1. From structured programming to object-oriented
programming

We will assume that the reader of this materialdmase knowledge of imperative programming, and ttinet
reader already has been exposed to the ideasiofisd programming. More specifically, we will asse
that the reader has some background in C programnmirChapter 6 (corresponding to the second leatfir
the course) we summarize the relationships betWeand C#.

1.1. Structured Programming

Lecture 1 - slide 2

We approach object-oriented programming by revigvire dominating programming approach prior to
object-oriented programming. It is callstfuctured programmingA brief background on structured
programming, imperative programming, and - moreegalty - different schools of programming is prosad
in Focus box 1.1. | will recommend that you reaa \tikipedia article about structured programmingkw
str-pro]. It captures, very nicely, the essencthefideas.

Structured programmingelies on use of high-level control structuredend of low-level
jumping

Structured programming is also loosely coupled wagirdown programmingndprogram
development by stepwise refinement

Structured programming covers several, loosely lsalileas. As summarized above, one of these isdhe
of control structures (such as if, switch/case |Jevaind for) instead of gotos.

Use of relatively small procedures is another idewell-structured program should devote a single
procedure to the solution of a single problem. 3pléting of problems in subproblems should beaettd

by breaking down a single procedure into a numberacedures. The idea pfogram development by
stepwise refinemeififVirth71] advocates that this is done in a top-ddashion. The items below summarize
the way it is done.

- Start by writing the main program
« Use selective and iterative control structures
» Postulate and call procedures P1, ...,Pn
« Implement P1, ... Pn, and in turn the procedureg thake use of
« Eventually, the procedures become so simple tlegt¢an be implemented without introducing
additional procedures

Only few programmers are radical with respect izdown structured programming. In the practicallaor
it is probably much more typical to start somewtliarie middle, and then both work towards theaog
towards the bottom.

| mper ative programming, Structured programming, and Programming FOCUS BOX
paradigms. 1.1

Imperative programmings one of the four maiprogramming paradigmsThe others are functional
programming, object-oriented programming, and Iggimgramming.

Imperative programming is closely related to the Weav-level machine languages work: Commands arz
used to change the values of locations in the mgwiothe computer. In high-level languages, this is

achieved by use afssignment statementshich is used to change the values of variales.assignment
statement is therefore the archetypical commaiichfrerative programming. Control structures (seqaent
selection, and iteration) come on top of that tbhgetvith procedural abstractions.

Programming done in the early years of the compguia (before the introduction of Algol) is oftdmotight
of as "unstructured programming”. Unstructured paiogning is largely characterized by use of "jumping
around" by means @oto commands. The introduction idfandwhile control structures together with
procedures eliminated the need for gotos. Thisbeashown theoretically, but - more important 4$oa
holds true in the practical world of imperative gramming. Armed with the common control structuiés
andwhile, for instance) and procedural abstraction, venyfeogrammers are tempted to usgoto
statement in the programs they write. Such progriagmvithout use of goto statements, is often chlle
structured programming

1.2. A structured program: Hangman

Lecture 1 - slide 3

In order to be concrete we will look at parts @ @arogram. The program implements a simple and
rudimentary version of the well-known Hangman gawe. will pretend that the program has been
developed according to the structured programniegs described in Section 1.1.

The main Hangman programain , is shown in Program 1.1. The fragments showpuirple are postulated
(in the sense discussed in Section 1.1). l.e., dneyalled, but not yet defined at the callingetimhe
postulated procedures are meant to be defineditatee program development process. Some of threm a
shown below.

int main(void){
char *playerName;
answer again;

playerName = get Pl ayer Name();
i ni t Hangman();
dof
pl ayHangnman(playerName);
again = askUser ("Do you want to play again®);
} while (again == yes);

}

Program 1.1 The main function of the Hangman
program.

The functiongetPlayerName is intended to prompt the Hangman player for hisey name. As it appears in
Program 1.2 this function only uses functions fiitne C standard library. Therefore there are no esighd
parts ingetPlayerName

char *getPlayerName(){
char *playerName = (char*)malloc(NAME_MAX);

printf("What is your name? ");
fgets(playerName, NAME_MAX, stdin);
playerName[strlen(playerName)-1] = "\0";
return playerName;

Program 1.2 The function getPlayerName of me

The functioninitHangman calls an additional initialization function callettPuzzles , which reads a
puzzle from a text file. We will here assume tlas$ function does not give rise to additional refirent. We
do not show the implementationiaifPuzzles

void initHangman (void){
srand(time(NULL));
i ni t Puzzl es("puzzles.txt");

}

Program 1.3 The function initHangman of mai

askUser is a general purpose function, which was calledain in Program 1.1. We show it in Program 1.4
(only on web) and we see that it does not relyduitenal functions.

The functionplayHangman , seen in Program 1.5, is calledrbyin in the outer loop in Program 1.1.
playHangman contains an inner loop which is related to a gimgund of playing. As it appears from
Program 1.playHangman calls a lot of additional functions (all emphasizbut not all of them included
here).

void playHangman (char playerName[]){
int aPuzzleNumber, wonGame;
puzzl e secretPuzzle;
hangmanGaneSt at e gameState;
char playersGuess;

i ni t Gane(playerName, &gameState);
aPuzzleNumber = rand() % numberOfPuzzles();
secretPuzzle = get Puzzl e(aPuzzleNumber);

while ((gameState.numberOfWrongGuesses < N) &&
(gameState.numberOfCorrectGuesses < secret Puzzle.numberOfCharsToGuess)){
ganeSt ati sti cs(gameState, secretPuzzle);
present Puzzl eCut | i ne(secretPuzzle,gameState); printf("\n");
pr esent Rermai ni ngAl phabet (gameState); printf("\n");

if (CHEATING) pr esent Secr et Puzzl e(secretPuzzle);
printf("\n");
playersGuess = get User sCGuess();

clrconsole();
updat eGaneSt at e(&gamesState, secretPuzzle, playersGuess);

ganeSt ati sti cs(gameState, secretPuzzle);

wonGame = wonOr Lost (gameState,secretPuzzle);
handl eH ghscor e(gameState, secretPuzzle, wonGame);
}

Program 1.5 The function playHangman of ma

In Program 1.6 (only on web) and Program 1.7 (@mlyveb), we show two additional functionsiGame
andgetPuzzle , both of which are called islayHangman in Program 1.5.

As already brought up in Section 1.1 many prograrsrde not strictly adhere to structured programming
and top-down refinement when coding the hangmagrpro. Ifyouhave programmed Hangman, or a
similar game, it is an interesting exercise toadfh little on the actual approach that was takeimng your
own development. In Section 4.1 we return to thag#@an example, restructured as an object-oriented
program.

Exercise 1.1. How did you program the Hangman game?

This is an exercise for students who have a paixperience with the development of the Hangman
program, or a similar game.

Recall how you carried out the development of tfugy@mm.
To which degree did you adherettp-down development by stepwise refinefhent

If you did not use this development approach, fhlease try to characterize how you actually did it.

1.3. Observations about Structured Programming

Lecture 1 - slide 4

We will now attempt to summarize some of the weakee of structured programming. This will lead us
towards object-oriented programming.

Structured programming is nthte wrong wayo write programs. Similarly, object-oriented pragming is
not necessarilthe right way Object-oriented programming (OOP) is an altexeagirogram development
technique that often tends to be better if we déthl large programs and if we care about program
reusability.

We make the following observations about structymedjramming:

« Structured programming is narrowly oriented towasolwing one particular problem
« It would be nice if our programming efforts could driented more broadly
« Structured programming is carried out by graduabdeposition of the functionality
« The structures formed by functionality/actions/coharenot the mosstableparts of a
program
« Focusing on data structures instead of controtsira is an alternative approach
« Real systems have no single top - Real systemshianag/ multiple tops [Bertrand Meyer]
« It may therefore be natural to consider alternatieethe top-down approach

Let us briefly comment on each of the observations.

When we write a 'traditional’ structured prograins inost often the case that we have a single @ifn in
mind. This may also be the case when we write gcbbriented program. But with object-oriented
programming it is more common - side by side with tlevelopment of the application - also to foaus o
development of program pieces that can be usedearsed in different contexts.

The next observation deals with 'stable structuvgbat is most stable: the overall control struetof the
program, or the overall data structure of the prot? The former relates to use of various contratttres
and to the flow procedure calls. The latter relt&bedata types and classes (in the sense to besdisd in
Chapter 11). It is often argued that the overalppam data structure changes less frequently tleoverall
program control structure. Therefore, it is prolydi@tter to base the program structure on decorniposif
data types than on procedural decomposition.

The last observation is due to Bertrand Meyer [M88k He claims that "Real systems have no topt .use
take the Hangman program as an example. Eversifikely that we can identify a single top of most
hangman programs (in our programajn of Program 1.1) the major parts of the progranukhbe able to
survive in similar games, for instance in "WheeFoftune". In addition, a high score facility of ftaman
should be applicable in a broad range of gameshigiescore part of the Hangman program may easily
account for half of the total number of sourcediirtHangman, and therefore it is attractive tsesitiin
other similar games. The simple textual, line-ardruser interface could be replaceable by a niexéfe
user graphical user interface. In that way, everstmple Hangman program can easily be seen axjeapn
with no top, or a program with multiple tops.

Readers interested in a good and extended disousfitine road to object-orientation' should reelésted
parts of Bertrand Meyers book 'Object-oriented Bafe Construction' [Meyer88]. The book illustrates
object-oriented programming using the programmamgliage Eiffel, and as such it is not directly majble
to the project of this course. The book is avaddhltwo versions. Either of them can be used. yropinion
'‘Object-oriented Software Construction' is oneheflbest books about object-oriented programming.

1.4. Towards Object-oriented Programming

Lecture 1 - slide 5

We are now turning our interests towards 'the dghjeiented way'. Below we list some of the most
important ideas that we must care about when weerttek transition from structured programming to
object-oriented programming. This discussion isaweral ways, continued in Chapter 2.

« The gap between the problem and the level of thehma:
« Fill the gap bottom up
» Use the data as the basic building blocks
- Data, and relations between data,rame stablgéhan the actions on data
« Bundle data with their natural operations
» Build on the ideas ddibstract datatypes
« Consolidate the programming constructs that endaiesdata (structs/records)
« Concentrate on theoncepts and phenomendich should be handled by the program
« Make use of existing theories of phenomena andepiac
« Form new concepts from existing concepts
« Make use of a programming style that allows usoltapse the programming of objects

Our approach to object-oriented programming isiooet in Chapter 2. Before that, we will clarifyeth
concept of abstract data types.

1.5. Abstract Datatypes

Lecture 1 - slide 10

A data type(or, for short, dypé is a set of values. All the values in a type stnumber of properties. An
abstract data typé a data type where we focus on the possibleatipes on the values in the type, in
contrast to the representation of these values. [€ads to the following definitions.

A datatypeis a set of values with common properties. A ggais a classification of data tha
reflects the intended use of the data in a program.

An abstract datatypés a data type together with a set of operationghe values of the type.
The operations hide and protect the actual reptaten of the data.

In this material, boxes on a dark blue backgrouitd white letters are intended to give preciserdtfins
of concepts.

To strengthen our understanding of abstract daestyADTs) we will show a fewpecificationof well-
known data types: Stacks, natural numbers, andehosl! A specification answers "what questions", not
"how questions". The details are only shown invled version of the material.

1.6. References

[Meyer88] Bertrand MeyeQbject-oriented software constructiddrentice Hall, 1988.

[Wirth71] Niklaus Wirth, "Program Development byeptvise RefinementCommunications of
the ACM Vol. 14, No. 4, April 1971, pp. 221-227.

[Wiki-str-pro] Wikipedia: Structured_programming

http://en.wikipedia.org/wiki/Structured_programming

2. Towards Object-oriented Programming

In this and the following chapter we will graduallgveil important theoretical and conceptual aspett
object-oriented programming. After this, in Chaptere will be more concrete and practical, agaiteims
of the Hangman example.

In this chapter we will deal with a number of dr#fat aspects that lead in the direction of objetrted
programming. We do not attempt to relate thesecspe each other. Thus, in this chapter you will
encounter a number of fragmented observations thath individually and together - bring us towards
object-oriented programming.

2.1. Client, Servers, and Messages

Lecture 1 - slide 7

We will start with message passing in between abj€ane object (often called théent) sends a message
to another object (often called therve)). The client asks for a service. The server wlkide job, and
eventually return an answer to the client.

"Client" and "server" are general role names oéots. When the server receives a message, it ncajed®
forward the message to some subserver (becaumeniothandle the request - solve the problem lf)itée
this way, the server becomes a client of anotheese

We will primarily be concerned with message passihgre the client waits for an answer from the serv
Thus, nothing happens in the client before theesdmas completed its work. This is referred to as
synchronous message passigynchronous message pasdmglso possible. This involves parallel
activities. This is a slightly more advanced topic.

Peter orders a Pizza at AAU Pizza by email.

Via interaction between a number of service pradde pizza is delivered to Peters group room

Below we study an everyday example of messagengpbstween an object (person) who orders a pizza,
and a "Pizza server". The Pizza server relies beraubservers (subcontractors), in our exampléubeher,
the greengrocer, and a transport service. Thugizma crew are customers in other shops, andntiade
use of other services.

Notice that Peter - the hungry guy - is not awdréhe subcontractors. Peter only cares about teefate of
the Pizza server.

In some versions of this material you may intekaadyi play the Pizza scenario in order to find ootvithe
objects cooperate when Peter orders a Pizza. BHmauiso emphasizes that there is always a singlemur
object (at least as long as we deal with synchremoessage passing).

; s Butcher
Peter | | AAU Pizza g

— A
AAU Courier 1| Greengrocer

Figure 2.1 The scenario of pizza ordering. The scenario foswsea number of
objects (persons) who communicate by message passing

Is it reasonable that Peter is idle in the peribtihoe in between pizza ordering and pizza deli?dty
depends on the circumstances. If you wait in tetargant you may actually be left with feelingjaét
waiting'. If Peter orders the Pizza from his groapm, Peter probably prefers to send an asyncheonou
message. In that way he can do some work befongizka arrives. In this mode, we should, however, b
able to handle thimterruptin terms of the actual pizza delivery. Again, tisi more advanced topic.

A client asks for a service at some given service pro\sever).
This may lead the service provider (which now playdient role) to ask for subservices
Clients and servers communicategdagsing messages that return results

Try the accompanying SVG animation

In our model of message passing, it is inhereritrtiessages return a result. Alternatively, we coglel a
model in which the 'the message result' is haniojeal message in the other direction. We have chasen
model, which can be used directly in mainstreaneabpriented programming languages (such as C#).

We will come back to clients and servers in thetexinof the lecture about classes, see Section 10.2
Message passing is taken up in that lecture, set@8€.0.3.

2.2. Responsibilities

Lecture 1 - slide 8

Responsibility - and distribution of responsibilitis important in a network of cooperating objetts
Section 2.1 we studied a network of people andapmakers. The Pizza maker has certain assumptions
about orders from customers. We cannot expectiza maker to respond to an order where the custome
want to buy a car, or a pet. On the other handctiseomer will be unhappy if he or she receivegbpti

(or a chocolate bar) after having ordered a piztzone.

Objects that act as servers manage a certain arabragponsibility

We will talk about theesponsibility of an objeas such. The object is responsible to keep tree dduich it
encapsulates, in good shape. It should not behldedsi bring the object in an inconsistent state.

Theresponsibility of an operatioaf a class/object does also make good sensee Hahder of the message,
which activates an operation fulfills certain (m@)ditions, it is the obligation of the operationdeliver a
result which comply with a certain (post)condition.

The responsibilities of an object, together with thsponsibilities of the operations of the objsbgrpen the
profile of the object, and they provide for a higdegree of cohesion of the object.

« Responsibility
« Of an object, as reflected by the interface it pites to other objects
« Of an operation
« Precondition for activation - proposition aboutneiisites for calling
- Postcondition - proposition about result or effects
- Well-defined responsibilities provide for coherebjects

In Chapter 49 through Chapter 53 we will devoteatire lecture to discussion of responsibilities] aow
to specify the distribution of responsibilities amyoobjects. This will involveontracts which (again) is a
real-world concept - a metaphor - from which cancae gain useful inspiration when we develop saftwa

You should care about the responsibilities of lmiijects and operations

Thedistribution of responsibilitiesvill become a major theme later in the course

2.3. Data-centered modularity

Lecture 1 - slide 9

Message passing is mainly a dynamic (run-time) @spfeobject-oriented programs. Let us now focusion
static aspect: modularity.

Modularity is the property of a computer program that meastine extent to which it has bee

composed out of separate parts called modules péfika]

Non-modular programs (programs written without deposition) are unwieldy. The question we care about
here is the kind of modularity to use together witistract data types. We will identify the followikinds
of modularity:

» Procedural modularity
» Made up of individual procedures or functions
« Relatively fine grained
« Not sufficient for programming in the large
« Boxing modularity
« A wall around arbitrary definitions
« As coarse grained as needed
« Visibility may be controlled - import and export
« Data-centered modularity
« A module built around data that represents a siogiheept

« High degree of cohesion
» Visibility may be controlled
« The module may act as a datatype

Procedural modularity is used in structured prognamgy, e.g. in C programs. It covers both functiand
procedures. Procedural modularity remains to bg wmeportant, independent of programming paradigm!

Boxing modularity (our name of the concept) capguhe module concept known from, e.g. Ada [Ada80]
and Modula-2 [Wirth83]. In C, there are only fewans to deal with boxing modularity. Most C
programmers use the source files for boxing.

Boxing modularity allows us to box a data type #moperations that belong to the type in a modifleen
using data centered modularitie module becomes a type its€hiis is an important observation. Object-
oriented programming is based on data centered lanttgu

Object-oriented programming is based on data-cedterodularity

2.4. Reusability

Lecture 1 - slide 11

Let us now, for a moment, discuss reusability. itlea is that we wish to promote a programming Styde
allows us to use pieces of programs that we, @arsttihave already written, tested, and documented.
Procedure libraries are well-known. Object-orierpeagramming brings us one step further, in theation
of class libraries. Class libraries can - to somgree - be thought of as reusable abstract da¢s.typ

More reuse - Less software to manage

We identity the following reusability challenges:

- Find
« Where is the component, and how do | get it?
« Understand
« What does the component offer, and how does\itifit my own program?

« Modify
« Do I need to adapt the component in order to (eeh?s
¢ Integrate
« How do | actually organize and use the componegstteer with the existing
components?

Finding has been eased a lot the last decade, due tmtirgence of powerful search machines (servers!).
Understandings still a solid challenge. Documentation of realegarts is important. Tools like JavaDoc
(developed as on-line resources by Sun as paneafdva effort) are crucial. We will study integac
documentation of class libraries later in this mateModificationshould be used with great care. It is not a
good idea to find a procedure or a class on therriet, and rewrite it to fit your own needs. Whiee hext

10

version of the program is released you will bergag trouble. A modular modification approach, vihic
separates your contributions from the original dbntions, is needed. In object-oriented prograngnin
inheritance alleviates this problem. The actuadrmtionis relatively well-supported in modern object-
oriented programming languages, because in thegadges we have powerful means to deal with casflic
(such as name clashes) in between reused comp@rehtair own parts of the program.

2.5. Action on objects

Lecture 1 - slide 12

The final aspect that we want to bring up in owddowards object-oriented programming is the mfea
action on objects. Actions should always be tajatesome object. Actions should not appear 'jpshuhe
air'. Bertrand Meyer [Meyer88] has most likely béespired by a famous John F. Kennedy quote when he
formulated the idea in the following way:

Ask not what the system does: Ask what it doejit t
[Bertrand Meyer]

« Actions in general
« Implemented by procedure calls
- Often, but not always, with parameters
» Actions on objects
« Activated via messages
« A message always has a receiving object
« A message is similar to a procedure calls witleast one actual parameter
+ A message activates an operation (a method)
« The receiving object locates the best suited ojerais responder (method
lookup)

The activation of a concrete procedure or funcisatypically more complex than in ordinary impevati
programming. The message is sent to an objectrddeption of the message may cause the objechtorse
for the best suited operation (method) to handeréguest by the message. This process is sometatied
method lookupln some object-oriented language the method Ipgacess is rather complicated.

In the next section we continue our road towardsatoriented programming, by discussing concepts a
phenomena.

2.6. References

[Meyer88] Bertrand MeyelQbject-oriented software constructidPrentice Hall, 198¢
[Wirth83] Wirth, N., Programming in Modula-2third. Springer-Verlag, 1985.
[Ada80] Ada Reference ManudUnited States Department of Defence, July 1980.

11

12

3. Phenomena and Concepts

Metaphors from the real life are important inspimatwhen we program the computer. It is limitingnd in
fact counterproductive - to focus only on the techihcomputer concepts (bits, bytes, CPUs, memamds;
USB ports, etc). According to my favorite dictiopgthe American Heritage Dictionary of the English
Language) a metaphor is

"a figure of speech in which a word or phrase @rdinarily designates one thing is used to
designate another, thus making an implicit compatrfs

Many familiar programming concepts are not fromteehnical world of computers. Quite a few, suclngs
float, and double come directly from mathematicalrderparts. Messages and message passing, which we
discussed in Section 2.1, are widely known fromexearyday life. Even before email was invented pteo
communicated by means of messages (Morse codegrdeis, postal mail letters).

It turns out that the ideas of classes and obggets in part - inspired from the theory of concapd
phenomena. We will unveil this in the following §ens. Be warned that our coverage is brief andeeh
may very well be the case that it takes time far @digest some of the ideas and concept thatrevgang
to present.

3.1. Phenomena and Concepts

Lecture 1 - slide 14

A phenomenors a thing that has definite, individual existemnteeality or in the mind.
Anything real in itself.

A conceptis a generalized idea of a collection of phenombaaed on knowledge of commo
properties of instances in the collection

The definitions of phenomenon and concept are téoem the PhD thesis of Jgrgen Lindskov Knudsen and
Kristine Stougaard Thomsen, Aarhus University [#t]. This thesis is also the source behind Se@&ign
Section 3.4.

The characteristic aspects of a concept are thenfinig:

» The concept name

« Theintension: The collection of properties that characterizeghenomena in the extension of
the concept

« Theextension: The collection of phenomena that is covered byctreept

The name of the concept is also calleddbsignation The designation may cover a number of different
names, under which the concept is known.

The wordintensionis used in the less well-known meaning (from Ipdibe sum of the attributes contained
in a term" (see for instance the American HeritBggionary of the English Language).

13

The wordextensioris used in the meaning (again from logic): "Thessl of objects designated by a specific
term or concept” (according the same dictionarg) cBreful not to confuse this meaningegfensiorwith
the more common meaning of the word, used for m&tan Chapter 26 for extension of classes.

Concepts can be viewed in two different ways: Thistdtelian and the fuzzy way.

Using theAristotelian viewthe properties in the intension are divided ihefining propertieand
characteristic propertiestach phenomenon of a concept must possess tnendedroperties. It is assumed
that it is objectively determinable if a given pberenon belongs to an Aristotelian concept.

Using thefuzzy viewthe properties in the intension are only exampfgsossible properties. In addition to
the example properties, the intension is also cheariaed by a set of prototypical phenomena. tois
objectively determinable if a given phenomenon bg#oto a fuzzy concept.

We will primarily make use of the Aristotelian viemn concepts. The relative sharp borderline between
different concepts is attractive when we use cotscap the basis for the classes that we program in
object-oriented programming language. Many sucbsela represental-life conceptssimply because many
of our programs administrate things from the reatlék It is, however, also common to make use of
imaginary conceptsvhich have no real-life counterparts (such, asrfstance, a hashtable).

3.2. Classification and exemplification

Lecture 1 - slide 15

To classifyis to form a concept that covers a collectioniwfilar phenomens

To exemplifyis to focus on a phenomenon in the extensionettmncept

Classification and exemplification describe a fetabetween concepts and phenomena.

Classification forms a concept from a set of phemean Thentensionof the concept is the (defining)
properties that are shared by the set of phenoif@eearding to the Aristotelian view).

Exemplification is the inverse of classificatiorhus, the exemplification of a concept is a subkti®
extension of the concept.

= Concept

Classiffcation Exemplification
Phenomenan-=

Figure 3.1 The relationships between concepts and phenomewan @iconcept
we can identify the examples of phenomena in tlemgixin of the concept. Given
such an example, we can (the other way around) fiactoncept that classifies
the sample phenomenon.

14

3.3. Aggregation and Decomposition

Lecture 1 - slide 16

In this and the following section we will see wagdorm new concepts from existing concepts. First,
look at concepts related to 'parts' and 'wholes'.

To aggregates to form a concept that covers a number of

To decomposés to split a concept into a number of parts

The concept of a house is an aggregation of (&iamce) of the concepts wall, window, door, and.rbbe
latter are the decomposition of the house concept.

The intension of the aggregated concept correspionii® intensions of the part concepts. But, meo
casesthe whole is more than the sum of its paftsus, the aggregated concept may have additional
properties as well.

Concept Concept
ix,

Aggmgarhh . Deco#'rposfrionu
Concept Concept Concept Concept Concept Concept

Figure 3.2 An illustration of aggregation and decompositiomtie that the
relations between wholes and parts are in betweeneqs. Thus, aggregation
and decomposition show how to form new conceptsésasting concepts.

In Figure 3.3 we show an example, namely the aggi@yof a bike. Notice that we do not address the
number of parts of the aggregated concept (nomalities). Following the tradition of UML notatiomnje
use a diamond shape next to the aggregated compte, however, that it is not our intention &ewexact
UML notation in this material. We will primarily beoncerned with programming notation, as defined
(precisely) by a programming language.

4 Bike @
$
Frame -+ Wheel l# Hand brake
)

Gear Break spoke

Figure 3.3 An aggregation of a Bike in terms of Frame, WhBedke, etc. This
illustration does not capture the number of invdlyarts. Thus, the diagram does
not capture the number of spokes per wheel, anduh#er of wheels per bike.
The diamond shape is UML notation for aggregation.

15

Exercise 1.2. Aggregated Concepts

Take a look at the concepts which are representeldebphenomena in the room where you are located.
Identify at least four aggregated concepts. Enuteehe concepts of the decomposition.

3.4. Generalization and Specialization

Lecture 1 - slide 18

Generalizatiorforms a broader concept from a narrow co

Specializatiorforms a narrow concept from a broader con

Generalization and specialization are seen as teapsm a new concept from an existing concept. The
extension of a specialization S is a subset oé#tension of the generalization G.

It is more difficult to capture specialization ageneralization in terms of the intensions.
The concepts of Encyclopedia, Bible, and Dictioreng all specializations of the Book concept.

Encyclopedia, Bibles and Dictionaries are all stdve€Books. It may be the case that the set of
encyclopedia and the set of dictionaries are oppitay.

Broader Concept Broader Concept
i
Generalization Specialization
Y
Marrow Concept Marrow Concept

Figure 3.4 An illustration of generalization and specializatio

Below, in Figure 3.5 we show a generalization/sgléztion hierarchy of transportation concepts.Heac
parent in the tree is a generalization of its sons.

Means of Transport
-
Car Boat Alrplane
v v e
Truck Bus || Ferry 5all Boat | | Glider P‘assenggijet Flane

Airbus A3B0) [Baing 747

Figure 3.5 A generalization/specialization hierarchy of 'MeanisTransport'. All
the concepts in this diagram are specialized meditiansport. Notice that all the
nodes in the specialization trees are conceptd inaividual phenomena.

16

The ideas of generalization and specialization ajeamcepts are directly reflected in generalizatiod
specialization among classes (see Chapter 25)aead by inheritance in object-oriented programgmi
languages.

Exercise 1.3. Concepts and Phenomena
The purpose of this exercise is to train your @ibgito distinguish between concepts and phenomena.
Decide in each of the following cases if the mamgithitem is a concept or a phenomena:

1. The door used to enter this room.

2. Todays issue of your favorite newspaper.

3. Your copy of today's issue of your favorite newsgap
4. The collection of all copies of today's newpapers

5. Denmark.

6. European country.

7. Theinteger 7.

8. The set of integers between 1 and 10.

9. The set of all students who attend this course.

10. The oldest student who attend this course.

For an item considered as a phenomenon, idengfytiderlying concept.

Exercise 1.4. University Concepts

In a university study, the study activities arealljustructured in a number of semesters. Theréveoe
kinds of study activitities: projects and cours&isAalborg University, there are currently two kedf
courses: Study courses (dk: studieenhedskurseprajett courses (dk: projektenhedskurser).

Characterize the conceptswofiversity studystudy activitysemesterproject, course study coursgand
project courseaelative to Aggregation/Decomposition and Geneagidbn/Specialization.

3.5. References

[JIk-Kkst] A Conceptual Framework for Programminghbaages: Jargen Lindskov Knudsen
and Kristine Stougaard Thomsen, Department of Coengicience, Aarhus
Universitet, PB-192, April 1985.

17

18

4. Towards Object-oriented Programs

Below we will return to the example of the Hangngame, which we studied as a structured program in
Section 1.2.

4.1. An object-oriented program: Hangman

Lecture 1 - slide 21

In Figure 4.1 we show a class diagram of our olpeieinted version of the Hangman game.

The clas®uzzle encapsulates the data of a single puzzle (thg@atand the word phrase). The class also
offers an interface through which these informagioan be accessed.

The clas$uzzleCollection represents a number of puzzles. It is connectéktéile system (or a database)
where we keep the collection of puzzles while daying a game. How this 'persistency' is actuadigdied
is ignored for now.

Similar observations can be done fiighscoreEntry andHighscoreList

The classiangmanGameencapsulates the state of a single (round ofttheyman game. It has associations to
a player and a secret puzzle, and to the collextidpuzzles and highscore entries. We do not in
HangmanGamewant to commit ourselves to any particular us@rface. Thus, the actual user interface of the
game is not part of theangmanGameclass.

:__Fll;uam;- L -._'_l.laarimu-l';n; y
o #HangmanGamee o
Y
PuzzleCollection HighscoreList Player
Puzzle HighscoreEntry

Figure 4.1 The classes of a Hangman program. At the left el we see that
PuzzleCollection is formed by Puzzle parts. SinyilgHe HighscoreList is formed
by HighScoreEntry parts. The HangManGame claswifiéd by three parts:
PuzzleCollection, HighScoreList, and Player. Both $iystem and user interface
aspects are "cloudy" in this diagram.

Below we show sketches of the individual classébéngame. The classes and all the operations anesth
as abstract, because the operations of the class@®t implemented, and because the current OGkre
of the Hangman game is written at a very high levelbstraction. The concatenation of all clasees i
Program 4.1 - Program 4.5 can actually be compili¢ll a C# compiler. Abstract classes are discussed
Chapter 30.

The operation interfaces of the classes are mobipty not yet complete, but they are complete ghda
let you have an impression of the object-orientedyamming approach.

abstract class Puzzle {

19

public abstract string Category{
get;
}

public abstract string PuzzlePhrase{
get;
}

public abstract int NumberOfCharsToGuess();

Program 4.1 The class Puzzl

Given that Program 4.1 - Program 4.6 contain soymadastract operations we will touch a little bitvwhat
this means. It is not intended that you shouldi¢le details of abstract classes here, howevés.igthe
topic of Section 30.1. As noticed above, the absttass shown in Program 4.1 can actually be cleahpi
with a C# compiler. But it is clear that the claasinot be instantiated (no objects can be madis). It
necessary to create a subclasBuatle in which we give the details of the abstract opens (methods and
properties). Subclassing and inheritance will lsewsed in Chapter 25 and subsequent chapteh In t
subclass oPuzzle we need to supply puzzle data representationlgletai

abstract class HighScoreEntry {

public abstract Player Player {
get;
}

public abstract int Score{
get;
}
}

Program 4.2 The class HighScoreEntr

Let us make a technical remark related to progrargraf abstract classes in C#. It is hecessary i alh
operations (methods and properties) without boageabstract'. When a class contains at leasthstmat
operation, the class itself must also be markegbagact. It is not sufficient to use the abstractlifier on

the class.

abstract class Player {

public abstract string Name{
get;
}

}

Program 4.3 The class Playel

abstract class PuzzleCollection {

public abstract string Count{
get;
}

public abstract Puzzle this[int iJ{
get;
}

public abstract void Add(Puzzle p);

20

Program 4.4 The class PuzzleCollectic
abstract class HighScorelList {
/* Invariant: Entries always sorted */
public abstract void Open(string FileName);
public abstract string Count{

get;
}

public abstract HighScoreEntry this[int iJ{
get;
}

public abstract void Add(HighScoreEntry e);

public abstract void Close();

Program 4.5 The class HighScoreLis

The classiangmanGamein Program 4.6 (only on web) shows an outlineopflievel class, cf. Figure 4.1. The
operations in this class are intended to be cdliexttly or indirectly by thetain method (not shown).

21

22

