
 333

37. Streams
We are now about to start the first chapter in the lecture about Input and Output (IO). Traditionally, IO deals
with transfer of data to/from secondary storage, most notably disks. IO also covers the transmission of data
to/from networks.

In this and the following chapters we will study the classes that are related to input and output. This includes
file and directory classes. At the abstract level, the Stream class is the most important class in the IO
landscape. Therefore we choose to start the IO story with an exploration of streams, and an understanding of
the Stream class in C#. This includes several Stream subclasses and several client classes of Stream . The
clients we have in mind are the so-called reader and writer classes.

37.1. The Stream Concept
Lecture 10 - slide 2

A stream is an abstract concept. A stream is a connection between a program and a storage/network.
Essentially, we can read data from the stream into a program, or we can write data from a program to the
stream. This understanding of a stream is illustrated in Figure 37.1.

Figure 37.1 Reading from and writing to a stream

 A stream is a flow of data from a program to a backing store, or from a backing store to a
program

The program can either write to a stream, or read from a stream.

Stream and stream processing includes the following:

 • Reading from or writing to files in secondary memory (disk)
• Reading from or writing to primary memory (RAM)
• Connection to the Internet
• Socket connection between two programs

The second item (reading and writing to/from primary memory) seems to be special compared to the others.
Sometimes it may be attractive to have files in primary memory, and therefore it is natural that we should be
able to use stream operation to access such files as well. In other situations, we wish to use internal data
structures as sources or destinations of streams. It is, for instance, typical that we wish to read and write data
from/to strings. We will see how this can be done in Section 37.14.

 334

37.2. The abstract class Stream in C#
Lecture 10 - slide 3

The Stream class in C# is an abstract class (see Section 30.1). It belongs to the System.IO namespace,
together with a lot other IO related types. The abstract Stream class provides a generic view on different
kinds of sources and destinations, and it isolates client classes from the operating system details of these.

The Stream class supports both synchronous and asynchronous IO operations. Client classes that invoke a
synchronous operation wait until the operation is completed before they can initiate other operations or
actions. Use of a synchronous operation is not a problem if the operation is fast. Many IO operations on
secondary storage are, however, very slow seen relative to the speed of the operations on primary storage.
Therefore it may in some circumstances be attractive to initiate an IO operation, do something else, and
consult the result of the IO operation at a later point in time. In order to provide for this, the Stream class
supports the asynchronous IO operations BeginRead and BeginWrite . In the current version of the material
we do not cover the asynchronous operations.

Let us now look at the most important operations on streams. The italic names refer to abstract methods.
The abstract methods will be implemented in non-abstract subclasses of Stream .

 • int Read (byte[] buf, int pos, int len)
• int ReadByte()
• void Write (byte[] buf, int pos, int len)
• void WriteByte(byte b)
• bool CanRead
• bool CanWrite
• bool CanSeek
• long Length
• void Seek (long offset, SeekOrigin org)
• void Flush ()
• void Close()

In order to use Read you should allocate a byte array and pass (a reference to) this array as the first parameter
of Read. The call Read(buf, p, lgt) reads at most lgt bytes, and stores them in buf[p] ... buf[p+lgt-1] .
Read returns the actual number of characters read, which can be less than lgt .

Write works in a similar way. We assume that a number of bytes are stored in an existing byte array called
buf . The call Write(buf, p, lgt) writes lgt bytes, buf[p] ... buf[p+lgt-1] , to the stream.

As you can see, only ReadByte and WriteByte are non-abstract methods. ReadByte returns the integer value
of the byte being read, or -1 in case that the end of the stream has bee encountered. The two operations
ReadByte and WriteByte rely on Read and Write . Internally, ReadByte calls Read on a one-byte array, it
accesses this byte, and it returns this byte. WriteByte works in a similar way. Based on these informations, it
is not surprising that it is recommended to redefine ReadByte and WriteByte in specialized Stream classes.
The default implementations of ReadByte and WriteByte are simply too inefficient. The redefinitions should
be able to profit from internal buffering.

The explanations of Read in relation to ReadByte (and Write in relation to WriteByte) may seem a little
surprising. Why not have ReadByte as an abstract method, and Read as a non-abstract method, which once
and for all is implemented in class Stream by multiple calls of ReadByte ? Such a design seems to be ideal:

 335

The task of implementing ReadByte in subclasses is easy, and no subclass should ever need to implement
Read. The reason behind the actual design of the abstract Stream class is - of course - efficiency. The basic
read and write primitives of streams should provide for efficient reading and writing. It is typically
inefficient to read a single byte from a file. On many types of hardware (such as harddisks) we always read
many bytes at a time. The design of the read and write operations of stream take advantage of this
observation.

It is not possible to read, write, and seek in all streams. Therefore it is possible to query a stream for its actual
capabilities. The boolean operations (properties) CanRead, CanWrite , CanSeek are used for such querying.

 The static field Null represents a stream without a backing store.

Null is a public static field of type Stream in the abstract class Stream . If you, for some reason, wish to
discard the data that you write, you can write it to Stream.Null . You can also read from Stream.Null ; This
will always give zero as result, however.

37.3. Subclasses of class Stream
Lecture 10 - slide 5

The abstract class Stream is the superclass of a number of non-abstract classes. Below we list the most
important of these. Like the class Stream , many of the subclasses of Stream belong to the System.IO
namespace.

 • System.IO.FileStream
• Provides a stream backed by a file from the operating system

• System.IO.BufferedStream
• Encapsulates buffering around another stream

• System.IO.MemoryStream
• Provides a stream backed by RAM memory

• System.Net.Sockets.NetworkStream
• Encapsulates a socket connection as a stream

• System.IO.Compression.GZipStream
• Provides stream access to compressed data

• System.Security.Cryptography.CryptoStream
• Write encrypts and Read decrypts

• And others...

We show example uses of class FileStream in Section 37.4 and Section 37.6. Please notice, however, that
file IO is typically handled through one of the reader and writer classes, which behind the scene delegates the
work to a Stream class. We have a lot more to say about the reader and writer classes later in this material.
Section 37.9 will supply you with an overview of the reader and writer classes in C#.

The class BufferedStream is intended to be used as a so-called decorator of another stream class. In Section
40.1 we discuss the Decorator design pattern. The concrete example of Decorator, which we will discuss in
Section 40.2, involves compressed streams. Notice that it is not relevant to use buffering on FileStream ,
because it natively makes use of buffering.

 336

37.4. Example: Filestreams
Lecture 10 - slide 6

FileStream IO, as illustrated by the examples in this section, is used for binary input and output. It means
that the FileStream operations transfer raw chuncks of bits between the program and the file. The bits are
not interpreted. As a contrast, the reader and writer classes introduced in Section 37.9 interpret and
transforms the raw binary data to values in C# types.

Let us show a couple of very simple programs that write to and read from filestreams. Figure 37.1 writes
bytes corresponding to the three characters 'O', 'O', and 'P' to the file myFile.bin . Notice that we do not
write characters, but numbers that belong to the simple type byte . The file opening is done via construction
of the FileStream object in Create mode. Create is a value in the enumeration type FileMode in the
namespace System.IO . File closing is done by the Close method.

1
2
3
4
5
6
7
8
9
10
11

using System.IO;

class ReadProg {
 static void Main() {
 Stream s = new FileStream("myFile.bin", FileMode.Create) ;
 s.WriteByte(79) ; // O 01001111
 s.WriteByte(79) ; // O 01001111
 s.WriteByte(80) ; // P 01010000
 s.Close() ;
 }
}

 Program 37.1 A program that writes bytes corresponding to 'O'
'O' 'P' to a file stream.

After having executed the program in Figure 37.1 the file myFile.bin exists. Program 37.2 reads it. We
create a FileStream object in Open mode, and we read the individual bytes with use of the ReadByte method.
In line 11 and 12 we illustrate what happens if we read beyond the end of the file. We see that ReadByte in
that case returns -1. The number -1 is not a value in type byte , which supports the range 0..255. Therefore
the type of the value returned by ReadByte is int .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

using System;
using System.IO;

class WriteProg {
 static void Main() {
 Stream s = new FileStream("myFile.bin", FileMode.Open) ;
 int i, j, k, m, n;
 i = s.ReadByte() ; // O 79 01001111
 j = s.ReadByte() ; // O 79 01001111
 k = s.ReadByte() ; // P 80 01010000
 m = s.ReadByte() ; // -1 EOF
 n = s.ReadByte() ; // -1 EOF

 Console.WriteLine("{0} {1} {2} {3} {4}", i, j, k, m, n);
 s.Close() ;
 }
}

 Program 37.2 A program that reads the written file.

 337

37.5. The using control structure
Lecture 10 - slide 7

The simple file reading and writing examples in Section 37.4 show that file opening (in terms of creating the
FileStream object) and file closing (in terms of sending a Close message to the stream) appear in pairs.
This inspires a new control structure which ensures that the file always is closed when we are done with it.
The syntax of the using construct is explained below.

using (type variable = initializer)
 body

 Syntax 37.1 The syntax of the using statement C#

The meaning (semantics) of the using construct is the following:

 • In the scope of using , bind variable to the value of initializer
• The type must implement the interface IDisposable
• Execute body with the established name binding
• At the end of body do variable.Dispose

• The Dispose methods in the subclasses of Stream call Close

We encountered the interface IDisposable when we studied the interfaces in the C# libraries, see Section
31.4. The interface IDisposable prescribes a single method, Dispose , which in general is supposed to
release resources. The abstract class Stream implements IDisposable , and the Dispose method of class
Stream calls the Stream Close method.

Program 37.3 is a reimplementation of Program 37.1 that illustrates the using construct. Notice that we do
not explicitly call Close in Program 37.3.

1
2
3
4
5
6
7
8
9
10
11

using System.IO;

class ReadProg {
 static void Main() {
 using (Stream s = new FileStream("myFile.txt", FileMode.C reate)){
 s.WriteByte(79); // O 01001111
 s.WriteByte(79); // O 01001111
 s.WriteByte(80); // P 01010000
 }
 }
}

 Program 37.3 The simple write-program programmed
with 'using'.

The following fragment shows what is actually covered by a using construct. Most important, a try-finally
construct is involved, see Section 36.9. The use of try-finally implies that Dispose will be called
independent of the way we leave body . Even if we attempt to exit body with a jump or via an exception,
Dispose will be called.

 338

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// The using statement ...

 using (type variable = initializer)
 body

// ... is equivalent to the following try-finally s tatement

 {type variable = initializer;
 try {
 body
 }
 finally {
 if (variable != null)
 ((IDisposable)variable).Dispose();
 }
 }

 Program 37.4 The control structure 'using' defined by 'try-
finally'.

37.6. More FileStream Examples
Lecture 10 - slide 8

We will show yet another simple example of FileStream s, namely a static method that copies one file to
another.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

using System;
using System.IO;

public class CopyApp {

 public static void Main(string[] args) {
 FileCopy(args[0], args[1]);
 }

 public static void FileCopy(string fromFile, stri ng toFile){
 try{
 using(FileStream fromStream =
 new FileStream(fromFile, FileMode.Open)){
 using(FileStream toStream =
 new FileStream(toFile, FileMode.Create)){
 int c;

 do{
 c = fromStream.ReadByte();
 if(c != -1) toStream.WriteByte((byte)c);
 } while (c != -1);
 }
 }
 }
 catch(FileNotFoundException e){
 Console.WriteLine("File {0} not found: ", e.F ileName);
 throw;
 }

 339

29
30
31
32
33
34
35

 catch(Exception){
 Console.WriteLine("Other file copy exception");
 throw;
 }
 }

}

 Program 37.5 A FileCopy method in a source file copy-file.cs -
uses two FileStreams.

 Exercise 10.1. A variant of the file copy program

The purpose of this exercise is to train the use of the Read method in class Stream , and subclasses of class
Stream .

Write a variant of the file copy program. Your program should copy the entire file into a byte array.
Instead of the method ReadByte you should use the Read method, which reads a number of bytes into a
byte array. (Please take careful look at the documentation of Read in class FileStream before you
proceed). After this, write out the byte array to standard output such that you can make sure that the file is
correctly read.

Are you able to read the entire file with a single call to Read? Or do you prefer to read chunks of a certain
(maximum) size?

37.7. The class Encoding
Lecture 10 - slide 10

Before we study the reader and writer classes we will clarify one important topic, namely encodings.

The problem is that a byte (as represented by a value of type byte) and a character (as represented as value
of type char) are two different things. In the old days they were basically the same, or it was at least
straightforward to convert one to the other. In old days there were at most 256 different characters available
at a given point in time (corresponding to a straightforward encoding of a single character in a single byte).
Today, the datatype char should be able to represent a wide variety of different characters that belong to
different alphabets in different cultures. We still need to represent a character by means of a number of bytes,
because a byte is a fundamental unit in most software and in most digital hardware.

As a naive approach, we could go for the following solution:

We want to be able to represent a maximum of, say, 200000 different characters. For this
purpose we need log2(200000) bits, which is 18 bits. If we operate in units if 8 bits (= one
byte) we see that we need at least 3 bytes per characters. Most likely, we will go for 4 bytes
per character, because it fits much better with the word length of most computers. Thus, the
byte size of a text will now be four times the size of an ASCII text. This is not acceptable
because it would bloat the representation of text files on secondary disk storage.

As of 2007, the Unicode standard defines more than 100000 different characters. Unicode organizes
characters in a number of planes of up to 216 (= 65536) characters. The Basic Multilingual Plane - BMP -
contains the most common characters.

 340

Encodings are invented to solve the problem that we have outlined above. An encoding is a mapping
between values of type character (a code point number between 0 and 200000 in our case) to a sequence of
bytes. The naive approach outlined above represents a simple encoding, in which we need 4 bytes even for
the original ASCII characters. It is attractive, however, if characters in the original, 7-bit ASCII alphabet can
be encoded in a single byte. The price of that may very well be that some rarely used characters will need
considerable more bytes for their encoding.

Let us remind ourselves that in C#, the type char is represented as 16 bit entities (Unicode characters) and
that a string is a sequence of values of type char . We have already touched on this in Section 6.1. At the
time Unicode was designed, it was hypothesized that 16 bits was enough to to represent all characters in the
world. As mentione above, this turned out not to be true. Therefore the type char in C# is not big enough to
hold all Unicode characters. The remedy is to use multiple char values for representation of a single Unicode
character. We see that history repeats itself...

 An encoding is a mapping between characters/strings and byte arrays

An object of class System.Text.Encoding represents knowledge about a particular character
encoding

Let us now review the operations in class Encoding: , which is located in the namespace System.Text :

 • byte[] GetBytes(string) Instance method
• byte[] GetBytes(char[]) Instance method

• Encodes a string/char array to a byte array relative to the current encoding
• char[] GetChars(byte[]) Instance method

• Decodes a byte array to a char array relative to the current encoding
• byte[] Convert(Encoding, Encoding, byte[]) Static method

• Converts a byte array from one encoding (first parameter) to another encoding (second
parameter)

The method GetBytes implements the encoding in the direction of characters to byte sequences. In concrete
terms, the method GetBytes transforms a String or an array of chars to a byte array.

The inverse method, GetChars converts an array of bytes to the corresponding array of characters. On a
given string str and for a given encoding e e.GetChars(e.GetBytes(str)) corresponds to str .

For given encodings e1 and e2, and for some given byte array ba supposed to be encoded in e1,
Convert(e1,e2,ba) is equivalent to e2.GetBytes(e1.GetChars(ba)) .

37.8. Sample use of class Encoding
Lecture 10 - slide 11

Now that we understand the idea behind encodings, let us play a little with them. In Program 37.6 we make a
number different encodings, and we convert a given string to some of these encodings. We explain the
details after the program.

 341

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

using System;
using System.Text;

/* Adapted from an example provided by Microsoft */
class ConvertExampleClass{
 public static void Main(){
 string unicodeStr = // "A æ u å æ ø i æ å"
 "A \u00E6 u \u00E5 \u00E6 \u00F8 i \u00E6 \ u00E5";

 // Different encodings.
 Encoding ascii = Encoding.ASCII ,
 unicode = Encoding.Unicode ,
 utf8 = Encoding.UTF8 ,
 isoLatin1 = Encoding.GetEncoding("iso-8859-1") ;

 // Encodes the characters in a string to a byte arr ay:
 byte[] unicodeBytes = unicode. GetBytes (unicodeStr),
 asciiBytes = ascii. GetBytes (unicodeStr),
 utf8Bytes = utf8. GetBytes (unicodeStr),
 isoLatin1Bytes = utf8. GetBytes (unicodeStr);

 // Convert from byte array in unicode to byte array in utf8:
 byte[] utf8BytesFromUnicode =
 Encoding. Convert(unicode, utf8, unicodeBytes) ;

 // Convert from byte array in utf8 to byte array in ascii:
 byte[] asciiBytesFromUtf8 =
 Encoding. Convert(utf8, ascii, utf8Bytes) ;

 // Decodes the bytes in byte arrays to a char array :
 char[] utf8Chars = utf8. GetChars (utf8BytesFromUnicode);
 char[] asciiChars = ascii. GetChars (asciiBytesFromUtf8);

 // Convert char[] to string:
 string utf8String = new string(utf8Chars),
 asciiString = new String(asciiChars);

 // Display the strings created before and after the conversion.
 Console.WriteLine("Original string: {0}", unico deStr);
 Console.WriteLine("String via UTF-8: {0}", utf8 String);

 Console.WriteLine("Original string: {0}", unico deStr);
 Console.WriteLine("ASCII converted string: {0}" , asciiString);
 }
}

 Program 37.6 Sample encodings, conversions, and decodings
of a string of Danish characters.

In line 7 we declare a sample string, unicodeStr , which we initialize to a string with plenty of national
Danish characters. We notate the string with escape notation \u dddd where d is a hexadecimal digit. We
could, as well, have used the string constant in the comment at the end of line 7.

In line 11-14 we make a number of instances of class Encoding . Some common Encoding objects can be
accessed conveniently via static properties of class Encoding . The UTF-8 encoding can in that way be
accessed with Encoding.UTF8 . The static method GetEncoding accesses an encoding via the name of the
encoding. (In order to get access to all supported encodings, the static method GetEncodings (plural) is
useful). The ISO Latin 1 encoding is accessed via use with use of GetEncoding in line 14.

In line 17-20 we convert the string unicodeStr to byte arrays in different encodings. For this purpose we
use the instance method GetBytes .

 342

Next, in line 22-28, we show how to use the static method Convert to convert a byte array in one encoding
to a byte array in another encoding.

In line 30-32 it is shown how to convert byte arrays in a particular encoding to a char array. It is done by the
instance method GetChars . We most probably wish to obtain a string instead of a char array. For that
purpose we just use an appropriate String constructor, as shown in line 34-36.

In line 38-43 we display the values of utf8String and asciiString , and for comparison we also print the
original unicodeStr . The printed result is shown in Listing 37.7. It is not surprising that the national Danish
characters cannot be represented in the ASCII character set. The Danish characters are (ambiguously)
translated to '?'.

1
2
3
4

Original string: A æ u å æ ø i æ å
String via UTF-8: A æ u å æ ø i æ å
Original string: A æ u å æ ø i æ å
ASCII converted string: A ? u ? ? ? i ? ?

 Listing 37.7 Output from the Encoding program.

 Exercise 10.2. Finding the encoding of a given text file

Make a UTF-8 text file with some words in Danish. Be sure to use plenty of special Danish characters.
You may consider to write a simple C# program to create the file. You may also create the text file in
another way.

In this exercise you should avoid writing a byte order mark (BOM) in your UTF-8 text file. (A BOM in the
UTF-8 text file may short circuit the decoding we are asking for later in the exercise). One way to avoid
the BOM is to denote the UTF-8 encoding with new UTF8Encoding() , or equivalently new

UTF8Encoding(false) . You may want to consult the constructors in class UFT8Encoding for more
information.

Now write a C# program which systematically - in a loop - reads the text file six times with the following
objects of type Encoding: ISO-8859-1, UTF-7, UTF-8, UTF-16 (Unicode), UTF32, and 7 bits ASCII.

More concretely, I suggest you make a list of six encoding objects. For each encoding, open a TextReader
and read the entire file (with ReadToEnd, for instance) with the current encoding. Echo the characters,
which you read, to standard output.

You should be able to recognize the correct, matching encoding (UTF-8) when you see it.

37.9. Readers and Writers in C#
Lecture 10 - slide 9

In the rest of this chapter we will explore a family of so-called reader and writer classes. In most practical
cases one or more of these classes are used for IO purposes instead of a Stream subclass, see Section 37.2.

Table 37.1 provides an overview of the reader and writer classes. In the horizontal dimension we have input
(readers) and output (writers). In the vertical dimension we distinguish between binary (bits structured as
bytes) and text (char/string) IO.

 343

 Input Output

Text
TextReader
 StreamReader
 StringReader

TextWriter
 StreamWriter
 StringWriter

Binary BinaryReader BinaryWriter

Table 37.1 An overview of Reader and Writer classes

The class Stream and its subclasses are oriented towards input and output of bytes. In contrast, the reader
and writer classes are able to deal with input and output of characters (values of type char) and values of
other simple types. Thus, the reader and writer classes operate at a higher level of abstraction than the stream
classes.

In Section 37.3 we listed some important subclasses of class Stream . We will now discuss how the reader
and writer classes in Table 37.1 are related to the stream classes. None of the classes in Table 37.1 inherit
from class Stream . Rather, they delegate part of their work to a Stream class. Thus, the reader and writer
classes aggregate (have a) Stream class together with other pieces of data. The class StreamReader ,
StreamWriter , BinaryReader , and BinaryWriter all have constructors that take a Stream class as
parameter. In that way, it is possible to build such readers and writes on a Stream class.

TextReader and TextWriter in Table 37.1 are abstract classes. Their subclasses StringReader and
StringWriter are build on strings rather than on streams. We have more to say about StringReader and
StringWriter in Section 37.14.

In the following sections we will rather systematically describe the reader and writer classes in Table 37.1,
and we will show examples of their use.

37.10. The class TextWriter
Lecture 10 - slide 12

In this section we discuss the abstract class TextWriter , and not least its non-abstract subclass
StreamWriter . We cover the sibling classes StringWriter and StringReader in Section 37.14.

Most important, class TextWriter supports writing of text - characters and strings - via a chosen encoding.
Encodings were discussed in Section 37.7. With use of class TextWriter it is also possible to write textual
representations of simple types, such as int and double .

We illustrate the use of class StreamWriter in Program 37.8. Recall from Table 37.1 that StreamWriter is a
non-abstract subclass of class TextWriter .

In Program 37.8 we write str and strEquiv (in line 9-10) to three different files. Both strings are identical,
they contain a lot of Danish letters, but they are notated differently. It is the same string that we used in
Program 37.6 for illustration of encodings. For each of the files we use a particular encoding (see Section
37.7). Notice that we in line 12, 16 and 20 use a StreamWriter constructor that takes a Stream and an
encoding as parameters. There a six other constructors to chose from (see below). In line 24-26 we write the
two strings to each of the three files. Try out the program, and read the three text files with your favorite text
editor. Depending of the capabilities of your editor, you may or may not be able to read them all.

 344

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

using System;
using System.IO;
using System.Text;

public class TextWriterProg{

 public static void Main(){
 string str = "A æ u å æ ø i æ å",
 strEquiv = "A \u00E6 u \u00E5 \u00E6 \u0 0F8 i \u00E6 \u00E5";

 TextWriter
 tw1 = new StreamWriter (// Iso-Latin-1
 new FileStream("f-iso.txt", FileMode.C reate),
 Encoding.GetEncoding("iso-8859-1")),

 tw2 = new StreamWriter (// UTF-8
 new FileStream("f-utf8.txt", FileMode. Create),
 new UTF8Encoding()),

 tw3 = new StreamWriter (// UTF-16
 new FileStream("f-utf16.txt", FileMode .Create),
 new UnicodeEncoding()) ;

 tw1.WriteLine(str); tw1.WriteLine(strEquiv) ;
 tw2.WriteLine(str); tw2.WriteLine(strEquiv) ;
 tw3.WriteLine(str); tw3.WriteLine(strEquiv) ;

 tw1.Close();
 tw2.Close();
 tw3.Close();
 }

}

 Program 37.8 Writing a text string using three different
encodings with StreamWriters.

You may wonder if knowledge about the applied encoding is somehow represented in the text file. The first
few bytes in a text file created from a TextWriter may contain some information about the encoding.
StreamWriter calls Encoding.GetPreamble() in order to get a byte array that represents knowledge about
the encoding. This byte array is written in the beginning of the text file. This preamble is primarily used to
determine the byte order of UTF-16 and UTF-32 encodings. (Two different byte orders are widely used on
computers from different CPU manufacturers: Big-endian (most significant byte first) and little-endian (least
significant byte first)). The preambles of the ASCII and the ISO Latin 1 encodings are empty.

The next program, shown in Program 37.9, first creates a StreamWriter on a given file path (a text string)
"simple-types.txt ". The default encoding is used. (The default encoding is system/culture dependent. It
can be accessed with the static property Encoding.Default). By use of the heavily overloaded Write
method it writes an integer, a double, a decimal, and a boolean to the file.

Next, from line 15-18, it writes a Point and a Die to a text file named "non-simple-types.txt ". As
expected, the ToString method is used on the Point and the Die objects. The contents of the two text files
are shown in Listing 37.10 (only on web) and Listing 37.11 (only on web).

1
2
3
4
5
6

using System;
using System.IO;

public class TextSimpleTypes{

 public static void Main(){

 345

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 using(TextWriter tw = new StreamWriter("simple-types.txt")){
 tw.Write(5) ; tw.WriteLine();
 tw.Write(5.5) ; tw.WriteLine();
 tw.Write(5555M) ; tw.WriteLine();
 tw.Write(5==6) ; tw.WriteLine();
 }

 using(TextWriter twnst = new StreamWriter("non- simple-types.txt")){
 twnst.Write(new Point(1,2)) ; twnst.WriteLine();
 twnst.Write(new Die(6)) ; twnst.WriteLine();
 }

 }
}

 Program 37.9 Writing values of simple types and objects of our
own classes.

The following items summarize the operations in class StreamWriter :

 • 7 overloaded constructors
• Parameters involved: File name, stream, encoding, buffer size
• StreamWriter(String)
• StreamWriter(Stream)
• StreamWriter(Stream, Encoding)
• others

• 17/18 overloaded Write / WriteLine operations
• Chars, strings, simple types. Formatted output

• Encoding
• A property that gets the encoding used for this TextWriter

• NewLine
• A property that gets/sets the applied newline string of this TextWriter

• others

 Exercise 10.3. Die tossing - writing to text file

Write a program that tosses a Die 1000 times, and writes the outcome of the tosses to a textfile. Use a
TextWriter to accomplish the task.

Write another program that reads the text file. Report the number of ones, twos, threes, fours, fives, and
sixes.

37.11. The class TextReader
Lecture 10 - slide 15

The class TextReader is an abstract class of which StreamReader is a non-abstract subclass. StreamReader
is able to read characters from a byte stream relative to a given encoding. In most respects, the class
TextReader is symmetric to class TextWriter . However, there are no Read counterparts to all the
overloaded Write methods in TextWriter . We will come back to this observation below.

 346

Program 37.12 is a program that reads the text that was produced by Program 37.8. In Program 37.12 we
create three TextReader object. They are all based on file stream objects and encodings similar to the ones
used in Program 37.8. From each TextReader we read the two strings that we wrote in Program 37.8. It is
hardly surprising that we get six instances of the strange string "A æ u å æ ø i æ å". In line 19-21 they are all
written to standard output via use of Console.WriteLine .

The last half part of Program 37.12 (from line 27) reads the three files as binary information (as raw bytes).
The purpose of this reading is to exercise the actual contents of the three files. This is done by opening each
of the files via FileStream objects, see Section 37.4. Recall that FileStream allows for binary reading (in
terms of bytes) of a file. The function StreamReport (line 39-49) reads each byte of a given FileStream ,
and it prints these bytes on the console. The output in Listing 37.13 reveals - as expected - substantial
differences between the actual, binary contents of the three files. Notice that the ISO Latin 1 file is the
shortest, the UTF-8 file is in between, and the UTF-16 file is the longest.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

using System;
using System.IO;
using System.Text;

public class TextReaderProg{

 public static void Main(){

 TextReader tr1 = new StreamReader (
 new FileStream("f-iso.txt", FileMode.Open),
 Encoding.GetEncoding("iso-8859-1")),
 tr2 = new StreamReader (
 new FileStream("f-utf8.txt", FileMode.Open),
 new UTF8Encoding()),
 tr3 = new StreamReader (// UTF-16
 new FileStream("f-utf16.txt" , FileMode.Open),
 new UnicodeEncoding()) ;

 Console.WriteLine(tr1. ReadLine ()); Console.WriteLine(tr1. ReadLine ());
 Console.WriteLine(tr2. ReadLine ()); Console.WriteLine(tr2. ReadLine ());
 Console.WriteLine(tr3. ReadLine ()); Console.WriteLine(tr3. ReadLine ());

 tr1.Close();
 tr2.Close();
 tr3.Close();

 // Raw reading of the files to control the contents at byte level
 FileStream fs1 = new FileStream("f-iso.txt", F ileMode.Open),
 fs2 = new FileStream("f-utf8.txt", FileMode.Open),
 fs3 = new FileStream("f-utf16.txt", FileMode.Open);

 StreamReport(fs1, "Iso Latin 1");
 StreamReport(fs2, "UTF-8");
 StreamReport(fs3, "UTF-16");

 fs1.Close();
 fs2.Close();
 fs3.Close();
 }

 public static void StreamReport(FileStream fs, st ring encoding){
 Console.WriteLine();
 Console.WriteLine(encoding);
 int ch, i = 0;
 do{
 ch = fs.ReadByte();
 if (ch != -1) Console.Write("{0,4}", ch);

 347

48
49
50
51
52
53
54

 i++;
 if (i%10 == 0) Console.WriteLine();
 } while (ch != -1);
 Console.WriteLine();
 }

}

 Program 37.12 Reading back the text strings encoded in three
different ways, with StreamReader.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A æ u å æ ø i æ å
A æ u å æ ø i æ å
A æ u å æ ø i æ å
A æ u å æ ø i æ å
A æ u å æ ø i æ å
A æ u å æ ø i æ å

Iso Latin 1
 65 32 230 32 117 32 229 32 230 32
 248 32 105 32 230 32 229 13 10 65
 32 230 32 117 32 229 32 230 32 248
 32 105 32 230 32 229 13 10

UTF-8
 65 32 195 166 32 117 32 195 165 32
 195 166 32 195 184 32 105 32 195 166
 32 195 165 13 10 65 32 195 166 32
 117 32 195 165 32 195 166 32 195 184
 32 105 32 195 166 32 195 165 13 10

UTF-16
 255 254 65 0 32 0 230 0 32 0
 117 0 32 0 229 0 32 0 230 0
 32 0 248 0 32 0 105 0 32 0
 230 0 32 0 229 0 13 0 10 0
 65 0 32 0 230 0 32 0 117 0
 32 0 229 0 32 0 230 0 32 0
 248 0 32 0 105 0 32 0 230 0
 32 0 229 0 13 0 10 0

 Listing 37.13 Output from the program that reads back the
strings encoded in three different ways.

Below, in Program 37.14, we show a program that reads the values from the file "simple-types.txt ", as
written by Program 37.9. Notice that we read a line at a time using the ReadLine method of StreamReader .
ReadLine returns a string, which we parse by the static Parse methods in the structs Int32 , Double , Decimal ,
and Boolean respectively. There are no dedicated methods in class StreamReader for reading the textual
representations of integers, doubles, decimals, booleans, etc. The output of Program 37.14 is shown in
Listing 37.15 (only on web).

 348

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;
using System.IO;

public class TextSimpleTypes{

 public static void Main(){

 using(TextReader twst = new StreamReader ("simple-types.txt")){
 int i = Int32.Parse (twst. ReadLine ());
 double d = Double.Parse (twst. ReadLine ());
 decimal m = Decimal.Parse (twst. ReadLine ());
 bool b = Boolean.Parse (twst. ReadLine ());

 Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
 }

 }
}

 Program 37.14 A program that reads line of text and parses
them to values of simple types.

As we did for class TextWriter in Section 37.10 we summarize the operations in class TextReader below:

 • 10 StreamReader constructors
• Similar to the StreamWriter constructors
• StreamReader(String)
• StreamReader(Stream)
• StreamReader(Stream, bool)
• StreamReader(Stream, Encoding)
• others

• int Read() Reads a single character. Returns -1 if at end of file
• int Read(char[], int, int) Returns the number of characters read
• int Peek()
• String ReadLine()
• String ReadToEnd()
• CurrentEncoding

• A property that gets the encoding of this StreamReader

The method Read reads a single character; It returns -1 if the file is positioned at the end of the file. The Read
method that accepts three parameters is similar to the Stream method of the same name, see Section 37.2. As
such, it reads a number of characters into an already allocated char array (which is passed as the first
parameter of Read). Peek reads the next available character without advancing the file position. You can use
the method to look a little ahead of the actual reading. As we have seen, ReadLine reads characters until an
end of line character is encountered. Similarly, ReadToEnd reads the rest of stream - from the current position
until the end of the file - and returns it as a string. ReadToEnd is often convenient if you wish to get access to
a text file as a (potentially large) text string.

 349

37.12. The class BinaryWriter
Lecture 10 - slide 18

In this section we will study a writer class which produces binary data. As such, a binary writer is similar to a
FileStream used in write access mode, see Section 37.4. The justification of BinaryWriter is, however, that
it supports a heavily overloaded Write method just like the class TextWriter did. The Write methods can be
applied on most simple data types. The Write methods of BinaryWriter produce binary data, not characters.

Encodings, see Section 37.7, played important roles for TextReader and TextWriter . Encodings only play a
minimal role in BinaryWriter ; Encodings are only used when we write characters to the binary file.

Below, in Program 37.16 we show a program similar to Program 37.9. We write four values of different
simple types to a file with use of a BinaryWriter . In comments of the program we show the expected
number of bytes to be written. With use of a FileInfo object (see Section 38.1) we check our expectations
in line 18-19. The output of the program is 29, as expected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

using System;
using System.IO;

public class BinaryWriteSimpleTypes{

 public static void Main(){
 string fn = "simple-types.bin";

 using(BinaryWriter bw =
 new BinaryWriter (
 new FileStream(fn, FileMode.Create))) {
 bw.Write(5) ; // 4 bytes
 bw.Write(5.5) ; // 8 bytes
 bw.Write(5555M) ; // 16 bytes
 bw.Write(5==6) ; // 1 bytes
 }

 FileInfo fi = new FileInfo(fn) ;
 Console.WriteLine("Length of {0}: {1}", fn, fi.Length);

 }
}

 Program 37.16 Use of a BinaryWriter to write some values of
simple types.

The following operations are supplied by BinaryWriter :

 • Two public constructors
• BinaryWriter(Stream)
• BinaryWriter(Stream, Encoding)

• 18 overloaded Write operations
• One for each simple type
• Write(char) , Write(char[]) , and Write(char[], int, int) - use Encoding
• Write(string) - use Encoding
• Write(byte[]) and Write(byte[], int, int)

• Seek(int offset, SeekOrigin origin)
• others

 350

The second constructor allows for registration of an encoding, which is used if we write characters as binary
data. The Write methods, which accepts an array as first parameter together with two integers as second and
third parameters, write a section of the involved arrays.

 Exercise 10.4. Die tossing - writing to a binary file

This exercise is a variant of the die tossing and file writing exercise based on text files.

Modify the program to use a BinaryWriter and a BinaryReader .

Take notice of the different sizes of the text file from the previous exercise and the binary file from this
exercise. Explain your observations.

37.13. The class BinaryReader
Lecture 10 - slide 20

The class BinaryReader is the natural counterpart to BinaryWriter . Both of them deal with input from and
output to binary data (in contrast to text in some given encoding).

The following program reads the binary file produced by Program 37.16. It produces the expected output, see
Program 37.16 (only on web).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

using System;
using System.IO;

public class BinaryReadSimpleTypes{

 public static void Main(){
 string fn = "simple-types.bin";

 using(BinaryReader br =
 new BinaryReader (
 new FileStream(fn, FileMode.Open))){

 int i = br.ReadInt32() ;
 double d = br.ReadDouble() ;
 decimal dm = br.ReadDecimal() ;
 bool b = br.ReadBoolean() ;

 Console.WriteLine("Integer i: {0}", i);
 Console.WriteLine("Double d: {0}", d);
 Console.WriteLine("Decimal dm: {0}", dm);
 Console.WriteLine("Boolean b: {0}", b);
 }

 }
}

 Program 37.17 Use of a BinaryReader to write the values
written by means of the BinaryWriter.

The following gives an overview of the operations in the class BinaryReader :

 351

 • Two public constructors
• BinaryReader(Stream)
• BinaryReader(Stream, Encoding)

• 15 individually name Readtype operations
• ReadBoolean , ReadChar , ReadByte , ReadDouble , ReadDecimal , ReadInt16 , ...

• Three overloaded Read operations
• Read() and Read (char[] buffer, int index, int count)

read characters - using Encoding
• Read (bytes[] buffer, int index, int count) reads bytes

The most noteworthy observation is that there exist a large number of specifically named operations (such as
ReadInt32 and ReadDouble) through which it is possible to read the binary representations of values in
simple types.

37.14. The classes StringReader and StringWriter
Lecture 10 - slide 22

StringReader is a non-abstract subclass of TextReader . Similarly, StringWriter is a non-abstract subclass
of TextWriter . Table 37.1 gives you an overview of these classes.

The idea of StringReader is to use traditional stream/file input operations for string access, and to use
traditional stream/file output operations for string mutation. Thus, relative to Figure 37.1 the source and
destinations of reading and writing will be strings.

A StringReader can be constructed on a string. A StringWriter , however, cannot be constructed on a
string, because strings are non-mutable in C#, see Section 6.4. Therefore a StringWriter object is
constructed on an instance of StringBuilder .

In Program 37.19 we illustrate, in concrete terms, how to make a StringWriter on the StringBuilder
referred by the variable sb (see line 9). In line 11-17 we iterate five times through the for loop, with
increasing integer values in the variable i . In total, the textual representations of 20 simple values are written
to the StringBuilder object. The content of the StringBuilder object is printed in line 19. The output of
Program 37.19 is shown in Program 37.20 (only on web).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

using System;
using System.IO;
using System.Text;

public class TextSimpleTypes{

 public static void Main(){

 StringBuilder sb = new StringBuilder() ; // A mutable string

 using(TextWriter tw = new StringWriter(sb)){
 for (int i = 0; i < 5; i++){
 tw.Write(5 * i); tw.WriteLine();
 tw.Write(5.5 * i); tw.WriteLine();
 tw.Write(5555M * i); tw.WriteLine();
 tw.Write(5 * i == 6); tw.WriteLine();}

 352

17
18
19
20
21
22

 }

 Console.WriteLine(sb);

 }
}

 Program 37.19 A StringWriter program similar to the
StreamReader program shown earlier.

Symmetrically, we illustrate how to read from a string. In Program 37.21 we make a string str with broken
lines in line 8-11. With use of a StringReader built on str we read an integer, a double, a decimal, and a
boolean value. The output is shown in Program 37.22 (only on web).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;
using System.IO;

public class TextSimpleTypes{

 public static void Main(){

 string str = "5" + "\n" +
 "5,5" + "\n" +
 "5555,0" + "\n" +
 "false";

 using(TextReader tr = new StringReader(str)){
 int i = Int32.Parse(tr.ReadLine());
 double d = Double.Parse(tr.ReadLine());
 decimal m = Decimal.Parse(tr.ReadLine());
 bool b = Boolean.Parse(tr.ReadLine());

 Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
 }

 }
}

 Program 37.21 A StringReader program.

The use of StringWriter and StringReader objects for accessing the characters in strings is an attractive
alternative to use of the native String and StringBuilder operations. It is, in particular, attractive and
convenient that we can switch from a file source/destination to a string source/destination. In that way
existing file manipulation programs may be used directly as string manipulation programs. The only
necessary modification of the program is a replacement of a StreamReader with StringReader , or a
replacement of StreamWriter with a StringWriter .

Be sure to use the abstract classes TextReader and TextWriter as much as possible. You should only use
StreamReader /StringReader and StreamWriter /StringWriter for instantiation purposes in the context of
a constructor (such as line 11 of Program 37.19 and line 13 of Program 37.21).

 353

37.15. The Console class
Lecture 10 - slide 23

We have used static methods in the Console class in almost all our programs. It is now time to examine the
Console class a little closer. In contrast to most other IO related classes, the Console class resides in the
System namespace, and not in System.IO . The Console class encapsulates three streams: standard input,
standard output, and standard error. The static property In , of type TextReader , represents standard input.
The static properties Out and Error represent standard output and standard error respectively, and they are
both of type TextWriter . Recall in this context that TextReader and TextWriter are both abstract classes,
see Section 37.9.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

using System;
using System.IO;

class App{

 public static void Main(string[] args){

 TextWriter standardOutput = Console.Out ;
 StreamWriter myOut = null,
 myError = null;

 if (args.Length == 2) {
 Console.Out.WriteLine("Redirecting std outp ut and error to files");
 myOut = new StreamWriter(args[0]);
 Console.SetOut(myOut);
 myError = new StreamWriter(args[1]);
 Console.SetError(myError);
 } else {
 Console.Out.WriteLine("Keeping standard out put and error unchanged");
 }

 // Output from this section of the program may be r edirected
 Console.Out.WriteLine("Text to std output - by Console.Out.WriteLine");
 Console.WriteLine("Text to standard output - by Console.WriteLine(...)");
 Console.Error.WriteLine("Error msg - by Consol e.Error.WriteLine(...)");

 if (args.Length == 2) {
 myOut.Close(); myError.Close();
 }

 Console.SetOut(standardOutput);
 Console.Out.WriteLine("Now we are back again") ;
 Console.Out.WriteLine("Good Bye");
 }
}

 Program 37.23 A program that redirects standard output and
standard error to a file.

In the program shown above it is demonstrated how to control standard output and standard error. If we pass
two program arguments (args in line 6) to Program 37.23 we redirect standard output and standard error to
specific files (instances of StreamWriter) in line 13-17. That is the main point, which we wish to illustrate
in Program 37.23.

Below we supply an overview of the methods and properties of the Console class. The Console class is
static. As such, all methods and properties in class Console are static. There will never be objects of type
Console around. The Console class offers the following operations:

 354

 • Access to and control of in , out , and error
• Write , WriteLine , Read, and ReadLine methods

• Shortcuts to out.Write , out.WriteLine , in.Read , and in.ReadLine
• Many properties and methods that control the underlying buffer and window

• Size, colors, and positions
• Immediate, non-blocking input from the Console

• The property KeyAvailable returns if a key is pressed (non-blocking)
• ReadKey() returns info about the pressed key (blocking)

• Other operations
• Clear() , Beep() , and Beep(int, int) methods.

 355

38. Directories and Files

The previous chapter was about streams, and as such also about files. In this chapter we will deal with the
properties of files beyond reading and writing. File copying, renaming, creation time, existence, and deletion
represent a few of these. In addition to files we will also in this chapter discuss directories.

38.1. The File and FileInfo classes
Lecture 10 - slide 26

Two overlapping file-related classes are available to the C# programmer: FileInfo and File . Both classes
belong to the namespace System.IO . Objects of class FileInfo represents a single file, created on the basis
of the name or path of the file (which is a string). The class File contains static methods for file
manipulation. Class File is static, see Section 11.12, and as such there can be no instances of class File . If
you intend to write object-oriented programs with file manipulation needs it is recommended that you
represent files as instances of class FileInfo .

Let us right away write a program which illustrates how to use instances of class FileInfo for representation
of files. All aspects related to class FileInfo is shown in purple in Program 38.1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

using System;
using System.IO;

public class FileInfoDemo{

 public static void Main(){
 // Setting up file names
 string fileName = "file-info.cs",
 fileNameCopy = "file-info-copy.cs";

 // Testing file existence
 FileInfo fi = new FileInfo(fileName); // this source file
 Console.WriteLine("{0} does {1} exist",
 fileName, fi.Exists ? "" : "not");

 // Show file info properties:
 Console.WriteLine("DirectoryName: {0}", fi.DirectoryName);
 Console.WriteLine("FullName: {0}", fi.FullName);
 Console.WriteLine("Extension: {0}", fi.Extension);
 Console.WriteLine("Name: {0}", fi.Name);
 Console.WriteLine("Length: {0}", fi.Length);
 Console.WriteLine("CreationTime: {0}", fi.CreationTime);

 // Copy one file to another
 fi.CopyTo(fileNameCopy);
 FileInfo fiCopy = new FileInfo(fileNameCopy);

 // Does the copy exist?
 Console.WriteLine("{0} does {1} exist",
 fileNameCopy, fiCopy.Exists ? "" : "not");

 // Delete the copy again
 fiCopy.Delete();

 // Does the copy exist?
 Console.WriteLine("{0} does {1} exist",
 fileNameCopy, fiCopy.Exists ? "" : "not"); // !!??

 356

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

 // Create new FileInfo object for the copy
 FileInfo fiCopy1 = new FileInfo(fileNameCopy);
 // Check if the copy exists?
 Console.WriteLine("{0} does {1} exist", fileNam eCopy,
 fiCopy1.Exists ? "" : "not");

 // Achieve a TextReader (StreamReader) from the fil e info object
 // and echo the lines in the file to standard outpu t
 using(StreamReader sr = fi.OpenText ()){
 for (int i = 1; i <= 10; i++)
 Console.WriteLine(" " + sr.ReadLine());
 }
 }
}

 Program 38.1 A demonstration of the FileInfo class.

In line 12 we create a FileInfo object on the source file of the C# program text shown in Program 38.1. In
line 13-14 we report on the existence of this file in the file system. (We expect existence, of course). In line
16-22 we access various properties (in the sense of C# properties, see Chapter 18) of the FileInfo object. In
line 25 we copy the file, and in line 30 we check the existence of the copy. In line 33 we delete the copy, and
in line 37 we check the existence of copy again. Against our intuition, we find out that the copy of the file
still exists after its deletion. (See next paragraph for an explanation). If, however, we establish a fresh
FileInfo object on the path to the deleted file, we get the expected result. In line 45-50 we use the OpenText
method of the FileInfo object to establish a TextReader on the file. Via a number of ReadLine activations
in line 49 we demonstrate that we can read the contents of the file.

The file existence problem described above occurs because the instance of class FileInfo and the state of
the underlying file system become inconsistent. The instance method Refresh of class FileInfo can be used
to update the FileInfo object from the information in the operating system. If you need trustworthy
information about your files, you should always call the Refresh operation before you access any FileInfo
attribute. If we call fiCopy.Refresh() in line 34, the problem observed in line 37 vanishes.

The output of Program 38.1 is shown in Listing 38.2 (only on web).

The following gives an overview of some selected operations in class FileInfo :

 • A single constructor
• FileInfo(string)

• Properties (getters) that access information about the current file
• Examples: Length , Extension , Directory , Exists , LastAccessTime

• Stream, reader, and writer factory methods:
• Examples: Create , AppendText , CreateText , Open, OpenRead, OpenWrite , OpenText

• Classical file manipulations
• CopyTo, Delete , MoveTo, Replace

• Others
• Refresh , ...

The parameter of the FileInfo constructor is an absolute or relative path to a file. The file path must be
well-formed according to a set of rules described in the class documentation. As examples, the file paths
"c:\temp c:\user " and " dir1\dir2\file.dat " are both malformed.

 357

We have also written af version of Program 38.1 in which we use the static class File instead of FileInfo ,
see Program 38.3. We do not include this program, nor the listing of its output, in the paper edition of the
material. We notice that the file existence frustrations in Program 38.1 (of the deleted file) do not appear
when we use the static operations of the static class File .

 There is a substantial overlap between the instance methods of class FileInfo and the static
methods in class File

38.2. The Directory and DirectoryInfo classes
Lecture 10 - slide 28

The classes DirectoryInfo and Directory are natural directory counterparts of the classes FileInfo and
File , as described in Section 38.1. In this section we will show an example use of class DirectoryInfo , and
we will provide an overview of the members in the class. Like for files, an instance of class DirectoryInfo
is intended to represent a given directory of the underlying file system. We recommend that you use the class
DirectoryInfo , rather than the static class Directory , when you write object-oriented programs.

It is worth noticing that the classes FileInfo and DirectoryInfo have a common abstract, superclass class
FileSystemInfo .

Here follows a short program that use an instance of class DirectoryInfo for representation of a given
directory from the underlying operating system.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

using System;
using System.IO;

public class DirectoryInfoDemo{

 public static void Main(){
 string fileName = "directory-info.cs"; // The current source file

 // Get the DirectoryInfo of the current directory
 // from the FileInfo of the current source file
 FileInfo fi = new FileInfo(fileName); // This source file
 DirectoryInfo di = fi.Directory;

 Console.WriteLine("File {0} is in directory \n {1}", fi, di);

 // Get the files and directories in the parent dire ctory.
 FileInfo[] files = di.Parent.GetFiles() ;
 DirectoryInfo[] dirs = di.Parent.GetDirectories() ;

 // Show the name of files and directories on the co nsole
 Console.WriteLine("\nListing directory {0}:", d i.Parent.Name);
 foreach(DirectoryInfo d in dirs)
 Console.WriteLine(d.Name);
 foreach(FileInfo f in files)
 Console.WriteLine(f.Name);

 }
}

 Program 38.5 A demonstration of the DirectoryInfo
class.

 358

Like in Program 38.3 the starting point in Program 38.5 is a FileInfo object that represents the source file
shown in Program 38.5. Based on the FileInfo object, we create a DirectoryInfo object in line 12. This
DirectoryInfo object represents the directory in which the actual source file resides. Let us call it the
current directory . In line 17 we illustrate the Parent property and the GetFiles method; We create an array,
files , of FileInfo object of the parent directory of the current directory. Thus, this array holds all files of
the parent of current directory. Similarly, dirs declared in line 18 is assigned to hold all directories of the
parent of current directory. We print these files and directories in line 20-25.

The output of Program 38.5 (only on web) is shown in Listing 38.6 (only on web). A similar program,
programmed with use of the static operations in class Directory , is shown in Program 38.7 (only on web).

The following shows an overview of the instance properties and instance methods in class DirectoryInfo:

 • A single constructor
• DirectoryInfo(string)

• Properties (getters) that access information about the current directory
• Examples: CreationTime , LastAccessTime , Exists , Name, FullName

• Directory Navigation operations
• Up: Parent , Root
• Down: GetDirectories , GetFiles , GetFileSystemInfo (all overloaded)

• Classical directory manipulations
• Create , MoveTo, Delete

• Others
• Refresh , ...

The constructor takes a directory path string as parameter. It is possible to create a DirectoryInfo object on
a string that represents a non-existing directory path. Like file paths, the given directory path must be well-
formed (according to rules stated in the class documentation).

The downwards directory navigation operations GetDirectories , GetFiles , and GetFileSystemInfo are
able to filter their results (with use of strings with wildcards, such as "temp* ", which match all
files/directories whose names start with "temp "). It is also possible to specify if the operations should access
direct files/directories, or if they should access direct as well as indirect file/directories.

 As for File and FileInfo , there is substantial overlap between the classes Directory and
DirectoryInfo

 359

39. Serialization
In this material we care about object-oriented programming. All our data are encapsulated in objects. When
we deal with IO it is therefore natural to look for solutions that help us with output and input of objects.

For each class C it is possible to decide a storage format. The storage format of class C tells which pieces of
data in C instances to save on secondary storage. The details of the storage format need to be decided. This
involves (1) which fields to store, (2) the sequence of fields in the stored representation, and (3) use of a
binary or a textual representation. However, as long as we have pairs of WriteObject and ReadObject
operations for which ReadObject(WriteObject(C-object)) is equivalent to C-object the details of the
storage format are of secondary interest.

Instances of class C may have references to instances of other classes, say D and E. In general, an instance of
class C may be part of an object graph in which we find C-object, D-object, E-objects as well as objects of
other types. We soon realize that the real problem is not how to store instances of C in isolation. Rather, the
problem is how to store an object network in which C-objects take part (or in which a C-object is a root).

People who have devised a storage format for a class C, who have written then WriteObject and
ReadObject operations for class C, and who have dealt with the IO problem of object graphs quickly realize
that the invented solutions generalizes to arbitrary classes. Thus, instead of solving the object IO problem
again and again for specific classes, it is attractive to solve the problem at a general level, and make the
solution available for arbitrary classes. This is exactly what serialization is about. The serialization problem
has been solved by the implementers of C#. It is therefore easy for the C# programmer to save and retrieve
objects via serialization.

39.1. Serialization
Lecture 10 - slide 31

Serialization provides for input and output of a network of objects. Serialization is about object output, and
deserialization is about object input.

 • Serialization
• Writes an object o to a file
• Also writes the objects referred from o

• Deserialization
• Reads a serialized file in order to reestablish the serialized object o
• Also reestablishes the network of objects originally referred from o

Serialization of objects is, in principle, simple to deal with from C#. There are, however, a couple of
circumstances that complicate the matters:

• The need to control or customize the serialization and the deserialization of objects of specific types.

• The support of more than one C# technique to obtain the same serialization or deserialization effect.

The need to control (customize) the details of serialization and deserialization is unavoidable, at least when
the ideas should be applied on real-life examples.

 360

The support of several different techniques for doing serialization is due to the development of C#. In C# 2.0
serialization relies almost exclusively on the use of serialization and deserialization attributes. In C# 1.0 it
was also necessary to implement certain interfaces to control and customize the serialization. In this version
of the material, we only describe serialization controlled by attributes.

 • Serialization and deserialization is supported via classes that implement the Iformatter
interface:

• BinaryFormatter and SoapFormatter
• Methods in Iformatter:

• Serialize and Deserialize

In the following section we will discuss an example that uses BinaryFormatter .

39.2. Examples of Serialization in C#
Lecture 10 - slide 32

Below we show the class Person and class Date , similar to the ones we used for illustration of privacy leaks
in Section 16.5. Class Person in Program 39.1 encapsulates a name and two date objects: birth date and
death date. For a person still alive, the death date refer to null . Redundantly, the age instance variable holds
the age of the person. The Update method can be used to update the age variable.

The Date class shown in Program 39.2 is a very simple implementation of a date class. (In the paper version
of the material we only show an outline of the Date class. The complete version is available in the web
version). The Person class relies on the Date . We use class Date for illustration of serialization; In real life
you should always use the struct DateTime . The Date class encapsulates year, month, and day. In addition it
holds a nameOfDay instance variable (with values such as Sunday or Monday), which is redundant. With
appropriate calendar knowledge, the nameOfDay can be calculated from year , month , and day . The Person
class needs age calculation, which is provided by the YearDiff method of class Date . Internally in class
Date , YearDiff relies on the methods IsBefore and Equals . (Equals is defined according the standard
recommendations, see Section 28.16. We have not, in this class, included a redefinition of GetHashCode and
therefore we get a warning from the compiler when class Date is compiled.)

The redundancy is class Person and class Date is introduced on purpose, because it helps us illustrate the
serialization control in Program 39.2. In most circumstances we would avoid such redundancy, at least in
simple classes.

The preparation of class Person and class Date for serialization is very simple. We mark both classes with
the attribute [Serializable] , see line 3 in both classes. As of now you can consider [Serializable] as
some magic, special purpose notation. In reality [Serializable] represents application of an attribute.
When we are done with serialization we have seen several uses of attributes, and therefore we will be
motivated to understand the general ideas of attributes in C#. We discuss the general ideas behind attributes
in Section 39.6.

Please notice that in the paper version of this material most program examples have been abbreviated. The
full details of all examples appear in the web version of the material.

 361

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

using System;

[Serializable]
public class Person{

 private string name;
 private int age; // Redundant
 private Date dateOfBirth, dateOfDeath;

 public Person (string name, Date dateOfBirth){
 this.name = name;
 this.dateOfBirth = dateOfBirth;
 this.dateOfDeath = null;
 age = Date.Today.YearDiff(dateOfBirth);
 }

 public Date DateOfBirth {
 get {return new Date(dateOfBirth);}
 }

 public int Age{
 get {return Alive ? age : dateOfDeath.YearDiff(dateOfBirth);}
 }

 public bool Alive{
 get {return dateOfDeath == null;}
 }

 public void Died(Date d){
 dateOfDeath = d;
 }

 public void Update(){
 age = Date.Today.YearDiff(dateOfBirth);
 }

 public override string ToString(){
 return "Person: " + name +
 " *" + dateOfBirth +
 (Alive ? "" : " +" + dateOfDeath) +
 " Age: " + age;
 }

}

 Program 39.1 The Person class - Serializable.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

using System;

[Serializable]
public class Date{
 private ushort year;
 private byte month, day;
 private DayOfWeek nameOfDay; // Redundant

 public Date(int year, int month, int day){
 this.year = (ushort)year;
 this.month = (byte)month;
 this.day = (byte)day;
 this.nameOfDay = (new DateTime(year, month, day)).DayOfWeek;
 }

 public Date(Date d){
 this.year = d.year; this.month = d.month;
 this.day = d.day; this.nameOfDay = d.nameOfDay;
 }

 362

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 public int Year{get{return year;}}
 public int Month{get{return month;}}
 public int Day{get{return day;}}

 // return this minus other, as of usual birthday calculations.
 public int YearDiff(Date other){
 // ...
 }

 public override bool Equals(Object obj){
 // ...
 }

 // Is this date less than other date
 public bool IsBefore(Date other){
 // ...
 }

 public static Date Today{
 // ...
 }

 public override string ToString(){
 return string.Format("{0} {1}.{2}.{3}", nameOfD ay, day, month, year);
 }
}

 Program 39.2 An outline of the Date class - Serializable.

In Program 39.3 it is illustrated how to serialize and deserialize a graph of objects. The graph, which we
serialize, consists of one Person and the two Date objects referred by the Person object. The serialization,
which takes place in line 13-17, is done by sending the Serialize message to the BinaryFormatter object.
The serialization relies on a binary stream, as represented by an instance of class FileStream , see Section
37.4.

The deserialization, as done in line 24-28, will in most real-life settings be done in another program. In our
example we reset the program state in line 19-22 before the deserialization. The actual deserialization is done
by sending the Deserialize message to the BinaryFormatter object. As in the serialization, the file stream
with the binary data, is passed as a parameter.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binar y;

class Client{

 public static void Main(){
 Person p = new Person("Peter", new Date(1936, 5 , 11));
 p.Died(new Date(2007,5,10));
 Console.WriteLine("{0}", p);

 using (FileStream strm =
 new FileStream("person.dat", FileMod e.Create)){
 IFormatter fmt = new BinaryFormatter();
 fmt.Serialize(strm, p);
 }

 // -- ---------------
 p = null;

 363

21
22
23
24
25
26
27
28
29
30
31
32
33

 Console.WriteLine("Reseting person");
 // -- ---------------

 using (FileStream strm =
 new FileStream("person.dat", FileMod e.Open)){
 IFormatter fmt = new BinaryFormatter();
 p = fmt.Deserialize(strm) as Person;
 }

 Console.WriteLine("{0}", p);
 }

}

 Program 39.3 The Person client class - applies serialization
and deserialization.

The program output shown in Listing 39.4 tells that the Person object and the two Date objects have
survived the serialization and deserialization processes. In between the two output lines in line 11 and line 30
of Program 39.3 the three objects have been transferred to and reestablished from the binary file.

1
2
3

Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71
Reseting person
Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71

 Listing 39.4 Output of the Person client class.

 Exercise 10.5. Serializing with an XML formatter

In the programs shown on the accompanying slide we have used a binary formatter for serialization of
Person and Date object.

Modify the client program to use a so-called Soap formatter in the namespace
System.Runtime.Serialization.Formatters.Soap . SOAP is an XML language intended for exchange
of XML documents. SOAP is related to the discipline of web services in the area of Internet technology.

After the serialization you should take a look at the file person.dat , which is written and read by the
client program.

39.3. Custom Serialization
Lecture 10 - slide 33

In the Person and Date classes, shown in Section 39.2, the redundant instance variables do not need to be
serialized. In class Person , age does need to be serialized because it can be calculated from dateOfBirth
and dateOfDeath . In class Date , nameOfDay does need to serialized because it can calculated from calendar
knowledge. In relation to serialization and persistence, we say that these two instance variables are transient.
It is sufficient to serialize the essential information, and to reestablish the values of the transient instance
variables after deserialization. In Program 39.5 and Program 39.6 we show the serialization and the
deserialization respectively.

The serialization is controlled by marking some fields (instance variables) as [NonSerialized], see line 9 of
Program 39.5 and line 9 of Program 39.6.

 364

The deserialization is controlled by a method marked with the attribute [OnDeserialized()], see line 21 of
Program 39.5. This method is called when deserialization takes place. The method starting at line 21 of
Program 39.5 assigns the redundant age variable of a Person object.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System;
using System.Runtime.Serialization;

[Serializable]
public class Person{

 private string name;

 [NonSerialized()]
 private int age;

 private Date dateOfBirth, dateOfDeath;

 public Person (string name, Date dateOfBirth){
 this.name = name;
 this.dateOfBirth = dateOfBirth;
 this.dateOfDeath = null;
 age = Date.Today.YearDiff(dateOfBirth);
 }

 [OnDeserialized()]
 internal void FixPersonAfterDeserializing(
 StreamingContext context){
 age = Date.Today.YearDiff(dateOfBirth);
 }

 // ...

}

 Program 39.5 The Person class - Serialization control with
attributes.

The Date class shown below in Program 39.6 follows the same pattern as the Person class of Program 39.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using System;
using System.Runtime.Serialization;

[Serializable]
public class Date{
 private ushort year;
 private byte month, day;

 [NonSerialized()]
 private DayOfWeek nameOfDay;

 public Date(int year, int month, int day){
 this.year = (ushort)year;
 this.month = (byte)month;
 this.day = (byte)day;
 this.nameOfDay = (new DateTime(year, month, day)).DayOfWeek;
 }

 public Date(Date d){
 this.year = d.year; this.month = d.month;
 this.day = d.day; this.nameOfDay = d.nameOfDay;
 }

 [OnDeserialized()]

 365

25
26
27
28
29
30
31

 internal void FixDateAfterDeserializing(
 StreamingContext context){
 nameOfDay = (new DateTime(year, month, day)).Da yOfWeek;
 }

 // ...
}

 Program 39.6 The Date class - Serialization control with
attributes .

39.4. Considerations about Serialization
Lecture 10 - slide 34

We want to raise a few additional issues about serialization:

 • Security
• Encapsulated and private data is made available in files

• Versioning
• The private state of class C is changed
• It may not be possible to read serialized objects of type C

• Performance
• Some claim that serialization is relatively slow

39.5. Serialization and Alternatives
Lecture 10 - slide 35

As mentioned in the introduction of this chapter - Chapter 39 - serialization deals with input and output of
objects and object graphs. It should be remembered, however, that there are alternatives to serialization. As
summarized below, it is possible to program object IO at a low level (using binary of textual IO primitives
from Chapter 37). At the other end of the spectrum it is possible us database technology.

 • Serialization
• An easy way to save and restore objects in between program sessions
• Useful in many projects where persistency is necessary, but not a key topic
• Requires only little programming

• Custom programmed file IO
• Full control of object IO
• May require a lot of programming

• Objects in Relational Databases
• Impedance mismatch: "Circular objects in retangular boxes"
• Useful when the program handles large amounts of data
• Useful if the data is accessed simultaneous from several programs
• Not a topic in this course

 366

39.6. Attributes
Lecture 10 - slide 36

In our treatment of serialization we made extensive use of attributes, see for instance Section 39.3. In this
section we will discuss attributes at a more general level, and independent of serialization.

Attributes offer a mechanism that allows the programmer to extend the programming language in simple
ways. Attributes allow the programmer to associate extra information (meta data) to selected and pre-defined
constructs in C#. The constructs to which it is possible to attach attributes are assemblies, classes, structs,
constructors, delegates, enumeration types, fields (variables), events, methods, parameters, properties, and
returns.

We all know that members of a class in C# have associated visibility modifiers, see Section 11.16. In case
visibility modifiers were not part of C#, we could have used attributes as a way to extend the language with
different kinds of member visibilities. Certain attributes can be accessed by the compiler, and hereby these
attributes can affect the checking done by the compiler and the code generated by the compiler. Attributes
can also be accessed at run-time. There are ways for the running program to access the attributes of given
constructs, such that the attribute and attribute values can affect the program execution.

Program 39.7 illustrates the use of the predefined Obsolete attribute. Being "obsolete" means "no longer in
use". In line 3, the attribute is associated with class C. In line 9, another usage of the attribute is associated
with method M in class D.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

[Obsolete("Use class D instead")]
class C{
 // ...
}

class D{
 [Obsolete("Do not call this method.",true)]
 public void M(){
 }
}

class E{
 public static void Main(){
 C c = new C();
 D d = new D();
 d.M();
 }
}

 Program 39.7 An obsolete class C, and a class D with an
obsolete method M.

The compiler is aware of the Obsolete attribute. When we compile Program 39.7 we can see the effect of
the attribute, see Listing 39.8.

 367

1
2
3
4
5
6
7
8

>csc prog.cs
Microsoft (R) Visual C# 2005 Compiler version 8.00. 50727.42
for Microsoft (R) Windows (R) 2005 Framework versio n 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

prog.cs(16,5): warning CS0618: 'C' is obsolete: 'Us e class D instead'
prog.cs(16,15): warning CS0618: 'C' is obsolete: 'U se class D instead'
prog.cs(18,5): error CS0619: 'D.M()' is obsolete: ' Do not call this method.'

 Listing 39.8 Compiling class C, D, and E.

C# comes with a lot of predefined attributes. Obsolete is one of them, and we encountered quite a few in
Section 39.3 in the context of serialization. Unit testing frameworks for C# also heavily rely on attributes.

It is also possible to define our own attributes. An attribute is defined as a class. Attributes defined in this
way are subclasses of the class System.Attribute . As a naming convention, the names of all attribute
classes should have "Attribute " as a suffix. Thus, an attribute X is defined by a class XAttribute , which
inherits from the class System.Attribute . The attribute usage notation [X(a,b,c)] in front of some C#
construct C causes an instance of class XAttribute , made with the appropriate three-parameter constructor,
to be associated with C. In the attribute usage notation [X(a,b,c,d=e)] d refers to a property of class
XAttribute . The property d must be read-write (both gettable and settable), see Section 18.5. Thus, as it
appears, an attribute accepts both positional parameters and keyword parameters.

Below, in Program 39.9 we have reproduced the class behind the Obsolete attribute. You should notice the
three different constructors and the read/write property IsError . The attribute AttributeUsage attribute in
5-6 illustrates how attributes help define attributes. AttributeUsage define the constructs to which it
possible to associate the MyObsolete attribute. The expression AttributeTargets.Method |

AttributeTargets.Property denotes two values in the combined enumeration type AttributeTargets
which carries a so-called flag attribute. Combined enumerations are discussed in Focus box 6.3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// In part, reproduced from the book "C# to the Poi nt"

using System;

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property)]
public sealed class MyObsoleteAttribute: Attribute {
 string message;
 bool isError;

 public string Message{
 get {
 return message;
 }
 }

 public bool IsError {
 get {
 return isError;
 }
 set {
 isError = value;
 }
 }

 public MyObsoleteAttribute() {
 message = ""; isError = false;
 }

 368

30
31
32
33
34
35
36
37
38

 public MyObsoleteAttribute(string msg) {
 message = msg; isError = false;
 }

 public MyObsoleteAttribute(string msg, bool error) {
 message = msg; isError = error;
 }

}

 Program 39.9 A reproduction of class ObsoleteAttribute.

In Program 39.10 we show a sample use of the attribute programmed in Program 39.9. The program does not
compile because we attempt to associate the MyObsolete attribute to a class in line 3. As explained above,
we have restricted MyObsolete to be connected with only methods and properties.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

[MyObsolete("Use class D instead")]
class C{
 // ...
}

class D{
 [MyObsolete("Do not call this method.",IsError=true)]
 public void M(){
 }
}

class E{
 public static void Main(){
 C c = new C();
 D d = new D();
 d.M();
 }
}

 Program 39.10 Sample usage of the reproduced class - causes
a compilation error.

 369

40. Patterns and Techniques

In relation to streams, which we discussed in Chapter 37 in the beginning of the IO lecture, it is relevant to
bring up the Decorator design pattern. Therefore we conclude the IO lecture with a discussion of Decorator.

40.1. The Decorator Pattern
Lecture 10 - slide 38

It is often necessary to extend an object of class C with extra capabilities. As an example, the Draw method of
a Triangle class can be extended with the traditional angle and edge annotations for equally sized angles or
edges. The typical way to solve the problem is to define a subclass of class C that extends C in the appropriate
way. In this section we are primarily concerned with extensions of class C that do not affect the client
interface of C. Therefore, the extensions we have in mind behave like specializations (see Chapter 25). The
extensions we will deal with consist of adding additional code to the existing methods of C.

The decorator design pattern allows us to extend a class dynamically, at run-time. Extension by use of
inheritance, as discussed above, is static because it takes place at compile-time. The main idea behind
Decorator is a chain of objects, along the line illustrated in Figure 40.1. A message from Client to an
instance of ConcreteComponent is passed through two instances of ConcreteDecorator by means of
delegation. In order to arrange such delegation, a ConcreteDecorator and a ConcreteComponent should
implement a common interface. This is important because a ConcreteDecorator is used as a stand in for a
ConcreteComponent . This arrangement can for instance be obtained by the class hierarchy shown in Figure
40.2.

Figure 40.1 Two decorator objects of a ConcreteComponent object

In Figure 40.2 the Decorator s and the ConcreteComponent share a common, abstract superclass called
Component. When a Client operate on a ConcreteComponent it should do so via the type Component. This
facilitates the object organization of Figure 40.1, because a Decorator can act as a stand in for a
ConcreteComponent .

Figure 40.2 A template of the class structure in the Decorator design pattern.

 370

 • Component: Defines the common interface of participants in the Decorator pattern
• Decorator: References another Component to which it delegates responsibilities

The class diagram of Decorator is similar to Composite, see Section 32.1. In Figure 40.2 a Decorator is
intended to aggregate (reference) a single Component. In Figure 32.1 a Composite typically aggregate two or
more Components . Thus, a Composite typically gives rise to trees, whereas a Decorator gives rise to a linear
lists.

Decorator objects can be added and chained at run-time. A Client accesses the outer Component (typically
a ConcreteDecorator), which delegates part of the work to another Component. While passing, it does part
of the work itself.

 Use of Decorator can be seen as a dynamic alternative to static subclassing

40.2. The Decorator Pattern and Streams
Lecture 10 - slide 40

The Decorator discussion above in Section 40.1 was abstract and general. It is not obvious how it relates to
streams and IO. We will now introduce the stream decorators that drive our interest in the pattern. The
following summarizes the stream classes that are involved.

 We build a compressed stream on a buffered stream on a file stream

The compressed stream decorates the buffered stream

The buffered stream decorates the file stream

The idea behind the decoration of class FileStream (see Section 37.4) is to supply additional properties of
the stream. The additional properties in our example are buffering and compression. Buffering may result in
better performance because many read and write operations do not need to touch the harddisk as such. Use of
compression means that the files become smaller. (Notice that class FileStream already apply buffering
itself, and as such the buffer decoration is more of illustrative nature than of practical value).

Figure 40.3 corresponds to Figure 40.1. Thus, Figure 40.3 shows objects, not classes. A FileStream object
is decorated with buffering and compression. A Client program is able to operate on GZipStream (a
compressed stream) as if it was a FileStream .

Figure 40.3 Compression and buffering decoration of a FileStream

 371

In Program 40.1 we read a FileStream into a buffer of type byte[] . This is done in line 11-16. In line 18-27
we establish the decorated FileStream (see the purple parts). In line 27 we write the buffer to the decorated
stream. In line 29-32 we compare the size of the original file and the compressed file. We see the effect in
Listing 40.2 when the program is applied on its own source file.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

using System;
using System.IO;
using System.IO.Compression;

public class CompressProg{

 public static void Main(string[] args){
 byte[] buffer;
 long originalLength;

 // Read a file, arg[0], into buffer
 using(Stream infile = new FileStream(args[0], F ileMode.Open)){
 buffer = new byte[infile.Length];
 infile.Read(buffer, 0, buffer.Length);
 originalLength = infile.Length;
 }

 // Compress buffer to a GZipStream
 Stream compressedzipStream =
 new GZipStream(
 new BufferedStream(
 new FileStream(
 args[1], FileMode.Create),
 128),
 CompressionMode.Compress) ;
 compressedzipStream.Write(buffer, 0, buffer.Length) ;
 compressedzipStream.Close();

 // Report compression rate:
 Console.WriteLine("CompressionRate: {0}/{1}",
 MeasureFileLength(args[1]),
 originalLength);

 }

 public static long MeasureFileLength(string fileN ame){
 using(Stream infile = new FileStream(fileName, FileMode.Open))
 return infile.Length;
 }

}

 Program 40.1 A program that compresses a file.
1
2

> compress compress.cs out
CompressionRate: 545/1126

 Listing 40.2 Sample application together with program output
(compression rate).

When Program 40.1 is executed, a compressed file is written. In Program 40.3 we show how to read this file
back again. In line 11-17 we set up the decorated stream, very similar to Program 40.1. In line 21-28 we read
the compressed file into the buffer, and finally in line 32-35 we write the buffer back to an uncompressed file.

 372

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

using System;
using System.IO;
using System.IO.Compression;

public class CompressProg{

 public static void Main(string[] args){
 byte[] buffer;
 const int LargeEnough = 10000;

 Stream compressedzipStream =
 new GZipStream(
 new BufferedStream(
 new FileStream(
 args[0], FileMode.Open),
 128),
 CompressionMode.Decompress) ;

 buffer = new byte[LargeEnough];

 // Read and decompress the compressed stream:
 int bytesRead = 0,
 bufferPtr = 0;
 do{
 // Read chunks of 10 bytes per call of Read:
 bytesRead = compressedzipStream.Read(buffer, bufferPtr, 10) ;
 if (bytesRead != 0) bufferPtr += bytesRead;
 } while (bytesRead != 0);

 compressedzipStream.Close();

 // Write contens of buffer to the output file
 using(Stream outfile = new FileStream(args[1], File Mode.Create)){
 outfile.Write(buffer, 0, bufferPtr);
 }
 }

}

 Program 40.3 The corresponding program that decompresses
the file.

With this we are done with the IO lecture.

