25. Specialization of Classes

In this section the topic isheritance. Inheritance represents an organization of classesich one class,
say B, is defined on top of another class, saylAs€B inherits the members of class A, and intextdB
can define its own members.

Use of inheritance makes it possible ¢ase the data and operations of a class A in severahlied
subclasses, such as B, C, and D, without coping these datieogerations in the source code. Thus, if we
modify class A we have also implicitly modified 8,and D.

There are several different views and understaisdifignheritance, most dominantly specializatiod an
extension. But also words such as subtyping andasging are used. We start our coverage by stgdie
idea of specialization.

25.1. Specialization of Classes

Lecture 7 - slide 2

The idea of specialization was introduced in Sec8e when we studied concepts and phenomena. In
Section 3.4 we defined a specialization as a marm®w concept than its generalization. We willthis
chapter, use the inspiration from specializatiooarfcepts to introduce specialization of classes.

Classes are regardedtggses, and specializations aabtypes

Specialization facilitates definition of new clas$sem existing classes on a sound conceptual
basis

With specialization we nominate a subset of theatsjin a type as a subtype. The objects in theetave
chosen such that they have "something in commaoypically, the objects in the subset are constrained
certain way that set them apart from the surroumdet of objects.

We often illustrate the generalization/specialatielationship between classes or types in agiraet
structure. See Figure 25.1. The arrow from B to&ans thaB is a specialization of A . Later we will use
the same notation for the extended understandatd@timherits from A.

A

|

Figure 25.1 Theclass B isa specialization of class A

Below - in the dark blue definition box - we givelaghtly more realistic and concrete definition of
specialization. The idea of subsetting is refleatethe first element of the definition. The secabeiment is,
in reality a consequence of the subsetting. Theelasnent stresses that some operations in théafipation
can be redefined to take advantage of the propaha unite the objects/values in the speciabizati

195

If a class B is apecialization of a class A then

« The instances of B is a subset of the instanceés

» Operations and variables in A are also presen
» Some operations from A may be redefined in §

25.2. The extension of class specialization

Lecture 7 - slide 3

In Section 3.1 we defined the extension of a conasphe collection of phenomena that is coverethby
concept. In this section we will also define #xénsion of a class, namely as the set of objects which are
instances of the class or type.

We will now take a look at the extension of a spled class/type. The subsetting idea from Se@tnt
can now be formulated with reference to the extenef the class.

Theextension of a specialized class B is a subset ofettiension of the generalized class|A

The relationships between the extension of A amadiBbe illustrated as follows, using the well-known
notation ofwenn diagrams.

!/"'"__ -_""'--\\ Extfe Fﬁﬁ_ﬂﬁ-u\
F. N e Y
| Baensionof A | — ((Exl;enslun of B) f'l
" d N———

-. e — o

Figure 25.2 The extension of a class A is narrowed when the classis specialized
toB

Let us now introduce the-a relation between the two classes A and B:

- A B-object isan A-object
« There is das-arelation between class A and B

Theis-arelation characterizes specialization. We may dgenulate an "is-a test" that tests if B is a
specialization of A. Thés-a relation can be seen as contrast tohdmea relation, which is connected to
aggregation, see Section 3.3.

Theis-a relation forms a contrast to thas-a relatior
Theis-arelation characterizespecialization

Thehas-a relation characterizesygregation

196

We will be more concrete with the-a relation and thés-a test when we encounter examples in the
forthcoming sections.

25.3. Example: Bank Accounts

Lecture 7 - slide 4

In Figure 25.3 we give three classes that speei#iiie clas§ankAccount .

BankAccount

L
CheckAccount SavingsAccount LotteryAccount

Figure 25.3 A specialization hierarchy of bank accounts

Theis-a test confirms that there is a generalization-spieition relationship betwe@ankAccount and
CheckAccount: The statementCheckAccount IS aBankAccount " captures - very satisfactory - the
relationships between the two classes. The statelBatkAccount iS aCheckAccount " is not correct,
because we can imagine bank accounts which arelatéd to checks at all.

As a contrast, thhas-a test fails: It is against our intuition that aeckAccount has aBankAccount .
Similarly, it is not the case thabankAccount has acheckAccount ". Thus, the relationship between the
classe®ankAccount andCheckAccount iS not connected to aggregation/decomposition.

In Figure 25.4 we show a possible constellatioax@énsions of the bank account classes. As hintduki
illustration, the specialized bank accounts oveiteguch a way that there can exist a bank acoshith is
both acheckAccount , aSavingsAccount , and al.otteryAccount . An overlapping like in Figure 25.4 is the
prerequisite for (conceptually sound) multiple sakzation, see Section 27.5.

___—BankAcoount —__
" 5 : T
SavingsAccount
I
Chukﬁmuhtomwﬁnmunt I
\\ //

Figure 25.4 Possible extensions of the bank account classes

25.4. Example: Bank Accounts in C#

Lecture 7 - slide 5

In this section we show some concrete C# bank atadasses, corresponding to the classes introduaced
Figure 25.3.

197

TheBankAccount class in Program 25.1 is similar to the clasohticed earlier in Program 11.5. We need,
however, to prepare for specialization/inheritaimca couple of ways. We briefly mention these prapans
here. The detailed treatment will be done in thi®fing sections.

First, we use protected instance variables insdéadvate instance variables. This allows theanse
variables to be seen in the specialized bank atatasses. See Section 27.3 for details.

Next, we use the virtual modifier for the metholgttare introduced in claBankAccount . This allows these
methods to be redefined in the specialized ban&atdalasses. See Section 28.9.

using System;
public class BankAccount {

pr ot ect ed double interestRate;
pr ot ect ed string owner;
pr ot ect ed decimal balance;

public BankAccount(string o, decimal b, double i r {
this.interestRate = ir;
this.owner = o;
this.balance = b;

}

public BankAccount(string o, double ir):
this(o, 0.0M, ir) {

public vi rtual decimal Balance {
get {return balance;}

}

public vi rtual void Withdraw (decimal amount) {
balance -= amount;

}

public vi rtual void Deposit (decimal amount) {
balance += amount;

}

public vi rtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public over ri de string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 25.1 The base class BankAccount.

ThecCheckAccount class shown in Program 25.2 redefines (overrittesyithdraw method. This gives a
special meaning to money withdrawal frorar&ckAccount object. The methotosString is is also
redefined (overridden) in classeckAccount , in the same way as it was overridden in ckagg&Account
relative to its superclasefject), see Program 25.1. Notice also the two constrsi@bclasscheckAccount .
They both delegate the construction worlB&ekAccount constructors via thiease keyword. See Section
28.4 for details on constructors. This is similathte delegation from one constructor to anothénénsame
class, by use afhi s, as discussed in Section 12.4.

198

using System;
public class CheckAccount : BankAccount {

public CheckAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public CheckAccount(string o, decimal b, double ir):
base(o, b, ir) {
}

public over ri de void Withdraw (decimal amount) {
balance -= amount;
if (@mount < balance)
interestRate = -0.10;
}

public overri de string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 25.2 The class CheckAccount.

The classsavingsAccount follow the same pattern as cla@sckAccount . Notice that we also in class
SavingsAccount redefine (override) theddinterests ~ method.

using System;
public class SavingsAccount : BankAccount {

public SavingsAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public SavingsAccount(string o, decimal b, doubl eir):
base(o, b, ir) {
}

public over ri de void Withdraw (decimal amount) {
if (amount < balance)
balance -= amount;
else
throw new Exception("Cannot withdraw");

}
public over ri de void AddInterests() {
balance = balance + balance * (decimal)intere stRate
- 100.0M;
}

public overri de string ToString() {
return owner + "'s savings account holds " +
+ balance + " kroner";

Program 25.3 The class SavingsAccount.

199

In the classotteryAccount the methodhddinterests is redefined (overridden). The idea behind a igtte
account is that a few lucky accounts get a subatarhount of interests, whereas the majority ef th
accounts get no interests at all. This is providedy the private instance varialbbgery , which refers to
alLottery object. In the web-version of the material we slaoglefinition of theottery class, which we
program as &ingleton.

using System;
public class LotteryAccount : BankAccount {
private static Lottery lottery = Lottery.Instan ce(20);

public LotteryAccount(string o, decimal b):
base(o, b, 0.0) {
}

public overri de void AddInterests() {
int luckyNumber = lottery.DrawLotteryNumber;
balance = balance + lottery. AmountWon(luckyNu mber);

}

public overri de string ToString() {
return owner + "'s lottery account holds " +
+ balance + " kroner";

Program 25.4 The class LotteryAccount.

25.5. Example: Geometric Shapes

Lecture 7 - slide 6

In this section we show another example of speeitiin. The tree in Figure 25.5 illustrates a nundfe
specializations of polygons. In the left branchhaf tree we see the traditional and complete hibyanf
triangle types. In the right branch we show thetmmaportant specializations of quadrangles. Trapkzare
assumed to have exactly one pair of parallel simed,as such trapezoids and parallelograms awardisj

Polygon
-
Triangle Cuadrangle
v Fud
Isoaceles Triangls Right Triangle Farallelogram Trapazeid
o~ L &
Equilareral Trianghs Bosceles Right Triangls Rectangle

Sguare
Figure 25.5 A specialization hierarchy of polygons

The polygon type hierarchy is a typical special@ahierarchy, because it fully complies with trefidition
of specialization from Section 25.1. The subsetti@hship is easy to verify. All operations defirsddhe
polygon level are also available and meaningfulhenspecialized levels. In addition it makes sdase
redefine many of the operations to obtain more tedformula behind the calculations.

200

Overall, the deeper we come in the hierarchy, tbeernonstraints apply. This is a typical charasteriof a
real and pure generalization/specialization classalchy.

25.6. Specialization of classes

Lecture 7 - slide 7

We will now summarize the idea of class specialiratObjects of specialized classes

- fulfill stronger conditions (constraints) than offfe of generalized classes
« obey strongeclassinvariants
- have simpler and more accurate operations thartstpé generalized classes

Specialization of classes in pure form do not ossuy often.

Specialization in combination with extension is tmuaore typical.

As noticed in Section 25.4 the hierarchy of polyg@real and pure example of specialization hidmar

The bank account hierarchy in Figure 25.3 is ngiwae as the polygon hierarchy. The bank account
hierarchy is - in the starting point - a specidlma hierarchy, but the specialized classes amito be
extended with operations, which do not make sem$igeiBankAccount class. Class extension is the topic in
Chapter 26.

25.7. The Principle of Substitution

Lecture 7 - slide 8

The principle of substitution is described by TimpBudd in section 8.3 of in his boék Introduction to
Object-oriented Programming [Budd02]. The principle of substitution descrilasideal, which not always
is in harmony with our practical and everyday pemgming experience. This corresponds to our observat
that pure specialization only rarely is found inlffe programs.

If B is a subclass of A, it is possible to subsétan given instance of B in place of an instarfg

A without observable effect

As an example, consider the class hierarchy ofgmolg in Figure 25.5. Imagine that we have the ¥alhg
scene:

Polygon p = new Polygon(...);
RightTriangle tr = new RightTriangle(...);
/* Rest of program */

It is now possible to substitute the polygon objeith the triangle object in the "rest of the pragr’. This is

possible because the triangle possesses all tleeajgmoperties (area, circumference, etc) of tiggon. At
least, the compiler will not complain, and the axaw program will not halt. Notice, however, thiaé¢

201

substitution is only neutral to the actual mearohthe execution program if the replaced polygaiualty
happens to be the appropriate right triangle!

Notice that the opposite substitution does not gbn@ork. Thus, we cannot substitute a triangle with
general polygon (for instance a square). Most iogrwould break immediately if that was attempidu:
reason is that a square does not, in general, goHse same properties as a triangle.

The ideas behind the principle of substitutionratated to virtual methods (Section 28.14) andytwaghic
binding (Section 28.11).

25.8. References

[Budd02] Timothy BuddAn Introduction to Object-Oriented Programming, third edition.
Pearson. Addison Wesley, 2002.

202

26. Extension of Classes

Extension of classes is a more pragmatic conceptspecialization of classes. Specialization afsda is
directly based on - and inspired from - specialabdf concepts, as discussed in Section 3.4. Eidarof
classes is a much more practical idea.

In the previous chapter (Chapter 25) we discusgedialization of classes. In this section we disalass

extension. In C# both class specialization andsats$ension will be dealt with by class inheritgrese
Chapter 27.

26.1. Extension of Classes

Lecture 7 - slide 10

Classes can both be regarded as types and modules.

Class extension isfogram transport andprogram reusability mechanism.

As the name suggests, class extension is conceitieddding something to a class. We can add both
variables and operations.

We are not constrained in any way (by ideals otsieation or substitution) so we can in principldd
whatever we want. However, we still want to havieerent and cohesive classes. We want classes tbcuse
on a single idea, where all data and operationseteited to this idea. Our classes should be uséypas for
declaration of variables, and it should make sémseake instances of the classes. Thus, we do ot
treat classes are general purposes modules (settse of boxing modularity, see Section 2.3).

These considerations lead us to the following dkédim of class extension.

If class B is arextension of class A then

+ B may add new variables and operations to A

« Operations and variables in A are also present in B
- B-objects are not necessarily conceptually reltdedl-objecty

26.2. An example of simple extension

Lecture 7 - slide 11

In this section we will look at a typical exampliectass extension, which distinguishes itself from
specialization as seen in Chapter 25.

Below, in Program 26.1 we show the clas®t2D . It is a variant of one theoint types we have studied in

Section 11.6, Section 14.3, and Section 18.2. Hniant programmed below implements mutable points.
This is seen in line 19, which assigns to the sifitePoint object.

203

using System;

public class Point2D {
private double x, y;

public Point2D(double x, double y)}{
this.x = x; this.y = y;
}

public double X{
get {return x;}

public double Y{
get {return y;}

public void Vbv e(double dx, double dy){
X +=dx; y +=dy;
}
public override string ToString(X
return "Point2D: "+ "("+x +","+y +")" +
}
}

Program 26.1 Theclass Paint2D.

In Program 26.2 we extend the classit2D with an extra coordinate, and hereby we get the class
Point3D .

using System;
public class Point3D: Point2D {
private double z;
public Point3D(double x, double y, double z):
base(x,y){

this.z = z;

}

public double Z{
get {return z;}

public void Vbve(double dx, double dy, double dz){
base. Move(dx, dy);

z +=dz;
}
public override string ToStri ng(){

return "Point3D: "+ "("+ X + ", "+ Y + " " +Z+""+"
}

}

Program 26.2 The class Point3D which extends class
Point3d.

Notice thatvove in Point3D does not conflict withvove in Point2D . The reason is that the two methods are
separated by the types of their formal parametédrs.twoMove operations irPoint3D andPoint2D are

204

(statically) overloaded. Thus relative to the disian in Section 28.9 it is not necessary to supphy
modifier of Move in Point3D .

We also show how to useint2D andpoint3D in a client class, see Program 26.3. The outpthietlient
program is shown in Listing 26.4.

using System;
public class Application{

public static void Main(){
Point2D pl = new Point2D(1.1, 2.2),
p2 = new Point2D(3.3, 4.4);

Point3D gl = new Point3D(1.1, 2.2, 3.3),
g2 = new Point3D(4.4, 5.5, 6.6);

p2.Move(1.0, 2.0);

g2.Move(1.0, 2.0, 3.0);
Console.WriteLine("{0} {1}", p1, p2);
Console.WriteLine("{0} {1}", q1, g2);

Program 26.3 A client of the classes Point2D and
Point3d.

Point2D: (1,1, 2,2). Point2D: (4,3, 6,4).
Point3D: (1,1, 2,2, 3,3). Point3D: (5,4, 7,5, 9,6).

Listing 26.4 The output from the Client program.
The important observations about the extensw3D of Point2D can be stated as follows:

« A 3D pointisnot a 2D point

e Thus,Point3D is not a specialization ®%int2D

« The principle of substitution does not apply

« The set of 2D point objects is disjoint from thé @e3D points

The is-a test (see Section 25.2) fails on the ¢laigsD in relation to clasgoint2D . The "has-a test" also
fails. It is not true that a 3 dimensional poinsf@2 dimensional point as one its parts. Justébdke class
Point3D! But - in reality - the "has-a test" is closer tmweess than the "is-a test". Exercise 7.1 resesuame
implementation of classoint3D in terms of &oint2dD part.

It is interesting to wonder if the principle of sibution applies, see Section 25.7. Can we suibstit
instances oboint3D in place of instances @bint2D without observable effects? Due to the indepenglenc
and orthogonality of the three dimensions the fplecof substitution is almost applicable. But th&e
operation, as redefined in clamsnt3aD , causes problems. Tivave operation in clasBoint2D does an
incomplete move when applied on a 3D point. Anda@ticed,Move in classPoint3D is hot a redefinition of
Move from classPoint2D . There are two differemtove operations available on an instance of class3D .
This is a mess!

In the last item it is stated that extensions Geetion 3.1) of clagsoint2D and clas®oint3D are disjoint
(non-overlapping). Conceptually, there is no oyetlatween the set of two-dimensional points andétef

205

three-dimensional points! This is probably - inuashell - the best in indication of the differermween
the Point2D/Point3D example and - say -ghekAccount examples from Section 25.3 .

The class Point2D was a convenient starting pdittieclassoint3D

We havereused some data and operations from clesst2D in classPoint3D

Exercise 7.1. Point3D: A client or a subclass of Point2D?

The purpose of this exercise is to sharpen youerstanding of the difference betwedeitg a client of
class C" and 'being af subclass of class C".

The clas®oint3aD extendsoint2D by means of inheritance.

As an alternative, the clasint3b may be implemented as a clientrofnt2D . In more practical terms
this means that the claBsint3D has an instance variable of typ®int2D . Now implemeneoint3D as a
client of Point2D - such that a 3D point has a 2D point as a part.

Be sure that the clagsint3D has the same interface as the version of €leéisgD from the course
material.

Evaluate the difference between "being a clientanf"extending” clasoint2D . Which of the solutions
do you prefer?

26.3. The intension of class extensions

Lecture 7 - slide 12
In Section 25.2 we realized that the essentialadtaristics of specialization is the narrowingla# tlass

extension, see Figure 25.2. Above, in Section 28e2ealized the the class extension of an extenldsd
(such asoint3D) typically is disjoint from the class extensiontbé parent class (suchrsnt2D).

In this section we emphasize the similar, clearetwatracteristics of class extension, namely thargament
of the class intension. This is illustrated in Fig@6.1.

Theintension of a class extension B is a superset ofikansion of the original class A

Please be aware of possible confusion relatedrtteominology. We discuss class "extension" in this
section, and we refer to the "intension" and "esitem' (related to concepts, as discussed in Se8tibn
The two meanings of "extension" should be kepttajéey are used with entirely different meanings.

206

- _Antension of B--
a “‘“\x \
(Intension of A | — Intension of A '

~— o

Figure 26.1 Theintension of a class A is blown up when the classis extended to
B

It is, in general, not possible to characterizeetttension of B in relation to thextension of A

Often, theextension of A does not overlap with thextension of B

207

208

27. Inheritance in General

After we have discussed class specialization inp@r&25 and class extension in Chapter 26 we will n
turn our interest towards inheritance. Inheritaisc@ mechanism in an object-oriented programming
language mechanism that supports both class sgetiah and class extension.

This section is about inheritance in general. lithece in C# is the topic of Chapter 28.

27.1. Inheritance

Lecture 7 - slide 14

When a number of classes inherit from each otlotaisa graph is formed. If, for instance, both class B and
C inherit from class A we get the graph structar€igure 27.1. Later in this section, in Sectiord2we
will discuss which class graphs that make sense.

If a class B inherits the variables and operatfoms another class, A, we say that B isubclass of A. Thus,
in Figure 27.1 both B and C are subclasses of . gaid to be auperclass of B and C.

A

B c
Figure 27.1 Two classes B and C that inherit from class A

In the class graph shown in Figure 27.1 the edgesréented from subclasses to superclasses. én oth
words, the arrows in the figure point at the comreoperclass.

In Figure 27.1 the members (variables and opersitioficlass A are also variables in class B andis€as
though the variables and operations were defined explicitly in both class B and C. In addition, class B and C
can define variables and operations of their ovre ihherited members from class A are not necégsari
visible in class B and C, see Section 27.3. Inressanheritance is a mechanisms that brings a auofb
variables and operations from the superclass tsubelasses.

Alternatively, we could copy the variables and apiens from class A and paste them into class Bctass
C. This would, roughly, give the same result, big aipproach is not attractive, and it should asuag
avoided. If we duplicate parts of our program idiificult to maintain the program, because futpregram
modifications must be carried out two or more pta@mth in class A, and in the duplications in lBsand
C). We always go for solutions that avoid such ahaplon of source program fragments.

When we run a program we make instances of ouse$a&, B and C. B and C have some data and
operations that come from A (via inheritance). didiion, B and C have variables and operation$i@if t
own. Despite of this, an instance of class B isgingle object, without any A part and B part. THasan
instance of class B the variables and operationtast A have been merged with the variables and
operations from class B. In an instance of B tlaeeevery few traces left of the fact that classciially
inherits from class A.

The observations from above are summarized belbe .situation described above, and illustrated gufé
27.1

209

« Organizes the classes in a hierarchy

» Provides for some degree of specialization andftansion of A

- At program development timelata and operations of A cantgesed in B and Cwithout
copying and without any duplication in the source program

- At runtime instances of class B and C aaole objects, without A parts

27.2. Interfaces between clients and subclasses

Lecture 7 - slide 15

Theclient interface of a class (say class A in Figure 27.2) is defibgdhe public members. This has been
discussed in Section 11.1. In Figure 27.2 the tli@erface of class A is shown as number

The client interface of a class B (which is a sabslof class A) is extended in comparison withctiest
interface of class A itself. The client interfadectass B basically includes the client interfatelass A, and
some extra definitions given directly in class BeTclient interface of class B is shown as nungier
Figure 27.2.

When inheritance is introduced, there is an addti&ind of interface to take care of, namely thteifaces
between a class and its subclasses. We call futlotass interface. Interface numbe2 in Figure 27.2
consists of all variables and operations in clasghfch are visible and hereby applicable in class B
Similarly, the interface numbereds the interface between class B and its subdasse

1. 3.
ﬂl:||:|
L] e
O
2.
\\
"mm
m
P

Figure 27.2 Interfaces between A, B, their client classes, and their subclasses

1. Theclientinterface of A

2. Thesubclassinterface between A and its subclass B

3. Theclient interface of B

4. Thesubclass interface between B and potential subclasses of B

210

27.3. Visibility and Inheritance

Lecture 7 - slide 16

Most object-oriented programming languages disistgbetween private, protected and public variabtes
operations. Below we provide a general overviewhete kinds of visibility.

« Private
« Visibility limited to the class itself.
« Instances of a given class can see each otheetgdata and operations

e Protected
» Visibility is limited to the class itself and tsisubclasses
« Public

« No visibility limitations

In Section 28.6 we refine the description of th&hility modifiers relative to C#.

27.4. Class hierarchies and Inheritance

Lecture 7 - slide 17

When a number of classes inherit from each otlodgiss graph is defined. Class graphs were intratiurce
Section 27.1. Below we show different shapes dciraphs, and we indicate (by means of color ext)l t
which of them that make sense.

A - - A
v v A
B C B
bl ¥ « A
D E C =
Alwiays OF . Always lllagal

Figure 27.3 Different graph structures among classes

A tree-structured graph, as shown to the left guFé 27.3 makes sense in all object-oriented progriag
languages. In Java and C# we can only construestrectured class graphs. This is catiedle-
inheritance because a class can at most have a single suggercla

Multiple inheritance is known from several objecteated programming language, such as C++, Edifad]
CLOS. Compared with single inheritance, multipledritance complicates the meaning of an object-
oriented program. The nature of these complicatigiiide discussed in Section 27.5.

Repeated inheritance is allowed more rarely. E#flelws it, however. It can be used to facilitagplication
of superclass variables in subclasses.

211

Cyclic class graphs, as shown to the right in Feqif.3 are never allowed.

27.5. Multiple inheritance

Lecture 7 - slide 18

In this section we dwell a little on multiple iniitance. Both relative to class specialization (Skapter 25)
and class extension (see Chapter 26) it can bedrhat multiple inheritance is useful:

« Specialization of two or more classes
« Example: An isosceles right triangis a isosceles triangle andiga right triangle
« Example: There may exists a bank account whigh checking account andig a
savings account
« Extensions of two or more classes
« "Program transport” from multiple superclasses

In Figure 25.4 the overlapping extensions of tlas®tsheckAccount , SavingsAccount and
LotteryAccount indicate that there may exist a single object,ciwis a CheckAccount , aSavingsAccount
and aLotteryAccount

When we in Section 26.2 discussed the extensiafas$Point2D to classPoint3D it could have been the
case that it was useful to extend clesist3D from an additional superclass as well.

Let us now briefly argue why multiple inheritansedifficult to deal with. In Figure 27.4 we havestthed a
situation where class C inherits from both classné class B. Both A and B have a variable or amatjos
named X. The question is now which x we get whemefer to x in C (for instance via C.x if x is $tat

C

Figure 27.4 ClassBisa subclass of class A

In general, the following problems and challengas loe identified:

« Thename clash problem: Does x in C refer to the x in A or the x in B?

« Thecombination problem: Can x in A and x in B combined to a single x in C?
« Thesdlection problem: Do we have means in C to select either x in A or R?

« Thereplication problem: Is there one or two x pieces in C?

Notice that some of these problems and challengeslightly overlapping.

212

This ends the general discussion of inheritance.ri@xt chapter is also about inheritance, asateslto C#.
The discussions of multiple inheritance is brougihtigain, in Chapter 31, in the context of intezfac

213

214

28. Inheritance in C#

In Chapter 27 we discussed inheritance in genkrhis section we will be more specific about slas
inheritance in C#. The current section is long,least because it covers important details abatuali
methods and polymorphism.

28.1. Class Inheritance in C#

Lecture 7 - slide 21

When we define a class, sayss-name , we can give the name of the superclagssyr-class-name , of the
class. The syntax of this is shown in Chapter 2&80me contexts, a superclass is also called achasse

cl ass-nodi fier class class-nanme: super-cl ass-nane{
decl arati ons

}

Syntax 28.1 A C# class defined as a subclass of given superclass

We see that the superclass name is given afteotba. There is no keyword involved (liketends in

Java). If a class implements interfaces, see Chaftehe names of these interfaces are also laftedthe
colon. The superclass name must be given befoneaimes of interfaces. If we do not give a supesclas
name after the colon, it is equivalent to writingdbject . In other words, a class, which does not specify a
explicit superclass, inherits from clagisect . We discuss classbject in Section 28.2 and Section 28.3.

In Program 28.1 below we show a classhich inherits from class. Notice that Program 28.1 uses C#
syntax, and that the figure shows full class dgéins. Notice also that the set of member is emptyoth
classa andB. As before, we use the graphical notation in FegB.1 for this situation.

class A {}

classB : A{}

Program 28.1 A class A and its subclass B.

A

|

Figure 28.1 TheclassBinheritsfromclass A

B is said to be aubclass of A, and A asuperclass of B. A is also called thbase class of B.

28.2. The top of the class hierarchy

Lecture 7 - slide 22

As discussed in Section 27.4 a set of classesalafiiass hierarchy. The top/root of the classahiby is
the class calledbject . More precisely, the only class which does nothav edge to a superclass in the

215

class graph is calledbject . In C# the clasebject resides in theystem namespace. The typsject is an
alias forsystem.Object . Due to inheritance the methods in clasgcts are available in all types in C#,
including value types. We enumerate these metho8gction 28.3.

Reference types | Class ValueType |

= =

Class String other classes simple types struct types

Figure 28.2 Theoverall type hierarchy in C#

The left branch of Figure 28.2 corresponds to #ference types of C#. Reference types were disguisse
Chapter 13. The right branch of Figure 28.2 cowasg to the value types, which we have discussed in
Chapter 14.

All pre-existing library classes, and the classesdefine in our own programs, are reference ty&shave
also emphasized that strings (as represented bytlag) and arrays (as represented by chass) are
reference types. Notice that the dotted box "Referdypes” is imaginary and non-existing. (We hadded
it for matters of symmetry, and for improved cortcepoverview). The role of clagsray is clarified in
Section 47.1.

The class/alueType is the base type of all value types. Its subatassiis a base type of all enumeration
types. It is a little confusing that these two sksare used as superclasses of structs, in partimcause
structs cannot inherit from other structs or clas3éis can be seen as a special-purpose orgamizatade
by the C# language designers. We cannot, as progeesnreplicate such organizations in our own @og:
The classesbject , ValueType andEnumcontain methods, which are available in the mpexilized value
types (defined by structs) of C#.

28.3. Methods in the claggect In C#

Lecture 7 - slide 23

We will now review the methods in classject . Due to the type organization discussed in Se@®a
these methods can be used uniformly in all clagsdsn all structs.

216

« Public methods in clas®j ect

« Equals:
e obj 1. Equal s(obj2) - Instance method
e (bject.Equal s(obj1, obj2) - Static method
» (nject.ReferenceEqual s(obj 1,0bj2) - Static method

e o0bj. Get HashCode()
e o0bj.GetType()
e o0bj.ToString()
« Protected methods in clags ect
e obj.Finalize()
e obj.Menberw seC one()

There are three equality methods in clasisct . All three of them have been discussed in Sed®Bb. The
instance methodsquals is the one we often redefine in case we needlbbshequality operation in one of
our classes. See Section 28.16 for details. Thie st@thod, also nameghuals , is slightly more applicable
because it can also compare objects/values@ndvalues. The static meth&gferenceEquals is - at least
in the starting point - equivalent to the operator.

The instance methagktHashCode produces an integer value which can be used élaxing purposes in
hashtables. In order to obtain efficient implemeates, GetHashCode often use some of the bit-wise
operators, such as shifting and bit-wise exclusivéSee Program 28.29 for an example). It mustrizeired
that if o1.Equals(02) thenol.GetHashCode() has the same value ésGetHashCode()

The instance methorbstring is well-known. We have seen it in numerous typasinstance in the very
first Die class we wrote in Program 10.1. We implement amdrale this method in most of our classes.
Tostring is implicitly called whenever we need some texhgtrepresentation of an objedij , typically in
the context of an output statement sachsole.WriteLine("{0}", obj) . If the parameterles®string
method of classbject is not sufficient for our formatting purposes, @& implement th&oString

method of the interfacEormattable , see Section 31.7.

The methodrinalize is not used in C#. Instead, destructors are udestructors help release resources just
before garbage collection is carried out. We dodisxtuss destructors in this material.

MemberwiseClone is a protected method which does bit per bit cogyf an object (shallow copying, see
Section 13.4)MemberwiseClone can be used in subclasse®oject (in all classes and structs), but
MemberwiseClone cannot be used from clients because it is notipubl Section 32.7 we will see how to
make cloning available in the client interface; STimvolves implementation of the interfac®neable (see
Section 31.4) and delegationMemberwiseClone from theClone method prescribed bgloneable

28.4. Inheritance and Constructors

Lecture 7 - slide 24

Constructors in C# were introduced in Section B&.4 means for initializing objects, cf. Sectior31% is
recommended to review the basic rules for defininbconstructors in Section 12.4.

217

As the only kind of members, constructors are nbérited. This is because a constructor is onljulige
the class to which it belongs. In terms of HaekAccount class hierarchy shown in Figure 25.3, the
BankAccount constructor is not directly useful as an inheritgeimber of the classheckAccount : It would
not be natural to apply®ankAccount constructor on @heckAccount object.

On the other hand, tiBankAccount constructor typically does part of the work aft@ckAccount
constructor. Therefore it is useful for thieeckAccount constructor to call thBankAccount constructor.
This is indeed possible in C#. So the statement'toastructors are not inherited" should be taken with a
grain of salt. A superclass constructor can be aedractivated in a subclass constructor.

Here follows the overall guidelines for construstor class hierarchy:

« Each class in a class hierarchy should have itsapmstructor(s)

» The constructor of class C cooperates with coniirsién superclasses of C to initialize a new
instance of C

« A constructor in a subclass will always, implicidy explicitly, call a constructor in its superdas

As recommended in Section 12.4 you should alwaggram the necessary constructors in each of your
classes. As explained and motivated in Section it&4ot possible in C# to mix a parameterldafault
constructor and the constructors with parameters that yourprogyourself. You can, however, program
your own parameterless constructor and a numbesredtructors with parameters.

In the same way as two or more constructors ivangelass typically cooperate (delegate work tdedher
using the speciabhis(...) syntax) the constructors of a class C and thetaariers of the base class of C
cooperate. If a constructor in class C does ndiatty call base(...) in its superclass, it implicitly calls
the parameterless constructor in the superclasbatrcase, such a parameterless constructor xigstand
it must be non-private.

We will return to theBankAccount class hierarchy from Section 25.4 and emphasgeahstructors in the
classes that are involved.

In Program 28.2 we see the root bank account @assaccount . It has two constructors, where the second

is defined by means of the first. Notice the usthethis(...) notation outside the body of the constructor
in line 16.

using System;
public class BankAccount {

protected double interestRate;
protected string owner;
protected decimal balance;

publ i ¢ BankAccount (string o, decimal b, double ir) {
this.interestRate = ir;
t his. owmner = o;
t hi s. bal ance = b;

}

publ i ¢ BankAccount (string o, double ir):
this(o, 0.0M ir) {
}

218

public virtual decimal Balance {
get {return balance;}

}

public virtual void Withdraw (decimal amount) {
balance -= amount;

}

public virtual void Deposit (decimal amount) {
balance += amount;

}

public virtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public override string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 28.2 Constructorsin class BankAccount.

The two constructors of the classeckAccount , shown in Program 28.3, both delegate part of the
initialization work to the first constructor in glsBankAccount . Again, this is done via the special notation
base(..) outside the body of the constructor. Notice thatibs of both constructors @heckAccount are
empty.

It is interesting to ask why the designers of Céehdecided on the special way of delegating wotiveen
constructors in C#. Alternatively, one construcould chose to delegate work to another construcside
the bodies. The rationale behind the C# desigroist probably, that the designers insist on a pdatic
initialization order. This will be discussed in 8en 28.5.

using System;
public class CheckAccount: BankAccount {

publ i c CheckAccount (string o, double ir):
base(o, 0.0M ir) {
}

public CheckAccount (string o, decimal b, double ir):
base(o, b, ir) {
}

public override void Withdraw (decimal amount) {
balance -= amount;
if (amount < balance)
interestRate = -0.10;

}

public override string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 28.3 Constructorsin class CheckAccount.

219

In the web-version of the material we also showdlssesavingsAccount andLotteryAccount , See
Program 28.4 and Program 28.5 respectively.

28.5. Constructors and initialization order

Lecture 7 - slide 25

We speculated about the motives behind the spggamihx of constructor delegation in the previougies.
A constructor in a subclass must - either implyodt explicitly - activate a constructor in a supass. In
that way a chain of constructors are executed valmerbject is initialized. The chain of constructail be
called from the most general to the least gené&tad.following initializations take place when a new
object is made withew C(...)

« Instance variables io are initialized (field initializers)

» Instance variables in superclasses are initiaizadst specialized first
« Constructors of the superclasses are executedt-geosral first

« The constructor body afis executed

Notice that initializers are executed first, froroshspecific to most general. Next the construcioescalled
in the opposite direction.

Let us illustrate this by means of concrete exampRrogram 28.6, Program 28.7 and Program 28.8evhe
classc inherits from class, which in turn inherit from class

The slightly artificial classit , shown in Program 28.9 contains a static "traomeghod" which returns a
given init valueyal . More importantly, for our interests, it tells alsout the initialization. In that way we

can see the initialization order on the standatguitstream. The tiny application class, contairhgystatic
Main method, is shown in Program 28.10.

The output in Listing 28.11 reveals - as expectiwht all initializers are executed before the tamtsors.
First in classc, next inB, and finally inA. After execution of the initializers the constrmrst are executed.
First thea constructors, then tteeconstructor, and finally the constructor.

using System;

public class C B{
private int varC1 = Init.InitMe(1, "varC1, initia lizer in class C"),
varC2;
public C (){
varC2 = Init.InitMe(4, "VarC2, constructor body c");
}

}

Program 28.6 Initializers and constructors of class C.

using System;

public class B: A{
private int varB1 = Init.InitMe(1, "varB1, initia lizer in class B"),
varB2;
public B (1

220

varB2 = Init.InitMe(4, "VarB2, constructor body B");
}
}

Program 28.7 Initializers and constructors of class B.

using System;

public class A{
private int varAl = Init.InitMe(1, "varA1l, initia lizer in class A"),
varA2;
public A ({
varA2 = Init.InitMe(4, "VarA2, constructor body A");
}
}

Program 28.8 Initializers and constructors of class A.

using System;
public class Init{

public static int InitMe(int val, string who){
Console.WriteLine(who);
return val;

}

}
Program 28.9 The class Init and the method InitMe.

using System;

class App{
public static void Main(){
Cc= new C();
}
}

Program 28.10 A programthat instantiates and initializes class
C.

varCl1, initializer in class C
varB1, initializer in class B
varAl, initializer in class A
VarA2, constructor body A
VarB2, constructor body B
VarC2, constructor body C

Listing 28.11 The output that reveals the initialization
order.

28.6. Visibility modifiers in C#

Lecture 7 - slide 27

Visibility control is a key issue in object-oriedtprogramming. The general discussion about vigibil
appears in Section 11.3, Section 11.4 and Secfidh The C# specific discussion is briefly toucladn
Section 11.7. We gave overview of visibility in nespaces and types in Section 11.16. In this leetare
have briefly described the issue in general iniBe@?7.3.

221

Basically, we must distinguish between visibilitytgpes in assemblies and visibility of membergyimes:

« Visibility of a type (e.g. a class) in an assembly
» internal: The type is not visible from outside the assembly
» public: The type is visible outside the assembly
» Visibility of members in type (e.g., methods ingdas)
« private: Accessible only in the containing type
» protected: Accessible in the containing type and in subtypes
« internal: Accessible in the assembly
» protected internal: Accessible in the assembly and in the containypg and its
subtypes
« public: Accessible whenever the enclosing type is adolkessi

The issue of inheritance and visibility of privabembers is addressed in Exercise 7.2.

Internal visibility is related to assemblies, natmespaces. Assemblies are produced by the conwiler,
represented as eithetll or-exe files. It is possible to have a type which is sible outside the
assembly, into which it is compiled. It is, of ceer also possible to have types which are visibtside the
assembly. This is the mere purpose of having liesaPer default - if you do not write any modifidop-
level types are internal in their assembly. Thanate visibility of members of a class, quite natiy;
depends on the visibility of the surrounding typetie assembly.

Members of classes (variables, methods, propediescan also have internal visibility. Protecteembers
are visible in direct and indirect subclasses. ¥an think of protected members as members visible f
classes in the inheritance family. We could cdthitily visibility. It is - as noticed above - possible to
combine internal and protected visibility. The defaisibility of members in types is private.

It was a major point in Chapter 11 that data shbelgrivate within its class. With the introductioh
inheritance we may chose to define data as pratestanbers. Protected data is convenient, at leastd
short-term consideration, because superclass lietecan be seen from subclasses. But having pedtect
data in class C implies that knowledge of the depaesentation is spread from class C to all daact
indirect subclasses of C. Thus, a larger part®fpfogram is vulnerable if/when the data represientés
changed. (Recall the discussion ah@pt esentation independence from Section 11.6). Therefore we may
decide to keep data private, and to access supsrmtéda via public or protected operations. Itastiva
serious consideration is you should allow proteclat@ in the classes of your next programming ptoje

Related to inheritance we should also notice thhatlafined member in a subclass should be atésast
visible as the member in the superclass, whickpitaces. It is possible to introdudeibility inconsistencies.
This has been discussed in great details in Setfidt6.

Exercise 7.2. Private Visibility and inheritance

Take a look at the classes shown below:

using System;

public class A{
private inti=7;

222

protected int F(int j){
returni + j;
}

}

public class B : A{
public void G(){
Console.WriteLine("i: {0}", i);
Console.WriteLine("F(5): {0}", F(5));
}
}

public class Client {
public static void Main(){
B b = new B();
b.G();

Answer the following questions before you run thegpam:

1. Does the instance &f created irMain in Client , have an instance varialte
2. Is the first call taconsole.WriteLine in Glegal?

3. Is the second call toonsole.WriteLine in Glegal?

Run the program and confirm your answers.

Exercise 7.3. Internal Vishility

The purpose of this exercise is to get some expagiwvith the visibility modifier callethternal. Take a
look at the slide to which this exercise belongs.

In this exercise, it is recommended to activatecthrapiler from a command prompt.
Make a namespacewith two classeg andi:

« P should be publice should have a static public memlpeaand a static internal membher
« 1 should be internal. should also have a static public membpand a static internal member

Compile the classes in the namespate a single assembly, for instance located irfitae.dll.

Demonstrate that the clasgan be used in clags Also demonstrate thati can be seen and used in
classpP.

After this, program a clags which attempts to use the claseesdi from x.dll. Arrange that classis
compiled separately, to a file y.dll. Answer thédwing questions about clags

1. Can you declare variables of typén classa?
2. Can you declare variables of typén classa?
3. Canyou accessi and andP.p in A?
4. Canyou access andandp inA?

223

Finally, arrange that clagsis compiled together with.p andN.l to a single assembly, say y.dIl. Does
this alternative organization affect the answenth#oquestions asked above?

28.7. Inheritance of methods, properties, andxadse

Lecture 7 - slide 28

All members apart from constructors are inheritagarticular we notice that operations (methods,
properties, and indexers) are inherited.

Methods, properties, and indexers are inherited

Here follows some basic observations about inheréaf operations:

- Methods, properties, and indexers can be redefinedo different senses:
« Same names and signatures in super- and subdizssyaelated meaningsifual
override)
« Same names and signatures in super- and subelassntirely different meaningadw)
« A method M in a subclass B can refer to a methad B superclass A

* base.M(...)
« Cooperation, also known as method combination

The distinctions betweestual /override andnew is detailed in Section 28.9.

The subject of the second item is method combinatitich we will discuss in more details in Chag#er
Operators are inherited. A redefined operatorsnlaclass will be an entirely new opereéltor.

Operators (see Chapter 21) are static. The chbioperator is fully determined at compile time. @qters
can be overloaded. There are rules, which condtnaitypes of formal parameters of operators, setich
21.4. All this implies that two identically namegearators in two classes, one of which inherits fthen
other, can be distinguished from each other alreadpmpile-time.

28.8. Inheritance of methods: Example.

Lecture 7 - slide 29

We will now carefully explore a concrete examplattimvolves class inheritance. We stick to the bank
account classes, as introduced in Section 25.4emberdiscussed class specialization. In Prograd?228.
Program 28.13, and Program 28.14 we emphasizelénant aspects of inheritance with colors.

using System;

public class BankAccount {

pr ot ect ed double interestRate;

224

pr ot ect ed string owner;
pr ot ect ed decimal balance;

public BankAccount(string o, decimal b, double i r {
this.interestRate = ir;
this.owner = o;
this.balance = b;

}

public BankAccount(string o, double ir):
this(o, 0.0M, ir) {

public vi rtual decimal Balance {
get {return balance;}

}

public vi rtual void Withdraw (decimal amount) {
balance -= amount;

}

public vi rtual void Deposit (decimal amount) {
balance += amount;

}

public vi rtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public over ri de string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 28.12 The base class BankAccount.

In Program 28.12 the data a protected, not prividis is an easy solution, but not necessarilybebet
solution, because the program area that usesrie itistance variables of classkAccount now becomes
much larger. This has already been discussed ito8&28.6. In addition the properties and methads a
declared as virtual. As we will see in Section 28His implies that we can redefine the operations
subclasses @ankAccount , such that the run-time types of bank accounts dimamic types) determine the

actual operations carried out.

using System;
public class CheckAccount: BankAccount {
/'l Instance vari abl es of BankAccount are inherited

public CheckAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public CheckAccount(string o, decimal b, double ir):
base(o, b, ir) {

/1 Method Bal ance is inherited
/1l Method Deposit is inherited
/] Method Addlnterests is inherited

225

public over ri de void Withdraw (decimal amount) {
base. Wt hdrawm anount) ;
if (amount < balance)
interestRate = -0.10;

}

public overri de string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 28.13 The class CheckAccount.

In classCheckAccount in Program 28.13 the instance variables of akaskAccount and the operations
Balance , Deposit , andAddinterests are inherited. Thus, these operations fgafikAccount can simply

be (re)used ooheckAccount objects. The methodithdraw is redefined. Notice thatithdraw calls
base.Withdraw , thewithdraw method in clasBankAccount . This is (imperative) method combination, see
Section 29.1. As we will see in Section 28.9 thalifier overri de is crucial. The methotoString

overrides the similar method BankAccount , which in turn override the similar method froras$Object .

In the web-version of the material we also showckagsesavingsAccount andLotteryAccount

Exercise 7.4. A subclass of LotteryAccount

On the slide, to which this exercise belongs, weehemphasized inheritance of methods and propémties
the bank account class hierarchy. From the webereof the material there is direct access to the
necessary pieces of program.

ThelLotteryAccount USes an instance ofattery object for adding interests. Under some lucky
circumstances, the owner of ateryAccount ~ will get a substantial amount of interests. In huases,
however, no interests will be added.

There exists a single file which contains the @asankAccount , CheckAccount , SavingsAccount
Lottery , together with a sample client class.

Program a specialization of thetteryAccount , calledLotteyPlusAccount , with the following
redefinitions ofbeposit andwithdraw .

» TheDeposit method doubles the deposited amount in case yaw awinning lottery number
upon deposit. If you are not luckyeposit works as irLottoryAccount , but an administrative
fee of 15 kroner will be withdrawn from youstteryPlusAccount

» Thewithdraw method returns the withdrawn amount without atyu@gducting it from the
LotteryPlusAccount if you draw a winning lottery number upon withdwif you are not
lucky, withdraw works as irLottoryAccount , and an additional administrative fee of 50 kroner
will be withdrawn from the account as well.

Notice that theeposit andwithdraw methods in.otteryPlusAccount should combine with the method

in LotteryAccount (method combination). Thus, use theposit andwithdraw methods from
LotteryAccount as much as possible when you program.titeryPlusAccount

226

Test-drive the classotteryPlusAccount from a sample client class.

28.9. Overriding and Hiding in C#

Lecture 7 - slide 30

Let us now carefully explore the situation whemethodviappears in both clagsand its subclass Thus,
the situation is as outlined in Program 28.16.

class A {
public void M){}
}

classB : A{
public void M){}
}

Program 28.16 Two methods M in classes A and B, where B
inherits from A.

Let us already now reveal that Program 28.16égdl in C#. The compiler will complain (with a warg).
We will need to add some modifiers in front of thethod definitions.

There are basically two different situations thakensense:

« Intended redefinition:
B.M is intended to redefine A.M - such that B.Mused on B instances
« A.M must be declared asrt ual
« B.M must be declared twverri de A.M
« Accidental redefinition:
The programmer of class B is not aware of A.M
« B.M must declare that it is not related to A.M ingsthenew modifier

Intended redefinition is - by far - the most typisduation. We prepare for intended redefinitign b
declaring the method asrt ual in the most general superclass. This causes thiedhé& be virtual in all
subclasses. Each subclass that redefines the meiistdver ri de it. This pattern paves the road for
dynamic binding, see Section 28.10. Intended redigfh appears frequently in almost all object-otes
programs. We have already seen it several timdgeibank account classes in Program 28.12 - Program
28.15.

Accidental redefinition is much more rare. Insteéddeclaringv.B asnew it is better to givevin B another
name. Thaew modifier should only be used in situations whemeaming is not possible nor desirable.

28.10. Polymorphism. Static and dynamic types

Lecture 7 - slide 31

In this section we define the concepts of polymaphand dynamic binding. In order to be preciseuaibo
dynamic binding we also define the meaning of statid dynamic types of variables and parameters.

227

Polymor phism stands for the idea that a variable can refebjeats of several different types
Thestatic type of a variable is the type of variable, as declared

Thedynamic type of a variable is type of object to which the vhlearefers

Dynamic binding is in effect if the dynamic type of a variableletermines the operation
activated by.op(...)

'Poly’ means 'many' anthorph' means ‘form'. Thus, polymorphism is related wittea of 'having many
forms' or 'having many types'. In the literaturelymorphism is often associated with procedures or
functions that can accept parameters of severabtyphis is callegarametric polymorphism. More
basically (and as advocated by, for instance, BediMeyer [Meyer88]), polymorphism can be reldted
variables. A polymorphic variable or parameter @rrun-time) take values of more than one typés &h
calleddata polymor phism.

A concrete and detailed discussion of dynamic aaticdypes, based on an example, is found in @ecti
28.11, which is the next section of this material.

Use of the modifiersirtual andoverride , as discussed in Section 28.9 is synonymous witlahic
binding. We have much more to say about dynamidibinlater in this material, more specifically in
Section 28.14 and Section 28.15. Polymorphism aod gise of dynamic binding is one of ti@OP crown
jewels" in relation to inheritance. It means that you $ti@itempt to design your programs such that they
take advantage of polymorphism and dynamic bindtag.a practical illustration, please compare Paoyr
28.26 and Program 28.27 in Section 28.15.

28.11. Static and dynamic types in C#

Lecture 7 - slide 32

Before we can continue our discussion of virtuathds (dynamic binding) we will give examples aftit
and dynamic types of variables.

We now apply the definitions from Section 28.1@He scene in Program 28.17 shown below. As it agpea
the class inherits from clasa. In the client ofa andB the variablex is declared of type, and the variable
is declared of type. In other words, the static type»ofs A and the static type gfisB.

Next, in line 10 and 11, we instantiate clasndBs. Thus, at the position of line 12, the variablefers to
an object of type, and the variable refers to an object of tyme Therefore, at the position of line 12, the
dynamic type ok is A and the dynamic type ¢fis B.

The assignment=y in line 13 implies that (as well ag) now refer to @ object. This is possible due
polymorphism. Recall thatmobjectisan A object. You can read about tisea relation in Section 25.2.

Line 15 causes a compile-time error. The varigblef static types, cannot refer an object of typeAn
instance of clasaisnot aB object.

Finally, in line 17, we assigntoy. Recall, that just before line k7andy refer to the same object. Thus,
the assignment=x is harmless in the given situation. Neverthelgss,illegal! From a general and

228

conservative point of view, the danger is thatwhgable y of static type can be assigned to refer to an
object of typea. This would be illegal, because awbject is (still) not @ object.

class A {}
class B: A{}
class Client{
public static void Main (){
I 1l Static type Dynami c type
AX; I A -
By; /I B -
x=newA(); /I A A TRIVIAL
y=newB();/ B B TRIVIAL
X=Y; I A B K - TYPI CAL
y=newA();// B A Conpi l e ti me ERROR
1l Cannot imp licitly convert type 'A' to 'B'.
y=X; /I B B Conpile tine ERROR !
1l Cannot imp licitly convert type 'A' to 'B'.
}
}

Program 28.17 Illustration of static and dynamic types.

We will now, in Program 28.18 remedy one of thelyes that we encountered above in Program 2&117. |
line 16 the assignmept x succeed if we cast the object, referred ta Jip aB-object. You should think
of the cast as a way to assure the compilerxthaitthe given point in time, actually refers tB-abject.

In line 15 we attempt a similar cast of the objettirned by the expressiaaw A() . (This is an attempted
downcast, see Section 28.17). As indicated, thise&sa run-time error. It is not possible to conaarA
object to a B object.

class A {}
class B: A{}
class Client{
public static void Main (){
1l 1 Static type Dynami c type
AX; I A -
By; /I B -
x=newA(); /I A A TRIVIAL
y=newB(); / B B TRIVIAL
X=Y; A B OK-TYP ICAL
y= (B)new A();// B A RUNTI ME ERROR
y= (B) x; /I B B NOW OK
}
}

Program 28.18 Corrections of the errorsin the illustration of
static and dynamic types.

With a good understanding of static and dynamiesypf variables you can jump directly to Sectiorl28
If you read linearly you will in Section 28.12 amdSection 28.13 encounter the means of expressicog
for doing type testing and type conversion.

229

28.12. Type test and type conversion in C#

Lecture 7 - slide 33

It is possible to test if the dynamic type of aighlev is of typec, and there are two ways to convert (cast)
one class type to another

The following gives an overview of the possibilgie

e VvisC
« True if the variable is of dynamic type C
« Also true if the variable is of dynamic type®, whereD is a subtype of

As it appears from level 9 of Table 6.4 an operator in C#. - The explanation of tkeoperator above is
not fully accurate. The expression in the item &devrue ifv successfully can be converted to the tgy
a reference conversion, a boxing conversion, amdooxing conversion.

It is - every now and then - useful to test theadyit type of a variable (or expression) by usénef &
operator. Notice however, that in many contexis itnnecessary to do so explicitly. Use of a virtnathod
(dynamic binding) encompasses an implicit teshefdynamic type of an expression. Such a testigtbre
an implicit branching point in a program. In otlesrds, passing a message to an object selects an
appropriate method on basis of the type of theivecebject. You should always consider twice isit
really necessary to discriminate with use ofith@perator. If your program contains a lot of ins&tests
(using tha s operator) you may not have understood the ide@tial methods!

The following to forms of type conversion (castimgysupported in C#:

e (Qv
« Convert thestatic type of v to C in the given expression
« Only possible if the dynamic type ofisCc, or a subtype of
« If not, aninvalidCastException is thrown
e vasC
« Non-fatal variant of o) v
« Thus, convert the static type wto cin the given expression
« Returnswll if the dynamic type of is notc, or a subtype of

The first,(C)v , is know agasting. If Cis a class, casting is a way to adjust the stgpie of a variable or
expression. The latter alternativess C , is equivalent tgC)v provided that no exceptions are thrown. If
(C)v throws an exception, the expressiais C returnsnull .

Above we have assumed tlta a reference type (a class for instance). & alakes sense to uggv
whereT is value type (such as a struct). In this casalaevof the type is converted to another type. \Ateeh
touched on explicitly programmed type conversionSéction 21.2. See an example in Program 21.3.
Casting of a value of value type may change theshtits behind the value. The casting of a refezeas
discussed above, does not change the "bits betmgngterence"”.

230

as is an operator in the same way assee level 9 of Table 6.1. Notice also, at le&bf the table, that
casting is an operator in C#.

Thet ypeof operator can be applied on a typename to obtaiediresponding object of class
Type

Thej ect . Get Type instance method returns an object of ctags that represents the run-
time type of the receiver.

Examples of casting, and examples ofdhe@ndi s operators, are given next in Section 28.13.

28.13. Examples of type test and type conversion

Lecture 7 - slide 34

In the web-version of the material, this sectiontams concrete examples that show how to usesthes,
and typecasting operators. The examples are relafarge, and the explanations quite detailedrd&foee
they have been left out of the paper edition.

Exercise 7.5. Satic and dynamic types

Type conversion with as T was illustrated with a program on the accompangiiag. The output of the
program was confusing and misleading. We wantpgontehe static types of the expressioasas
BankAccount , bal as CheckAccount , etc. If you access this exercise from the welsigarthere will be
direct links to the appropriate pieces of program.

Explain the output of the program. You can exantitgeclasseBankAccount , CheckAccount ,
SavingsAccount andLotteryAccount , if you need it.

Modify the program such that the static type oféRkpressionsai as BanktypeAccount IS reported.
Instead of

baRes1 = bal as BankAccount;
Report(baRes1);

you should activate some method on the expresaibas BankAccount which reveals its static type. In
order to do so, it is allowed to add extra methodse bank account classes.

28.14. Virtual methods in C#

Lecture 7 - slide 35

This section continues our discussion of dynammclinig and virtual methods from Section 28.10. Wk wi
make good use of the notion of static type and ahyoaype, as introduced in Section 28.11.

231

First of all notice that virtual methods that akewidden in subclasses rely on dynamic bindingleised
in Section 28.10. Also notice that everything wedbout virtual methods also holds for virtual pesties
and virtual indexers.

The ABC example in Program 28.24 shows two clagsasdB, together with &lient classB is a subclass
of A. The clasa holds the methodg N, 0, andp which are redefined somehow in the subckass

The compiler issues a warning in line 11 becausbave a methostin both clasa and class. Similarly, a
warning is issued in line 13 because we have aadetin classs as well as a virtual methamin classa.
The warnings tells you that you should either ligenhodifieroverride or new when you redefine methods
in classs.

Min classB is said tchide Min classa. Similarly, 0in classs hides 0in classa.

The overriding oNin line 12 (in class) of the virtual methodiin line 5 (from clasg) is very typical.
Below, in the client program, we explain the consagces of this setup. Please notice this pattdrjecd
oriented programmers use it again and again sl isommon that it is the default setup in Javal!

The method in line 14 of class is declared asew. P in classB hidespP in classa. The use ofiew
suppresses the warnings we get for methadd for method. The use ofiew has nothing to do with class
instantiation. Declaring asnew in B states an accidental name clash between methols atass hierarchy.
P in A andP in B can co-exist, but they are not intended to bdedla the same way asn A andN in B.

using System;

class A {
public void M(){Console.WriteLine("M in A");}
public virtual void N(){Console.WriteLine("N in A"}
public virtual void O(){Console.WriteLine("O in A");}
public void P(){Console.WriteLine("P in A"}
}
class B: A{
public void M(){Console.WriteLine("M in B");} // war ni ng
public override void N(){Console.WriteLine("N in B");}
public void O(){Console.WriteLine("O in B");} // war ni ng
public new void P(){Console.WriteLine("P in B");}
}
class Client {
public static void Main(){
Aaa=newA(), //aahas statictype A, a nd dynamic type A
ab=new B(); //ab has static type A, a nd dynamic type B
B b =new B(); /I b has static type B, a nd dynamic type B
aa.N(); ab. N(); b.N(); // The dynamic type controls
Console.WriteLine();
aa.P(); ab. P(); b.P(); /I The static type controls
}
}

Program 28.24 Anillustration of virtual and new methodsin
class A and B.

Theclient class in Program 28.24 brings objects of ckaardB in play. The variablaa refers am object.
The variableab refers a object. And finally, the variable refers & object as well.

232

The most noteworthy cases are emphasizédlia When we call a virtual method the dynamic type of

the receiving object controls which method to cBfius in line 23aa.N() calls then method in class, and
ab.N() calls theN method in class. In both cases wdispatch on an object referred from variables of static
typeA. The dynamic type of the variable controls theadishing.

In line 25, the expressiaa.P() calls ther method in class, and (most important in this exampi®)pP()
also class the method in class. In both cases the static type of the variabiéeandab control the
dispatching. Please consult the program outputdting 28.25 to confirm these results.

Nin A

Nin B

NinB

PinA

Pin A

PinB
Listing 28.25 Output fromthe programthat illustrates virtual
and new methods.

Virtual methods use dynamic binding

Properties and indexers can be virtual in the saayeas methods

Let us finally draw the attention to the case wheexértual methodhis overridden along a long chain of
classes, say, B, C, D, E, F, G, andH that inherit from each othes (nherits froma, c from B, etc). In the
middle of this chain, let us say in clasgshe methoduis defined asew vi rtual instead of being
overridden. This changes almost everything! Itasyeto miss theew vi rt ual method among all the
overridden methods. If a variableof static typen, B, C, orDrefers to an object of typg thenv.m() refers
tomin D (the level just below theew vi rt ual method). Ifv is of static type, F, orGthenv.m() refers tav
in classH.

28.15. Practical use of virtual methods in C#

Lecture 7 - slide 36

Having survived the ABC example from the previoest®n, we will now look at a real-life example of
virtual methods. We will program a client clasddferent types of bank account classes, and wesesd
how theAddinterests ~ method benefits from being virtual.

The bank account classes, used below, were inteatdimcSection 25.4 in the context of our discussibn
specialization. Please take a look at the waydaenterests ~ methods are defined in Program 25.1,
Program 25.3, and Program 25.4. The ctasskAccount inherits theaddinterests ~ method of class
BankAccount . SavingsAccount andLotteryAccount overrideAddinterests

Notice that the definition of theddinterests ~ methods follow the pattern of the methods namad
Program 28.24.

233

using System;
public class AccountClient{

public static void Main(){

BankAccount[] accounts =

new BankAccount[5K
new CheckAccount("Per",1000.0M, 0.03),
new SavingsAccount("Poul",1000.0M, 0.03),
new CheckAccount("Kurt",1000.0M, 0.03),
new LotteryAccount("Bent",1000.0M),
new LotteryAccount("Lone",1000.0M)

h

foreach(BankAccount ba in accounts){
ba. AddI nterests();
}

foreach(BankAccount ba in accounts){
Console.WriteLine("{0}", ba);

}
}

}

Program 28.26 Use of virtual bank account methods.

TheMain method of theccountClient class in Program 28.27 declares an array of BgpAccount , see
line 6. Due to polymorphism (see Section 28.1(jtossible to initialize the array with differappes of
BankAccount Objects, see line 7-13.

We add interests to all accounts in the arraynia i5-17. This is done infar each loop. The expression
ba.AddInterests() calls the most specialized interest adding methdle BankAccount class hierarchy
onba. The dynamic type afa determines whiclAddinterests ~ method to call. If, for instancea refers to a
LotteryAccount , theAddinterests ~ method of classotteryAccount is used. Please notice that this is
indeed the expected result:

The type of the receiver objeathj controls the interpretation of messagestjo
And further, the most specialized method relatovéhe type of the receiver is called.

Let us - for a moment - assume that we do not haeess to virtual methods and dynamic binding. In
Program 28.27 we have rewritten Program 28.26 ¢h suway that we explicitly control the type
dispatching. This is the part of Program 28.27 easp#ed inpur ple. Thus, thepur ple parts of Program
28.26 and Program 28.27 are equivalent. Which @ermdo you prefer? Imagine that many more bank
account types were involved, and find out how Vialleiairtual methods can be for your future programs

using System;
public class AccountClient{

public static void Main(){

BankAccount[] accounts =

new BankAccount[5){
new CheckAccount("Per",1000.0M, 0.03),
new SavingsAccount("Poul",1000.0M, 0.03),
new CheckAccount("Kurt*,2000.0M, 0.03),
new LotteryAccount("Bent",1000.0M),
new LotteryAccount("Lone",1000.0M)

234

h

foreach(BankAccount ba in accounts){
if (ba is CheckAccount)
((CheckAccount) ba). Addl nterests();
else if (ba is SavingsAccount)
((Savi ngsAccount) ba) . Addl nterests();
else if (ba is LotteryAccount)
((LotteryAccount)ba). Addl nterests();
else if (ba is BankAccount)
((BankAccount) ba) . Addl nterests();

}

foreach(BankAccount ba in accounts){
Console.WriteLine("{0}", ba);

}

Program 28.27 Adding interests without use of dynamic
binding - AddInterest is not virtual.

Notice that for the purpose of Program 28.27 weelhrawdified the bank account classes such that
Addinterests IS not virtual any more. Notice also, in line #2at the last check of is against
BankAccount . The check againsankAccount must be the last branch of the if-else chain beeall the
bank accounts in the example satisfy the predicate BankAccount

The outputs of Program 28.26 and Program 28.21tlargical, and they are shown in Listing 28.28.itAs
turns out, we were not lucky enough to get intarest of our lottery accounts.

Per's check account holds 1030,000 kroner
Poul's savings account holds 930,000 kroner
Kurt's check account holds 1030,000 kroner
Bent's lottery account holds 1000,0 kroner
Lone's lottery account holds 1000,0 kroner

Listing 28.28 Output from the bank account programs.

The use of virtual methods - and dynamic bindiogvers a lot of type dispatching which in
naive programs are expressed withel se chains

28.16. Overriding the Equals method in a class

Lecture 7 - slide 37

TheEquals instance method in clas®ject is a virtual method, see Section 28.3. Ehgals method is
intended to be redefined (overridden) in subclasetassobject . The circumstances for redefiniaguals
have been discussed in Focus box 13.1.

It is tricky to do a correct overriding of the wigl Equal s method in classbj ect

Below we summarize the issues involved when retfgfibquals in one of our own classes.

235

« Cases to deal with when redefining teg@al s method:
« Comparison withhull (false)
« Comparison with an object of a different typa $e)
« Comparison wittref er enceEqual s (true)
« Comparison of fields in two objects of the sameetyp
» Other rules when redefinirggual s:
« Must not lead to errors (no exceptions thrown)
« The implemented equality should e exive, symmetric andtransitive
- Additional work:
* Get HashCode should also be redefined in accordance ifial s
» If 01.Equals(02) then o1.GetHashCode() == 02.GetHashCode()
« If you overload the= operator
« Also overload=
« Make sure thad1 ==02 andoil.Equals(02) return the same result

We illustrate the rules in Program 28.29, whereowerride theEquals method in clasBankAccount .

using System;
using System.Collections;

public class BankAccount {
private double interestRate;
private string owner;
private decimal balance;
private | ong account Nunber;

private static long nextAccountNumber = 0;

private static ArrayList accounts = new ArrayLis t();
public BankAccount(string owner): this(owner, 0. 0){
}
public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
accounts.Add(this);

this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;

this.owner = owner;

this.balance = 0.0M;

}
public override bool Equal s(Object obj){
if (obj == null)
return fal se;
else if (this.CetType() != obj.GCetType())
return fal se;
else if (ReferenceEqual s(this, obj))
return true;
else if (this.accountNunber == ((BankAccount)obj).account Nunber)
return true;
el se return fal se;
}

public override int GetHashCode(){
return (int)account Nunber ~ (int)(accountNunber >> 32);
/1 XOR of |ow orders and high orders bits of accountNunber
/1l According to Get HashCode APl reconmendati on.

236

}

/* Some methods are not included in this version */

Program 28.29 Equals and GetHashCode Methods in class
BankAccount.

Please follow the pattern in Program 28.29 whenhgote to redefine€quals in your future classes.

28.17. Upcasting and downcasting in C#

Lecture 7 - slide 38

Upcasting anddowncasting are common words in the literature about objerted programming. We
have already used these words earlier in this mbteee for instance Program 28.21.

Upcasting converts an object of a specialized tgmemore general type

Downcasting converts an object from a general tgmemore specialized type
BankAccount

-'"'.
CheckAccount SavingsAccount LotteryAccount

Figure 28.3 A specialization hierarchy of bank accounts

Relative to Figure 28.3 we declare t®&mkAccount and twoLotteryAccount variables in Program 28.30.
After line 4ba2 refers to @ankAccount oObject, anda2 refers to aotteryAccount object.

The assignment in line 6 reflects an upcastiag.is allowed to refer to eotteryAccount , because -
conceptually - aotteryAccount IS a BankAccount .

In line 7, we attempt to assiga2 tolal . This is an attempted downcasting. This is sthyizavalid, and
the compiler will always complain. Notice that ionse cases the assignment=ba2 is legal, namely
whenba2 refers to aotteryAccount object. In order to make the compiler happy, yloousd writelal =
(LotteryAccount)ba2

In line 9 we attempt to do the downcasting discdsd®ve, but it fails at run-time. The reasona$ course
- thatba2 refers to @ankAccount object, and not to kotteryAccount object.

After having executed line 6a1 refers to aotteryAccount object. Thus, in line 11 we can assign to

the reference inal. Again, this is a downcasting. As noticed aboklie,downcasting is necessary to calm
the compiler.

237

BankAccount bal,

ba2 = new BankAccount("John", 250.0M, 0.01);
LotteryAccount lal,
la2 = new LotteryAccount("Bent ", 100.0M);
bal = laz; /[upcasting -
/I lal = ba2; /I downcasting - Il egal
/I discovered a t compile time
/I 1al = (LotteryAccount)ba2; // downcasting - Il egal
/I discovered a t run time
lal = (LotteryAccount)bal; // downcasting - OK
/I bal already refers to a LotteryAccount

Program 28.30 Anillustration of upcasting and
downcasting.

Upcasting and downcasting reflect different viewmsaggiven object

The object is not 'physically changed' due to ucg®r downcasting
The general rules of upcasting and downcastinggisschierarchies in C# can be expresses as follows:

« Upcasting:
« Can occur implicitly during assignment and parampéssing
« A natural consequence of polymorphism andiskeerelation
« Can always take place
« Downcasting:
» Must be done explicitly by use of type casting
« Can not always take place

28.18. Inheritance and Variables

Lecture 7 - slide 40

We have focused a lot on methods in the previocisoses. We will now summarize how variables are
inherited.

Variables (fields) are inherited

Variables cannot be virtual

Variables are inherited. Thus a variabl| a superclass is present in a subclassThis is even the case if
v is private in class, see Exercise 7.2.

What happens if a variableis present in both a superclass and a subclass?able can be redefined in
the following sense:

238

« Same name in super- and subclass: two entirelgrdifit meaningséw)

We illustrate this situation in the ABC exampleRvbgram 28.31. Both clagsands have annt variablev.

This can be calledccidental redefinition, and this is handled in the program by marking classs with the
modifier new.

Now, in the client clasapp, we make some andB objects. In line 17-23 we see that the static tyfpe
variable determines which versionwis accessed. Notice in particular the expressiotherA.v . If
variable access had been virtuabtherA.v would return the value 5. Now we need to adjuststiatic type
explicitly with a type cast (see Section 28.12pldain a reference v . This is illustrated in line 21.

using System;

public class A{
public intv =1;
}

public class B: A{
public newintv =5;

}

public class App{
public static void Main(){ // Static type Dynami c type
AanA= newA(), /I A A
anotherA=newB(); // A B
BaB = newB(); [/ B B

Console.WriteLine(
{0},
anA.v Il
+ anot her A. v Il 1
+ ((B)anotherA).v /I 5
+aB.v II'5

Program 28.31 Anillustration of "non-virtual variable
access'.
We do not normally use public instance variables!

The idea of private instance variables aguf esentation independence was discussed in Section 11.6.

28.19. References

[Meyer88] Bertrand MeyelObject-oriented software construction. Prentice Hall, 198¢

239

240

