37. Streams

We are now about to start the first chapter inl¢icture about Input and Output (10). Traditionall®, deals
with transfer of data to/from secondary storagestmotably disks. 10 also covers the transmissiatata
to/from networks.

In this and the following chapters we will studg ttlasses that are related to input and outpus. ifbludes
file and directory classes. At the abstract lethed stream class is the most important class in the 10
landscape. Therefore we choose to start the |@ stith an exploration of streams, and an undersitanof
thestream class in C#. This includes sevesakam subclasses and several client classesr@fm . The
clients we have in mind are the so-called readdeaiiter classes.

37.1. The Stream Concept

Lecture 10 - slide 2
A stream is an abstract concept. A streamadsranectiorbetween a program and a storage/network.

Essentially, we can read data from the streamarmgram, or we can write data from a prograniméo t
stream. This understanding of a stream is illusttat Figure 37.1.

A stream

| Program j— | Destination |
— A stream reads e A

Figure 37.1 Reading from and writing to a stream

A streamis a flow of data from a program to a backingetar from a backing store to a
program

The program can eith&rite to a stream, aradfrom a stream.

Stream and stream processing includes the follawing

« Reading from or writing to files in secondary megn(utisk)
» Reading from or writing to primary memory (RAM)

« Connection to the Internet

« Socket connection between two programs

The second item (reading and writing to/from priyn@emory) seems to be special compared to thesther
Sometimes it may be attractive to have files imaiiy memory, and therefore it is natural that weusth be
able to use stream operation to access such fileel In other situations, we wish to use intédwa
structures as sources or destinations of streanss for instance, typical that we wish to read anite data
from/to strings. We will see how this can be dan&eéction 37.14.

333

37.2. The abstract class Stream in C#

Lecture 10 - slide 3

Thestream class in C# is an abstract class (see Sectiof).30bklongs to theystem.l0 namespace,
together with a lot other 10 related types. Theralasstream class provides a generic view on different
kinds of sources and destinations, and it isoldtesat classes from the operating system detaitaese.

Thestream class supports both synchronous and asynchro@apédrations. Client classes that invoke a
synchronous operation wait until the operationospleted before they can initiate other operatmms
actions. Use of a synchronous operation is nobblem if the operation is fast. Many 10 operations
secondary storage are, however, very slow seetiveeta the speed of the operations on primaryasfer
Therefore it may in some circumstances be attradtivinitiate an 10 operation, do something elsé, a
consult the result of the 10 operation at a laténpin time. In order to provide for this, tlsg@eam class
supports the asynchronous 10 operatiBagnRead andBeginwrite . In the current version of the material
we do not cover the asynchronous operations.

Let us now look at the most important operationsto@ams. Thet al i ¢ nanes refer to abstract methods.
The abstract methods will be implemented in nortrabssubclasses afream .

e int Read (byte[] buf, int pos, int len)

* int ReadByte()

e void Wite (byte[] buf, int pos, int len)
* void WriteByte(byte b)

* bool CanRead

* bool CanWite

* bool CanSeek

e long Length

e void Seek (long offset, SeekOrigin org)
e void Flush)

* void Close()

In order to us®&ead you should allocate a byte array and pass (aeneferto) this array as the first parameter
of Read. The callrRead(buf, p, Igt) readsat mostgt bytes, and stores themuuaflp] ... buf[p+igt-1]
Read returns the actual number of characters read,hndaa be less thag .

write works in a similar way. We assume that a numbdiytds are stored in an existing byte array called
buf . The callwrite(buf, p, Igt) writesigt bytespuf[p] ... buf[p+igt-1] , to the stream.

As you can see, onljeadByte andwriteByte are non-abstract methodkzadByte returns the integer value
of the byte being read, or -1 in case that thedaride stream has bee encountered. The two opesatio
ReadByte andwriteByte rely onRead andwrite . Internally,ReadByte callsRead on a one-byte array, it
accesses this byte, and it returns this bytgeByte works in a similar way. Based on these informatjon
is not surprising that it is recommended to redefiendByte andwriteByte in specializedstream classes.
The default implementations BkadByte andwriteByte are simply too inefficient. The redefinitions shibu
be able to profit from internal buffering.

The explanations afead in relation torReadByte (andwrite in relation towriteByte) may seem a little

surprising. Why not haveeadByte as an abstract method, amehd as a non-abstract method, which once
and for all is implemented in classeam by multiple calls oReadByte ? Such a design seems to be ideal:

334

The task of implementingeadByte in subclasses is easy, and no subclass shoulchegdrto implement
Read. The reason behind the actual design of the athstiraam class is - of courseefficiency The basic
read and write primitives of streams should provatesfficient reading and writing. It is typically
inefficient to read a single byte from a file. Oamy types of hardware (such as harddisks) we alveas
many bytes at a time. The design of the read aitd aperations of stream take advantage of this
observation.

It is not possible to read, write, and seek irsakkams. Therefore it is possible to query a strieaunts actual
capabilities. The boolean operations (properti@sRead, CanWrite , CanSeek are used for such querying.

The static fielodNull represents a stream without a backing store.

Null is a public static field of typstream in the abstract classream . If you, for some reason, wish to
discard the data that you write, you can writ@ Btteam.Null . You can also read frogtream.Null ; This
will always give zero as result, however.

37.3. Subclasses of class Stream

Lecture 10 - slide 5

The abstract clasgream is the superclass of a number of non-abstractetaBelow we list the most
important of these. Like the clasgeam , many of the subclassessifeam belong to thesystem.l0
namespace.

e System.lO.FileStream

« Provides a stream backed by a file from the opsyatystem
e System.lO.BufferedStream

- Encapsulates buffering around another stream
s System.lO.MemoryStream

« Provides a stream backed by RAM memory
* System.Net.Sockets.NetworkStream

« Encapsulates a socket connection as a stream
e System.lO.Compression.GZipStream

» Provides stream access to compressed data
e System.Security.Cryptography.CryptoStream

e Write encrypts an®ead decrypts
« And others...

We show example uses of claisstream in Section 37.4 and Section 37.6. Please notmseher, that
file 10 is typically handled through one of the deaand writer classes, which behind the scenaydtde the
work to astream class. We have a lot more to say about the resdkwriter classes later in this material.
Section 37.9 will supply you with an overview oétheader and writer classes in C#.

The clas®ufferedStream is intended to be used as a so-called decora@mmaiher stream class. In Section
40.1 we discuss theecorator design pattern. The concrete exampl®edorator, which we will discuss in
Section 40.2, involves compressed streams. Ndiatgttis not relevant to use buffering BirRStream
because it natively makes use of buffering.

335

37.4. Example: Filestreams

Lecture 10 - slide 6

Filestream 10, as illustrated by the examples in this sectisised fobinary input and outputit means
that theFilestream operations transfer raw chuncks of bits betweerptiogram and the file. The bits are
not interpreted. As a contrast, the reader ancgnelasses introduced in Section 37.9 interpret and
transforms the raw binary data to values in C#gype

Let us show a couple of very simple programs th#ewo and read from filestreams. Figure 37.1 ewrit
bytes corresponding to the three characters '‘Qard 'P' to the filewFile.oin . Notice that we do not
write characters, but numbers that belong to tple typepbyte . The file opening is done via construction
of theFileStream object inCreate mode.Create is a value in the enumeration tyeMode in the
namespacseystem.lO . File closing is done by theiese method.

using System.IO;

class ReadProg {
static void Main() {

Stream s= new FileStream("myFile.bin", FileMode.Create)
s.WriteByte(79) ; //O 01001111
s.WriteByte(79) ; /O 01001111
s.WriteByte(80) ; /P 01010000
s.Close()
}
}

Program 37.1 A program that writes bytes corresponding to
'O' 'P' to a file stream.

After having executed the program in Figure 37€lftle myFile.bin exists. Program 37.2 reads it. We
create &ileStream Object inOpen mode, and we read the individual bytes with uséheReadByte method.
In line 11 and 12 we illustrate what happens ifre@d beyond the end of the file. We see HeatiByte in
that case returns -1. The number -1 is not a valtggebyte , which supports the range 0..255. Therefore
the type of the value returned RyadByte isint .

using System;
using System.IO;

class WriteProg {
static void Main() {
Stream s= new FileStream("myFile.bin", FileMode.Open)
inti, j, k, m, n;
= s.ReadByte() ; //O 79 01001111
j= s.ReadByte() ; //O 79 01001111
k= s.ReadByte() ; //P 80 01010000

m = s.ReadByte() ; /-1 EOF
n = s.ReadByte() ; I1-1 EOF
Console.WriteLine("{0} {1} {2} {3} {4}", i, |, k, m, n);
s.Close() ;
}

}

Program 37.2 A program that reads the written fil

336

37.5. The using control structure

Lecture 10 - slide 7

The simple file reading and writing examples inti®er37.4 show that file opening (in terms of cregtthe
FileStream object) and file closing (in terms of sendinglese message to the stream) appear in pairs.
This inspires a new control structure which enstimasthe file always is closed when we are dorth i
The syntax of theising construct is explained below.

using (type variable= initializer)
body

Syntax 37.1 The syntax of the using statement
The meaning (semantics) of the using construdtaddllowing:

» Inthe scope afising , bindvari abl e to the value of ni ti al i zer
« Thetype must implement the interfat®isposable
« Executebody with the established name binding
» At the end obody dovariableDispose
« ThebDispose methods in the subclassessotam call Close

We encountered the interfamgsposable when we studied the interfaces in the C# librages Section
31.4. The interfac®isposable prescribes a single methauispose , which in general is supposed to
release resources. The abstract ckagam implementsbDisposable , and thebispose method of class
Stream calls the Strearalose method.

Program 37.3 is a reimplementation of Program 87aflillustrates thesing construct. Notice that we do
not explicitly callclose in Program 37.3.

using System.IO;

class ReadProg {
static void Main() {
using (Stream s = new FileStream("myFile.txt", FileMode.C reate)){
s.WriteByte(79); // O 01001111
s.WriteByte(79); // O 01001111
s.WriteByte(80); // P 01010000
}
}
}

Program 37.3 The simple write-program programmed
with 'using'.

The following fragment shows what is actually cageby ausing construct. Most important,tay-finally
construct is involved, see Section 36.9. The useyefinally implies thabispose Wwill be called
independent of the way we leanaly . Even if we attempt to exiody with a jump or via an exception,
Dispose Will be called.

337

1 /I The using statement ...

2

3 using (type variable = initializer)

4 body

5

6 //...is equivalent to the following try-finally s
he

8 {type variable = initializer;

9 try {

10 body

1)}

12 finally {

i3 if (variable != null)

14 ((IDisposable)variable).Dispose();
15 }

16 }

tatement

Program 37.4 The control structure 'using' defined by 'try-

finally'.

37.6. More FileStream Examples

Lecture 10 - slide 8

We will show yet another simple exampleraéstream
another.

s, namely a static method that copies one file to

1 using System;

2 using System.lO;

8

4 public class CopyApp {

5

6 public static void Main(string[] args) {

7 FileCopy(args|[0], args[1]);

8

9

10 public static void FileCopy(string fromFile, stri ng toFile){
11 try{

12 using(FileStream fromStream =

13 new FileStream(fromFile, FileMode.Open))
14 using(FileStream toStream =

15 new FileStream(toFile, FileMode.Create))
16 int c;

17

18 do{

19 c= fromStream.ReadByte();

20 if(c I=-1) toStream.WriteByte((byte)c);

21 } while (c !=-1);

22 }

23}

24 1}

25 catch(FileNotFoundException e){

26 Console.WriteLine("File {0} not found: ", e.F ileName);

27 throw;
28 }

338

catch(Exception){
Console.WriteLine("Other file copy exception");
throw;

}
}

}

Program 37.5 A FileCopy method in a source file copy-file.c
uses two FileStreams.

Exercise 10.1. A variant of the file copy program

The purpose of this exercise is to train the us@@Read method in classtream , and subclasses of class
Stream .

Write a variant of the file copy program. Your pragn should copy the entire file into a byte array.
Instead of the metharkadByte you should use thRead method, which reads a number of bytes into a
byte array. (Please take careful look at the doctiati®n ofRead in classFileStream before you
proceed). After this, write out the byte array tanslard output such that you can make sure thdi¢hs
correctly read.

Are you able to read the entire file with a singgdl toRead? Or do you prefer to read chunks of a certain
(maximum) size?

37.7. The class Encoding

Lecture 10 - slide 10
Before we study the reader and writer classes Welaiify one important topic, namebncodings

The problem is that a byte (as represented bywe\atltypevyte) and a character (as represented as value
of typechar) are two different things. In the old days theyevbasically the same, or it was at least
straightforward to convert one to the other. Inddgs there were at most 256 different charactexitadnle

at a given point in time (corresponding to a stifirward encoding of a single character in a sirigite).
Today, the datatypehar should be able to represent a wide variety oediffit characters that belong to
different alphabets in different cultures. We siitled to represent a character by means of a nwhbgtes,
because a byte is a fundamental unit in most soft@ad in most digital hardware.

As a naive approach, we could go for the followsotution:

We want to be able to represent a maximum of, 28§000 different characters. For this
purpose we need lg@00000) bits, which is 18 bits. If we operate iitsiif 8 bits (= one
byte) we see that we need at least 3 bytes peacieas. Most likely, we will go for 4 bytes
per character, because it fits much better withatbel length of most computers. Thus, the
byte size of a text will now be four times the sifean ASCII text. This is not acceptable
because it would bloat the representation of tited Hn secondary disk storage.

As of 2007, the Unicode standard defines more 100900 different characters. Unicode organizes
characters in a number planesof up to 2° (= 65536) characters. The Basic Multilingual Plam@MP -
contains the most common characters.

339

Encodings are invented to solve the problem thathawe outlined above. An encoding is a mapping
between values of type charactecae poinnumber between 0 and 200000 in our case) to aseqLof
bytes. The naive approach outlined above represesitaple encoding, in which we need 4 bytes ewen f
the original ASCII characters. It is attractivewsyer, if characters in the original, 7-bit ASClplaabet can
be encoded in a single byte. The price of that weay well be that some rarely used charactersnedid
considerable more bytes for their encoding.

Let us remind ourselves that in C#, the type is represented as 16 bit entities (Unicode cherscand

that astring is a sequence of values of typar . We have already touched on this in Section 6tThé&

time Unicode was designed, it was hypothesizedltBddits was enough to to represent all charactete
world. As mentione above, this turned out not tdrbe. Therefore the typar in C# is not big enough to
hold all Unicode characters. The remedy is to uskipte char values for representation of a single Unicode
character. We see that history repeats itself...

An encoding is a mapping between characters/stengsoyte arrays

An object of classystem.Text.Encoding represents knowledge about a particular character
encoding

Let us now review the operations in cl&asoding: , which is located in the namespagystem.Text

» byte[] GetBytes(string) Instance method
« byte[] GetBytes(char[]) Instance method
« Encodes string/char array to a byte array relative ®dhbrrent encoding
« char[] GetChars(byte[]) Instance method
- Decodesa byte array to a char array relative to the eureacoding
« byte[] Convert(Encoding, Encoding, byte[]) Static method
« Convertsa byte array from one encoding (first parametegrtother encoding (second
parameter)

The methodsetBytes implements the encoding in the direction of chimecto byte sequences. In concrete
terms, the methodetBytes transforms a&tring or an array othars to abyte array.

The inverse methodsetChars converts an array of bytes to the correspondireyasf characters. On a
given stringstr and for a given encodirige.GetChars(e.GetBytes(str)) corresponds tetr .

For given encodingst ande2, and for some given byte arrey supposed to be encodeckin
Convert(el,e2,ba) iS equivalent t@2.GetBytes(el.GetChars(ba))

37.8. Sample use of class Encoding

Lecture 10 - slide 11
Now that we understand the idea behind encodiegsisl play a little with them. In Program 37.6 wake a

number different encodings, and we convert a gateang to some of these encodings. We explain the
details after the program.

340

using System;
using System.Text;

/* Adapted from an example provided by Microsoft */
class ConvertExampleClass{
public static void Main(){
string unicodeStr = lI"Azeudegiaead"
"A \UOOEG6 u \uOOE5 \uOOEG6 \uOOF8 i \uOOEG6 \ uOOES5";

/I Different encodings.
Encoding ascii = Encoding.ASCIl
unicode = Encoding.Unicode
utf8 = Encoding.UTF8 ,
isoLatinl = Encoding.GetEncoding("iso-8859-1")

/I Encodes the characters in a string to a byte arr ay:
byte[] unicodeBytes = unicode. GetBytes (unicodesStr),
asciiBytes = ascii. GetBytes (unicodeStr),
utf8Bytes = utf8. GetBytes (unicodesStr),
isoLatin1Bytes = utf8. GetBytes (unicodeStr);

/I Convert from byte array in unicode to byte array in utf8:
byte[] utf8BytesFromUnicode =
Encoding. Convert(unicode, utf8, unicodeBytes)

/I Convert from byte array in utf8 to byte array in ascii:
byte[] asciiBytesFromUtf8 =
Encoding. Convert(utf8, ascii, utf8Bytes)

/I Decodes the bytes in byte arrays to a char array :
char[] utf8Chars = utf8. GetChars (utf8BytesFromUnicode);
char[] asciiChars = ascii. GetChars (asciiBytesFromUtf8);

/I Convert char[] to string:
string utf8String = new string(utf8Chars),
asciiString = new String(asciiChars);

/I Display the strings created before and after the conversion.
Console.WriteLine("Original string: {0}", unico deSstr);
Console.WriteLine("String via UTF-8: {0}", utf8 String);
Console.WriteLine("Original string: {0}", unico deStr);
Console.WriteLine("ASCII converted string: {0}" , asciistring);

}
}

Program 37.6 Sample encodings, conversions, and decodir
of a string of Danish characters.

In line 7 we declare a sample stringicodeStr , which we initialize to a string with plenty of ti@nal
Danish characters. We notate the string with esnatsionwu dddd whered is a hexadecimal digit. We
could, as well, have used the string constantercdmment at the end of line 7.

In line 11-14 we make a number of instances ofsgasoding . Some commoBncoding 0bjects can be
accessed conveniently via static properties ob@asding . The UTF-8 encoding can in that way be
accessed witBncoding.UTF8 . The static methodetEncoding accesses an encoding via the name of the
encoding. (In order to get access to all suppaetenbdings, the static methadtEncodings (plural) is
useful). The ISO Latin 1 encoding is accessed s@awith use ofsetEncoding in line 14.

In line 17-20 we convert the stringicodeStr tobyte arrays in different encodings. For this purpose we
use the instance methadtBytes .

341

Next, in line 22-28, we show how to use the statithodconvert to convert ayte array in one encoding
to abyte array in another encoding.

In line 30-32 it is shown how to convert byte ag@y a particular encoding to a char array. ltdeelby the
instance methodetChars . We most probably wish to obtain a string instebdchar array. For that
purpose we just use an approprigiiéng constructor, as shown in line 34-36.

In line 38-43 we display the valueswistring andasciiString , and for comparison we also print the
originalunicodeStr . The printed result is shown in Listing 37.7 sltnot surprising that the national Danish
characters cannot be represented in the ASCII ctaarset. The Danish characters are (ambiguously)
translated to '?".

Original string: Azeud e giea
String via UTF-8: Aseudaegia®a
Original string: Azeud e giea
ASCII converted string: A?2u???i??

Listing 37.7 Output from the Encoding progral

Exercise 10.2. Finding the encoding of a given text file

Make a UTF-8 text file with some words in Daniske 8ire to use plenty of special Danish characters.
You may consider to write a simple C# program &ate the file. You may also create the text file in
another way.

In this exercise you should avoid writing a bytdermark (BOM) in your UTF-8 text file. (A BOM irnée
UTF-8 text file may short circuit the decoding we asking for later in the exercise). One way toiGv
the BOM is to denote the UTF-8 encoding witiw UTF8Encoding() , Or equivalentlynew
UTF8Encoding(false) . You may want to consult the constructors in cl#ssEncoding for more
information.

Now write a C# program which systematically - itbap - reads the text file six times with the feliog
objects of type&ncoding: 1ISO-8859-1, UTF-7, UTF-8, UTF-16 (Unicode), UTF32d 7 bits ASCII.

More concretely, | suggest you make a list of sigaaling objects. For each encoding, op@axéReader
and read the entire file (witkeadToEnd, for instance) with the current encoding. Echodharacters,
which you read, to standard output.

You should be able to recognize the correct, matgcbhihcoding (UTF-8) when you see it.

37.9. Readers and Writers in C#

Lecture 10 - slide 9

In the rest of this chapter we will explore a famof so-called reader and writer classes. In mosttal
cases one or more of these classes are used purposes instead ofsweam subclass, see Section 37.2.

Table 37.1 provides an overview of the reader anigtmclasses. In the horizontal dimension we hapeit
(readers) and output (writers). In the vertical @irsion we distinguish between binary (bits strieduas
bytes) and text (char/string) 10.

342

Input Output

Text Reader Text Witer
Text StreamReader StreamWriter
StringReader StringWriter
Binary BinaryReader BinaryWriter

Table 37.1 An overview of Reader and Writer classes

The classtream and its subclasses are oriented towards inpubatpit of bytes. In contrast, the reader
and writer classes are able to deal with input@rtgut of characters (values of type char) andesbf
other simple types. Thus, the reader and writessela operate at a higher level of abstractiontti@astream
classes.

In Section 37.3 we listed some important subclaskelssstream . We will now discuss how the reader
and writer classes in Table 37.1 are related tetigam classes. None of the classes in Tableir#Tetit
from classstream . Rather, theylelegatepart of their work to &tream class. Thus, the reader and writer
classes aggregatkaye a) stream class together with other pieces of data. Thesd@samReader ,
StreamWriter , BinaryReader , andBinaryWriter all have constructors that taksteam class as
parameter. In that way, it is possible to buildrsteaders and writes orsaeam class.

TextReader andTextwriter in Table 37.1 are abstract classes. Their suladastgReader and
StringWriter are build on strings rather than on streams. We haore to say abostringreader and
StringWriter in Section 37.14.

In the following sections we will rather systematig describe the reader and writer classes inerapl1,
and we will show examples of their use.

37.10. The class TextWriter

Lecture 10 - slide 12

In this section we discuss the abstract ctassvriter , and not least its non-abstract subclass
StreamWriter . We cover the sibling classegingwriter andstringReader in Section 37.14.

Most important, classextwriter ~ supports writing of text - characters and strings a chosen encoding.
Encodings were discussed in Section 37.7. WithofiséassTextwriter it is also possible to write textual
representations of simple types, sucihasanddouble .

We illustrate the use of clasgseamwriter in Program 37.8. Recall from Table 37.1 th@amwriter IS a
non-abstract subclass of clagstwriter

In Program 37.8 we writegr andstrequiv (in line 9-10) to three different files. Both sigs are identical,
they contain a lot of Danish letters, but theyrastated differently. It is the same string thatwged in
Program 37.6 for illustration of encodings. Forteatthe files we use a particular encoding (sextiGe
37.7). Notice that we in line 12, 16 and 20 usgreamWriter — constructor that takessaeam and an
encoding as parameters. There a six other constsuitt chose from (see below). In line 24-26 weenttie
two strings to each of the three files. Try outpihegram, and read the three text files with yawofite text
editor. Depending of the capabilities of your editmu may or may not be able to read them all.

343

using System;

using System.IO;

using System.Text;

public class TextWriterProg{

public static void Main(){

stringstr= "Aaeud®egiaead"
strEquiv = "A \uOOE6 u \uOOES5 \uOOE6 \u0 OF8 i \uOOE6 \uOOE5";
TextWriter
twl = new StreamWriter (// Iso-Latin-1
new FileStream("f-iso.txt", FileMode.C reate),
Encoding.GetEncoding("iso-8859-1")),
tw2 = new StreamWriter (/I UTF-8
new FileStream("f-utf8.txt", FileMode. Create),
new UTF8Encoding()),
tw3 = new StreamWriter (/I UTF-16
new FileStream("f-utf16.txt", FileMode .Create),

new UnicodeEncoding())

twl.WriteLine(str); twl.WriteLine(strEquiv)
tw2.WriteLine(str); tw2.WriteLine(strEquiv)
tw3.WriteLine(str); tw3.WriteLine(strEquiv)

twl.Close();
tw2.Close();
tw3.Close();

Program 37.8 Writing a text string using three different
encodings with StreamWriters.

You may wonder if knowledge about the applied eimopis somehow represented in the text file. That fi
few bytes in a text file created fronTextwriter ~ may contain some information about the encoding.
StreamWriter callSEncoding.GetPreamble() in order to get a byte array that represents kedge¢ about
the encoding. This byte array is written in theibepg of the text file. This preamble is primariged to
determine the byte order of UTF-16 and UTF-32 emugysd (Two different byte orders are widely used on
computers from different CPU manufacturers: Bigiandmost significant byte first) and little-endiélaast
significant byte first)). The preambles of the AS&id the ISO Latin 1 encodings are empty.

The next program, shown in Program 37.9, firstt@®astreamwriter on a given file path (a text string)
"simple-types.txt ". The default encoding is used. (The default emzpts system/culture dependent. It
can be accessed with the static propentpding.Default). By use of the heavily overloadedite

method it writes an integer, a double, a decintad, aboolean to the file.

Next, from line 15-18, it writes oint and aDie to a text file namednbn-simple-types.txt ". As
expected, theostring method is used on timeint and theDie objects. The contents of the two text files
are shown in Listing 37.10 (only on web) and LigtBv.11 (only on web).

using System;
using System.IO;

public class TextSimpleTypes{

public static void Main(){

344

using(TextWriter tw = new StreamWriter("simple-types.txt"))
tw.Write(5) ; tw.WriteLine();
tw.Write(5.5) ; tw.WriteLine();
tw.Write(5555M) ; tw.WriteLine();
tw.Write(5==6) ; tw.WriteLine();

}

using(TextWriter twnst = new StreamWriter("non- simple-types.txt")){
twnst.Write(new Point(1,2)) ; twnst.WriteLine();
twnst.Write(new Die(6)) ; twnst.WriteLine();

}

Program 37.9 Writing values of simple types and objects of

own classes.

The following items summarize the operations irssfareamwriter

« 7 overloaded constructors

- Parameters involved: File name, stream, encodunffgtbsize

e StreamWriter(String)

e StreamWriter(Stream)

e StreamWriter(Stream, Encoding)
« others

« 17/18 overloadetrite /WriteLine operations

« Chars, strings, simple types. Formatted output

e Encoding

« A property that gets the encoding used for tieiswriter

e NewLine

« A property that gets/sets the applied newline gtahthisTextwriter

« others

Exercise 10.3. Die tossing - writing to text file

Write a program that tosse®& 1000 times, and writes the outcome of the tosseséxtfile. Use a

Textwriter ~ to accomplish the task.

Write another program that reads the text file.dethe number of ones, twos, threes, fours, fiaes,

Sixes.

37.11. The class TextReader

Lecture 10 - slide 15

The clasSextReader is an abstract class of whisheamReader

iS a non-abstract subclasgeamReader

is able to read characters from a byte streamiveltd a given encoding. In most respects, thesclas
TextReader IS symmetric to classextwriter . However, there are read counterparts to all the
overloadedwrite methods imextwriter . We will come back to this observation below.

345

Program 37.12 is a program that reads the textthatproduced by Program 37.8. In Program 37.12 we
create thre@extReader Object. They are all based on file stream objantsencodings similar to the ones
used in Program 37.8. From ea@htReader we read the two strings that we wrote in Program 3t is
hardly surprising that we get six instances ofdiiange string "A @& u d & gia a". In line 1%2Y are all
written to standard output via use@ihsole.WriteLine

The last half part of Program 37.12 (from line B¥gds the three files as binary information (as ogites).
The purpose of this reading is to exercisedtigal content®f the three files. This is done by opening each
of the files viaFileStream objects, see Section 37.4. Recall thiastream allows for binary reading (in
terms of bytes) of a file. The functi@@eamReport (line 39-49) reads each byte of a giveStream

and it prints these bytes on the console. The ouingListing 37.13 reveals - as expected - subithnt
differences between the actual, binary contenthethree files. Notice that the ISO Latin 1 féethe
shortest, the UTF-8 file is in between, and the tBHile is the longest.

using System;

using System.IO;

using System.Text;

public class TextReaderProg{

public static void Main(){

TextReader trl = new StreamReader (
new FileStream("f-iso.txt", FileMode.Open),
Encoding.GetEncoding("iso-8859-1")),
tr2 = new StreamReader (
new FileStream("f-utf8.txt", FileMode.Open),
new UTF8Encoding()),
tr3 = new StreamReader (/I UTF-16
new FileStream("f-utf16.txt" , FileMode.Open),
new UnicodeEncoding()) ;
Console.WriteLine(tr1. ReadLine ()); Console.WriteLine(tr1. ReadLine ());
Console.WriteLine(tr2. ReadLine ()); Console.WriteLine(tr2. ReadLine ());
Console.WriteLine(tr3. ReadLine ()); Console.WriteLine(tr3. ReadLine ());
trl.Close();
tr2.Close();
tr3.Close();
/I Raw reading of the files to control the contents at byte level
FileStream fsl = new FileStream("f-iso.txt", F ileMode.Open),
fs2 = new FileStream("f-utf8.txt", FileMode.Open),
fs3 = new FileStream("f-utf16.txt", FileMode.Open);

StreamReport(fs1, "Iso Latin 1");
StreamReport(fs2, "UTF-8");
StreamReport(fs3, "UTF-16");

fs1.Close();
fs2.Close();
fs3.Close();

}

public static void StreamReport(FileStream fs, st ring encoding){
Console.WriteLine();
Console.WriteLine(encoding);
intch, i=0;
dof
ch = fs.ReadByte();
if (ch I=-1) Console.Write("{0,4}", ch);

346

i++;

if (%10 == 0) Console.WriteLine();
} while (ch 1= -1);
Console.WriteLine();

}

}

Program 37.12 Reading back the text strings encoded in thr
different ways, with StreamReader.

Axeudegiea
Axrudegiea
Aeudegiea
Axrudegiea
Axeudegiea
Axrudegiea

Iso Latin 1

65 32230 32117 32229 32230 32
248 32105 32230 32229 13 10 65
32230 32117 32229 32230 32 248
32 105 32230 32229 13 10

UTF-8
65 32195166 32117 32 195 165 32
195166 32195184 32105 32 195 166
32195165 13 10 65 32195166 32
117 32195165 32 195166 32 195 184
32105 32195166 32195165 13 10

UTF-16

255254 65 032 0230 032 O
117 0 32 0229 0 32 0230 O
32 0248 032 0105 032 O

230 032 0229 013 010 O

65 0 32 0230 032 0117 O

32 0229 032 0230 032 O

248 032 0105 0 32 0230 O
32 0229 013 010 O

Listing 37.13 Output from the program that reads back the
strings encoded in three different ways.

Below, in Program 37.14, we show a program thadsdhe values from the filaimple-types.txt ", as
written by Program 37.9. Notice that we read a &ha time using thrReadLine method ofStreamReader .
ReadLine returns a string, which we parse by the stdige methods in the structs32 , Double , Decimal ,
andBoolean respectively. There are no dedicated methodsassstreamReader for reading the textual

representations of integers, doubles, decimaldebas, etc. The output of Program 37.14 is shown in
Listing 37.15 (only on web).

347

using System;
using System.IO;

public class TextSimpleTypes{
public static void Main(){

using(TextReader twst = new StreamReader ("simple-types.txt")){

inti= Int32.Parse (twst. ReadLine ());
double d = Double.Parse (twst. ReadLine ());
decimal m = Decimal.Parse (twst. ReadLine ());
bool b = Boolean.Parse (twst. ReadLine ());
Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
}
}

Program 37.14 A program that reads line of text and parses
them to values of simple types.

As we did for clasSextwriter in Section 37.10 we summarize the operationsasstextReader below:

10 StreamReader constructors
« Similar to the StreamWriter constructors
e StreamReader(String)
e StreamReader(Stream)
e StreamReader(Stream, bool)
e StreamReader(Stream, Encoding)

« others
e int Read() Reads a single character. Returns -1 if atoéfite
* int Read(char[], int, int) Returns the number of characters read
* int Peek()

e String ReadLine()
e String ReadToEnd()
e CurrentEncoding
« A property that gets the encoding of this StreandRea

The methodread reads a single character; It returns -1 if theiBl positioned at the end of the file. Thead
method that accepts three parameters is simildreteream method of the same name, see Section 37.2. As
such, it reads a number of characters into andyrabocated char array (which is passed as tke fir
parameter oRead). Peek reads the next available character without advaitie file position. You can use
the method to look a little ahead of the actuatlimg As we have seeReadLine reads characters until an
end of line character is encountered. SimilarbadToEnd reads the rest of stream - from the current psiti
until the end of the file - and returns it as @ngfrReadToEnd is often convenient if you wish to get access to
a text file as a (potentially large) text string.

348

37.12. The class BinaryWriter

Lecture 10 - slide 18

In this section we will study a writer class whigtoduces binary data. As such, a binary writeinslar to a
FileStream used in write access mode, see Section 37.4.uBtiEgation ofBinaryWriter is, however, that

it supports a heavily overloadedite method just like the clagextwriter did. Thewrite methods can be
applied on most simple data types. Thee methods oBinarywriter ~ produce binary data, not characters.

Encodings, see Section 37.7, played important folegextReader andTextwriter . Encodings only play a
minimal role inBinarywriter ; Encodings are only used when we write charattetise binary file.

Below, in Program 37.16 we show a program simddeitogram 37.9. We write four values of different
simple types to a file with use oBmarywriter . In comments of the program we show the expected
number of bytes to be written. With use dfilainfo object (see Section 38.1) we check our expecttion
in line 18-19. The output of the program is 29eagected.

using System;
using System.IO;

public class BinaryWriteSimpleTypes{

public static void Main(){
string fn = "simple-types.bin";

using(BinaryWriter bw =
new BinaryWriter (
new FileStream(fn, FileMode.Create))) {
bw.Write(5) ; // 4 bytes
bw.Write(5.5) ; 1/ 8 bytes
bw.Write(5555M) ; // 16 bytes
bw.Write(5==6) ; // 1 bytes

}
Filelnfo fi = new Filelnfo(fn) ;
Console.WriteLine("Length of {0}: {1}", fn, fiLength);
}
}

Program 37.16 Use of a BinaryWriter to write some values ¢
simple types.

The following operations are supplied &iyarywriter

« Two public constructors
* BinaryWriter(Stream)
e BinaryWriter(Stream, Encoding)
« 18 overloadedvrite operations
« One for each simple type
e Write(char) , Write(char[]) , andwrite(char[], int, int) - use Encoding
e Write(string) - use Encoding
* Write(byte[]) andwrite(byte[], int, int)
e Seek(int offset, SeekOrigin origin)
« others

349

The second constructor allows for registrationrokacoding, which is used if we write characterbinary
data. Thewnrite methods, which accepts an array as first parart@gether with two integers as second and
third parameters, write a section of the involvasys.

Exercise 10.4. Die tossing - writing to a binary file
This exercise is a variant of the die tossing aledafriting exercise based on text files.
Modify the program to usegnarywriter ~ and aBinaryReader

Take notice of the different sizes of the text filem the previous exercise and the binary filexfrihis
exercise. Explain your observations.

37.13. The class BinaryReader

Lecture 10 - slide 20

The clas®inaryReader is the natural counterpart dmarywriter . Both of them deal with input from and
output to binary data (in contrast to text in sanen encoding).

The following program reads the binary file prodiity Program 37.16. It produces the expected ouspet
Program 37.16 (only on web).

using System;
using System.IO;

public class BinaryReadSimpleTypes{

public static void Main(){
string fn = "simple-types.bin";

using(BinaryReader br =
new BinaryReader (
new FileStream(fn, FileMode.Open))){

inti= br.ReadInt32() ;

double d = br.ReadDouble()
decimal dm = br.ReadDecimal() ;
bool b = br.ReadBoolean()

Console.WriteLine("Integer i: {0}", i);
Console.WriteLine("Double d: {0}", d);
Console.WriteLine("Decimal dm: {0}", dm);
Console.WriteLine("Boolean b: {0}", b);

Program 37.17 Use of a BinaryReader to write the values
written by means of the BinaryWriter.

The following gives an overview of the operationghe classinaryReader

350

« Two public constructors

* BinaryReader(Stream)

* BinaryReader(Stream, Encoding)
« 15 individually name&eadtype operations

* ReadBoolean , ReadChar, ReadByte , ReadDouble , ReadDecimal , ReadIntl6 |, ...
« Three overloadeHead operations

« Read() andRead (char[] buffer, int index, int count)

read characters - using Encoding
* Read (bytes[] buffer, int index, int count) reads bytes

The most noteworthy observation is that there exlarge number of specifically named operationsh{sas
ReadInt32 andReadDouble) through which it is possible to read the binagresentations of values in
simple types.

37.14. The classes StringReader and StringWriter

Lecture 10 - slide 22

StringReader IS @ hon-abstract subclasstektReader . Similarly, Stringwriter is a non-abstract subclass
of Textwriter . Table 37.1 gives you an overview of these classes

The idea ofstringReader IS to use traditional stream/file input operatiémsstring access, and to use
traditional stream/file output operations for sgrimutation. Thus, relative to Figure 37.1 the seuad
destinations of reading and writing will be strings

A stringReader ~ can be constructed on a stringS#ingwriter ~, however, cannot be constructed on a
string, because strings are non-mutable in C#Sseton 6.4. Thereforesaringwriter object is
constructed on an instanceSafingBuilder

In Program 37.19 we illustrate, in concrete terinmsy to make &tringWriter on thestringBuilder

referred by the variabk (see line 9). In line 11-17 we iterate five tintksough the for loop, with
increasing integer values in the variablén total, the textual representations of 20 sam@lues are written
to thestringBuilder object. The content of th&ringBuilder object is printed in line 19. The output of
Program 37.19 is shown in Program 37.20 (only ob)we

using System;

using System.IO;

using System.Text;

public class TextSimpleTypes{

public static void Main(){

StringBuilder sb = new StringBuilder() ; /I A mutable string
using(TextWriter tw = new StringWriter(sb))
for (inti=0;i<5; i++){
tw.Write(5 * i); tw.WriteLine();
tw.Write(5.5 * i); tw.WriteLine();
tw.Write(5555M * i); tw.WriteLine();
tw.Write(5 * i == 6); tw.WriteLine();}

351

}

Console.WriteLine(sh);

Program 37.19 A StringWriter program similar to the
StreamReader program shown earlier.

Symmetrically, we illustrate how to read from argjr In Program 37.21 we make a string with broken
lines in line 8-11. With use ofsringReader built onstr we read an integer, a double, a decimal, and a
boolean value. The output is shown in Program 3{©2a8/ on web).

using System;
using System.IO;

public class TextSimpleTypes{

public static void Main(){

string str ="5"+"\n" +
"5,5" + "\n" +
"5555,0" + "\n" +
"false";
using(TextReader tr= new StringReader(str))i
int i = Int32.Parse(tr.ReadLine());
double d = Double.Parse(tr.ReadLine());
decimal m = Decimal.Parse(tr.ReadLine());
bool b = Boolean.Parse(tr.ReadLine());
Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
}
}

Program 37.21 A StringReader progran

The use obtringwriter andstringReader objects for accessing the characters in strings iattractive
alternative to use of the natigeing andsStringBuilder operations. It is, in particular, attractive and
convenient that we can switch from a file sourcstfidation to a string source/destination. In thayw
existing file manipulation programs may be useédatly as string manipulation programs. The only
necessary modification of the program is a replaggrof astreamReader Wwith StringReader , or a
replacement oftreamwriter ~ with aStringwriter

Be sure to use the abstract clasgaseader andTextwriter —as much as possible. You should only use
StreamReader /StringReader ~ andStreamWriter /StringWriter for instantiation purposes in the context of
a constructor (such as line 11 of Program 37.19%iaedlL3 of Program 37.21).

352

37.15. The Console class

Lecture 10 - slide 23

We have used static methods in ttvasole class in almost all our programs. It is now timekamine the
Console class a little closer. In contrast to most otli@rélated classes, tldensole class resides in the
System namespace, and not$gstem.I0 . TheConsole class encapsulates three streastemdard input
standard outpytandstandard error The static property , of typeTextReader , represents standard input.
The static propertiesut anderror represent standard output and standard erroratdgglg, and they are
both of typeTextwriter . Recall in this context thakxtReader andTextwriter — are both abstract classes,
see Section 37.9.

using System;
using System.IO;

class App{
public static void Main(string[] args){

TextWriter standardOutput = Console.Out ;
StreamWriter myOut = null,
myError = null;

if (args.Length == 2) {
Console.Out.WriteLine("Redirecting std outp ut and error to files");
myOut = new StreamWriter(args[0]);
Console.SetOut(myOut);
myError = new StreamWriter(args[1]);
Console.SetError(myError);

}else {
Console.Out.WriteLine("Keeping standard out put and error unchanged");
}

/I Output from this section of the program may be r edirected
Console.Out.WriteLine("Text to std output - by Console.Out.WriteLine");
Console.WriteLine("Text to standard output - by Console.WriteLine(...)");
Console.Error.WriteLine("Error msg - by Consol e.Error.WriteLine(...)");

if (args.Length == 2) {
myOut.Close(); myError.Close();

Console.SetOut(standardOutput);
Console.Out.WriteLine("Now we are back again”)
Console.Out.WriteLine("Good Bye");

}
}

Program 37.23 A program that redirects standard output an
standard error to a file.

In the program shown above it is demonstrated lwogohtrol standard output and standard error. Ipags
two program argumentargs in line 6) to Program 37.23 we redirect standarpet and standard error to
specific files (instances atreamwriter) in line 13-17. That is the main point, which weskto illustrate
in Program 37.23.

Below we supply an overview of the methods and @rigs of theconsole class. Theonsole class is

static. As such, all methods and properties insatassole are static. There will never be objects of type
Console around. The&onsole class offers the following operations:

353

Access to and control of , out , anderror
Write , WriteLine , Read, andReadLine methods
« Shortcuts t@ut.Write , out.WriteLine , in.Read , andin.ReadLine
Many properties and methods that control the ugthgrlbuffer and window
» Size, colors, and positions
Immediate, non-blocking input from the Console
« The propertyeyAvailable returns if a key is pressed (non-blocking)
« ReadKey() returns info about the pressed key (blocking)
Other operations
e Clear() ,Beep() , andBeep(int, int) methods.

354

38. Directories and Files

The previous chapter was about streams, and asataechbout files. In this chapter we will dealwihe
properties of files beyond reading and writingekibpying, renaming, creation time, existence,deidtion
represent a few of these. In addition to files witalso in this chapter discuss directories.

38.1. The File and FileInfo classes

Lecture 10 - slide 26

Two overlapping file-related classes are availabline C# programmekFileinfo andFile . Both classes
belong to the namespasgstem.10 . Objects of clasEileinfo represents a single file, created on the basis
of the name or path of the file (which is a strirBf)e clas&ile contains static methods for file
manipulation. ClasEkile is static, see Section 11.12, and as such therbecao instances of clasg . If

you intend to write object-oriented programs wite manipulation needs it is recommended that you
represent files as instances of clgigsnfo

Let us right away write a program which illustrabesv to use instances of clasieinfo for representation
of files. All aspects related to clasiginfo is shown inpurplein Program 38.1.

using System;
using System.IO;

public class FileInfoDemo{

public static void Main(){
/I Setting up file names
string fileName = "file-info.cs",
fileNameCopy = "file-info-copy.cs";

/I Testing file existence
FileInfo fi = new Filelnfo(fileName); /I this source file
Console.WriteLine("{0} does {1} exist",
fileName, fi.Exists ? "™ "not");

/I Show file info properties:

Console.WriteLine("DirectoryName: {0}", fi.DirectoryName);
Console.WriteLine("FullName: {0}", fi.FullName);
Console.WriteLine("Extension: {0}", fi.Extension);
Console.WriteLine("Name: {0}", fi.Name);
Console.WriteLine("Length: {0}", fi.Length);
Console.WriteLine("CreationTime: {0}", fi.CreationTime);

/I Copy one file to another
fi.CopyTo(fileNameCopy);
FileInfo fiCopy = new FileInfo(fileNameCopy);

/I Does the copy exist?
Console.WriteLine("{0} does {1} exist",
fileNameCopy, fiCopy.Exists ? "™ "not");

/I Delete the copy again
fiCopy.Delete();

/I Does the copy exist?

Console.WriteLine("{0} does {1} exist",
fileNameCopy, fiCopy.Exists ? "™ "not"); I n??

355

/I Create new Filelnfo object for the copy
FileInfo fiCopyl = new FileInfo(fileNameCopy);
/I Check if the copy exists?
Console.WriteLine("{0} does {1} exist", fileNam eCopy,
fiCopyl.Exists ?": "not");

/I Achieve a TextReader (StreamReader) from the fil e info object
/I and echo the lines in the file to standard outpu t
using(StreamReader sr = fi.OpenText ()1

for (inti=1;i<=10; i++)
Console.WriteLine(" " + sr.ReadLine());

}
}
}

Program 38.1 A demonstration of the Filelnfo cla:

In line 12 we create mileinfo object on the source file of the C# program téxitven in Program 38.1. In
line 13-14 we report on the existence of thisifiléhe file system. (We expect existence, of cquisdine
16-22 we access various properties (in the sen€gf gfoperties, see Chapter 18) of thenfo object. In
line 25 we copy the file, and in line 30 we cheuk éxistence of the copy. In line 33 we deletecthi®y, and
in line 37 we check the existence of copy agairaiAgt our intuition, we find out that the copy béftfile
still exists after its deletion. (See next paragrégr an explanation). If, however, we establigheah

Filelnfo object on the path to the deleted file, we getetkigected result. In line 45-50 we use tipenText
method of theileinfo object to establish BextReader on the file. Via a number &eadLine activations
in line 49 we demonstrate that we can read thecotsDf the file.

The file existence problem described above occecalse the instance of clasinfo and the state of
the underlying file system become inconsistent. inB@ance methoHefresh of classFileinfo can be used
to update the&ileinfo object from the information in the operating systéf you need trustworthy
information about your files, you should alwayd tia¢ Refresh operation before you access ailyinfo
attribute. If we caltiCopy.Refresh() in line 34, the problem observed in line 37 vaagsh

The output of Program 38.1 is shown in Listing 3@2ly on web).

The following gives an overview of some selectedrapons in classileinfo

« A single constructor
* Filelnfo(string)
« Properties (getters) that access information atheuturrent file
o ExampleSLength , Extension , Directory , Exists , LastAccessTime
« Stream, reader, and writirctory methods
o ExampleSCreate , AppendText , CreateText , Open, OpenRead, OpenWrite , OpenText
» Classical file manipulations
e CopyTo, Delete , MoveTo, Replace
« Others
e Refresh , ...

The parameter of thmleinfo constructor is an absolute or relative path tilea The file path must be
well-formedaccording to a set of rules described in the dassimentation. As examples, the file paths
"c:\temp c:\user "and "dir1\dir2\file.dat " are both malformed.

356

We have also written af version of Program 38.Wliich we use the static clasg instead ofileinfo
see Program 38.3. We do not include this programthe listing of its output, in the paper editioiithe
material. We notice that the file existence frusbres in Program 38.1 (of the deleted file) do appear
when we use the static operations of the statgsele

There is a substantial overlap between the instaratbods of classileinfo and the static
methods in classile

38.2. The Directory and DirectoryInfo classes

Lecture 10 - slide 28

The classebirectorylinfo andbirectory ~ are natural directory counterparts of the classasfo and
File , as described in Section 38.1. In this sectiomwlleshow an example use of clasgectoryinfo , and
we will provide an overview of the members in thess. Like for files, an instance of clasigctoryinfo

is intended to represent a given directory of theeulying file system. We recommend that you usecthss
Directorylnfo , rather than the static classectory , when you write object-oriented programs.

It is worth noticing that the classeiginfo andbirectoryinfo have a common abstract, superclass class
FileSysteminfo

Here follows a short program that use an instafcéagsbirectoryinfo for representation of a given
directory from the underlying operating system.

using System;
using System.IO;

public class DirectorylnfoDemo{

public static void Main(){
string fileName = "directory-info.cs"; /I The current source file

/I Get the Directorylnfo of the current directory
/Il from the Filelnfo of the current source file

FileInfo fi = new Filelnfo(fileName); /I This source file
DirectoryInfo di = fi.Directory;

Console.WriteLine("File {0} is in directory \n {1}", fi, di);

/I Get the files and directories in the parent dire ctory.
FileInfo[] files = di.Parent.GetFiles()
Directorylnfol[] dirs = di.Parent.GetDirectories() ;

/I Show the name of files and directories on the co nsole
Console.WriteLine("\nListing directory {0}:", d i.Parent.Name);
foreach(DirectoryInfo d in dirs)

Console.WriteLine(d.Name);
foreach(Filelnfo f in files)
Console.WriteLine(f.Name);

Program 38.5 A demonstration of the Directorylnfo
class.

357

Like in Program 38.3 the starting point in Progra8mb is eFileinfo object that represents the source file
shown in Program 38.5. Based on Hieinfo object, we create Birectoryinfo objectin line 12. This
DirectoryInfo object represents the directory in which the dctaarce file resides. Let us call it the
current directory. In line 17 we illustrate thearent property and theetFiles method; We create an array,
fles , of Filelnfo object of the parent directory of the current clioey. Thus, this array holds all files of
the parent of current directory. Similarlijrs declared in line 18 is assigned to hold all divéess of the
parent of current directory. We print these filesl @irectories in line 20-25.

The output of Program 38.5 (only on web) is showhisting 38.6 (only on web). A similar program,
programmed with use of the static operations iestiaectory , is shown in Program 38.7 (only on web).

The following shows an overview of the instancepgmies and instance methods in claigsctoryinfo:

« A single constructor

* Directorylnfo(string)
» Properties (getters) that access information attwucurrent directory

. ExampIeSCreationTime , LastAccessTime , Exists , Nameg FullName
- Directory Navigation operations

* Up: Parent , Root

» Down: GetDirectories , GetFiles , GetFileSystemInfo (all overloaded)
« Classical directory manipulations

e Create , MoveTo, Delete
e Others

e Refresh , ...

The constructor takes a directory path string aarpater. It is possible to creat®igectoryinfo object on
a string that represents a non-existing directaityr pLike file paths, the given directory path mstwell-
formed (according to rules stated in the class ohacuation).

The downwards directory navigation operatiGe®irectories , GetFiles , andGetFileSysteminfo are
able to filter their results (with use of stringghwwildcards, such asemp* ", which match all
files/directories whose names start witdip). It is also possible to specify if the operas®hould access
direct files/directories, or if they should accdgect as well as indirect file/directories.

As forFile andFileinfo , there is substantial overlap between the classaesry and
DirectoryInfo

358

39. Serialization

In this material we care about object-oriented progning. All our data are encapsulated in objattisen
we deal with 10 it is therefore natural to look &miutions that help us witbutput and input of objects

For each classit is possible to decidesiorage formatThe storage format of clasgells which pieces of
data inc instances to save on secondary storage. Thesletdiie storage format need to be decided. This
involves (1) which fields to store, (2) the sequentfields in the stored representation, and §8) af a
binary or a textual representation. However, ag lswe have pairs ofriteObject andReadObject
operations for whiclreadObject(WriteObject(C-object)) is equivalent ta-object the details of the
storage format are of secondary interest.

Instances of classmay have references to instances of other clasags andk. In general, an instance of
classc may be part of anbject graphin which we findc-object,b-object,E-objects as well as objects of
other types. We soon realize that the real proliéemot how to store instances®in isolation. Rather, the
problem is how to store an object network in whiebbjects take part (or in whichcobject is a root).

People who have devised a storage format for a cJagho have written thewriteObject and

ReadObject operations for class and who have dealt with the 10 problem of obggeiphs quickly realize
that the invented solutions generalizes to arlyitctasses. Thus, instead of solving the objectriébiem
again and again for specific classes, it is aftradb solve the problem at a general level, ankentae
solution available for arbitrary classes. Thisxaaly what serialization is about. The serialiaatproblem
has been solved by the implementers of C#. Itdeeflore easy for the C# programmer to save aniévetr
objects via serialization.

39.1. Serialization

Lecture 10 - slide 31

Serialization provides for input and output of @&wark of objects. Serialization is about objectpuif and
deserialization is about object input.

« Serialization
» Writes an object to a file
« Also writes the objects referred fram
« Deserialization
» Reads a serialized file in order to reestablishstrélized objecd
« Also reestablishes the network of objects originedferred frono

Serialization of objects is, in principle, simptedeal with from C#. There are, however, a couple o
circumstances that complicate the matters:

« The need to control or customize the serializatiod the deserialization of objects of specific s/pe
« The support of more than one C# technique to oltt&rsame serialization or deserialization effect.

The need to control (customize) the details ofasigation and deserialization is unavoidable, astavhen
the ideas should be applied on real-life examples.

359

The support of several different techniques fondaerialization is due to the development of @#C# 2.0
serialization relies almost exclusively on the akeerialization and deserialization attributesCk 1.0 it
was also necessary to implement certain interfaxesntrol and customize the serialization. In théssion
of the material, we only describe serializationtoolied by attributes.

« Serialization and deserialization is supportedcl@ases that implement thermatter
interface:
* BinaryFormatter andSoapFormatter
» Methods iniformatter:
e Serialize andDeserialize

In the following section we will discuss an examiblat usesinaryFormatter

39.2. Examples of Serialization in C#

Lecture 10 - slide 32

Below we show the clag=erson and clas®ate , similar to the ones we used for illustration of/acy leaks
in Section 16.5. Clag®=rson in Program 39.1 encapsulates a name and two Hpgets: birth date and
death date. For a person still alive, the deatl dfer tonull . Redundantlytheage instance variable holds
the age of the person. Thedate method can be used to updatedte variable.

ThebDate class shown in Program 39.2 is a very simple implgtation of a date class. (In the paper version
of the material we only show an outline of theee class. The complete version is available in thb we
version). Thererson class relies on theate . We use classate for illustration of serialization; In real life
you should always use the stroeteTime . TheDate class encapsulates year, month, and day. In additi
holds anameOfDay instance variable (with values suchsasday or Monday), which isredundant With
appropriate calendar knowledge, taemeOfDay can be calculated frogear , month, andday . ThePerson

class needs age calculation, which is providechbydarDiff method of claspate . Internally in class

Date , YearDiff ~ relies on the methodsBefore andequals . (Equals is defined according the standard
recommendations, see Section 28.16. We have nibtisiglass, included a redefinition ®tHashCode and
therefore we get a warning from the compiler whiasspate is compiled.)

Theredundancyis classPerson and clas®ate is introduced on purpose, because it helps ustiidite the
serialization control in Program 39.2. In most eirstances we would avoid such redundancy, atileast
simple classes.

The preparation of clag®rson and clas®ate for serialization is very simple. We mark bothsslas with
the attributgSerializable] , see line 3 in both classes. As of now you carsiden[Serializable] as
some magic, special purpose notation. In regiyalizable] represents application of an attribute.
When we are done with serialization we have seeerakbuses of attributes, and therefore we will be
motivated to understand the general ideas of atetoin C#. We discuss the general ideas behiridués
in Section 39.6.

Please notice that in the paper version of thigri@tmost program examples have been abbreviated.
full details of all examples appear in the web verof the material.

360

using System;

[Serializable]
public class Person{

private string name;
private int age; /l Redundant
private Date dateOfBirth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;
age = Date.Today.YearDiff(dateOfBirth);

}

public Date DateOfBirth {
get {return new Date(dateOfBirth);}

public int Age{
get {return Alive ? age : dateOfDeath.YearDiff(
}

public bool Alive{
get {return dateOfDeath == null;}

}

public void Died(Date d){
dateOfDeath = d;

}

public void Update(){
age = Date.Today.YearDiff(dateOfBirth);

}

public override string ToString(){
return "Person: " + name +
" *" + dateOfBirth +
(Alive 2™ :" +" + dateOfDeath) +
" Age: " + age;

dateOfBirth);}

Program 39.1 The Person class - Serializab

using System;

[Serializable]
public class Date{
private ushort year;
private byte month, day;
private DayOfWeek nameOfDay; /I Redundant

public Date(int year, int month, int day){
this.year = (ushort)year;
this.month = (byte)month;
this.day = (byte)day;
this.nameOfDay = (new DateTime(year, month, day

}

public Date(Date d){
this.year = d.year; this.month = d.month;
this.day = d.day; this.nameOfDay = d.nameOfDay;

}

361

))-DayOfWeek;

public int Year{get{return year;}}
public int Month{get{return month;}}
public int Day{get{return day;}}

// return this minus other, as of usual birthday calculations.
public int YearDiff(Date other){
...

}

public override bool Equals(Object obj){
...

}

/l'Is this date less than other date
public bool IsBefore(Date other){
...

}

public static Date Today{
...

}

public override string ToString(){
return string.Format("{0} {1}.{2}.{3}", nameOfD ay, day, month, year);

}
}

Program 39.2 An outline of the Date class - Serializat

In Program 39.3 it is illustrated how to serialaael deserialize a graph of objects. The graph, wivie
serialize, consists of orrerson and the twate objects referred by theerson object. The serialization,
which takes place in line 13-17, is done by sentli@gerialize =~ message to th&naryFormatter ~ object.
The serialization relies on a binary stream, asassmted by an instance of classstream , see Section
37.4.

The deserialization, as done in line 24-28, wilimost real-life settings be done in another progianour
example we reset the program state in line 19-2@&&¢he deserialization. The actual deserializatsodone
by sending th®eserialize ~ message to th@naryFormatter ~ object. As in the serialization, the file stream
with the binary data, is passed as a parameter.

using System;

using System.IO;

using System.Runtime.Serialization;

using System.Runtime.Serialization.Formatters.Binar Y;

class Client{

public static void Main(){
Person p = new Person("Peter”, new Date(1936, 5 , 11));
p.Died(new Date(2007,5,10));
Console.WriteLine("{0}", p);

using (FileStream strm =
new FileStream("person.dat", FileMod e.Create){
IFormatter fmt = new BinaryFormatter();
fmt.Serialize(strm, p);

}

Jl s
p = null;

362

Console.WriteLine("Reseting person”);
e

using (FileStream strm =
new FileStream("person.dat”, FileMod e.Open)){
IFormatter fmt = new BinaryFormatter();
p = fmt.Deserialize(strm) as Person;

}

Console.WriteLine("{0}", p):
}

}

Program 39.3 The Person client class - applies serialization
and deserialization.

The program output shown in Listing 39.4 tells ttetPerson object and the twbDate objects have
survived the serialization and deserialization peses. In between the two output lines in lineridLlene 30
of Program 39.3 the three objects have been tnaedfto and reestablished from the binary file.

Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71
Reseting person
Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71

Listing 39.4 Output of the Person client cla:

Exercise 10.5. Serializing with an XML formatter

In the programs shown on the accompanying slideave used a binary formatter for serialization of
Person andDate object.

Modify the client program to use a so-called Saamhtter in the namespace
System.Runtime. Serialization.Formatters.Soap . SOAP is an XML language intended for exchange
of XML documents. SOAP is related to the disciplaieveb services in the area of Internet technalogy

After the serialization you should take a lookle file person.dat , which is written and read by the
client program.

39.3. Custom Serialization

Lecture 10 - slide 33

In thePerson andDate classes, shown in Section 39.2, the redundararnstvariables do not need to be
serialized. In clasBerson , age does need to be serialized because it can beat@dudromdateOfBirth
anddateOfDeath . In clasDate , nameOfDay does need to serialized because it can calculiasdcalendar
knowledge. In relation to serialization and pegsise, we say that these two instance variablesaarsient
It is sufficient to serialize the essential infotina, and to reestablish the values of the transmestance
variables after deserialization. In Program 39.&4 Brogram 39.6 we show the serialization and the
deserialization respectively.

The serialization is controlled by marking somédse(instance variables) fisonSerialized], see line 9 of
Program 39.5 and line 9 of Program 39.6.

363

The deserialization is controlled by a method mankéh the attribut¢OnDeserialized()], see line 21 of
Program 39.5. This method is called when deseaititiz takes place. The method starting at linef21 o
Program 39.5 assigns the redundayat variable of aPerson object.

using System;
using System.Runtime.Serialization;

[Serializable]
public class Person{

private string name;

[NonSerialized()]
private int age;

private Date dateOfBirth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;
age = Date.Today.YearDiff(date OfBirth);

}

[OnDeserialized()]
internal void FixPersonAfterDeserializing(

StreamingContext context)
age = Date.Today.YearDiff(date OfBirth);

}
...

Program 39.5 The Person class - Serialization control with
attributes.

ThebDate class shown below in Program 39.6 follows the spattern as theerson class of Program 39.5.

using System;
using System.Runtime.Serialization;

[Serializable]

public class Date{
private ushort year;
private byte month, day;

[NonSerialized()]
private DayOfWeek nameOfDay;

public Date(int year, int month, int day){

this.year = (ushort)year;

this.month = (byte)month;

this.day = (byte)day;

this.nameOfDay = (new DateTime(year, month, day)).DayOfWeek;
}

public Date(Date d){
this.year = d.year; this.month = d.month;
this.day = d.day; this.nameOfDay = d.nameOfDay;

}
[OnDeserialized()]

364

internal void FixDateAfterDeserializing(
StreamingContext context){
nameOfDay = (new DateTime(year, month, day)).Da yOfWeek;

}

...
}

Program 39.6 The Date class - Serialization control with
attributes .

39.4. Considerations about Serialization

Lecture 10 - slide 34

We want to raise a few additional issues aboutbaation:

« Security

- Encapsulated and private data is made availabliem
« Versioning

« The private state of class C is changed

« It may not be possible to read serialized objettgpme C
« Performance

« Some claim that serialization is relatively slow

39.5. Serialization and Alternatives

Lecture 10 - slide 35

As mentioned in the introduction of this chapt&hapter 39 - serialization deals with input andpatibf

objects and object graphs. It should be remembamuever, that there are alternatives to seriainats
summarized below, it is possible to program obf@cat a low level (using binary of textual 10 priiaes
from Chapter 37). At the other end of the spectituimpossible us database technology.

« Serialization
« An easy way to save and restore objects in betywe®Eram sessions
« Useful in many projects where persistency is nesgsbut not a key topic
« Requires only little programming
« Custom programmed file 10
« Full control of object 10
« May require a lot of programming
« Objects in Relational Databases
« Impedance mismatchCircular objects in retangular boxes"
« Useful when the program handles large amountstaf da
« Useful if the data is accessed simultaneous froraraé programs
« Not a topic in this course

365

39.6. Attributes

Lecture 10 - slide 36

In our treatment of serialization we made extensse of attributes, see for instance Section 38 .his
section we will discuss attributes at a more gdreval, and independent of serialization.

Attributes offer a mechanism that allows the pragreer to extend the programming language in simple
ways. Attributes allow the programmer to assoaixtea information (meta data) to selected and pfardd
constructs in C#. The constructs to which it isgilde to attach attributes are assemblies, classests,
constructors, delegates, enumeration types, flglisables), events, methods, parameters, propedie
returns.

We all know that members of a class in C# havecatsal visibility modifiers, see Section 11.16chse

visibility modifiers were not part of C#, we coutdve used attributes as a way to extend the laeguily
different kinds of member visibilities. Certainrditites can be accessed by the compiler, and hénebg
attributes can affect the checking done by the dlemand the code generated by the compiler. Attgb

can also be accessed at run-time. There are waylsefounning program to access the attributesvefig

constructs, such that the attribute and attribatees can affect the program execution.

Program 39.7 illustrates the use of the predefotediete attribute. Being "obsolete” means "no longer in
use". In line 3, the attribute is associated witissc. In line 9, another usage of the attribute is eisted
with methodwvin classp.

using System;

[Obsolete("Use class D instead")]
class C{
...

}

class D{
[Obsolete("Do not call this method." true)]
public void M(¥{
}
}

class E{
public static void Main(){
C c =new C();
D d = new D();
d.M();
}
}

Program 39.7 An obsolete class C, and a class D with an
obsolete method M.

The compiler is aware of th@bsolete attribute. When we compile Program 39.7 we cartlseeffect of
the attribute, see Listing 39.8.

366

>Csc prog.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00. 50727.42

for Microsoft (R) Windows (R) 2005 Framework versio n 2.0.50727

Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.
prog.cs(16,5): warning CS0618: 'C' is obsolete: 'Us e class D instead'
prog.cs(16,15): warning CS0618: 'C' is obsolete: 'U se class D instead'
prog.cs(18,5): error CS0619: 'D.M()' is obsolete: ' Do not call this method."

Listing 39.8 Compiling class C, D, and |

C# comes with a lot of predefined attributessolete is one of them, and we encountered quite a few in
Section 39.3 in the context of serialization. Uagting frameworks for C# also heavily rely onibtites.

It is also possible to define our own attributen. dtribute is defined as a class. Attributes asfim this
way are subclasses of the clagstem.Attribute . As a naming convention, the names of all attebut
classes should havettiibute " as a suffix. Thus, an attributels defined by a classattribute , which
inherits from the classystem.Attribute . The attribute usage notatipfia,b,c)] in front of some C#
constructC causes an instance of clagstribute , made with the appropriate three-parameter coctsiru
to be associated wil. In the attribute usage notatiptia,b,c,d=e)] d refers to a property of class
XAttribute . The propertyl must be read-write (both gettable and settabée) Section 18.5. Thus, as it
appears, an attribute accepts botiitional parameterandkeyword parameters

Below, in Program 39.9 we have reproduced the ¢tlabid thedbsolete attribute. You should notice the
three different constructors and the read/writgertyiserror . The attributenttributeUsage attribute in
5-6 illustrates how attributes help define attrésubitributeUsage define the constructs to which it
possible to associate thigObsolete attribute. The expressiatribute Targets.Method |

AttributeTargets.Property denotes two values in tltembined enumeration typaributeTargets

which carries a so-called flag attribute. Combiredmerations are discussed in Focus box 6.3.

/I In part, reproduced from the book "C# to the Poi nt"
using System;

[AttributeUsage(AttributeTargets.Method |
AttributeTargets.Property)]
public sealed class MyObsoleteAttribute: Attribute {
string message;
bool isError;

public string Message{
get {
return message;
}
}

public bool IsError {
get {
return isError;

}
set{
isError = value;

}
}

public MyObsoleteAttribute() {
message = ""; isError = false;

}

367

public MyObsoleteAttribute(string msg) {
message = msg; isError = false;

}
public MyObsoleteAttribute(string msg, bool error) {
message = msg; isError = error;
}
}

Program 39.9 A reproduction of class ObsoleteAttribL

In Program 39.10 we show a sample use of the atitriprogrammed in Program 39.9. The program does no
compile because we attempt to associatetfadsolete attribute to a class in line 3. As explained ahove
we have restricteslyObsolete to be connected with only methods and properties.

using System;

[MyObsolete("Use class D instead")]
class C{
...

}

class D
[MyObsolete("Do not call this method.",IsError=true)
public void M(){
}

}

class E{
public static void Main(){
C c =new C();
D d = new D();
d.MQ);

Program 39.10 Sample usage of the reproduced class - cau
a compilation error.

368

40. Patterns and Technigues

In relation to streams, which we discussed in Givapt in the beginning of the 10 lecture, it iserant to
bring up theDecorator design pattern. Therefore we conclude the 10 feciith a discussion dbecorator.

40.1. The Decorator Pattern

Lecture 10 - slide 38

It is often necessary to extend an object of atasgh extra capabilities. As an example, threw method of
aTriangle class can be extended with the traditional angteezige annotations for equally sized angles or
edges. The typical way to solve the problem isafiné a subclass of classhat extends in the appropriate
way. In this section we are primarily concernechveiktensions of classthat do not affect the client
interface ofc. Therefore, the extensions we have in mind beliegespecializations (see Chapter 25). The
extensions we will deal with consist of adding d@iddial code to the existing methodsaof

The decorator design pattern allows us to exterldss dynamically, at run-time. Extension by use of
inheritance, as discussed above, is static bedatad®s place at compile-time. The main idea behin
Decorator is a chain of objects, along the line illustratedrigure 40.1. A message fromient to an
instance ofoncreteComponent is passed through two instance<oficreteDecorator by means of
delegation In order to arrange such delegatiooacreteDecorator ~ and aConcreteComponent should
implement a common interface. This is importantlose aConcreteDecorator IS used as a stand in for a
ConcreteComponent . This arrangement can for instance be obtaindgtidoglass hierarchy shown in Figure
40.2.

[Client |
.

(A ConcreteDecorator |———.
(A ConcreteDecorator |———.
A ConcreteComponent

Figure 40.1 Two decorator objects of a ConcreteComponent object

In Figure 40.2 th@ecorator s and theconcreteComponent share a common, abstract superclass called
Conmponent . When &Client operate on &@oncreteComponent it should do so via the typ@nponent . This
facilitates the object organization of Figure 4técause aecorator can act as a stand in for a
ConcreteComponent

Componen

o~ e

-

Decorator

K:ancretecﬁm ponent

e T
o s

| Cuncretel:iécnratnrﬁd | ConcreteDecoratorB |

Figure 40.2 A template of the class structure in the Decoralesign pattern.

369

« Component: Defines the common interface of participantshie Decorator pattern
« Decorator: References another Component to which it delsgatgponsibilities

The class diagram decorator is similar toComposite, see Section 32.1. In Figure 40.Decorator is
intended to aggregate (reference) a siagheonent . In Figure 32.1 &£omposite typically aggregate two or
morecConponent S . Thus, &omposite typically gives rise to trees, whereaBecorator gives rise to a linear
lists.

Decorator Objects can be added and chained at run-tin@ieAt accesses the outesnponent (typically
aConcreteDecorator), Which delegates part of the work to anotbemonent . While passing, it does part
of the work itself.

Use ofDecorator can be seen as a dynamic alternative to statidasging

40.2. The Decorator Pattern and Streams

Lecture 10 - slide 40

TheDecorator discussion above in Section 40.1 was abstracgandral. It is not obvious how it relates to
streams and 10. We will now introduce the streacodstors that drive our interest in the patterre Th
following summarizes the stream classes that a@vad.

We build acompressed stream on abuffered stream on afile stream
Thecompressed stream decorates thbuffered stream

Thebuffered stream decorates thBle stream

The idea behind the decoration of clagsstream (see Section 37.4) is to supply additional propsrof
the stream. The additional properties in our exanapébufferingandcompressionBuffering may result in
better performance because many read and writeti@es do not need to touch the harddisk as sush.of)
compression means that the files become smalletig@that classilestream already apply buffering
itself, and as such the buffer decoration is mdifustrative nature than of practical value).

Figure 40.3 corresponds to Figure 40.1. Thus, Eigd:3 shows objects, not classesidstream object
is decorated with buffering and compressiorciidnt program is able to operate GripStream (a
compressed stream) as if it wasileStream

[Client |

v
|A GZipStream ———
| A BufferedStream J—_
| A Filestream |

Figure 40.3 Compression and buffering decoration of a FileStmea

370

In Program 40.1 we readrgeStream into a buffer of typeyte[] . This is done in line 11-16. In line 18-27
we establish the decorateitkstream (see theourple parts). In line 27 we write the buffer to the deded
stream. In line 29-32 we compare the size of tiggral file and the compressed file. We see theatfin
Listing 40.2 when the program is applied on its @earce file.

using System;
using System.IO;
using System.lO.Compression;

public class CompressProg{

public static void Main(string[] args){
byte[] buffer;
long originalLength;

/I Read a file, arg[0], into buffer
using(Stream infile = new FileStream(args[0], F ileMode.Open)){
buffer = new byte[infile.Length];
infile.Read(buffer, 0, buffer.Length);
originalLength = infile.Length;

/I Compress buffer to a GZipStream
Stream compressedzipStream =
new GZipStream(
new BufferedStream(
new FileStream(
args[1], FileMode.Create),
128),
CompressionMode.Compress)
compressedzipStream.Write(buffer, 0, buffer Length) ;
compressedzipStream.Close();

/I Report compression rate:
Console.WriteLine("CompressionRate: {0}/{1}",
MeasureFileLength(args[1]),
originalLength);

}
public static long MeasureFileLength(string fileN ame){
using(Stream infile = new FileStream(fileName, FileMode.Open))
return infile.Length;
}
}

Program 40.1 A program that compresses a fi

> compress compress.cs out
CompressionRate: 545/1126

Listing 40.2 Sample application together with program outp
(compression rate).

When Program 40.1 is executed, a compressed fietien. In Program 40.3 we show how to read tites
back again. In line 11-17 we set up the decoratedms, very similar to Program 40.1. In line 21v#&8read
the compressed file into the buffer, and finalljlime 32-35 we write the buffer back to an uncorspedl file.

371

1 using System;

2 using System.|O;

3 using System.lO.Compression;

4

5 public class CompressProg{

6

7 public static void Main(string[] args){
8 byte[] buffer;

9 const int LargeEnough = 10000;

10

11 Stream compressedzipStream =

12 new GZipStream(

i3 new BufferedStream(

14 new FileStream(

15 args[0], FileMode.Open),
16 128),

17 CompressionMode.Decompress) ;
18

19 buffer = new byte[LargeEnough];

20

21 /I Read and decompress the compressed stream:

22 int bytesRead = 0,
23 bufferPtr = 0;

24 do{
25 /I Read chunks of 10 bytes per call of Read:
26 bytesRead = compressedzipStream.Read(buffer, bufferPtr, 10)

27 if (bytesRead != 0) bufferPtr += bytesRead,;
28 }while (bytesRead != 0);

30 compressedzipStream.Close();

32 /I Write contens of buffer to the output file

88 using(Stream outfile = new FileStream(args[1], File Mode.Create)){
34 outfile.Write(buffer, 0, bufferPtr);

&8sl |

36 }

37

38 }

Program 40.3 The corresponding program that decompress
the file.

With this we are done with the 10 lecture.

372

