccount - do not pass data directly to and from the insarariables.

18.2. Properties: Class Point with polar coordinat

Lecture 5 - slide 8

We will now look at another very realistic exampfeproperties in C#.

The example in Program 18.8 is a continuation efPtint examples in Program 11.2. Originally, and for
illustrative purposes, in Program 11.2 we prograchasimple point with public access to its x and y
coordinates. We never do that again. The x andydirwates used in Program 18.8 are calkstbingular
coordinates because they delineate a rectangle between thegra (0,0).

In the clas®oint in Program 18.8 we have changed the data repegsentopolar coordinates. In the
paper version of the material we show only seleptats of the class. (We have, in particular, elmted a
set of static methods that convert between rectangud polar coordinates). In the web versiorfiifie
class definition is included. Using polar coordesta point is represented as a radius and an. amgle
addition, and as emphasized withr ple in Program 18.8 we have programmed four propenvegch
access the polar and the rectangular coordinat@point. The propertiesngle andRadius are, of course,
trivial, because they just access the underlyingape instance variables. The propertieandy require
some coordinate transformations. We have progranath¢ide necessary coordinate transformationsaiicst
private methods of clagsint . In the web edition of the material these methergsshown at the bottom of
classpPoint .

/I A versatile version of class Point with Rotation and internal methods
/I for rectangular and polar coordinates.

using System;

138

public class Point {
public enum PointRepresentation {Polar, Rectangul ar}
private double r, a; // Polar data representation

public Point(double x, double y){
r = RadiusGivenXy(x,y);
a = AngleGivenXy(x,y);

}

public double X {
get {return X4 venRadi usAngle(r,a);}

}

public double Y {
get {return YG venRadi usAngle(r,a);}

}

publ i c doubl e Radi us {
get {return r;}

}

publ i c doubl e Angl e{
get {return a;}

/I Some constructors and methods are not shown

Program 18.8 Class Point with polar data
representation.

Exercise 5.2. Point setters

In thePoint class on the accompanying slide we have showntb@rogram getter properties in the class
Point . Extend the four properties with setters as Widle new version of this class will support mutable
points.

Write a small client program that demonstratesubeof the setter properties.

Hint: Please be aware that the revised class should afido get and set the rectangular and polar
coordinates (x, y, angle, radius) of a point indef@nt of each other. You should first consider what
means to do so.

18.3. Automatic Properties

Lecture 5 - slide 9

Many of the properties that we write are triviatlire sense that they just get or set a singlerinstaariable.
It is tedious to write such trivial propertiesmay be possible to ask the programming environrehelp
with creation of trivial properties. Alternativelly C# 3.0, it is possible for the compiler to geaterthe
trivial properties automatically from short destiops.

139

Let us study an example, which extends the irzaik account example from Program 18.1. The exaisple
shown in Program 18.9 and the translation dondéaéyxompiler is shown in Program 18.10.

using System;
public class BankAccount{
/] automatic generation of private instance vari abl es

public BankAccount(string owner, decimal balance) {
t hi s. Omer = owner;
t hi s. Bal ance = balance;

public string Omer {get; set;}
public deci mal Bal ance {get; set;}

public override string ToString(){
return Omner +"s account holds " + Bal ance + " kroner";

}
}

Program 18.9 Class BankAccount with two automatic
properties.

Based on the formulations in line 12 and 14, thepiter generates the "real properties" shown bafolne
13-21 of Program 18.10.

As an additional and important observation, itadeanger necessary to define the private instaacelies.
The compiler generates the private "backing" instarariables automatically. In terms of the examihle
lines 5-6 in Program 18.10 are generated autonfigtica

As a consequence of automatically generated instegugables, the instance variables cannot be sedeés
the class. The names of the instance variablegrdagown, and therefore they cannot be used alnsliéad,
the programmer of the class accesses the hiddemaesvariables through the properties. As an el@mp
the owner and balance are accessed via the peg@siier andBalance in line 17 of therostring method
in Program 18.9.

using System;

public class BankAccount{

private string _owner;
private deci mal _bal ance;

public BankAccount(string owner, decimal balance) {
_owner = owner;
_balance = balance;

}
public string Owner {
get {return _owner;}
set {_owner = val ue;}
}
public decimal Balance {
get {return _bal ance;}
set {_bal ance = val ue;}
}

140

public override string ToString(){
return Owner + ™s account holds " + Balance + " kroner";

}
}

Program 18.10 An equivalent BankAccount class without
automatic properties.

Because properties, internally in a class, playdheof instance variables, it is hardly meanihgfuhave an
automatic property with a getter and no setter. fElason is that the underlying instance variablmotbe
initialized - simple because its name is not abd@aSimilarly, an automatic property with a settart not
getter, would not make sense, because we wouldenable to access the underlying instance variable.
Therefore the compiler enforces that an automaitipgrty has both a getter and a setter. It is plessi
however, to limit the visibility of either the gettor setter (but not both). As an example, thiefdhg
definition of theBalance property

public string Balance {get; private set;}

provides for public reading, but only writing fromithin the class. In clasgankAccount , this is probably
what we want. It is OK to access the balance froiside, but we the account to be updated by usétudr
theDeposit method or th&vithdraw method.

Finally, let us observe that the syntax of automatoperties is similar to the syntax used for rzust
properties, see Section 30.3.

Automatic properties: Reflections and recommendations. FOCUS BOX 18.1

| recommend that you use automatic properties sathe care! It is worth emphasizing that a clas®sim
always encapsulates some state - instance variabbese of which can be accessed by propertiéselk
strange that we can program in a way - with autanmabperties - without ever declaring the instance
variables explicitly. And it feels strange that mever, from within the class, refers to the instavariables.

Automatic properties are useful in the early lifeaalass, where we allows for direct (one-to-cexess to
the instance variables via methods or propertreanlearly version of the classint of Section 11.6, this
was the case. (We actually started with publicainse variables, but this mistake is taken cara &Xercise
3.3).

Later on, we may internally invent a more sophéed data representation - or we may change out mir
with respect to the data representation. IrPhie class we went from a rectangular representati@n to
polar representation. The data representationlsistaould always be a private and internal conoéthe
class. When this change happens we have to inteddstance variables, exactly as described in &ecti
11.8. When doing so we have to get rid of the aatanproperties. The introduction of instance Malga
and the substitution of the automatic propertieth weal properties' represent internal changdiseboint
class. The clients afoint will not be affected by these chang@sisisthe point! In the rest of the lifetime
of classpoint , it is unlikely that automatic properties will hgart of the story'.

Automatic properties contribute to a C# 8dbivenience layer on top of already existing mearis
of expressions.

141

18.4. Object Initialization via Properties

Lecture 5 - slide 10

In this section we will see that property setter€#3.0 can be used for initialization purposethen
slipstream of constructors. The properties thatiseefor such purposes can be automatic propesises,
discussed in Section 18.3.

Let us again look at a simpbankAccount class, see Program 18.11. The class has two atitgmaperties,
backed by two instance variables, which we canocgss. In addition, the class has two construotfrs,
Section 12.4.

using System;
public class BankAccount{
/| automatic generation of private instance variables

public BankAccount(): this("NN") {
}

public BankAccount(string owner){
this.Balance = 0;
this.Owner = owner;

}
public string Owner {get; set;}
public decimal Balance {get; set;}

public override string ToString(){
return Owner + "'s account holds " + Balance + " kroner";

}
}

Program 18.11 Class BankAccount - with two
constructors.

Below, in Program 18.12 we make an instance ob&8askAccount in line 6. As emphasized fpurple the
owner and balance is initialized by a so-cat¥epect initializer, in curly brackets, right afteew

BankAccount . The initializer refers the setter of the automatiopertie®wner andBalance . All together we
have made a new bank account by use of the pandessteonstructor. The initialization is done bg th
setters of th@wner and theBalance properties.

In line 7 of Program 18.12 we make another instarficgassBankAccount , whereowner is initialized via

the actual parameter "Bill" passed to the consbiyeind the balance is initialized via an objedtatizer in
curly brackets.

142

using System;
public class Client {

public static void Main(){

BankAccount bal = new BankAccount {Owner = "Janes", Bal ance = 250},
ba2 = new BankAccount("Bill") {Bal ance = 1200};
Console.WriteLine(bal);
Console.WriteLine(ba2);
}
}

Program 18.12 A client of class BankAccount with an object
initializer.

The compiler translates line 6 of Program 18.1n®6-8 in Program 18.13. Similarly, line 7 of Bram
18.12 is translated to line 10-11 in Program 18.13.

using System;
public class Client {

public static void Main(){
BankAccount bal = new BankAccount();
bal. Omer = "Janes";
bal. Bal ance = 250;

BankAccount ba2 = new BankAccount("Bill");
ba2. Bal ance = 1200;

Console.WriteLine(bal);
Console.WriteLine(ba2);

}
}

Program 18.13 An equivalent client of class BankAccount
without object initializers.

Let us, finally, elaborate the example with thepmse of demonstratingested object initializers. In
Program 18.14 we show the clasBeaskAccount andpPerson . As can be seen, an instance of class
BankAccount refers to an owner which is an instance of ckasson . It turns out to be crucial for the
example that thewner of aBankAccount refers to @erson object (more specifically, that it is noball
reference).

using System;
public class BankAccount{
public BankAccount(){

this.Balance = 0;
this.Owner = new Person();

}

public Person Owner {get; set;}
public decimal Balance {get; set;}

143

public override string ToString(){
return Owner + ™'s account holds " + Balance + " kroner";

}
}

public class Person {
public string FirstName {get; set;}
public string LastName {get; set;}

public override string ToString(){
return FirstName + " " + LastName;

}
}

Program 18.14 Class BankAccount and class Person.

In theclient class, see Program 18.15 we make BarixAccount S ,bal andba2. The initializers,
emphasized in line 7-9 and 12-14, initialize dwer of aBankAccount Wwith nested object initializers.
Notice that there is no new operator in fron{raktName = ..., LastName = ...} . ThePerson object
already exists. In this example, it is instantiatetine 7 of Program 18.14 together with #kAccount .

using System;
public class Client {

public static void Main(){

BankAccount bal = new BankAccount {
Owner = {FirstName = "Janes",
Last Namre = "Madsen"},

Bal ance = 250},

ba2 = new BankAccount
Ower = {FirstNane = "Bill",
Last Nane = "Jensen"},
Bal ance = 500};

Console.WriteLine(bal);
Console.WriteLine(ba2);

}
}

Program 18.15 A client of class BankAccount with nested
object initializers.

The use of property names (setters) in objectiiitrs gives the effect &kyword parameters. Keyword
parameters refer to a formal parameter name ia¢heal parameter list. Keyword parameters can vengi
in any order, as a contrastygositional parameters, which must given in the order dictated by therfar
parameter list. In addition, the caller of an adxion that accepts keyword parameters can chamge n
pass certain keyword parameters. In that caseultefaill apply. In case of C#, such default valeas be
defined within the body of the constructors.

144

18.5. Summary of properties in C#

Lecture 5 - slide 11

The syntax of property declarations is shown int&y118.1. Both the get part and the set part atierogd.
Syntactically, the signature a property declaraibdike a method declaration without formal partane As
can be seen, the syntax of a property body is diffigrent from the syntax of a method body.

nmodi fi ers return-type property-name{
get {body- of - get}
set {body- of -set}
}

Syntax 18.1 The syntax of a C# property. Here we show both the getter and setter. At least one of them must
be present.

The following summarizes the characteristics opprties in C#:

« Provides for either read-only, write-only, or readte access

- Both instance and class (static) properties maksese

» Property setting appears on the left of an assighra@d in++ and- -
« Trivial properties can be defined "automatically"

» Properties should be fast and without unnecessadeyeffects

The following observations about property namirfted a given coding style. A coding style is not
enforced by the compiler.

A C# property will often have the same name as\afw data member

The name of the property is capitalized - the nafrtbe data member is not

145

146

19. Indexers

From a notational point of view it is often attii@etto access the data, encapsulated in a cladsuat, via
conventional array notation. Indexers are targaiqatovide array notation on class instances angtst
values.

Indexers can be understood as a specialized kiptopkrties, see Chapter 18. Both indexers andeptiep
are classified asperations in this material, together with methods and o#herilar abstractions.

19.1. Indexers in C#

Lecture 5 - slide 13
Indexers allow access to data in an object withafisgray notation

The important benefit of indexers is the notatioeytmake available to their clients.

Let us assume thatis a variable that holds a reference to an olglictWith use of methods we can access
data inobj with v. met hod(par amet er s) . In Chapter 18 we introduced properties and topgnty access
notationv. property. We will now introduce the notationi], wherei typically (but not necessarily) is
some integer (index) value.

We will start with an artificial ABC example in Ryram 19.1 which tells how to define an indexer tlass
that encapsulates three instance variabhlesandf . The indexer is used in a client class in Progt.
The example introduces the indexer abstractionitlgihot a typical use of an indexer.

As it can be seen in Program 19.1 an indexer nmeisaimed "this". Like a property, it has a gettat an
setter part.

The getter is activated when we encounter an egjores]i] , wherea is a variable of typa. The body of
the getter determines the valueapif .

The setter is activated when we encounter an assighlikea[i] =expression. The value oexpression is
bound to the implicit parameter nametle . The body of the setter determines the effecheriristance
variables inobj upon execution of[ij = expression.

In Program 19.4[1] accesses the instance variahle[2] accesses the instance variahland a[3]
accesses the instance variahl@his is not a typical arrangement, however. Mdin, indexers are used to
access members of a data collection.

using System;

public class A {
private double d, e, f;

public A(double v){

d=e=f=v;

}
public double this [int i]{

147

get {
switch (i){
case 1. {return d;}
case 2: {return e;}
case 3. {return f;}
default: throw new Exception("Error");

}
set {
switch (i){
case 1. {d = val ue; break;}
case 2: {e = value; break;}
case 3: {f = value; break;}
default: throw new Exception("Error");
}
}

}

public override string ToString(){
return "A: " + d + "1 "+e+ ", "y f'

}
}

Program 19.1 A Class A with an indexer.

Program 19.2 shows the indexer from Program 19atiion. First, in line 9, we illustrate the thissdters,
wherea[i] occurs at the left-hand side of the assignmenbsynfrollowing that, in line 11, we illustrate
two getters. The output of Program 19.2 is showldsting 19.3 (only on web).
using System;
class B {
public static void Main(){
A a=new A(5);
double d;
a[l] =6; a[2] = 7.0; a[3] = 8.0;

d= a[1] + a[2];

Console.WriteLine("a: {0}, d: {1}", a, d);
}
}

Program 19.2 A client of A which usestheindexer of A.

As an additional example of indexers we will staldy clas®itArray . This example is only present in the
web-version of the material.

19.2. Associative Arrays

Lecture 5 - slide 14
In Section 19.1 we showed how to index an objeth wisingle integer index. In this section we will

demonstrate that the indexing value can have atraasbtype. Thus, the type obj inafobj] can be an
arbitrary type in C#, for instance a type we progurselves.

148

An associative array is an array which allows indexing by means oftaaby objects, not just

integers

An associative arrays maps a set of objects (ithexing objects, keys) to another set of objects
(the element objects).

In Program 19.6 we illustrate how to index instanekclass A with strings instead of integers.dily
understood Program 19.1 and Program 19.2 it vath &le easy to understand Program 19.6 and Program
19.7. Notice in this context that C#, very convetlie allows switch control structures to switch inngs.
The program output is shown in Listing 19.8 (ontyveeb).

1 using System;

2

3 public class A {

4 private double d, €, f;

5

6 public A(double v){

7 d=e=f=v;

8 }

9

10 public double this [string str]{
11 get {

12 switch (str){

i3 case "d": {return d;}

14 case "e": {return e;}

15 case "f": {return f;}

16 defaul t: throw new Exception("Error");
17 }

18 }

19 set {

20 switch (str){

21 case "d": {d = val ue; break;}
22 case "e": {e = value; break;}
23 case "f": {f = value; break;}
24 defaul t: throw new Exception("Error");
25 }

26 }

27 '}

28

29 public override string ToString(){
30 return"A:"+d+","+e+" "+f;
31 }

32

33}

Program 19.6 Theclass A indexed by a string.
using System;
class B {

1
2
S
4
5 public static void Main(){
6
7
8
9

A a =new A(5);
double d;
a["d"] =6; a["e"] =7.0; a["f"] = 8.0;

10
11 d= a["e"] + a["f"]; [/l correspondstod=a.d+a.e
12 /l'in case d and e had b een public
13
14 Console.WriteLine("a: {0}, d: {1}", a, d);
15 }

149

Program 19.7 A client of A which usesthe string indexing of A.

We have seen that it makes sense to index witthgstrand more generally with an arbitrary instaofca
class. In fact, it is possible to base the indexingwo or more objects. This is, of course, imaorif we
index multi-dimensional data structures.

Associative arrays are in C# implemented by meéhsshtables in dictionaries

In the lecture about collections, see Chapter 46yl see how to make use so-called dictionarigsi¢ally
implemented as hash tables) for efficient datacttres that map a set of objects to another sajetts.
Indexers, as discussed in this section chaptevjgg@ convenient surface notation to deal witthsuc
dictionaries. In Section 46.2 the indexer presdibg the generic interfagei cti onar y<K, V> accesses
objects of typer via an index of type&.

19.3. Summary of indexers in C#

Lecture 5 - slide 15

Here follows a syntax diagram of indexers:

nmodi fiers return-type this[formal-parameter-list]
get {body- of -get}
set {body- of -set}
}

Syntax 19.1 The syntax of a C# indexer

It is similar to the syntax diagram of propertias,shown in Syntax 18.1

The main characteristics of indexers are as follows

« Provide for indexed read-only, write-only, or readte access to data in objects
« Indexers can only be instance members - not static

« The indexing can be based on one, two or more fgparameters

« Indexers can be overloaded

« Indexers should be without unnecessary side-effects

« Indexers should be fast

150

20. Methods

Methods are the most important kind of operationG#. Methods are more fundamental than propeatiels
indexers. We would be able to do object-orientedy@mming without properties and indexers (by
implementing all properties and indexers as methdulg not without methods. In Java, for instartbhere
are methods but no properties and no indexers.

A method is a procedure or a function, which ig p&a class. Methods (are supposed to) accessatepen)
the data, which are encapsulated by the class.ddstbhould be devoted to nontrivial operationsviati
operations that just read or write individual imsta variables should in C# be programmed as piiepert

We have already in Section 11.9 and Section 11udiex] the fundamentals of methods in an object-
oriented programming language. In these sectionsagde the distinction between instance methods and
class methods. Stated briefly, instance methodsatgen instance variables (and perhaps classblesias
well). Class methods (called static methods in &) only operate on class variables (static vagfainl C#).

When we do object-oriented programming we orgamiaet data in instances of classes (objects) and in
values of struct types. We only use class relaédd @in static variables) to a lesser degree. Toere
instance methods are more important to us thas aheshods. In the rest of this chapter we will ¢fere
focus on instance methods.

This chapter is long because we have to cover deuof different parameter passing modes. If ydy on
need a basic understanding of methods and thefregsiently used parameter passing mode - call-tyeva
parameters - you should read until (and includBegtion 20.4 and afterwards proceed to Chapter 21.

20.1. Local variables in methods

Lecture 5 - slide 18

Local variables of a method are declared in tsiatements part of the block relative to Syntax 20.1. Local
variables are short lived; They only exists duting activation of the method.

nmodi fiers return-type nethod-nane(formal -paraneter-1list){
stat enent s

}
Syntax 20.1 The syntax of a method in C#

You should notice the difference betwdecal variables andparameters, which we discuss below in
Section 20.2. Parameters are passed and initialhed the method is activated. The initial valumes

from an actual parameter. Local variables are dhiced in thestatements part (the body) of the method, and
as explained below they may - or may not - bedlhiéd explicitly.

You should also notice the difference betwhkmmal variables andinstance variables of a class. A local
variable only exists in a single call of the methAd instance variable exists during the lifetinien object.

Local variables

151

« May be declared anywhere in the block
» Not necessarily in the initial part of the block
« Can be initialized by an initializer
« Can alternatively be declared without an initialize
» No default value is assigned to a local variable
- Different from instance and class variables whighgiven default values
« The compiler will complain if a local variable isferred without prior assignment

In the program below we contrast instance variabléke clasitbemo with local variables in the method
Operation Of InitDemo . Thepur ple instance variables are implicitly initialized teeir default values. The
blue local variables irbperations ~ are not. The program does not compile. In lin@d8 19 the compiler
will complain about use of unassigned local vaeabl

using System;
class InitDemo{

private int intlnstanceVar;
private bool bool | nst anceVar;

public void Operation(){
int intLocal Var;
bool bool Local Var;

Console.WriteLine("intinstanceVar: {0}. boollns tanceVar: {1},
intinstanceVar,
boollnstanceVar);

/I Compile time errors:
Consol e. WiteLine("intLocal Var: {0}. bool Local Var: {1}"
i nt Local Var,
bool Local Var) ;

}

public static void Main(){
new InitDemo().Operation();

}
}

Program 20.1 Local variables and instance variables -
initialization and default values.

In C#, Java and similar languages there is no thing as ajlobal variable. This is often a problem for
programmers who are used to pass data aroundobalglariables. If you really, really need a global

variable in C#, the best option is to use a clatgi€) variable in one of your top-level clasdageneral,
however, it is a better alternative to pass datarad via parameters (such as parameters to cotmsB)ic

20.2. Parameters

Lecture 5 - slide 19

As a natural counterpart to Syntax 18.1 (of progs)ytand Syntax 19.1 (of indexers) we have shown th
syntactical form of a method in Syntax 20.1. Thetagtical characteristic of methods, in contrast to

152

properties and indexers, is the formal parameteosdinary, soft parenthesgs) . Even a method with
no parameters must have an empty pair of parergtigsein both the method definition and in thetinosl
activation. Properties have no formal parameterd iadexers have formal parameters in brackets: .

We will now discuss parameter passing in geneta. following introduce$ormal parameters andactual
parameters.

Actual parameters occur in a callFormal parameters occur in the method declaration. In
general, actual parameters are expressions whicevatuated targuments. Depending on the:
kind of parameters, the arguments are somehowiasswaevith the formal parameters.

C# offers several different parameter passing modes

« Value parameters
« The default parameter passing mode, without usenabdifier
« Reference parameters
» Specified with the ef modifier
e Output parameters
« Specified with theut modifier
» Parameter arrays
» Value parameters specified with the ans modifier

Far the majority of the parameters in a C# progasenpassed by value. Thus, the use of value pagesrist
the most important parameter passing techniqugdorto understand. Value parameters are discussed i
Section 20.3 - Section 20.5.

Reference and output parameters are closely retateach other, and they are only rarely used jecbb
oriented C# programs. Output parameter can beaseanestricted version of reference parameters.
Reference parameters stem fraaniable parameters (var parameters) in Pascal. Reference parameters are
discussed in Section 20.6 and out parameters seastied in Section 20.7.

Parameter arrays cover the idea that a numbertadlaalue parameters (of the same type) are ¢etlaato
an array. In this way, parameter arrays provideaforore sophisticated correspondence between the
arguments and the formal parameters. C# parametgisare discussed in Section 20.9.

It is, in general, an issue how a given actualpatar (or argument) is related to a formal paramétas is
calledparameter correspondence. With valueref andout parameter we ug@sitional parameter
correspondence. This is simple. The first formal parameter isated to the first actual parameter, the second
to the second, etc. With parameter arrays, a nuofteetual parameters - all remaining actual patarse
correspond to a single formal parameter.

In general, there are other parameter correspoadenwst notablieyword parameters, where the name of
the formal parameter is used together with thezhqgtarameter. Keyword parameters are not usedtigiiac

C#. But as we have seen in Section 18.4 a kinewpivkrd parameters is used when properties arefased
object initialization in the context of thew operator.

In Section 6.9 - Program 6.20 - we have shown grara example that illustrate multiple parametesjvap

modes in C#. If you wish the ultra short descriptad parameter passing in C# you can read Sectibn 6
instead of Section 20.3 - Section 20.9.

153

20.3. Value Parameters

Lecture 5 - slide 20
Value parameters are used for input to methods

When the story should told brieflgall-by-value parameters (or justvalue parameters) are used for input to
methods. The output from a method is handled wavttiue returned from the method - via useeoiur n.
This simple version of the story is true for thegjoniéy of the methods we write in our classes. Bsitve will
see already in Section 20.4 it is also possibleattdle some kinds of output via references to ¢bjeassed
as value parameters.

Value parameter passing works in the following way:

- A formal parameter corresponds to a local variable
« A formal parameter is initialized by the correspioigdargument (the value of the actual
parameter expression)
« A copy of the argument is bound to the formal parameter
- Implicit conversions may take place
- A formal parameter is assignable, but with no éftedside the method

We have already seen many examples of value pagesnét case you want to review typical examples,
please consult th@ove method of clasBoint in Program 11.2, thevithdraw andDeposit methods of class
BankAccount in Program 11.8, and thgeAsOf method in clasBerson in Program 16.10.

20.4. Passing references as value parameters

Lecture 5 - slide 21
Care must be taken if we pass references as vataepters

Most of the data we deal with in object-orientedZ#grams are represented as instances of claases -
objects. This implies that such data are accesgeefrences. Again and again we pass such refesaasc
value parameters to methods. Therefore we mustrsiaahel - in details - what happens.

Here is the short version of the story. Let us amsthat send the messamgDifference to aDate oObject
with anothemate object as parameter:

someDate.DayDifference(otherDate)

Date is a class, and therefore batlmeDate andotherDate hold references tbate objects. It is possible

for theDayDifference method to mutate theate object referred bytherDate , despite the fact that the

parameter obayDifference IS a value parameter. It is not, however, posgstn@ayDifference to modify
value of the variable (actual parametahgrDate as such.

154

In the web-version we present the source progrdnmtehe example is great details.

The insight obtained in this section is summariasdollows.

In case a reference is passed as an argumenataeaparameter, the referenced object can be
modified through the formal parameter

Exercise 5.3. Passing references as ref parameters

It is recommended that you use the web editiom@fmaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In theDpate andpPerson classes of the corresponding slide we pass aereferas value parameter to
methodDayDifference in classDate . Be sure to understand this. Read albeluparameters later in this
lecture.

Assume in this exercise that the formal parameber in Date.DayDifference is passed by reference
(as a C#ef parameter). Similarly, the actual parametesOfBirth ~ to DayDifference should (of
course) be passed by reference (using the keyworih front of the actual parameter).

What will be the difference caused by this prograodification.

Test-drive the program with a suitable client tofyeyour answer.

20.5. Passing structs as value parameters

Lecture 5 - slide 22

This section is parallel to Section 20.4. In thest®n we pass a struct value (as opposed to tanesof a
class) as a value parameter. Our finding is tisatwet value (the birthday value of typete) cannot be
mutated from th®ayDifference method of strucbate .

If we assume thatate is a struct instead of a class, the expression

someDate.DayDifference(otherDate)
passes a copy ofherDate to DayDifference . The copy is discarded when we return frosgDifference
If DayDifference mutates the value of its parameter, only the loogl is affected. The value of
otherDate IS not!

In the web-version we will discuss the same exaraplm the web-version of Section 20.4.

Notice the following observation.

There is a good fit between use of value typescalieby-value parameter passing

155

If you wish the best possible fit (and no surprisesi should use value parameters with value types.use
of structDate instead of clasbate also alleviates the privacy leak problem, as gairdut in Section 16.5.
See also Exercise 4.3.

Exercise 5.4. Passing struct values as ref parameters
This exercise corresponds to the similar exeraisthe previous slide.

In theDate struct and theerson class of this slide we pass a struct value \&ue parameter to the
methodbDayDifference

Assume in this exercise that the formal paramgber in Date.DayDifference is passed by reference (a
C#ref parameter). Similarly, the actual parametesOfBirth to DayDifference should (of course) be
passed by reference (using the keywerdin front of the actual parameter).

What will be the difference caused by this prograodification. You should compare with the versian o
on the slide.

Test-drive the program with a suitable client toifyeyour answer.

20.6. Reference Parameters

Lecture 5 - slide 23

In C, call-by-reference parameters are obtainepasging pointers as value parameters. Reference
parameters in C# aret the same as call-by-reference parameters in C.

Reference parameters in C# are modeled afieparameters in Pascal. Stated briefly, a forma&reszfce
parameter in C# is an alias of the corresponditgghparameter. Therefore, the actual parametet baua
variable.

Reference parameters can be used for both in@ntd@utput from methous

Reference parameters can be used to establishaditer names (aliases) of already existing varmabliée
alternative names are used as formal parametece &mablished, such parameters can be used for bot
input and output purposes relative to a method Tak established aliases exist until the methadms to
its caller.

If we - in C# - only are interested in using refere parameters for output purposes we shoulduise
parameters, see Section 20.7.

Reference parameters work in the following way:

« The corresponding argument must be a variableitandst have a value
« The types of the formal parameter and the argumeist be identical
« The formal parameter becomes another name (an afitse argument

156

« The actual parameter must be prefixed with the kegwef

In the first item it is stated that an actual refere parameter (which is a variable) must havduwe\zefore it
is passed. In C#, this is callddinite assignment.

As described in the fourth item, and as a novetrdmution of C#, it is necessary to mark both folauad
actual parameter with thref keyword. In most other languages, only the forpsahmeter is marked. This
may seem to be a little detail, but it implies tihas easy to spot reference parameters in a rdataling
form. This is very useful.

We show an example of reference parameters in &mg80.10: Swapping the values of two variabless Thi
is the example used over and over, when referemeaeters are explained.

using System;

public class A{
private int a, b, c;

public A(){
a=1b=2,c=3;
}

public void Swap(ref int vl, ref int v2){
int tenp;
tenp = vl; vl = v2;, v2 = tenp;

}

public override string ToString(){
return String.Format("{0} {1} {2}", a, b, c);
}

public void Go(){
Console.WriteLine("{0}", this);
Swap(ref a, ref b);Swap(ref b, ref c);
Console.WriteLine("{0}", this);

}

public static void Main(){
new A().Go();

Program 20.10 The class A with a Swap method.

In Program 20.10 we instantiate the class itsédfs@®) in themain method. We send the parameterless
message&o to this object. Hereby we take the transition frafistatic situation” to an "object situation”.
Without this transition it would not have been pbigsto use the instance variable®, andc in classa.
(They should instead have been static variablds)Gé method pattern illustrated here is inspired from
[Bishop04].

123
231
Listing 20.11 Output of class A with Svap.

157

It seems natural to support more than just valuarpaters in an ambitious, real-world programming
language. But it is worth a consideration how muahd in which situations - to use it. We will diss this
in some details in Section 20.8.

20.7. Output Parameters

Lecture 5 - slide 24

Output parameters in C# are reference parametedsamy for output purposes.

Output parameters are used for output from methblds method is supposed to assign values to
output parameters.

Here follows the detailed rules of output paramp#essing:

» The corresponding argument must be a variable

« The corresponding argument needs not to have a ealieforehand

« The formal parameter should/must be assigned bynttbod

« The formal parameter becomes another name (an afittse argument
« The types of the formal parameter and the argumeist be identical

« The actual parameter must be prefixed with the keghwut

Notice the second item: It is not necessary thagttiual parameter has a value before the cdticinthe
purpose of theut parameter is exactly to (re)initialize the actuatl parameters. The method must ensure
that the output parameter has a value (is definéisigned) when it returns.

In Program 20.1PoAdd returns the sum of the parametersv2, andv3 in the last parameter The
corresponding actual parameteis initialized by the call t@oAdd in line 21 of Program 20.12. | wrote
DoAdd to demonstrate output parameters. Had it not farethis purpose, | would have returned the sum
from DoAdd. In that wayboAdd should be called assult = DoAdd(v1, v2, v3) . In this case | would de-
emphasize the imperative nature by calling it pjast These changes describe a transition from an
imperative to a more functional programming style.

using System;

public class A{
private int a, b, c;
private int r;

public A(){
a=1,b=2;c=3;
}

public void DoAdd(int v1, int v2, int v3, out int v){
v = vl + v2 + Vv3;

}

public override string ToString(){
return String.Format("{0} {1} {2}. {3}", a, b, c,r);
}

158

public void Go(){
Console.WriteLine("{0}", this);
DoAdd(a, b, c, out r);
Console.WriteLine("{0}", this);

}

public static void Main(){
new A().Go();

Program 20.12 The class A with a DoAdd method.

123.0
123. 6

Listing 20.13 Output of class A with DoAdd.

In Program 20.14 of Section 20.9 we show a vanaRrogram 20.12, which allows for an arbitrary rtoem
of actual parameters. This variant of the prograimtroduced with the purpose of illustrating paesen
arrays.

20.8. Use of ref and out parameters in OOP

Lecture 5 - slide 25

It is interesting to wonder about the fit betwedreot-oriented programming and the use of reference
parameters. Therefore the following question isvaht.

How useful are reference and output parameters in object-oriented programming?

Output parameters are useful in case we program@taan which need to produce two or more pieces of
output. In such a situation, we face the followpassibilities:

« Use a number afut parameters

« Mutate objects passed by value parameters

« Aggregate the pieces of output in an object andmet

« Assign the output to instance variables which sgbeetly can be accessed by the caller

Let us first face the first item. If a (public) rhed needs to pass back (to its caller) more tharpeete of
output, which are only loosely related to each gtlieénay be the best solution to use one or mate o
parameters for these. It should be consideredgs @ae of the results back véaurn

In a language withef andout parameters it is confusing to pass results oataihod via references passed
by value (call-by-value). Useraf or anout parameter!

If the pieces of output are related - if they tbgetform a concept - it may be reasonable to agdedtye
pieces of output in a new struct or a new classin&tance of the new type can then be returnedetiar n.

159

Assignment of multiple pieces of output to instamagables in the enclosing class, and subsequerta of
these via properties, may compromise the origifed iof the class to which the method belongs. }t afso
pollute the class. Therefore, it should be avoided.

ref andout parameters are relatively rare in the C# stantlanaties

In summary, we see that there are several alteasito the use of reference and output parametens |
object-oriented context.

Referencer(ef) and outputdut) parameters are only used in very few methodseénNET framework
libraries. In general, it seems to be the caserétiatence parameters and output parameters acemnioal to
object-oriented programming.

20.9. Parameter Arrays

Lecture 5 - slide 26

In the previous sections we have discussed vagatameter passing techniques. They were all retatdue
meaning of the formal parameter relative to theesponding actual parameter (and the argumenteteriv
from the actual parameter).

In this section we will concentrate on ther ameter correspondence mechanism. In the parameter passing
discussed until now there has been a one-to-omespmmdence between formal parameters and actual
parameters. In this section we will study a par@mpgassing technique where zero, one, or morelactua
parameters correspond to a single formal parameter.

A parameter array is a formal parameter of arrgg tyhich can absorb zero, one or more actual
parameters

A formal parameter list in C# starts with a numbkvalue/reference/output parameters for whichehmust
exist corresponding actual parameters in a methtiebtion. Following these parameters there caa be
single parameter array, which collects all remajranguments in an array.

With parameter arrays, there can be arbitrary naatyal parameters following the 'ordinary paransstéut
not arbitrary few. There must always be so manyagiarameters that all the 'required’ formal patans
(before a possible parameter arrays) are associated

The following rules pertain to use of parameteaysrn C#:

- Elements of a parameter array are passed by value

- A parameter array must be the last parameter ifotineal parameter list

« The formal parameter must be a single dimensiamay a

« Arguments that follow ordinary value, ref and oatgmeters are put into a newly allocated array
object

« Arguments are implicitly converted to the elemgpiet of the array

160

It is easiest to understand parameter arrays froaxample, such as Program 20.14. This is a vasfant
Program 20.12, which we have already discusseeédtiédh 20.7. Th®oAdd method takes one required
parameter (which is an output parameter). As thgahout parameter in line 24, 27, and 30 we use th
instance variable. Following this parameter comes the parametey aa#ediv (for input values). All
actual parameters after the first one must bep#ity , and they are collected and inserted into an érteg
array, and made availableoAdd as thant arrayiv .

In Program 20.14 theoAdd messages to the current object add various comntriiseof the instance
variablesa, b, andc together. The result is assigned to the out paemeéDoAdd.
using System;

public class A{
private int a, b, c;

private intr;
public A({
a=1b=2,c=3;
}
public void DoAdd(out int v, paranms int[] ivVv){
v = 0;
foreach(int i in iv)
Vo += 0
}
public override string ToString(){
return String.Format("{0} {1} {2}. {3}", a, b, c, 1);
}

public void Go(){
Console.WriteLine("{0}", this);

DoAdd(out r, a, b, c);
Console.WriteLine("{0}", this);

DoAdd(out r, a, b, c, a, b, c);
Console.WriteLine("{0}", this);

DoAdd(out r);
Console.WriteLine("{0}", this);
}

public static void Main(){
new A().Go();

Program 20.14 The class A with a DoAdd method - both out
and params.

The output of Program 20.14 is shown in Listingl30We have emphasized the value after eaciboAdd
message. Be sure that you are able to understanmhthmeter passing details.

123. O
123. 6
123. 1
123. 0

2

Listing 20.15 Output of class A with DoAdd - both out and
params.

161

The type constraint on the actual parameters camim®ved' by having a formal parameter array péty
Object[]

When we studied nullable types in Section 14.9 m@entered theitSequence class. In line 5 of Program
14.17 you can see a parameter array of the cotstritdease notice the flexibility it gives in the
construction of nevntSequence objects. See also Program 14.19 wheBequence is instantiated with
use of the mentioned constructor.

20.10. Extension Methods

Lecture 5 - slide 27

In C#3.0 an extension method defines an instan¢baden an existing class without altering the dition
of the class. The use of extension methods is coentif you do not have access to the source obtiee
class, in which we want to have a new instance ogeth

Let us look at an example in order to illustrate thechanisms behind the class extension. We ugeadrno
11.3 as the starting point. In line 26-31 of ProgrkL.3 it can be observed that we have inlinedutation
of distances between pairs of points. It would diigbethe program if we had callebistanceTo(q)

instead of

Math.Sqrt((p.x - q.X) * (p.X - q.X) +
(Py-ay)* (p.y - a.y));

to find the distance between to poiptandg. We will now assume that the instance methstinceTo can
be used on an instance of classt . Program 20.16 below shows the embellishment ofgfam 11.3.

/I A client of Point that instantiates three points and calculates
/l the circumference of the implied triangle.

using System;
public class Application{
public static void Main(){
Point p1 = PromptPoint("Enter first point"),

p2 = PromptPoint("Enter second point"),
p3 = PromptPoint("Enter third point");

double p1p2Dist = pl. Di stanceTo(p2),

p2p3Dist = p2. Di st anceTo(p3),

p3plDist = p3. Di stanceTo(pl);
double circumference = p1p2Dist + p2p3Dist + p3 plDist;
Console.WriteLine("Circumference: {0} {1} {2}: {3},

pl, p2, p3, circumference);

}

public static Point PromptPoint(string prompt){
Console.WriteLine(prompt);
double x = double.Parse(Console.ReadLine()),
y = double.Parse(Console.ReadLine());
return new Point(x,y, Point.PointRepresentation .Rectangular);

162

Program 20.16 A Client of class Point which uses an extension
method DistanceTo.

It is possible to extend classint with the instance methanistanceTo without altering the source code of
classpoint . In a static class, such as in clasitExtensions ~ shown below in Program 20.17, we define
theDistanceTo method. It is defined as a static method withrst fiarameter prefixed with the keyword

t hi s. The C#3.0 compiler is able to translate an exgiwedikeq.DistanceTo(q) to
PointExtensions.DistanceTo(p,q) . This is the noteworthy "trick" behind extensioethods.

using System;
public static class PointExtensions{
public static double Di st anceTo(thi s Point pl, Point p2){

return Math.Sqrt((p1.X - p2.X) * (p1.X - p2.X) +
(PL.Y - p2.Y) * (p1.Y - p2.Y)) ;

Program 20.17 The static class PointExtensions.

In summary, an extension method

» extends the type of the first parameter

- is defined as a static method witkha maodifier on the first parameter
- must be defined in a static class

< cannot access private instance variables in trendgd class

« is called by - behind the scene - translating ¢albof the static method

Exercise 5.5. Extending struct Double

At the accompanying page we have seen how elass can be extended externally with the method
DistanceTo . This is arextension method.

If you study the methodistanceTo you will see that we use the squareroot funatiath.Sqrt , defined
statically in classath . And we could/should have used a simfiauare function had it been available.

It is remarkable that C# 3.0 allows us to exteraddfnucts behind the primitive types, suclbasle and
Int32 .

Write a static class that extends stiaible with the two extension methodsrt andsquare .

Afterwards, rewrite the methamstanceTo such that it makes use of the new instance metinastsuct
Double .

163

20.11. Methods versus Properties versus Indexers

Lecture 5 - slide 28

Here at the end of the chapter about methods weswitmarize some rule of thumbs for choosing betwee
properties, indexers and methods in a class:

« Properties

« Forreading and extracting of individual instantads variables

« For writing and assigning individual instance/claasables

« For other kinds of data access that does not ievinfire consuming computations
« Indexers

» Like properties

« Used when it is natural to access data by indeaesay notation - instead of simple

names
» Used as surface notation for associative arrays
e Methods

« For all other operations that encapsulate calaraton the data of the class

20.12. References

[Bishop04] Judith Bishop and Nigel HorspoG¥ Concisely. Pearson. Addison Wesley, 20I

164

