
 195

25. Specialization of Classes

In this section the topic is inheritance. Inheritance represents an organization of classes in which one class,
say B, is defined on top of another class, say A. Class B inherits the members of class A, and in addition B
can define its own members.

Use of inheritance makes it possible to reuse the data and operations of a class A in several so-called
subclasses, such as B, C, and D, without coping these data and operations in the source code. Thus, if we
modify class A we have also implicitly modified B, C and D.

There are several different views and understandings of inheritance, most dominantly specialization and
extension. But also words such as subtyping and subclassing are used. We start our coverage by studying the
idea of specialization.

25.1. Specialization of Classes
Lecture 7 - slide 2

The idea of specialization was introduced in Section 3.4 when we studied concepts and phenomena. In
Section 3.4 we defined a specialization as a more narrow concept than its generalization. We will, in this
chapter, use the inspiration from specialization of concepts to introduce specialization of classes.

 Classes are regarded as types, and specializations as subtypes

Specialization facilitates definition of new classes from existing classes on a sound conceptual
basis

With specialization we nominate a subset of the objects in a type as a subtype. The objects in the subset are
chosen such that they have "something in common". Typically, the objects in the subset are constrained in a
certain way that set them apart from the surrounding set of objects.

We often illustrate the generalization/specialization relationship between classes or types in a tree/graph
structure. See Figure 25.1. The arrow from B to A means that B is a specialization of A . Later we will use
the same notation for the extended understanding that B inherits from A.

Figure 25.1 The class B is a specialization of class A

Below - in the dark blue definition box - we give a slightly more realistic and concrete definition of
specialization. The idea of subsetting is reflected in the first element of the definition. The second element is,
in reality a consequence of the subsetting. The last element stresses that some operations in the specialization
can be redefined to take advantage of the properties that unite the objects/values in the specialization.

 196

 If a class B is a specialization of a class A then

• The instances of B is a subset of the instances of A
• Operations and variables in A are also present in B
• Some operations from A may be redefined in B

25.2. The extension of class specialization
Lecture 7 - slide 3

In Section 3.1 we defined the extension of a concept as the collection of phenomena that is covered by the
concept. In this section we will also define the extension of a class, namely as the set of objects which are
instances of the class or type.

We will now take a look at the extension of a specialized class/type. The subsetting idea from Section 25.1
can now be formulated with reference to the extension of the class.

 The extension of a specialized class B is a subset of the extension of the generalized class A

The relationships between the extension of A and B can be illustrated as follows, using the well-known
notation of wenn diagrams.

Figure 25.2 The extension of a class A is narrowed when the class is specialized
to B

Let us now introduce the is-a relation between the two classes A and B:

 • A B-object is an A-object
• There is a is-a relation between class A and B

The is-a relation characterizes specialization. We may even formulate an "is-a test" that tests if B is a
specialization of A. The is-a relation can be seen as contrast to the has-a relation, which is connected to
aggregation, see Section 3.3.

 The is-a relation forms a contrast to the has-a relation

The is-a relation characterizes specialization

The has-a relation characterizes aggregation

 197

We will be more concrete with the is-a relation and the is-a test when we encounter examples in the
forthcoming sections.

25.3. Example: Bank Accounts
Lecture 7 - slide 4

In Figure 25.3 we give three classes that specialize the class BankAccount .

Figure 25.3 A specialization hierarchy of bank accounts

The is-a test confirms that there is a generalization-specialization relationship between BankAccount and
CheckAccount: The statement "CheckAccount is a BankAccount " captures - very satisfactory - the
relationships between the two classes. The statement "BankAccount is a CheckAccount " is not correct,
because we can imagine bank accounts which are not related to checks at all.

As a contrast, the has-a test fails: It is against our intuition that "a CheckAccount has a BankAccount ".
Similarly, it is not the case that "BankAccount has a CheckAccount ". Thus, the relationship between the
classes BankAccount and CheckAccount is not connected to aggregation/decomposition.

In Figure 25.4 we show a possible constellation of extensions of the bank account classes. As hinted in the
illustration, the specialized bank accounts overlap in such a way that there can exist a bank account which is
both a CheckAccount , a SavingsAccount , and a LotteryAccount . An overlapping like in Figure 25.4 is the
prerequisite for (conceptually sound) multiple specialization, see Section 27.5.

Figure 25.4 Possible extensions of the bank account classes

25.4. Example: Bank Accounts in C#
Lecture 7 - slide 5

In this section we show some concrete C# bank account classes, corresponding to the classes introduced in
Figure 25.3.

 198

The BankAccount class in Program 25.1 is similar to the class introduced earlier in Program 11.5. We need,
however, to prepare for specialization/inheritance in a couple of ways. We briefly mention these preparations
here. The detailed treatment will be done in the following sections.

First, we use protected instance variables instead of private instance variables. This allows the instance
variables to be seen in the specialized bank account classes. See Section 27.3 for details.

Next, we use the virtual modifier for the methods that are introduced in class BankAccount . This allows these
methods to be redefined in the specialized bank account classes. See Section 28.9.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

using System;

public class BankAccount {

 protected double interestRate;
 protected string owner;
 protected decimal balance;

 public BankAccount(string o, decimal b, double i r) {
 this.interestRate = ir;
 this.owner = o;
 this.balance = b;
 }

 public BankAccount(string o, double ir):
 this(o, 0.0M, ir) {
 }

 public virtual decimal Balance {
 get {return balance;}
 }

 public virtual void Withdraw (decimal amount) {
 balance -= amount;
 }

 public virtual void Deposit (decimal amount) {
 balance += amount;
 }

 public virtual void AddInterests() {
 balance += balance * (Decimal)interestRate;
 }

 public override string ToString() {
 return owner + "'s account holds " +
 + balance + " kroner";
 }
}

 Program 25.1 The base class BankAccount.

The CheckAccount class shown in Program 25.2 redefines (overrides) the Withdraw method. This gives a
special meaning to money withdrawal from a CheckAccount object. The method ToString is is also
redefined (overridden) in class CheckAccount , in the same way as it was overridden in class BankAccount
relative to its superclass (Object), see Program 25.1. Notice also the two constructors of class CheckAccount .
They both delegate the construction work to BankAccount constructors via the base keyword. See Section
28.4 for details on constructors. This is similar to the delegation from one constructor to another in the same
class, by use of this, as discussed in Section 12.4.

 199

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;

public class CheckAccount : BankAccount {

 public CheckAccount(string o, double ir):
 base(o, 0.0M, ir) {
 }

 public CheckAccount(string o, decimal b, double ir):
 base(o, b, ir) {
 }

 public override void Withdraw (decimal amount) {
 balance -= amount;
 if (amount < balance)
 interestRate = -0.10;
 }

 public override string ToString() {
 return owner + "'s check account holds " +
 + balance + " kroner";
 }
}

 Program 25.2 The class CheckAccount.

The class SavingsAccount follow the same pattern as class CheckAccount . Notice that we also in class
SavingsAccount redefine (override) the AddInterests method.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System;

public class SavingsAccount : BankAccount {

 public SavingsAccount(string o, double ir):
 base(o, 0.0M, ir) {
 }

 public SavingsAccount(string o, decimal b, doubl e ir):
 base(o, b, ir) {
 }

 public override void Withdraw (decimal amount) {
 if (amount < balance)
 balance -= amount;
 else
 throw new Exception("Cannot withdraw");
 }

 public override void AddInterests() {
 balance = balance + balance * (decimal)intere stRate
 - 100.0M;
 }

 public override string ToString() {
 return owner + "'s savings account holds " +
 + balance + " kroner";
 }
}

 Program 25.3 The class SavingsAccount.

 200

In the class LotteryAccount the method AddInterests is redefined (overridden). The idea behind a lottery
account is that a few lucky accounts get a substantial amount of interests, whereas the majority of the
accounts get no interests at all. This is provided for by the private instance variable lottery , which refers to
a Lottery object. In the web-version of the material we show a definition of the Lottery class, which we
program as a Singleton.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

public class LotteryAccount : BankAccount {

 private static Lottery lottery = Lottery.Instan ce(20);

 public LotteryAccount(string o, decimal b):
 base(o, b, 0.0) {
 }

 public override void AddInterests() {
 int luckyNumber = lottery.DrawLotteryNumber;
 balance = balance + lottery.AmountWon(luckyNu mber);
 }

 public override string ToString() {
 return owner + "'s lottery account holds " +
 + balance + " kroner";
 }
}

 Program 25.4 The class LotteryAccount.

25.5. Example: Geometric Shapes
Lecture 7 - slide 6

In this section we show another example of specialization. The tree in Figure 25.5 illustrates a number of
specializations of polygons. In the left branch of the tree we see the traditional and complete hierarchy of
triangle types. In the right branch we show the most important specializations of quadrangles. Trapezoids are
assumed to have exactly one pair of parallel sides, and as such trapezoids and parallelograms are disjoint.

Figure 25.5 A specialization hierarchy of polygons

The polygon type hierarchy is a typical specialization hierarchy, because it fully complies with the definition
of specialization from Section 25.1. The subset relationship is easy to verify. All operations defined at the
polygon level are also available and meaningful on the specialized levels. In addition it makes sense to
redefine many of the operations to obtain more accurate formula behind the calculations.

 201

Overall, the deeper we come in the hierarchy, the more constraints apply. This is a typical characteristic of a
real and pure generalization/specialization class hierarchy.

25.6. Specialization of classes
Lecture 7 - slide 7

We will now summarize the idea of class specialization. Objects of specialized classes

 • fulfill stronger conditions (constraints) than objects of generalized classes
• obey stronger class invariants

• have simpler and more accurate operations than objects of generalized classes

 Specialization of classes in pure form do not occur very often.

Specialization in combination with extension is much more typical.

As noticed in Section 25.4 the hierarchy of polygons is real and pure example of specialization hierarchy.

The bank account hierarchy in Figure 25.3 is not as pure as the polygon hierarchy. The bank account
hierarchy is - in the starting point - a specialization hierarchy, but the specialized classes are likely to be
extended with operations, which do not make sense in the BankAccount class. Class extension is the topic in
Chapter 26.

25.7. The Principle of Substitution
Lecture 7 - slide 8

The principle of substitution is described by Timothy Budd in section 8.3 of in his book An Introduction to
Object-oriented Programming [Budd02]. The principle of substitution describes an ideal, which not always
is in harmony with our practical and everyday programming experience. This corresponds to our observation
that pure specialization only rarely is found in real-life programs.

 If B is a subclass of A, it is possible to substitute an given instance of B in place of an instance of
A without observable effect

As an example, consider the class hierarchy of polygons in Figure 25.5. Imagine that we have the following
scene:

 Polygon p = new Polygon(...);
 RightTriangle tr = new RightTriangle(...);
 /* Rest of program */

It is now possible to substitute the polygon object with the triangle object in the "rest of the program". This is
possible because the triangle possesses all the general properties (area, circumference, etc) of the polygon. At
least, the compiler will not complain, and the executing program will not halt. Notice, however, that the

 202

substitution is only neutral to the actual meaning of the execution program if the replaced polygon actually
happens to be the appropriate right triangle!

Notice that the opposite substitution does not always work. Thus, we cannot substitute a triangle with a
general polygon (for instance a square). Most programs would break immediately if that was attempted. The
reason is that a square does not, in general, possess the same properties as a triangle.

The ideas behind the principle of substitution are related to virtual methods (Section 28.14) and to dynamic
binding (Section 28.11).

25.8. References

[Budd02] Timothy Budd, An Introduction to Object-Oriented Programming, third edition.
Pearson. Addison Wesley, 2002.

 203

26. Extension of Classes

Extension of classes is a more pragmatic concept than specialization of classes. Specialization of classes is
directly based on - and inspired from - specialization of concepts, as discussed in Section 3.4. Extension of
classes is a much more practical idea.

In the previous chapter (Chapter 25) we discussed specialization of classes. In this section we discuss class
extension. In C# both class specialization and class extension will be dealt with by class inheritance, see
Chapter 27.

26.1. Extension of Classes
Lecture 7 - slide 10

 Classes can both be regarded as types and modules.

Class extension is a program transport and program reusability mechanism.

As the name suggests, class extension is concerned with adding something to a class. We can add both
variables and operations.

We are not constrained in any way (by ideals of specialization or substitution) so we can in principle add
whatever we want. However, we still want to have coherent and cohesive classes. We want classes focused
on a single idea, where all data and operations are related to this idea. Our classes should be used as types for
declaration of variables, and it should make sense to make instances of the classes. Thus, we do not want to
treat classes are general purposes modules (in the sense of boxing modularity, see Section 2.3).

These considerations lead us to the following definition of class extension.

 If class B is an extension of class A then

• B may add new variables and operations to A
• Operations and variables in A are also present in B
• B-objects are not necessarily conceptually related to A-objects

26.2. An example of simple extension
Lecture 7 - slide 11

In this section we will look at a typical example of class extension, which distinguishes itself from
specialization as seen in Chapter 25.

Below, in Program 26.1 we show the class Point2D . It is a variant of one the Point types we have studied in
Section 11.6, Section 14.3, and Section 18.2. The variant programmed below implements mutable points.
This is seen in line 19, which assigns to the state of a Point object.

 204

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

using System;

public class Point2D {
 private double x, y;

 public Point2D(double x, double y){
 this.x = x; this.y = y;
 }

 public double X{
 get {return x;}
 }

 public double Y{
 get {return y;}
 }

 public void Move(double dx, double dy){
 x += dx; y += dy;
 }

 public override string ToString(){
 return "Point2D: " + "(" + x + ", " + y + ")" + ".";
 }
}

 Program 26.1 The class Point2D.

In Program 26.2 we extend the class Point2D with an extra coordinate, z, and hereby we get the class
Point3D .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using System;

public class Point3D: Point2D {

 private double z;

 public Point3D(double x, double y, double z):
 base(x,y){
 this.z = z;
 }

 public double Z{
 get {return z;}
 }

 public void Move(double dx, double dy, double dz){
 base.Move(dx, dy);
 z += dz;
 }

 public override string ToString(){
 return "Point3D: " + "(" + X + ", " + Y + ", " + Z + ")" + ".";
 }
}

 Program 26.2 The class Point3D which extends class
Point3d.

Notice that Move in Point3D does not conflict with Move in Point2D . The reason is that the two methods are
separated by the types of their formal parameters. The two Move operations in Point3D and Point2D are

 205

(statically) overloaded. Thus relative to the discussion in Section 28.9 it is not necessary to supply a new
modifier of Move in Point3D .

We also show how to use Point2D and Point3D in a client class, see Program 26.3. The output of the client
program is shown in Listing 26.4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;

public class Application{

 public static void Main(){
 Point2D p1 = new Point2D(1.1, 2.2),
 p2 = new Point2D(3.3, 4.4);

 Point3D q1 = new Point3D(1.1, 2.2, 3.3),
 q2 = new Point3D(4.4, 5.5, 6.6);

 p2.Move(1.0, 2.0);
 q2.Move(1.0, 2.0, 3.0);
 Console.WriteLine("{0} {1}", p1, p2);
 Console.WriteLine("{0} {1}", q1, q2);
 }

}

 Program 26.3 A client of the classes Point2D and
Point3d.

1
2

Point2D: (1,1, 2,2). Point2D: (4,3, 6,4).
Point3D: (1,1, 2,2, 3,3). Point3D: (5,4, 7,5, 9,6).

 Listing 26.4 The output from the Client program.

The important observations about the extension Point3D of Point2D can be stated as follows:

 • A 3D point is not a 2D point
• Thus, Point3D is not a specialization of Point2D
• The principle of substitution does not apply
• The set of 2D point objects is disjoint from the set of 3D points

The is-a test (see Section 25.2) fails on the class Point3D in relation to class Point2D . The "has-a test" also
fails. It is not true that a 3 dimensional point has a 2 dimensional point as one its parts. Just look at the class
Point3D! But - in reality - the "has-a test" is closer to success than the "is-a test". Exercise 7.1 researches an
implementation of class Point3D in terms of a Point2dD part.

It is interesting to wonder if the principle of substitution applies, see Section 25.7. Can we substitute
instances of Point3D in place of instances of Point2D without observable effects? Due to the independence
and orthogonality of the three dimensions the principle of substitution is almost applicable. But the Move
operation, as redefined in class Point3D , causes problems. The Move operation in class Point2D does an
incomplete move when applied on a 3D point. And as noticed, Move in class Point3D is not a redefinition of
Move from class Point2D . There are two different Move operations available on an instance of class Point3D .
This is a mess!

In the last item it is stated that extensions (see Section 3.1) of class Point2D and class Point3D are disjoint
(non-overlapping). Conceptually, there is no overlap between the set of two-dimensional points and the set of

 206

three-dimensional points! This is probably - in a nutshell - the best in indication of the difference between
the Point2D/Point3D example and - say - the BankAccount examples from Section 25.3 .

 The class Point2D was a convenient starting point of the class Point3D

We have reused some data and operations from class Point2D in class Point3D

 Exercise 7.1. Point3D: A client or a subclass of Point2D?

The purpose of this exercise is to sharpen your understanding of the difference between "being a client of
class C" and "being af subclass of class C".

The class Point3D extends Point2D by means of inheritance.

As an alternative, the class Point3D may be implemented as a client of Point2D . In more practical terms
this means that the class Point3D has an instance variable of type Point2D . Now implement Point3D as a
client of Point2D - such that a 3D point has a 2D point as a part.

Be sure that the class Point3D has the same interface as the version of class Point3D from the course
material.

Evaluate the difference between "being a client of" an "extending" class Point2D . Which of the solutions
do you prefer?

26.3. The intension of class extensions
Lecture 7 - slide 12

In Section 25.2 we realized that the essential characteristics of specialization is the narrowing of the class
extension, see Figure 25.2. Above, in Section 26.2, we realized the the class extension of an extended class
(such as Point3D) typically is disjoint from the class extension of the parent class (such as Point2D).

In this section we emphasize the similar, clear-cut characteristics of class extension, namely the enlargement
of the class intension. This is illustrated in Figure 26.1.

 The intension of a class extension B is a superset of the intension of the original class A

Please be aware of possible confusion related to our terminology. We discuss class "extension" in this
section, and we refer to the "intension" and "extension" (related to concepts, as discussed in Section 3.1).
The two meanings of "extension" should be kept apart. They are used with entirely different meanings.

 207

Figure 26.1 The intension of a class A is blown up when the class is extended to
B

 It is, in general, not possible to characterize the extension of B in relation to the extension of A

Often, the extension of A does not overlap with the extension of B

 208

 209

27. Inheritance in General

After we have discussed class specialization in Chapter 25 and class extension in Chapter 26 we will now
turn our interest towards inheritance. Inheritance is a mechanism in an object-oriented programming
language mechanism that supports both class specialization and class extension.

This section is about inheritance in general. Inheritance in C# is the topic of Chapter 28.

27.1. Inheritance
Lecture 7 - slide 14

When a number of classes inherit from each other a class graph is formed. If, for instance, both class B and
C inherit from class A we get the graph structure in Figure 27.1. Later in this section, in Section 27.4, we
will discuss which class graphs that make sense.

If a class B inherits the variables and operations from another class, A, we say that B is a subclass of A. Thus,
in Figure 27.1 both B and C are subclasses of A. A is said to be a superclass of B and C.

Figure 27.1 Two classes B and C that inherit from class A

In the class graph shown in Figure 27.1 the edges are oriented from subclasses to superclasses. In other
words, the arrows in the figure point at the common superclass.

In Figure 27.1 the members (variables and operations) of class A are also variables in class B and C, just as
though the variables and operations were defined explicitly in both class B and C. In addition, class B and C
can define variables and operations of their own. The inherited members from class A are not necessarily
visible in class B and C, see Section 27.3. In essence, inheritance is a mechanisms that brings a number of
variables and operations from the superclass to the subclasses.

Alternatively, we could copy the variables and operations from class A and paste them into class B and class
C. This would, roughly, give the same result, but this approach is not attractive, and it should always be
avoided. If we duplicate parts of our program it is difficult to maintain the program, because future program
modifications must be carried out two or more places (both in class A, and in the duplications in class B and
C). We always go for solutions that avoid such duplication of source program fragments.

When we run a program we make instances of our classes A, B and C. B and C have some data and
operations that come from A (via inheritance). In addition, B and C have variables and operations of their
own. Despite of this, an instance of class B is one single object, without any A part and B part. Thus, in an
instance of class B the variables and operations of class A have been merged with the variables and
operations from class B. In an instance of B there are very few traces left of the fact that class B actually
inherits from class A.

The observations from above are summarized below. The situation described above, and illustrated in Figure
27.1

 210

 • Organizes the classes in a hierarchy
• Provides for some degree of specialization and/or extension of A
• At program development time, data and operations of A can be reused in B and C without

copying and without any duplication in the source program
• At runtime, instances of class B and C are whole objects, without A parts

27.2. Interfaces between clients and subclasses
Lecture 7 - slide 15

The client interface of a class (say class A in Figure 27.2) is defined by the public members. This has been
discussed in Section 11.1. In Figure 27.2 the client interface of class A is shown as number 1.

The client interface of a class B (which is a subclass of class A) is extended in comparison with the client
interface of class A itself. The client interface of class B basically includes the client interface of class A, and
some extra definitions given directly in class B. The client interface of class B is shown as number 3 in
Figure 27.2.

When inheritance is introduced, there is an additional kind of interface to take care of, namely the interfaces
between a class and its subclasses. We call it the subclass interface. Interface number 2 in Figure 27.2
consists of all variables and operations in class A which are visible and hereby applicable in class B.
Similarly, the interface numbered 4 is the interface between class B and its subclasses.

Figure 27.2 Interfaces between A, B, their client classes, and their subclasses

1. The client interface of A
2. The subclass interface between A and its subclass B
3. The client interface of B
4. The subclass interface between B and potential subclasses of B

 211

27.3. Visibility and Inheritance
Lecture 7 - slide 16

Most object-oriented programming languages distinguish between private, protected and public variables and
operations. Below we provide a general overview of these kinds of visibility.

 • Private
• Visibility limited to the class itself.
• Instances of a given class can see each others private data and operations

• Protected
• Visibility is limited to the class itself and to its subclasses

• Public
• No visibility limitations

In Section 28.6 we refine the description of the visibility modifiers relative to C#.

27.4. Class hierarchies and Inheritance
Lecture 7 - slide 17

When a number of classes inherit from each other a class graph is defined. Class graphs were introduced in
Section 27.1. Below we show different shapes of class graphs, and we indicate (by means of color and text)
which of them that make sense.

Figure 27.3 Different graph structures among classes

A tree-structured graph, as shown to the left in Figure 27.3 makes sense in all object-oriented programming
languages. In Java and C# we can only construct tree structured class graphs. This is called single-
inheritance because a class can at most have a single superclass.

Multiple inheritance is known from several object-oriented programming language, such as C++, Eiffel, and
CLOS. Compared with single inheritance, multiple inheritance complicates the meaning of an object-
oriented program. The nature of these complications will be discussed in Section 27.5.

Repeated inheritance is allowed more rarely. Eiffel allows it, however. It can be used to facilitate replication
of superclass variables in subclasses.

 212

Cyclic class graphs, as shown to the right in Figure 27.3 are never allowed.

27.5. Multiple inheritance
Lecture 7 - slide 18

In this section we dwell a little on multiple inheritance. Both relative to class specialization (see Chapter 25)
and class extension (see Chapter 26) it can be argued that multiple inheritance is useful:

 • Specialization of two or more classes
• Example: An isosceles right triangle is a isosceles triangle and it is a right triangle
• Example: There may exists a bank account which is a checking account and it is a

savings account
• Extensions of two or more classes

• "Program transport" from multiple superclasses

In Figure 25.4 the overlapping extensions of the classes CheckAccount , SavingsAccount and
LotteryAccount indicate that there may exist a single object, which is a CheckAccount , a SavingsAccount ,
and a LotteryAccount .

When we in Section 26.2 discussed the extension of class Point2D to class Point3D it could have been the
case that it was useful to extend class Point3D from an additional superclass as well.

Let us now briefly argue why multiple inheritance is difficult to deal with. In Figure 27.4 we have sketched a
situation where class C inherits from both class A and class B. Both A and B have a variable or an operation
named x. The question is now which x we get when we refer to x in C (for instance via C.x if x is static).

Figure 27.4 Class B is a subclass of class A

In general, the following problems and challenges can be identified:

 • The name clash problem: Does x in C refer to the x in A or the x in B?
• The combination problem: Can x in A and x in B combined to a single x in C?
• The selection problem: Do we have means in C to select either x in A or x in B?
• The replication problem: Is there one or two x pieces in C?

Notice that some of these problems and challenges are slightly overlapping.

 213

This ends the general discussion of inheritance. The next chapter is also about inheritance, as it relates to C#.
The discussions of multiple inheritance is brought up again, in Chapter 31, in the context of interfaces.

 214

 215

28. Inheritance in C#

In Chapter 27 we discussed inheritance in general. In this section we will be more specific about class
inheritance in C#. The current section is long, not least because it covers important details about virtual
methods and polymorphism.

28.1. Class Inheritance in C#
Lecture 7 - slide 21

When we define a class, say class-name , we can give the name of the superclass, super-class-name , of the
class. The syntax of this is shown in Chapter 27. In some contexts, a superclass is also called a base class.

class-modifier class class-name: super-class-name{
 declarations
}

 Syntax 28.1 A C# class defined as a subclass of given superclass

We see that the superclass name is given after the colon. There is no keyword involved (like extends in
Java). If a class implements interfaces, see Chapter 31, the names of these interfaces are also listed after the
colon. The superclass name must be given before the names of interfaces. If we do not give a superclass
name after the colon, it is equivalent to writing : Object . In other words, a class, which does not specify an
explicit superclass, inherits from class Object . We discuss class Object in Section 28.2 and Section 28.3.

In Program 28.1 below we show a class B which inherits from class A. Notice that Program 28.1 uses C#
syntax, and that the figure shows full class definitions. Notice also that the set of member is empty in both
class A and B. As before, we use the graphical notation in Figure 28.1 for this situation.

1
2
3

class A {}

class B : A {}

 Program 28.1 A class A and its subclass B.

Figure 28.1 The class B inherits from class A

 B is said to be a subclass of A, and A a superclass of B. A is also called the base class of B.

28.2. The top of the class hierarchy
Lecture 7 - slide 22

As discussed in Section 27.4 a set of classes define a class hierarchy. The top/root of the class hierarchy is
the class called Object . More precisely, the only class which does not have an edge to a superclass in the

 216

class graph is called Object . In C# the class Object resides in the System namespace. The type object is an
alias for System.Object . Due to inheritance the methods in class Objects are available in all types in C#,
including value types. We enumerate these methods in Section 28.3.

Figure 28.2 The overall type hierarchy in C#

The left branch of Figure 28.2 corresponds to the reference types of C#. Reference types were discussed in
Chapter 13. The right branch of Figure 28.2 corresponds to the value types, which we have discussed in
Chapter 14.

All pre-existing library classes, and the classes we define in our own programs, are reference types. We have
also emphasized that strings (as represented by class String) and arrays (as represented by class Array) are
reference types. Notice that the dotted box "Reference types" is imaginary and non-existing. (We have added
it for matters of symmetry, and for improved conceptual overview). The role of class Array is clarified in
Section 47.1.

The class ValueType is the base type of all value types. Its subclass Enum is a base type of all enumeration
types. It is a little confusing that these two classes are used as superclasses of structs, in particular because
structs cannot inherit from other structs or classes. This can be seen as a special-purpose organization, made
by the C# language designers. We cannot, as programmers, replicate such organizations in our own programs.
The classes Object , ValueType and Enum contain methods, which are available in the more specialized value
types (defined by structs) of C#.

28.3. Methods in the class Object in C#
Lecture 7 - slide 23

We will now review the methods in class Object . Due to the type organization discussed in Section 28.2
these methods can be used uniformly in all classes and in all structs.

 217

 • Public methods in class Object
• Equals:

• obj1.Equals(obj2) - Instance method
• Object.Equals(obj1, obj2) - Static method
• Object.ReferenceEquals(obj1,obj2) - Static method

• obj.GetHashCode()
• obj.GetType()
• obj.ToString()

• Protected methods in class Object
• obj.Finalize()
• obj.MemberwiseClone()

There are three equality methods in class Object . All three of them have been discussed in Section 13.5. The
instance methods Equals is the one we often redefine in case we need a shallow equality operation in one of
our classes. See Section 28.16 for details. The static method, also named Equals , is slightly more applicable
because it can also compare objects/values and null values. The static method ReferenceEquals is - at least
in the starting point - equivalent to the == operator.

The instance method GetHashCode produces an integer value which can be used for indexing purposes in
hashtables. In order to obtain efficient implementations, GetHashCode often use some of the bit-wise
operators, such as shifting and bit-wise exclusive or. (See Program 28.29 for an example). It must be ensured
that if o1.Equals(o2) then o1.GetHashCode() has the same value as o2.GetHashCode() .

The instance method ToString is well-known. We have seen it in numerous types, for instance in the very
first Die class we wrote in Program 10.1. We implement and override this method in most of our classes.
ToString is implicitly called whenever we need some text string representation of an object obj , typically in
the context of an output statement such Console.WriteLine("{0}", obj) . If the parameterless ToString
method of class Object is not sufficient for our formatting purposes, we can implement the ToString
method of the interface IFormattable , see Section 31.7.

The method Finalize is not used in C#. Instead, destructors are used. Destructors help release resources just
before garbage collection is carried out. We do not discuss destructors in this material.

MemberwiseClone is a protected method which does bit per bit copying of an object (shallow copying, see
Section 13.4). MemberwiseClone can be used in subclasses of Object (in all classes and structs), but
MemberwiseClone cannot be used from clients because it is not public. In Section 32.7 we will see how to
make cloning available in the client interface; This involves implementation of the interface ICloneable (see
Section 31.4) and delegation to MemberwiseClone from the Clone method prescribed by ICloneable .

28.4. Inheritance and Constructors
Lecture 7 - slide 24

Constructors in C# were introduced in Section 12.4 as a means for initializing objects, cf. Section 12.3. It is
recommended to review the basic rules for definition of constructors in Section 12.4.

 218

As the only kind of members, constructors are not inherited. This is because a constructor is only useful in
the class to which it belongs. In terms of the BankAccount class hierarchy shown in Figure 25.3, the
BankAccount constructor is not directly useful as an inherited member of the class CheckAccount : It would
not be natural to apply a BankAccount constructor on a CheckAccount object.

On the other hand, the BankAccount constructor typically does part of the work of a CheckAccount
constructor. Therefore it is useful for the CheckAccount constructor to call the BankAccount constructor.
This is indeed possible in C#. So the statement that "constructors are not inherited" should be taken with a
grain of salt. A superclass constructor can be seen and activated in a subclass constructor.

Here follows the overall guidelines for constructors in class hierarchy:

 • Each class in a class hierarchy should have its own constructor(s)
• The constructor of class C cooperates with constructors in superclasses of C to initialize a new

instance of C
• A constructor in a subclass will always, implicitly or explicitly, call a constructor in its superclass

As recommended in Section 12.4 you should always program the necessary constructors in each of your
classes. As explained and motivated in Section 12.4 it is not possible in C# to mix a parameterless default
constructor and the constructors with parameters that you program yourself. You can, however, program
your own parameterless constructor and a number of constructors with parameters.

In the same way as two or more constructors in a given class typically cooperate (delegate work to each other
using the special this(...) syntax) the constructors of a class C and the constructors of the base class of C
cooperate. If a constructor in class C does not explicitly call base(...) in its superclass, it implicitly calls
the parameterless constructor in the superclass. In that case, such a parameterless constructor must exist, and
it must be non-private.

We will return to the BankAccount class hierarchy from Section 25.4 and emphasize the constructors in the
classes that are involved.

In Program 28.2 we see the root bank account class, BankAccount . It has two constructors, where the second
is defined by means of the first. Notice the use of the this(...) notation outside the body of the constructor
in line 16.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;

public class BankAccount {

 protected double interestRate;
 protected string owner;
 protected decimal balance;

 public BankAccount(string o, decimal b, double ir) {
 this.interestRate = ir;
 this.owner = o;
 this.balance = b;
 }

 public BankAccount(string o, double ir):
 this(o, 0.0M, ir) {
 }

 219

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 public virtual decimal Balance {
 get {return balance;}
 }

 public virtual void Withdraw (decimal amount) {
 balance -= amount;
 }

 public virtual void Deposit (decimal amount) {
 balance += amount;
 }

 public virtual void AddInterests() {
 balance += balance * (Decimal)interestRate;
 }

 public override string ToString() {
 return owner + "'s account holds " +
 + balance + " kroner";
 }
}

 Program 28.2 Constructors in class BankAccount.

The two constructors of the class CheckAccount , shown in Program 28.3, both delegate part of the
initialization work to the first constructor in class BankAccount . Again, this is done via the special notation
base(...) outside the body of the constructor. Notice that bodies of both constructors in CheckAccount are
empty.

It is interesting to ask why the designers of C# have decided on the special way of delegating work between
constructors in C#. Alternatively, one constructor could chose to delegate work to another constructor inside
the bodies. The rationale behind the C# design is most probably, that the designers insist on a particular
initialization order. This will be discussed in Section 28.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;

public class CheckAccount: BankAccount {

 public CheckAccount(string o, double ir):
 base(o, 0.0M, ir) {
 }

 public CheckAccount(string o, decimal b, double ir):
 base(o, b, ir) {
 }

 public override void Withdraw (decimal amount) {
 balance -= amount;
 if (amount < balance)
 interestRate = -0.10;
 }

 public override string ToString() {
 return owner + "'s check account holds " +
 + balance + " kroner";
 }
}

 Program 28.3 Constructors in class CheckAccount.

 220

In the web-version of the material we also show the classes SavingsAccount and LotteryAccount , see
Program 28.4 and Program 28.5 respectively.

28.5. Constructors and initialization order
Lecture 7 - slide 25

We speculated about the motives behind the special syntax of constructor delegation in the previous section.
A constructor in a subclass must - either implicitly or explicitly - activate a constructor in a superclass. In
that way a chain of constructors are executed when an object is initialized. The chain of constructors will be
called from the most general to the least general. The following initializations take place when a new C
object is made with new C(...) :

 • Instance variables in C are initialized (field initializers)
• Instance variables in superclasses are initialized - most specialized first
• Constructors of the superclasses are executed - most general first
• The constructor body of C is executed

Notice that initializers are executed first, from most specific to most general. Next the constructors are called
in the opposite direction.

Let us illustrate this by means of concrete example in Program 28.6, Program 28.7 and Program 28.8 where
class C inherits from class B, which in turn inherit from class A.

The slightly artificial class Init , shown in Program 28.9 contains a static "tracing method" which returns a
given init value, val . More importantly, for our interests, it tells us about the initialization. In that way we
can see the initialization order on the standard output stream. The tiny application class, containing the static
Main method, is shown in Program 28.10.

The output in Listing 28.11 reveals - as expected - that all initializers are executed before the constructors.
First in class C, next in B, and finally in A. After execution of the initializers the constructors are executed.
First the A constructors, then the B constructor, and finally the C constructor.

1
2
3
4
5
6
7
8
9
10

using System;

public class C: B {
 private int varC1 = Init.InitMe(1, "varC1, initia lizer in class C"),
 varC2;

 public C (){
 varC2 = Init.InitMe(4, "VarC2, constructor body C");
 }
}

 Program 28.6 Initializers and constructors of class C.
1
2
3
4
5
6
7

using System;

public class B: A {
 private int varB1 = Init.InitMe(1, "varB1, initia lizer in class B"),
 varB2;

 public B (){

 221

8
9
10

 varB2 = Init.InitMe(4, "VarB2, constructor body B");
 }
}

 Program 28.7 Initializers and constructors of class B.
1
2
3
4
5
6
7
8
9
10

using System;

public class A {
 private int varA1 = Init.InitMe(1, "varA1, initia lizer in class A"),
 varA2;

 public A (){
 varA2 = Init.InitMe(4, "VarA2, constructor body A");
 }
}

 Program 28.8 Initializers and constructors of class A.
1
2
3
4
5
6
7
8
9
10

using System;

public class Init{

 public static int InitMe(int val, string who){
 Console.WriteLine(who);
 return val;
 }

}

 Program 28.9 The class Init and the method InitMe.
1
2
3
4
5
6
7
8

using System;

class App{

 public static void Main(){
 C c = new C();
 }
}

 Program 28.10 A program that instantiates and initializes class
C.

1
2
3
4
5
6

varC1, initializer in class C
varB1, initializer in class B
varA1, initializer in class A
VarA2, constructor body A
VarB2, constructor body B
VarC2, constructor body C

 Listing 28.11 The output that reveals the initialization
order.

28.6. Visibility modifiers in C#
Lecture 7 - slide 27

Visibility control is a key issue in object-oriented programming. The general discussion about visibility
appears in Section 11.3, Section 11.4 and Section 11.5. The C# specific discussion is briefly touched on in
Section 11.7. We gave overview of visibility in namespaces and types in Section 11.16. In this lecture we
have briefly described the issue in general in Section 27.3.

 222

Basically, we must distinguish between visibility of types in assemblies and visibility of members in types:

 • Visibility of a type (e.g. a class) in an assembly
• internal: The type is not visible from outside the assembly
• public: The type is visible outside the assembly

• Visibility of members in type (e.g., methods in classes)
• private: Accessible only in the containing type
• protected: Accessible in the containing type and in subtypes
• internal: Accessible in the assembly
• protected internal: Accessible in the assembly and in the containing type and its

subtypes
• public: Accessible whenever the enclosing type is accessible

The issue of inheritance and visibility of private members is addressed in Exercise 7.2.

Internal visibility is related to assemblies, not namespaces. Assemblies are produced by the compiler, and
represented as either -.dll or -.exe files. It is possible to have a type which is invisible outside the
assembly, into which it is compiled. It is, of course, also possible to have types which are visible outside the
assembly. This is the mere purpose of having libraries. Per default - if you do not write any modifier - top-
level types are internal in their assembly. The ultimate visibility of members of a class, quite naturally,
depends on the visibility of the surrounding type in the assembly.

Members of classes (variables, methods, properties, etc) can also have internal visibility. Protected members
are visible in direct and indirect subclasses. You can think of protected members as members visible from
classes in the inheritance family. We could call it family visibility. It is - as noticed above - possible to
combine internal and protected visibility. The default visibility of members in types is private.

It was a major point in Chapter 11 that data should be private within its class. With the introduction of
inheritance we may chose to define data as protected members. Protected data is convenient, at least from a
short-term consideration, because superclass data then can be seen from subclasses. But having protected
data in class C implies that knowledge of the data representation is spread from class C to all direct and
indirect subclasses of C. Thus, a larger part of the program is vulnerable if/when the data representation is
changed. (Recall the discussion about representation independence from Section 11.6). Therefore we may
decide to keep data private, and to access superclass data via public or protected operations. It is worth a
serious consideration is you should allow protected data in the classes of your next programming project.

Related to inheritance we should also notice that a redefined member in a subclass should be at least as
visible as the member in the superclass, which it replaces. It is possible to introduce visibility inconsistencies.
This has been discussed in great details in Section 11.16.

 Exercise 7.2. Private Visibility and inheritance

Take a look at the classes shown below:

 using System;

public class A{
 private int i = 7;

 223

 protected int F(int j){
 return i + j;
 }
}

public class B : A{
 public void G(){
 Console.WriteLine("i: {0}", i);
 Console.WriteLine("F(5): {0}", F(5));
 }
}

public class Client {
 public static void Main(){
 B b = new B();
 b.G();
 }
}

Answer the following questions before you run the program:

1. Does the instance of B, created in Main in Client , have an instance variable i?

2. Is the first call to Console.WriteLine in G legal?

3. Is the second call to Console.WriteLine in G legal?

Run the program and confirm your answers.

 Exercise 7.3. Internal Visibility

The purpose of this exercise is to get some experience with the visibility modifier called internal. Take a
look at the slide to which this exercise belongs.

In this exercise, it is recommended to activate the compiler from a command prompt.

Make a namespace N with two classes P and I:

• P should be public. P should have a static public member p and a static internal member i .
• I should be internal. I should also have a static public member p and a static internal member i .

Compile the classes in the namespace N to a single assembly, for instance located in the file x.dll.

Demonstrate that the class I can be used in class P. Also demonstrate that P.i can be seen and used in
class P.

After this, program a class A, which attempts to use the classes P and I from x.dll. Arrange that class A is
compiled separately, to a file y.dll. Answer the following questions about class A:

1. Can you declare variables of type P in class A?
2. Can you declare variables of type I in class A?
3. Can you access P.i and and P.p in A?
4. Can you access I.i and and I.p in A?

 224

Finally, arrange that class A is compiled together with N.P and N.I to a single assembly, say y.dll. Does
this alternative organization affect the answers to the questions asked above?

28.7. Inheritance of methods, properties, and indexers
Lecture 7 - slide 28

All members apart from constructors are inherited. In particular we notice that operations (methods,
properties, and indexers) are inherited.

 Methods, properties, and indexers are inherited

Here follows some basic observations about inheritance of operations:

 • Methods, properties, and indexers can be redefined in two different senses:
• Same names and signatures in super- and subclass, closely related meanings (virtual ,

override)
• Same names and signatures in super- and subclass, two entirely different meanings (new)

• A method M in a subclass B can refer to a method M in a superclass A
• base.M(...)
• Cooperation, also known as method combination

The distinctions between virtual /override and new is detailed in Section 28.9.

The subject of the second item is method combination, which we will discuss in more details in Chapter 29.

 Operators are inherited. A redefined operator in a subclass will be an entirely new operator.

Operators (see Chapter 21) are static. The choice of operator is fully determined at compile time. Operators
can be overloaded. There are rules, which constrain the types of formal parameters of operators, see Section
21.4. All this implies that two identically named operators in two classes, one of which inherits from the
other, can be distinguished from each other already at compile-time.

28.8. Inheritance of methods: Example.
Lecture 7 - slide 29

We will now carefully explore a concrete example that involves class inheritance. We stick to the bank
account classes, as introduced in Section 25.4 where we discussed class specialization. In Program 28.12,
Program 28.13, and Program 28.14 we emphasize the relevant aspects of inheritance with colors.

1
2
3
4
5

using System;

public class BankAccount {

 protected double interestRate;

 225

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 protected string owner;
 protected decimal balance;

 public BankAccount(string o, decimal b, double i r) {
 this.interestRate = ir;
 this.owner = o;
 this.balance = b;
 }

 public BankAccount(string o, double ir):
 this(o, 0.0M, ir) {
 }

 public virtual decimal Balance {
 get {return balance;}
 }

 public virtual void Withdraw (decimal amount) {
 balance -= amount;
 }

 public virtual void Deposit (decimal amount) {
 balance += amount;
 }

 public virtual void AddInterests() {
 balance += balance * (Decimal)interestRate;
 }

 public override string ToString() {
 return owner + "'s account holds " +
 + balance + " kroner";
 }
}

 Program 28.12 The base class BankAccount.

In Program 28.12 the data a protected, not private. This is an easy solution, but not necessarily the best
solution, because the program area that uses the three instance variables of class BankAccount now becomes
much larger. This has already been discussed in Section 28.6. In addition the properties and methods are
declared as virtual. As we will see in Section 28.14 this implies that we can redefine the operations in
subclasses of BankAccount , such that the run-time types of bank accounts (the dynamic types) determine the
actual operations carried out.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;

public class CheckAccount: BankAccount {

 // Instance variables of BankAccount are inherited

 public CheckAccount(string o, double ir):
 base(o, 0.0M, ir) {
 }

 public CheckAccount(string o, decimal b, double ir):
 base(o, b, ir) {
 }

 // Method Balance is inherited
 // Method Deposit is inherited
 // Method AddInterests is inherited

 226

19
20
21
22
23
24
25
26
27
28
29

 public override void Withdraw (decimal amount) {
 base.Withdraw(amount);
 if (amount < balance)
 interestRate = -0.10;
 }

 public override string ToString() {
 return owner + "'s check account holds " +
 + balance + " kroner";
 }
}

 Program 28.13 The class CheckAccount.

In class CheckAccount in Program 28.13 the instance variables of class BankAccount and the operations
Balance , Deposit , and AddInterests are inherited. Thus, these operations from BankAccount can simply
be (re)used on CheckAccount objects. The method Withdraw is redefined. Notice that Withdraw calls
base.Withdraw , the Withdraw method in class BankAccount . This is (imperative) method combination, see
Section 29.1. As we will see in Section 28.9 the modifier override is crucial. The method ToString
overrides the similar method in BankAccount , which in turn override the similar method from class Object .

In the web-version of the material we also show subclasses SavingsAccount and LotteryAccount .

 Exercise 7.4. A subclass of LotteryAccount

On the slide, to which this exercise belongs, we have emphasized inheritance of methods and properties in
the bank account class hierarchy. From the web-version of the material there is direct access to the
necessary pieces of program.

The LotteryAccount uses an instance of a Lottery object for adding interests. Under some lucky
circumstances, the owner of a LotteryAccount will get a substantial amount of interests. In most cases,
however, no interests will be added.

There exists a single file which contains the classes BankAccount , CheckAccount , SavingsAccount ,
Lottery , together with a sample client class.

Program a specialization of the LotteryAccount , called LotteyPlusAccount , with the following
redefinitions of Deposit and Withdraw .

• The Deposit method doubles the deposited amount in case you draw a winning lottery number
upon deposit. If you are not lucky, Deposit works as in LottoryAccount , but an administrative
fee of 15 kroner will be withdrawn from your LotteryPlusAccount .

• The Withdraw method returns the withdrawn amount without actually deducting it from the
LotteryPlusAccount if you draw a winning lottery number upon withdrawal. If you are not
lucky, Withdraw works as in LottoryAccount , and an additional administrative fee of 50 kroner
will be withdrawn from the account as well.

Notice that the Deposit and Withdraw methods in LotteryPlusAccount should combine with the method
in LotteryAccount (method combination). Thus, use the Deposit and Withdraw methods from
LotteryAccount as much as possible when you program the LotteryPlusAccount .

 227

Test-drive the class LotteryPlusAccount from a sample client class.

28.9. Overriding and Hiding in C#
Lecture 7 - slide 30

Let us now carefully explore the situation where a method M appears in both class A and its subclass B. Thus,
the situation is as outlined in Program 28.16.

1
2
3
4
5
6
7

class A {
 public void M(){}
}

class B : A{
 public void M(){}
}

 Program 28.16 Two methods M in classes A and B, where B
inherits from A.

Let us already now reveal that Program 28.16 is illegal in C#. The compiler will complain (with a warning).
We will need to add some modifiers in front of the method definitions.

There are basically two different situations that make sense:

 • Intended redefinition:
B.M is intended to redefine A.M - such that B.M is used on B instances

• A.M must be declared as virtual
• B.M must be declared to override A.M

• Accidental redefinition:
The programmer of class B is not aware of A.M

• B.M must declare that it is not related to A.M - using the new modifier

Intended redefinition is - by far - the most typical situation. We prepare for intended redefinition by
declaring the method as virtual in the most general superclass. This causes the method to be virtual in all
subclasses. Each subclass that redefines the method must override it. This pattern paves the road for
dynamic binding, see Section 28.10. Intended redefinition appears frequently in almost all object-oriented
programs. We have already seen it several times in the bank account classes in Program 28.12 - Program
28.15.

Accidental redefinition is much more rare. Instead of declaring M.B as new it is better to give M in B another
name. The new modifier should only be used in situations where renaming is not possible nor desirable.

28.10. Polymorphism. Static and dynamic types
Lecture 7 - slide 31

In this section we define the concepts of polymorphism and dynamic binding. In order to be precise about
dynamic binding we also define the meaning of static and dynamic types of variables and parameters.

 228

 Polymorphism stands for the idea that a variable can refer to objects of several different types

The static type of a variable is the type of variable, as declared

The dynamic type of a variable is type of object to which the variable refers

Dynamic binding is in effect if the dynamic type of a variable v determines the operation
activated by v.op(...)

'Poly' means 'many' and 'morph' means 'form'. Thus, polymorphism is related to the idea of 'having many
forms' or 'having many types'. In the literature, polymorphism is often associated with procedures or
functions that can accept parameters of several types. This is called parametric polymorphism. More
basically (and as advocated by, for instance, Bertrand Meyer [Meyer88]), polymorphism can be related to
variables. A polymorphic variable or parameter can (at run-time) take values of more than one type. This is
called data polymorphism.

A concrete and detailed discussion of dynamic and static types, based on an example, is found in Section
28.11, which is the next section of this material.

Use of the modifiers virtual and override , as discussed in Section 28.9 is synonymous with dynamic
binding. We have much more to say about dynamic binding later in this material, more specifically in
Section 28.14 and Section 28.15. Polymorphism and good use of dynamic binding is one of the "OOP crown
jewels" in relation to inheritance. It means that you should attempt to design your programs such that they
take advantage of polymorphism and dynamic binding. For a practical illustration, please compare Program
28.26 and Program 28.27 in Section 28.15.

28.11. Static and dynamic types in C#
Lecture 7 - slide 32

Before we can continue our discussion of virtual methods (dynamic binding) we will give examples of static
and dynamic types of variables.

We now apply the definitions from Section 28.10 to the scene in Program 28.17 shown below. As it appears,
the class B inherits from class A. In the client of A and B the variable x is declared of type A, and the variable y
is declared of type B. In other words, the static type of x is A and the static type of y is B.

Next, in line 10 and 11, we instantiate class A and B. Thus, at the position of line 12, the variable x refers to
an object of type A, and the variable y refers to an object of type B. Therefore, at the position of line 12, the
dynamic type of x is A and the dynamic type of y is B.

The assignment x = y in line 13 implies that x (as well as y) now refer to a B object. This is possible due
polymorphism. Recall that a B object is an A object. You can read about the is-a relation in Section 25.2.

Line 15 causes a compile-time error. The variable y, of static type B, cannot refer an object of type A. An
instance of class A is not a B object.

Finally, in line 17, we assign x to y. Recall, that just before line 17 x and y refer to the same B object. Thus,
the assignment y = x is harmless in the given situation. Nevertheless, it is illegal! From a general and

 229

conservative point of view, the danger is that the variable y of static type B can be assigned to refer to an
object of type A. This would be illegal, because an A object is (still) not a B object.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

class A {}
class B: A{}

class Client{
 public static void Main (){
 // // Static type Dynamic type
 A x; // A -
 B y; // B -

 x = new A(); // A A TRIVIAL
 y = new B(); // B B TRIVIAL

 x = y; // A B OK - TYPICAL

 y = new A(); // B A Compile time ERROR
 // Cannot imp licitly convert type 'A' to 'B'.
 y = x; // B B Compile time ERROR !
 // Cannot imp licitly convert type 'A' to 'B'.
 }
}

 Program 28.17 Illustration of static and dynamic types.

We will now, in Program 28.18 remedy one of the problems that we encountered above in Program 28.17. In
line 16 the assignment y = x succeed if we cast the object, referred to by x, to a B-object. You should think
of the cast as a way to assure the compiler that x, at the given point in time, actually refers to a B-object.

In line 15 we attempt a similar cast of the object returned by the expression new A() . (This is an attempted
downcast, see Section 28.17). As indicated, this causes a run-time error. It is not possible to convert an A
object to a B object.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

class A {}
class B: A{}

class Client{
 public static void Main (){
 // // Static type Dynamic type
 A x; // A -
 B y; // B -

 x = new A(); // A A TRIVIAL
 y = new B(); // B B TRIVIAL

 x = y; // A B OK - TYP ICAL

 y = (B)new A(); // B A RUNTIME ERROR
 y = (B)x; // B B NOW OK
 }
}

 Program 28.18 Corrections of the errors in the illustration of
static and dynamic types.

With a good understanding of static and dynamic types of variables you can jump directly to Section 28.14.
If you read linearly you will in Section 28.12 and in Section 28.13 encounter the means of expressions in C#
for doing type testing and type conversion.

 230

28.12. Type test and type conversion in C#
Lecture 7 - slide 33

It is possible to test if the dynamic type of a variable v is of type C, and there are two ways to convert (cast)
one class type to another

The following gives an overview of the possibilities.

 • v is C
• True if the variable v is of dynamic type C
• Also true if the variable v is of dynamic type D, where D is a subtype of C

As it appears from level 9 of Table 6.1 is an operator in C#. - The explanation of the is operator above is
not fully accurate. The expression in the item above is true if v successfully can be converted to the type C by
a reference conversion, a boxing conversion, or an unboxing conversion.

It is - every now and then - useful to test the dynamic type of a variable (or expression) by use of the is
operator. Notice however, that in many contexts it is unnecessary to do so explicitly. Use of a virtual method
(dynamic binding) encompasses an implicit test of the dynamic type of an expression. Such a test is therefore
an implicit branching point in a program. In other words, passing a message to an object selects an
appropriate method on basis of the type of the receiver object. You should always consider twice if it is
really necessary to discriminate with use of the is operator. If your program contains a lot of instance tests
(using the is operator) you may not have understood the idea of virtual methods!

The following to forms of type conversion (casting) is supported in C#:

 • (C)v
• Convert the static type of v to C in the given expression
• Only possible if the dynamic type of v is C , or a subtype of C
• If not, an InvalidCastException is thrown

• v as C
• Non-fatal variant of (C)v
• Thus, convert the static type of v to C in the given expression
• Returns null if the dynamic type of v is not C, or a subtype of C

The first, (C)v , is know as casting. If C is a class, casting is a way to adjust the static type of a variable or
expression. The latter alternative, v as C , is equivalent to (C)v provided that no exceptions are thrown. If
(C)v throws an exception, the expression v as C returns null .

Above we have assumed that C is a reference type (a class for instance). It also makes sense to use (T)v
where T is value type (such as a struct). In this case a value of the type is converted to another type. We have
touched on explicitly programmed type conversions in Section 21.2. See an example in Program 21.3.
Casting of a value of value type may change the actual bits behind the value. The casting of a reference, as
discussed above, does not change the "bits behind the reference".

 231

as is an operator in the same way as is, see level 9 of Table 6.1. Notice also, at level 13 of the table, that
casting is an operator in C#.

 The typeof operator can be applied on a typename to obtain the corresponding object of class
Type

The Object.GetType instance method returns an object of class Type that represents the run-
time type of the receiver.

Examples of casting, and examples of the as and is operators, are given next in Section 28.13.

28.13. Examples of type test and type conversion
Lecture 7 - slide 34

In the web-version of the material, this section contains concrete examples that show how to use the is, as,
and typecasting operators. The examples are relatively large, and the explanations quite detailed; Therefore
they have been left out of the paper edition.

 Exercise 7.5. Static and dynamic types

Type conversion with v as T was illustrated with a program on the accompanying slide. The output of the
program was confusing and misleading. We want to report the static types of the expressions ba1 as

BankAccount , ba1 as CheckAccount , etc. If you access this exercise from the web-version there will be
direct links to the appropriate pieces of program.

Explain the output of the program. You can examine the classes BankAccount , CheckAccount ,
SavingsAccount and LotteryAccount , if you need it.

Modify the program such that the static type of the expressions bai as BanktypeAccount is reported.
Instead of

 baRes1 = ba1 as BankAccount;
 Report(baRes1);

you should activate some method on the expression ba1 as BankAccount which reveals its static type. In
order to do so, it is allowed to add extra methods to the bank account classes.

28.14. Virtual methods in C#
Lecture 7 - slide 35

This section continues our discussion of dynamic binding and virtual methods from Section 28.10. We will
make good use of the notion of static type and dynamic type, as introduced in Section 28.11.

 232

First of all notice that virtual methods that are overridden in subclasses rely on dynamic binding, as defined
in Section 28.10. Also notice that everything we tell about virtual methods also holds for virtual properties
and virtual indexers.

The ABC example in Program 28.24 shows two classes, A and B, together with a Client class. B is a subclass
of A. The class A holds the methods M, N, O, and P which are redefined somehow in the subclass B.

The compiler issues a warning in line 11 because we have a method M in both class A and class B. Similarly, a
warning is issued in line 13 because we have a method O in class B as well as a virtual method O in class A.
The warnings tells you that you should either use the modifier override or new when you redefine methods
in class B.

M in class B is said to hide M in class A. Similarly, O in class B hides O in class A.

The overriding of N in line 12 (in class B) of the virtual method N in line 5 (from class A) is very typical.
Below, in the client program, we explain the consequences of this setup. Please notice this pattern. Object-
oriented programmers use it again and again. It is so common that it is the default setup in Java!

The method P in line 14 of class B is declared as new. P in class B hides P in class A. The use of new
suppresses the warnings we get for method M and for method O. The use of new has nothing to do with class
instantiation. Declaring P as new in B states an accidental name clash between methods in the class hierarchy.
P in A and P in B can co-exist, but they are not intended to be related in the same way as N in A and N in B.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

using System;

class A {
 public void M(){Console.WriteLine("M in A");}
 public virtual void N(){Console.WriteLine("N in A");}
 public virtual void O(){Console.WriteLine("O in A");}
 public void P(){Console.WriteLine("P in A");}
}

class B: A{
 public void M(){Console.WriteLine("M in B");} // warning
 public override void N(){Console.WriteLine("N in B");}
 public void O(){Console.WriteLine("O in B");} // warning
 public new void P(){Console.WriteLine("P in B");}
}

class Client {
 public static void Main(){
 A aa = new A(), // aa has static type A, a nd dynamic type A
 ab = new B(); // ab has static type A, a nd dynamic type B
 B b = new B(); // b has static type B, a nd dynamic type B

 aa.N(); ab.N(); b.N(); // The dynamic type controls
 Console.WriteLine();
 aa.P(); ab.P(); b.P(); // The static type controls
 }
}

 Program 28.24 An illustration of virtual and new methods in
class A and B.

The Client class in Program 28.24 brings objects of class A and B in play. The variable aa refers an A object.
The variable ab refers a B object. And finally, the variable b refers a B object as well.

 233

The most noteworthy cases are emphasized in blue. When we call a virtual method N, the dynamic type of
the receiving object controls which method to call. Thus in line 23, aa.N() calls the N method in class A, and
ab.N() calls the N method in class B. In both cases we dispatch on an object referred from variables of static
type A. The dynamic type of the variable controls the dispatching.

In line 25, the expression aa.P() calls the P method in class A, and (most important in this example) ab.P()
also class the P method in class A. In both cases the static type of the variables aa and ab control the
dispatching. Please consult the program output in Listing 28.25 to confirm these results.

1
2
3
4
5
6
7

N in A
N in B
N in B

P in A
P in A
P in B

 Listing 28.25 Output from the program that illustrates virtual
and new methods.

 Virtual methods use dynamic binding

Properties and indexers can be virtual in the same way as methods

Let us finally draw the attention to the case where a virtual method M is overridden along a long chain of
classes, say A, B, C, D, E, F, G, and H that inherit from each other (B inherits from A, C from B, etc). In the
middle of this chain, let us say in class E, the method M is defined as new virtual instead of being
overridden. This changes almost everything! It is easy to miss the new virtual method among all the
overridden methods. If a variable v of static type A, B, C, or D refers to an object of type H, then v.M() refers
to M in D (the level just below the new virtual method). If v is of static type E, F, or G then v.M() refers to M
in class H.

28.15. Practical use of virtual methods in C#
Lecture 7 - slide 36

Having survived the ABC example from the previous section, we will now look at a real-life example of
virtual methods. We will program a client class of different types of bank account classes, and we will see
how the AddInterests method benefits from being virtual.

The bank account classes, used below, were introduced in Section 25.4 in the context of our discussion of
specialization. Please take a look at the way the AddInterests methods are defined in Program 25.1,
Program 25.3, and Program 25.4. The class CheckAccount inherits the AddInterests method of class
BankAccount . SavingsAccount and LotteryAccount override AddInterests .

Notice that the definition of the AddInterests methods follow the pattern of the methods named N in
Program 28.24.

 234

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using System;

public class AccountClient{

 public static void Main(){
 BankAccount[] accounts =
 new BankAccount[5]{
 new CheckAccount("Per",1000.0M, 0.03),
 new SavingsAccount("Poul",1000.0M, 0.03),
 new CheckAccount("Kurt",1000.0M, 0.03),
 new LotteryAccount("Bent",1000.0M),
 new LotteryAccount("Lone",1000.0M)
 };

 foreach(BankAccount ba in accounts){
 ba.AddInterests();
 }

 foreach(BankAccount ba in accounts){
 Console.WriteLine("{0}", ba);
 }
 }

}

 Program 28.26 Use of virtual bank account methods.

The Main method of the AccountClient class in Program 28.27 declares an array of type BankAccount , see
line 6. Due to polymorphism (see Section 28.10) it is possible to initialize the array with different types of
BankAccount objects, see line 7-13.

We add interests to all accounts in the array in line 15-17. This is done in a foreach loop. The expression
ba.AddInterests() calls the most specialized interest adding method in the BankAccount class hierarchy
on ba. The dynamic type of ba determines which AddInterests method to call. If, for instance, ba refers to a
LotteryAccount , the AddInterests method of class LotteryAccount is used. Please notice that this is
indeed the expected result:

The type of the receiver object obj controls the interpretation of messages to obj.

And further, the most specialized method relative to the type of the receiver is called.

Let us - for a moment - assume that we do not have access to virtual methods and dynamic binding. In
Program 28.27 we have rewritten Program 28.26 in such a way that we explicitly control the type
dispatching. This is the part of Program 28.27 emphasized in purple. Thus, the purple parts of Program
28.26 and Program 28.27 are equivalent. Which version do you prefer? Imagine that many more bank
account types were involved, and find out how valuable virtual methods can be for your future programs.

1
2
3
4
5
6
7
8
9
10
11
12

using System;

public class AccountClient{

 public static void Main(){
 BankAccount[] accounts =
 new BankAccount[5]{
 new CheckAccount("Per",1000.0M, 0.03),
 new SavingsAccount("Poul",1000.0M, 0.03),
 new CheckAccount("Kurt",1000.0M, 0.03),
 new LotteryAccount("Bent",1000.0M),
 new LotteryAccount("Lone",1000.0M)

 235

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 };

 foreach(BankAccount ba in accounts){
 if (ba is CheckAccount)
 ((CheckAccount)ba).AddInterests();
 else if (ba is SavingsAccount)
 ((SavingsAccount)ba).AddInterests();
 else if (ba is LotteryAccount)
 ((LotteryAccount)ba).AddInterests();
 else if (ba is BankAccount)
 ((BankAccount)ba).AddInterests();
 }

 foreach(BankAccount ba in accounts){
 Console.WriteLine("{0}", ba);
 }
 }

}

 Program 28.27 Adding interests without use of dynamic
binding - AddInterest is not virtual.

Notice that for the purpose of Program 28.27 we have modified the bank account classes such that
AddInterests is not virtual any more. Notice also, in line 22, that the last check of ba is against
BankAccount . The check against BankAccount must be the last branch of the if-else chain because all the
bank accounts b in the example satisfy the predicate b is BankAccount .

The outputs of Program 28.26 and Program 28.27 are identical, and they are shown in Listing 28.28. As it
turns out, we were not lucky enough to get interests out of our lottery accounts.

1
2
3
4
5

Per's check account holds 1030,000 kroner
Poul's savings account holds 930,000 kroner
Kurt's check account holds 1030,000 kroner
Bent's lottery account holds 1000,0 kroner
Lone's lottery account holds 1000,0 kroner

 Listing 28.28 Output from the bank account programs.
 The use of virtual methods - and dynamic binding - covers a lot of type dispatching which in

naive programs are expressed with if-else chains

28.16. Overriding the Equals method in a class
Lecture 7 - slide 37

The Equals instance method in class Object is a virtual method, see Section 28.3. The Equals method is
intended to be redefined (overridden) in subclasses of class Object . The circumstances for redefining Equals
have been discussed in Focus box 13.1.

 It is tricky to do a correct overriding of the virtual Equals method in class Object

Below we summarize the issues involved when redefining Equals in one of our own classes.

 236

 • Cases to deal with when redefining the Equals method:
• Comparison with null (false)
• Comparison with an object of a different type (false)
• Comparison with ReferenceEquals (true)
• Comparison of fields in two objects of the same type

• Other rules when redefining Equals:
• Must not lead to errors (no exceptions thrown)
• The implemented equality should be reflexive, symmetric and transitive

• Additional work:
• GetHashCode should also be redefined in accordance with Equals

• If o1.Equals(o2) then o1.GetHashCode() == o2.GetHashCode()
• If you overload the == operator

• Also overload !=
• Make sure that o1 == o2 and o1.Equals(o2) return the same result

We illustrate the rules in Program 28.29, where we override the Equals method in class BankAccount .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

using System;
using System.Collections;

public class BankAccount {

 private double interestRate;
 private string owner;
 private decimal balance;
 private long accountNumber;

 private static long nextAccountNumber = 0;
 private static ArrayList accounts = new ArrayLis t();

 public BankAccount(string owner): this(owner, 0. 0) {
 }

 public BankAccount(string owner, double interest Rate) {
 nextAccountNumber++;
 accounts.Add(this);
 this.accountNumber = nextAccountNumber;
 this.interestRate = interestRate;
 this.owner = owner;
 this.balance = 0.0M;
 }

 public override bool Equals(Object obj){
 if (obj == null)
 return false;
 else if (this.GetType() != obj.GetType())
 return false;
 else if (ReferenceEquals(this, obj))
 return true;
 else if (this.accountNumber == ((BankAccount)obj).accountNumber)
 return true;
 else return false;
 }

 public override int GetHashCode(){
 return (int)accountNumber ^ (int)(accountNumber >> 32);
 // XOR of low orders and high orders bits of accountNumber
 // According to GetHashCode API recommendation.

 237

42
43
44
45
46

 }

 /* Some methods are not included in this version */

}

 Program 28.29 Equals and GetHashCode Methods in class
BankAccount.

Please follow the pattern in Program 28.29 when you have to redefine Equals in your future classes.

28.17. Upcasting and downcasting in C#
Lecture 7 - slide 38

Upcasting and downcasting are common words in the literature about object-oriented programming. We
have already used these words earlier in this material, see for instance Program 28.21.

 Upcasting converts an object of a specialized type to a more general type

Downcasting converts an object from a general type to a more specialized type

Figure 28.3 A specialization hierarchy of bank accounts

Relative to Figure 28.3 we declare two BankAccount and two LotteryAccount variables in Program 28.30.
After line 4 ba2 refers to a BankAccount object, and la2 refers to a LotteryAccount object.

The assignment in line 6 reflects an upcasting. ba1 is allowed to refer to a LotteryAccount , because -
conceptually - a LotteryAccount is a BankAccount .

In line 7, we attempt to assign ba2 to la1 . This is an attempted downcasting. This is statically invalid, and
the compiler will always complain. Notice that in some cases the assignment la1 = ba2 is legal, namely
when ba2 refers to a LotteryAccount object. In order to make the compiler happy, you should write la1 =

(LotteryAccount)ba2 .

In line 9 we attempt to do the downcasting discussed above, but it fails at run-time. The reason is - of course
- that ba2 refers to a BankAccount object, and not to a LotteryAccount object.

After having executed line 6, ba1 refers to a LotteryAccount object. Thus, in line 11 we can assign la1 to
the reference in ba1 . Again, this is a downcasting. As noticed above, the downcasting is necessary to calm
the compiler.

 238

1
2
3
4
5
6
7
8
9
10
11
12

 BankAccount ba1,
 ba2 = new BankAccount("John", 250.0M, 0.01);
 LotteryAccount la1,
 la2 = new LotteryAccount("Bent ", 100.0M);

 ba1 = la2; // upcasting - OK
// la1 = ba2; // downcasting - Illegal
 // discovered a t compile time
// la1 = (LotteryAccount)ba2; // downcasting - Illegal
 // discovered a t run time
 la1 = (LotteryAccount)ba1; // downcasting - OK
 // ba1 already refers to a LotteryAccount

 Program 28.30 An illustration of upcasting and
downcasting.

 Upcasting and downcasting reflect different views on a given object

The object is not 'physically changed' due to upcasting or downcasting

The general rules of upcasting and downcasting in class hierarchies in C# can be expresses as follows:

 • Upcasting:
• Can occur implicitly during assignment and parameter passing
• A natural consequence of polymorphism and the is-a relation
• Can always take place

• Downcasting:
• Must be done explicitly by use of type casting
• Can not always take place

28.18. Inheritance and Variables
Lecture 7 - slide 40

We have focused a lot on methods in the previous sections. We will now summarize how variables are
inherited.

 Variables (fields) are inherited

Variables cannot be virtual

Variables are inherited. Thus a variable v in a superclass A is present in a subclass B. This is even the case if
v is private in class A, see Exercise 7.2.

What happens if a variable v is present in both a superclass and a subclass? A variable can be redefined in
the following sense:

 239

 • Same name in super- and subclass: two entirely different meanings (new)

We illustrate this situation in the ABC example of Program 28.31. Both class A and B have an int variable v.
This can be called accidental redefinition, and this is handled in the program by marking v in class B with the
modifier new.

Now, in the client class App, we make some A and B objects. In line 17-23 we see that the static type of a
variable determines which version of v is accessed. Notice in particular the expression anotherA.v . If
variable access had been virtual, anotherA.v would return the value 5. Now we need to adjust the static type
explicitly with a type cast (see Section 28.12) to obtain a reference to B.v . This is illustrated in line 21.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

using System;

public class A{
 public int v = 1;
}

public class B: A{
 public new int v = 5;
}

public class App{
 public static void Main(){ // Static type Dynamic type
 A anA = new A(), // A A
 anotherA = new B(); // A B
 B aB = new B(); // B B

 Console.WriteLine(
 "{0}",
 anA.v // 1
 + anotherA.v // 1
 + ((B)anotherA).v // 5
 + aB.v // 5
);
 }
}

 Program 28.31 An illustration of "non-virtual variable
access".

 We do not normally use public instance variables!

The idea of private instance variables and representation independence was discussed in Section 11.6.

28.19. References

[Meyer88] Bertrand Meyer, Object-oriented software construction. Prentice Hall, 1988.

 240

