
 407

44. Collections - History and Overview

This chapter is the first in our coverage of collections.

Collections are used to organize and process a number of objects or values of the same type. In almost any
real-life program, collections of objects or values play important roles.

Collections fit nicely in our agenda of object-oriented programming. A collection holds a number of objects
(of the same type), but a concrete collection is also itself an object. The commonalities of a number of
collections objects are described by the type of the collection objects. In the following chapters we will
encounter a number of different interfaces and classes, which represent collection types. Not surprisingly,
generic types as discussed in Chapter 42, play an important role when we wish to deal with collections that
are constrained to contain only objects of a particular element type.

In the rest of this short introductory chapter we will briefly outline the historic development of collection
programming. In the main part of the lecture, Chapter 45 and Chapter 46, we deal with two main categories
of collections: Lists and Dictionaries.

44.1. A historic View on Collection Programming
Lecture 12 - slide 2

We identify three stages or epochs related to the development of collections:

 • Native arrays and custom made lists
• Fixed sized arrays - limited set of operations
• Variable sized linked lists - direct pointer manipulation

• First generation collection classes
• Elements of type Object - Flexible sizing - Rich repertoire of operations
• Type unsafe - Casting - Inhomogeneous collections

• Second generation collection classes
• The flexibility of the first generation collections remains
• Type safe - Generic - Type parameterized - Homogeneous

Arrays are fundamental in imperative programming, for instance in C. In older programs - or old-fashioned
programs - many collections are dealt with by means of arrays. Many modern programs still use arrays for
collections, either due to old habits or because of the inherent efficiency of array processing. The efficiency
of arrays stems from the fact that the memory needed for the elements is allocated as a single consecutive
area of fixed size.

Another fundamental technique for dealing with collections is encountered in linked lists. In linked list one
elements is connected to the next element by a pointer. The linking is done by use of pointers. In single-
linked list, an element is linked to its successor. In double-linked list, an element is both linked to its
successor and to its predecessor. Linked trees, such as binary trees, are also common. In some languages
(such as C and Pascal) linked data structures require explicit pointer manipulation. Other languages (such as
Lisp) hide the pointers behind the scene.

 408

First generation collection classes deemphasize the concrete representation of collections. Instead, the
capabilities and interfaces (such as insertion, deletion, searching, conversion, etc) of collections are brought
into focus. This reflects good and solid object-oriented thinking. Typical first-generation collection classes
blur the distinction between (consecutive) arrays and (linked) lists. The concept of an ArrayList is seen both
in early versions of Java and C#. Collection concepts are organized in type hierarchies: A List is a
Collection and a Set is a Collection (see Section 25.2). The element type of collections is the most
general type in the system, namely Object . As a consequence of this, it is hard to avoid collection of "pears"
and "bananas" (inhomogeneous collections). Thus, type safeness must be dealt with at run-time. This is
against the trend of static type checking and type safety. We will briefly review the first generation collection
classes of C# in Chapter 47.

The second (and current) generation of collections make use of generic types (type parameterized classes and
interfaces), as discussed in Chapter 42. The weaknesses of the first generation collection classes have been
the primary motivation for introduction all the complexity of genericity (see Chapter 41 where we motivated
generic classes by a study of the class Set). With use of type parameterized classes we can statically express
List<Banana> and List<Pear> and hereby eliminate the risk of type errors at run time. In the following
chapters we will - with the exception of Chapter 47 - limit ourselves to study type parameterized collections.

 409

45. Generic Collections in C#

In this chapter we will study different list interfaces and classes.

45.1. Overview of Generic Collections in C#
Lecture 12 - slide 4

We start by showing a type hierarchy of list-related types. The white boxes in Figure 45.1 are interfaces and
the grey boxes are classes.

Figure 45.1 The class and interface inheritance tree related to Lists

All interfaces and classes seen in Figure 45.1, apart from Stack<T> and Queue<T>, will be discussed in the
forthcoming sections of the current chapter.

The class System.Array (see Section 28.2) which conceptually is the superclass of all native array types in
C#, also implements the generic interfaces IList<T> . Notice, however, that Array 's implementation of
IList<T> is carried out by special means, and that it does not show up in the usual C# documentation. A
more detailed discussion of the Array class is carried out in Section 47.1.

Version 3.5 of the .NET Framework contains a class, HashSet<T> , that supports the mathematical set
concept. As such, it is similar to the class Set<T> , which we used as example for introduction of generic
types in Section 42.1. HashSet<T> is, however, much more efficient than Set<T> .

45.2. The Interface IEnumerable<T>
Lecture 12 - slide 5

At the most general level of Figure 45.1 traversability is emphasized. This covers the ability to step through
all elements of a collection. The interface IEnumerable<T> announces one parameterless method called
GetEnumerator . The type parameter T is the type of the elements in the collection.

 • Operations in the interface IEnumerable<T> :
• IEnumerator<T> GetEnumerator ()

 410

As the name indicates, GetEnumerator returns an enumerator, which offers the following interface:

 • Operations in the interface IEnumerator<T> :
• T Current
• bool MoveNext ()
• void Reset ()

We have discussed the non-generic versions of both interfaces in Section 31.6. An IEnumerator object is
used as the basis of traversal in a foreach loop.

Without access to an IEnumerator object it would not be possible to traverse the elements of a collection in
a foreach loop. You do not very often use the GetEnumerator operation explicitly in your own program, but
you most probably rely on it implicitly! The reason is that many of your collections are traversed, from one
end to the other, by use of foreach. The foreach control structure would not work without the operation
GetEnumerator . As you can see from Figure 45.1 all of our collections implement the interface
IEnumerable<T> and hereby they provide the operation GetEnumerator .

It is worth noticing that an object of type IEnumerator<T> does not support removal of elements from the
collection. In C# it is therefore not allowed to remove elements during traversal of a collection in a foreach
loop. In the Java counterpart to IEnumerator<T> (called Iterator in Java), there is a remove method. The
remove method can be called once for each step forward in the collection. remove is an optional operation in
the Java Iterator interface. Consequently, removal of elements is not necessarily supported by all
implementations of the Java Iterator interface.

45.3. The Interface ICollection<T>
Lecture 12 - slide 6

At the next level of Figure 45.1 we encounter the ICollection<T> interface. It can be summarized as
follows.

 • Operations in the interface ICollection<T> :
• The operation prescribed in the superinterface IEnumerable<T>
• bool Contains (T element)
• void Add(T element)
• bool Remove(T element)
• void Clear ()
• void CopyTo(T[] targetArray, int startIndex)
• int Count
• bool IsReadOnly

In addition to traversability, elements of type T can be added to and removed from objects of type
ICollection<T> . At this level of abstraction, it is not specified where in the collection an element is added.
As listed about, a few other operations are supported: Membership testing (Contains), resetting (Clear),
copying of the collection to an array (CopyTo), and measuring of size (Count). Some collections cannot be

 411

mutated once they have been created. The IsReadOnly property allows us to find out if a given ICollection
object is a read only collection.

45.4. The Interface IList<T>
Lecture 12 - slide 7

At the next level of interfaces in Figure 45.1 we meet IList<T> . This interface prescribes random access to
elements.

 • Operations in the interface IList<T> :
• Those prescribed in the superinterfaces ICollection<T> and IEnumerable<T>
• T this [int index]
• int IndexOf (T element)
• void Insert (int index, T element)
• void RemoveAt (int index)

In addition to ICollection<T> , the type IList<T> allows for indexed access to the T elements. The first
mentioned operation (this) is an indexer, and IndexOf is its inverse operation. (See Chapter 19 for a general
discussion of indexers). In addition, IList<T> has operations for inserting and removing elements at given
index positions.

45.5. Overview of the class Collection<T>
Lecture 12 - slide 8

We now encounter the first class in the collection hierarchy, namely Collection<T> . Most interfaces and
classes discussed in this chapter belong to the namespace System.Collections.Generic , but of some odd
reason the class Collection<T> belongs to System.Collections.ObjectModel .

As can be seen from Figure 45.1 the generic class Collection<T> implements the generic interface
IList<T> . As such it supports all the operations of the three interfaces we discussed in Section 45.2 - Section
45.4. As it appears from Figure 45.1 the generic class List<T> implements the same interface. It turns out
that Collection<T> is a minimal class which implements the three interfaces, and not much more. As we
will see in Section 45.9, List<T> has many more operations, most of which are not prescribed by the
interfaces it implement.

Basically, an instance of Collection<T> supports indexed access to its elements. Contrary to arrays,
however, there is no limit on the number of elements in the collection. The generic class Collection<T> has
another twist: It is well suited as a superclass for specialized (non-generic) collections. We will see why and
how in Section 45.7.

We will not summarize the public interface of Collection<T> in the paper version of material, because it is
the sum of the interfaces of IEnumerable<T> , ICollection<T> , and IList<T> . You should, however notice
the two constructors of Collection<T> , a parameterless constructor and a non-copying, "wrapping"
constructor on an IList<T> .

 412

Collection initializers are new in C# 3.0. Instead of initializing a collection via an IList , typically an array,
such as in

 Collection<int> lst = new Collection<int>(new int []{1, 2, 3, 4});

it is possible in C# 3.0 to make use of collection initializers:

 Collection<int> lst = new Collection{1, 2, 3, 4};

A collection initializer uses the Add method repeatedly to insert the elements within {...} into an empty list.

Collection initializers are often used in concert with object initializers, see Section 18.4, to provide for
smooth creation of collection of objects, which are instances of our own types.

You may be interested to know details of the actual representation (data structure) used internally in the
generic class Collection<T> . Is it an array? Is it a linked list? Or is it something else, such as a mix of
arrays and lists, or a tree structure? Most likely, it is a resizeable array. Notice however that from an object-
oriented programming point of view (implying encapsulation and visibility control) it is inappropriate to ask
such a question. It is sufficient to know about the interface of Collection<T> together with the time
complexities of the involved operations. (As an additional remark, the source code of the C# libraries written
by Microsoft is not generally available for inspection. Therefore we cannot easily check the representation
details of the class). The interface of Collection<T> includes details about the execution times of the
operations of Collection<T> relative to the size of a collection. We deal with timing issues of the operations
in the collection classes in Section 45.17.

45.6. Sample use of class Collection<T>
Lecture 12 - slide 9

Let us now write a program that shows how to use the central operations in Collection<T> . In Program 45.1
we use an instance of the constructed class Collection<char> . Thus, we deal with a collection of character
values. It is actually worth noticing that we in C# can deal with collections of value types (such as
Collection<char>) as well as collections of reference types (such as Collection<Point>).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;
using System.Collections.ObjectModel;
using System.Collections.Generic;

class BasicCollectionDemo{

 public static void Main(){

 // Initialization - use of a collection initializer . After that add 2 elements.
 IList<char> lst = new Collection<char> {'a', 'b', 'c'} ;
 lst.Add('d'); lst.Add('e');
 ReportList("Initial List", lst);

 // Mutate existing elements in the list:
 lst[0] = 'z'; lst[1]++;
 ReportList("lst[0] = 'z'; lst[1]++;", lst);

 // Insert and push towards the end:

 413

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

 lst.Insert(0,'n');
 ReportList("lst.Insert(0,'n');", lst);

 // Insert at end - with Insert:
 lst.Insert(lst.Count,'x'); // equivalent to lst.Add('x');
 ReportList("lst.Insert(lst.Count,'x');", lst);

 // Remove element 0 and pull toward the beginning:
 lst.RemoveAt(0);
 ReportList("lst.RemoveAt(0);", lst);

 // Remove first occurrence of 'c':
 lst.Remove('c');
 ReportList("lst.Remove('c');", lst);

 // Remove remaining elements:
 lst.Clear();
 ReportList("lst.Clear(); ", lst);

 }

 public static void ReportList<T>(string explanati on, IList<T> list){
 Console.WriteLine(explanation);
 foreach(T el in list)
 Console.Write("{0, 3}", el);
 Console.WriteLine(); Console.WriteLine();
 }

}

 Program 45.1 Basic operations on a Collection of
characters.

The program shown above explains itself in the comments, and the program output in Listing 45.2 is also
relatively self-contained. Notice the use of the collection initializer in line 9 of Program 45.1. As mentioned
in Section 45.5 collection initializers have been introduced in C# 3.0. In earlier versions of C# it was
necessary to initialize a collection by use or an array initializer (see the discussion of Program 6.7) via the
second constructor mentioned above.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Initial List
 a b c d e

lst[0] = 'z'; lst[1]++;
 z c c d e

lst.Insert(0,'n');
 n z c c d e

lst.Insert(lst.Count,'x');
 n z c c d e x

lst.RemoveAt(0);
 z c c d e x

lst.Remove('c');
 z c d e x

lst.Clear();

 Listing 45.2 Output of the program with basic operations on a
Collection of characters.

 414

We make the following important observations about the operations in Collection<T> :

 • The indexer lst[idx] = expr mutates an existing element in the collection
• The length of the collection is unchanged

• The Insert operation splices a new element into the collection
• Push subsequent elements towards the end of the collection
• Makes the collection longer

• The Remove and RemoveAt operations take elements out of the collections
• Pull subsequent elements towards the beginning of the collection
• Makes the collection shorter

45.7. Specialization of Collections
Lecture 12 - slide 10

Let us now assume that we wish to make our own, specialized (non-generic) collection class of a particular
type of objects. Below we will - for illustrative purposes - write a class called AnimalFarm which is intended
to hold instances of class Animal . It is reasonable to program AnimalFarm as a subclass of an existing
collection class. In this section we shall see that Collection<Animal> is a good choice of superclass of
AnimalFarm .

The class AnimalFarm depends on the class Animal . You are invited to take a look at class Animal via the
accompanying slide . We do not include class Animal here because it does not add new insight to our
interests in collection classes. The four operations of class AnimalFarm are shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {

 protected override void InsertItem (int i, Animal a){
 base.InsertItem(i,a);
 Console.WriteLine("**InsertItem: {0}, {1}", i, a);
 }

 protected override void SetItem (int i, Animal a){
 base.SetItem(i,a);
 Console.WriteLine("**SetItem: {0}, {1}", i, a);
 }

 protected override void RemoveItem (int i){
 base.RemoveItem(i);
 Console.WriteLine("**RemoveItem: {0}", i);
 }

 protected override void ClearItems (){
 base.ClearItems();
 Console.WriteLine("**ClearItems");
 }

}

 Program 45.3 A class AnimalFarm - a subclass of Collection<Animal> - testing protected members.

 415

It is important to notice that the four highlighted operations in Program 45.3 are redefinitions of virtual,
protected methods in Collection<Animal> . Each of the methods activate the similar method in the
superclass (this is method combination). In addition, they reveal on standard output that the protected method
has been called. A more realistic example of class AnimalFarm will be presented in Program 45.6.

The four operations are not part of the client interface of class AnimalFarm . They are protected operations.
The client interface of AnimalFarm is identical to the public operations inherited from Collection<Animal> .
It means that we use the operations Add, Insert , Remove etc. on instances of class AnimalFarm .

We should now understand the role of the four protected operations InsertItem , RemoveItem , SetItem , and
ClearItems relative to the operations in the public client interface. Whenever an element is inserted into a
collection, the protected method InsertItem is called. Both Add and Insert are programmed by use of
InsertItem . Similarly, both Remove and RemoveAt are programmed by use of RemoveItem . And so on. We
see that the major functionality behind the operations in Collection<T> is controlled by the four protected
methods InsertItem , RemoveItem , SetItem , and ClearItems .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

using System;
using System.Collections.ObjectModel;

class App{

 public static void Main(){

 AnimalFarm af = new AnimalFarm();

 // Populating the farm with Add
 af.Add (new Animal("elephant"));
 af.Add (new Animal("giraffe"));
 af.Add (new Animal("tiger"));
 ReportList("Adding elephant, giraffe, and tiger with Add(...)", af);

 // Additional population with Insert
 af.Insert (0, new Animal("dog"));
 af.Insert (0, new Animal("cat"));
 ReportList("Inserting dog and cat at index 0 wi th Insert(0, ...)", af);

 // Mutate the animal farm:
 af[1] = new Animal("herring", AnimalGroup.Fish, Sex.Male);
 ReportList("After af[1] = herring", af);

 // Remove tiger
 af.Remove (new Animal("tiger"));
 ReportList("Removing tiger with Remove(...)", a f);

 // Remove animal at index 2
 af.RemoveAt (2);
 ReportList("Removing animal at index 2, with Re moveAt(2)", af);

 // Clear the farm
 af.Clear ();
 ReportList("Clear the farm with Clear()", af);
 }

 public static void ReportList<T>(string explanati on, Collection<T> list){
 Console.WriteLine(explanation);
 foreach(T el in list)
 Console.WriteLine("{0, 3}", el);
 Console.WriteLine(); Console.WriteLine();
 }
}

 416

 Program 45.4 A sample client of AnimalFarm - revealing use of protected Collection<Animal>
methods.

Take a close look at the output of Program 45.4 in Listing 45.5. The output explains the program behavior.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

**InsertItem: 0, Animal: elephant
**InsertItem: 1, Animal: giraffe
**InsertItem: 2, Animal: tiger
Adding elephant, giraffe, and tiger with Add(...)
Animal: elephant
Animal: giraffe
Animal: tiger

**InsertItem: 0, Animal: dog
**InsertItem: 0, Animal: cat
Inserting dog and cat at index 0 with Insert(0, ...)
Animal: cat
Animal: dog
Animal: elephant
Animal: giraffe
Animal: tiger

**SetItem: 1, Animal: herring
After af[1] = herring
Animal: cat
Animal: herring
Animal: elephant
Animal: giraffe
Animal: tiger

**RemoveItem: 4
Removing tiger with Remove(...)
Animal: cat
Animal: herring
Animal: elephant
Animal: giraffe

**RemoveItem: 2
Removing animal at index 2, with RemoveAt(2)
Animal: cat
Animal: herring
Animal: giraffe

**ClearItems
Clear the farm with Clear()

 Listing 45.5 Output from sample client of AnimalFarm.

 417

45.8. Specialization of Collections - a realistic example
Lecture 12 - slide 11

The protected methods in class AnimalFarm , as shown in Section 45.7, did only reveal if/when the protected
methods were called by other methods. In this section we will show a more realistic example that redefines
the four protected methods of Collection<T> in a more useful way.

In the example we program the following semantics of the insertion and removal operations of class
AnimalFarm:

• If we add an animal, an additional animal of the opposite sex is also added.

• Any animal removal or clearing of an animal farm is rejected.

In addition, we add a GetGroup operation to AnimalFarm , which returns a collection (an sub animal farm) of
all animals that belongs to a given group (such as all birds).

The class Animal has not been changed, and it still available via accompanying slide.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {

 // Auto insert animal of opposite sex
 protected override void InsertItem (int i, Animal a){
 if(a.Sex == Sex.Male){
 base.InsertItem(i,a);
 base.InsertItem(i, new Animal(a.Name, a.Group , Sex.Female));
 } else {
 base.InsertItem(i,a);
 base.InsertItem(i,new Animal(a.Name, a.Group, Sex.Male));
 }
 }

 // Prevent removal
 protected override void RemoveItem (int i){
 Console.WriteLine("[Removal denied]");
 }

 // Prevent clearing
 protected override void ClearItems (){
 Console.WriteLine("[Clearing denied]");
 }

 // Return all male animals in a given group
 public AnimalFarm GetGroup(AnimalGroup g){
 AnimalFarm res = new AnimalFarm();
 foreach(Animal a in this)
 if (a.Group == g && a.Sex == Sex.Male) res.Ad d(a);
 return res;
 }

}

Program 45.6 The class AnimalFarm - a subclass of
Collection<Animal>.

Notice the way we implement the rejection in RemoveItem and ClearItems : We do not call the superclass
operation.

 418

In Program 45.7 (only on web) we show an AnimalFarm client program similar (but not not identical) to
Program 45.4. The program output in Listing 45.8 (only on web) reveals the special semantics of the virtual,
protected operations from Collection<T> - as redefined in Program 45.6.

45.9. Overview of the class List<T>
Lecture 12 - slide 12

We are now going to study the generic class List<T> . As it appears from Figure 45.1 both List<T> and
Collection<T> implement the same interface, namely IList<T> , see Section 45.4. But as already noticed,
List<T> offers many more operations than Collection<T> .

In the same style as in earlier sections, we provide an overview of the important operations of List<T> .

 • Constructors
• List() , List(IEnumerable<T>) , List(int)
• Via a collection initializer: new List<T> {t1, t2, ..., tn}

• Element access
• this[int] , GetRange(int, int)

• Measurement
• Count , Capacity

• Element addition
• Add(T) , AddRange(IEnumerable<T>) , Insert(int, T) ,

InsertRange(int, IEnumerable<T>)
• Element removal

• Remove(T) , RemoveAll(Predicate<T>) , RemoveAt(int) , RemoveRange(int,

int) , Clear()
• Reorganization

• Reverse() , Reverse(int, int) ,
Sort() , Sort(Comparison<T>) ,
Sort(IComparer<T>) , Sort(int, int, IComparer<T>)

• Searching
• BinarySearch(T) , BinarySearch(int, int, T, IComparer<T>) , BinarySearch(T,

IComparer<T>)
• Find(Predicate<T>) , FindAll(Predicate<T>) , FindIndex(Predicate<T>) ,

FindLast(Predicate<T>) , FindLastIndex(Predicate<T>) , IndexOf(T) , LastIndexOf(T)
• Boolean queries

• Contains(T) , Exists(Predicate<T>) , TrueForAll(Predicate<T>)
• Conversions

• ConvertAll<TOutput>(Converter<T,TOutput>) , CopyTo(T[]) ,

Compared with Collection<T> the class List<T> offers sorting, searching, reversing, and conversion
operations. List<T> also has a number of "range operations" which operate on a number of elements via a
single operation. We also notice a number of higher-order operations: Operations that take a delegate value
(a function) as parameter. ConvertAll is a generic method which is parameterized with the type TOutput .
ConvertAll accepts a function of delegate type which converts from type T to TOutput .

 419

45.10. Sample use of class List<T>
Lecture 12 - slide 13

In this and the following sections we will show how to use some of the operations in List<T> . We start with
a basic example similar to Program 45.1 in which we work on a list of characters: List<char> . We insert a
number of char values into a list, and we remove some values as well. The program appears in Program 45.9
and the self-explaining output can be seen in Listing 45.10 (only on web). Notice in particular how the range
operations InsertRange (line 28) and RemoveRange (line 40) operate on the list.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

using System;
using System.Collections.Generic;

/* Very similar to our illustration of class Collec tion<char> */
class BasicListDemo{

 public static void Main(){

 // List initialization and adding elements to the e nd of the list:
 List<char> lst = new List<char> {'a', 'b', 'c'} ;
 lst.Add('d'); lst.Add('e');
 ReportList("Initial List", lst);

 // Mutate existing elements in the list
 lst[0] = 'z'; lst[1]++;
 ReportList("lst[0] = 'z'; lst[1]++;", lst);

 // Insert and push towards the end
 lst.Insert(0,'n');
 ReportList("lst.Insert(0,'n');", lst);

 // Insert at end - with Insert
 lst.Insert(lst.Count,'x'); // equivalent to lst.Add('x');
 ReportList("lst.Insert(lst.Count,'x');", lst);

 // Insert a new list into existing list, at positio n 2.
 lst.InsertRange(2, new List<char>{'1', '2', '3', '4 '});
 ReportList("lst.InsertRange(2, new List<char>{'1', '2', '3', '4'});", lst);

 // Remove element 0 and push toward the beginning
 lst.RemoveAt(0);
 ReportList("lst.RemoveAt(0);", lst);

 // Remove first occurrence of 'c'
 lst.Remove('c');
 ReportList("lst.Remove('c');", lst);

 // Remove 2 elements, starting at element 1
 lst.RemoveRange(1, 2);
 ReportList("lst.RemoveRange(1, 2);", lst);

 // Remove all remaining digits
 lst.RemoveAll(delegate(char ch){return Char.IsD igit(ch);});
 ReportList("lst.RemoveAll(delegate(char ch){return Char.IsDigit(ch);});", lst);

 // Test of all remaining characters are letters
 if (lst.TrueForAll(delegate(char ch){return Cha r.IsLetter(ch);}))
 Console.WriteLine("All characters in lst are letters");
 else
 Console.WriteLine("NOT All characters in lst are letters");
 }

 420

52
53
54
55
56
57
58
59
60

 public static void ReportList<T>(string explanati on, List<T> list){
 Console.WriteLine(explanation);
 foreach(T el in list)
 Console.Write("{0, 3}", el);
 Console.WriteLine(); Console.WriteLine();
 }

}

 Program 45.9 Basic operations on a List of characters.

45.11. Sample use of the Find operations in List<T>
Lecture 12 - slide 14

In this section we will illustrate how to use the search operations in List<T> . More specifically, we will
apply the methods Find , FindAll and IndexOf on an instance of List<Point> , where Point is a type, such
as defined by the struct in Program 14.12. The operations discussed in this section do all use linear search. It
means that they work by looking at one element after the other, in a rather trivial way. As a contrast, we will
look at binary search operations in Section 45.13, which searches in a "more advanced" way.

In the program below - Program 45.11 - we declare a List<Point> in line 11, and we add six points to the
list in line 13-16. In line 20 we shown how to use Find to locate the first point in the list whose x-coordinate
is equal to 5. The same is shown in line 25. The difference between the two uses of Find is that the first
relies on a delegate given on the fly: delegate(Point q){return (q.Getx() == 5);} , while the other
relies on an existing static method FindX5 (defined in line 40 - 42). The approach shown in line 20 is, in my
opinion, superior.

In line 29 we show how to use the variant FindAll , which returns a Point list instead of just a single Point ,
as returned by Find . In line 36 we show how IndexOf can be used to find the index of a given Point in a
Point list. It is worth asking how the Point parameter of IndexOf is compared with the points in Point list.
The documentation states that the points are compared by use of the default equality comparer of the type T,
which in our case is struct Point . We have discussed the default equality comparer in Section 42.9 in the
slipstream of our coverage of the generic interfaces IEquatable<T> and IEqualityComparer<T> .

We use the static method ReportList to show a Point list on standard output. We call ReportList several
times in Program 45.11. The program output is shown in Listing 45.12.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

using System;
using System.Collections.Generic;

class C{

 public static void Main(){

 System.Threading.Thread.CurrentThread.CurrentC ulture =
 new System.Globalization.CultureInfo("en-US ");

 List<Point> pointLst = new List<Point>();

 // Construct points and point list:
 pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
 pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
 pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));

 421

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

 ReportList("Initial point list", pointLst);

 // Find first point in list with x coordinate 5
 Point p = pointLst.Find(delegate(Point q){return (q.Getx() == 5);});
 Console.WriteLine("Found with delegate predica te: {0}\n", p);

 // Equivalent. Use predicate which is a static meth od
 p = pointLst.Find(new Predicate<Point>(FindX5));
 Console.WriteLine("Found with static member pr edicate: {0}\n", p);

 // Find all points in list with x coordinate 5
 List<Point> resLst = new List<Point>();
 resLst = pointLst.FindAll(delegate(Point q){return (q.Getx() == 5);});
 ReportList("All points with x coordinate 5", r esLst);

 // Find index of a given point in pointLst.
 // Notice that Point happens to be a struct - thus value comparison
 Point searchPoint = new Point(5,4);
 Console.WriteLine("Index of {0} {1}", searchPo int,
 pointLst.IndexOf(searchPoint));

 }

 public static bool FindX5(Point p){
 return p.Getx() == 5;
 }

 public static void ReportList<T>(string explanati on,List<T> list){
 Console.WriteLine(explanation);
 int cnt = 0;
 foreach(T el in list){
 Console.Write("{0, 3}", el);
 cnt++;
 if (cnt%4 == 0) Console.WriteLine();
 }
 if (cnt%4 != 0) Console.WriteLine();
 Console.WriteLine();
 }
}

 Program 45.11 Sample uses of List.Find.

1
2
3
4
5
6
7
8
9
10
11
12

Initial point list
Point:(0,0). Point:(5,9). Point:(5,4). Point:(7.1,- 13).
Point:(5,-2). Point:(14,-3.4).

Found with delegate predicate: Point:(5,9).

Found with static member predicate: Point:(5,9).

All points with x coordinate 5
Point:(5,9). Point:(5,4). Point:(5,-2).

Index of Point:(5,4). 2

 Listing 45.12 Output from the Find program.

 422

45.12. Sample use of Sort in List<T>
Lecture 12 - slide 15

As a client user of the generic class List<T> it is likely that you never need to write a sorting procedure! You
are supposed to use one of the already existing Sort methods in List<T> .

Sorting the elements in a collection of elements of type T depends on a less than or equal operation on T. If
the type T is taken directly from the C# libraries, it may very well be the case that we can just use the default
less than or equal operation of the type T. If T is one of our own types, we will have to supply an
implementation of the comparison operation ourselves. This can be done by passing a delegate object to the
Sort method.

Below, in Program 45.13 we illustrate most of the four overloaded Sort operations in List<T> . The actual
type parameter in the example, passed for T, is int . The program output (the lists before and after sorting) is
shown in Listing 45.14 (only on web).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

using System;
using System.Collections.Generic;

class C{

 public static void Main(){

 List<int> listOriginal = new List<int>{5, 3, 2 , 7, -4, 0},
 list;

 // Sorting by means of the default comparer of int:
 list = new List<int>(listOriginal);
 ReportList(list);
 list.Sort();
 ReportList(list);
 Console.WriteLine();

 // Equivalent - explicit notatation of the Comparer :
 list = new List<int>(listOriginal);
 ReportList(list);
 list.Sort(Comparer<int>.Default);
 ReportList(list);
 Console.WriteLine();

 // Equivalent - explicit instantiation of an IntCom parer:
 list = new List<int>(listOriginal);
 ReportList(list);
 list.Sort(new IntComparer());
 ReportList(list);
 Console.WriteLine();

 // Similar - use of a delegate value for comparison :
 list = new List<int>(listOriginal);
 ReportList(list);
 list.Sort(delegate(int x, int y){
 if (x < y)
 return -1;
 else if (x == y)
 return 0;
 else return 1;});
 ReportList(list);
 Console.WriteLine();
 }

 423

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

 public static void ReportList<T>(List<T> list){
 foreach(T el in list)
 Console.Write("{0, 3}", el);
 Console.WriteLine();
 }

}

public class IntComparer: Comparer<int>{
 public override int Compare(int x, int y){
 if (x < y)
 return -1;
 else if (x == y)
 return 0;
 else return 1;
 }
}

 Program 45.13 Four different activations of the List.Sort
method.

Throughout Program 45.13 we do several sortings of listOriginal , as declared in line 8. In line 14 we rely
the default comparer of type int . The default comparer is explained in the following way in the .NET
framework documentation of List.Sort :

This method uses the default comparer Comparer.Default for type T to determine the order
of list elements. The Comparer.Default property checks whether type T implements the
IComparable generic interface and uses that implementation, if available. If not,
Comparer.Default checks whether type T implements the IComparable interface. If type T
does not implement either interface, Comparer.Default throws an
InvalidOperationException .

The sorting done in line 21 is equivalent to line 14. In line 21 we show how to pass the default comparer of
type int explicitly to the Sort method.

Let us now assume the type int does not have a default comparer. In other words, we will have to implement
the comparer ourselves. The call of Sort in line 28 passes a new IntComparer instance to Sort . The class
IntComparer is programmed in line 53-61, at the bottom of Program 45.13. Notice that IntComparer is a
subclass of Comparer<int> , which is an abstract class in the namespace System.Collections.Generic with
an abstract method named Compare. The generic class Comparer<T> is in many ways similar to the class
EqualityComparer<T> , which we touched on in Section 42.9. Most important, both have a static Default
property, which returns a comparer object.

As a final resort that always works we can pass a comparer function to Sort . In C#, such a function is
programmed as a delegate. (Delegates are discussed in Chapter 22). Line 35-40 shows how this can be done.
Notice that the delegate we use is programmed on the fly. This style of programming is a reminiscence of
functional programming.

I find it much more natural to pass an ordering method instead of an object of a class with an ordering
method. (The latter is a left over from older object-oriented programming languages in which the only way to
pass a function F as parameter is via an object of a class in which F is an instance method). In general, I also
prefer to be explicit about the ordering instead of relying on some default ordering which may turn out to
surprise you.

Let us summarize the lessons that we have learned from the example:

 424

 • Some types have a default comparer which is used by List.Sort()
• The default comparer of T can extracted by Comparer<T>.Default
• An anonymous delegate comparer is attractive if the default comparer of the type does not exist,

of if it is inappropriate.

 Exercise 12.1. Shuffle List

Write a Shuffle operation that disorders the elements of a collection in a random fashion. A shuffle
operation is useful in many context. There is no Shuffle operation in
System.Collections.Generic.List<T> . In the similar Java libraries there is a shuffle method.

In which class do you want to place the Shuffle operation? You may consider to make use of extension
methods.

You can decide on programming either a mutating or a non-mutating variant of the operation. Be sure to
understand the difference between these two options.

Test the Shuffle operation, for instance on List<Card> . The class Card (representing a playing card) is one
of the classes we have seen earlier in the course.

 Exercise 12.2. Course and Project classes

In the earlier exercise about courses and projects (found in the lecture about abstract classes and interfaces)
we refined the program about BooleanCourse , GradedCourse , and Project . Revise your solution (or the
model solution) such that the courses in the class Project are represented as a variable of type
List<Course> instead of by use of four variables of type Course .

Reimplement and simplify the method Passed in class Project . Take advantage of the new representation
of the courses in a project, such that the "3 out of 4 rule" (see the original exercise) is implemented in a
more natural way.

45.13. Sample use of BinarySearch in List<T>
Lecture 12 - slide 16

The search operations discussed in Section 45.11 all implemented linear search processes. The search
operations of this section implement binary search processes, which are much faster when applied on large
collections. On collections of size n, linear search has - not surprisingly - time complexity O(n). Binary
search has time complexity O(log n). When n is large, the difference between n and log n is dramatic.

The BinarySearch operations in List<T> require, as a precondition, that the list is ordered before the search
is performed. If necessary, the Sort operation (see Section 45.12) can be used to establish the ordering.

You may ask why we should search for an element which we - in the starting point - is able to pass as input
to the BinarySearch method. There is a couple of good answers. First, we may be interested to know if the
element is present or not in the list. Second, it may also be possible to search for an incomplete object (by
only comparing some selected fields in the Comparer method). Using this approach we are actually interested
in finding the complete object, with all the data fields, in the collection.

 425

If the BinarySearch operation finds an element in the list, the index of the element is returned. This is a non-
negative integer. If the element is not found, a negative integer, say i, is returned. Below we will see that that
-i (or more precisely the bitwise complement ~i) in that case is the position of the element, if it had been
present in the list.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

using System;
using System.Collections.Generic;

class BinarySearchDemo{

 public static void Main(){

 System.Threading.Thread.CurrentThread.CurrentCultur e =
 new System.Globalization.CultureInfo("en-US ");

 List<Point> pointLst = new List<Point>(); // Point is a struct.

 // Construct points and point list:
 pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
 pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
 pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));
 ReportList("The initial point list", pointLst) ;

 // Sort point list, using a specific point Comparer .
 // Notice the PointComparer:
 // Ordering according to sum of x and y coordinates
 IComparer<Point> pointComparer = new PointComp arer();
 pointLst.Sort(pointComparer) ;
 ReportList("The sorted point list", pointLst);

 int res;
 Point searchPoint;

 // Run-time error.
 // Failed to compare two elements in the array .
// searchPoint = new Point(5,4);
// res = pointLst.BinarySearch(searchPoint);
// Console.WriteLine("BinarySearch for {0}: {1}", searchPoint, res);

 searchPoint = new Point(5,4);
 res = pointLst.BinarySearch(searchPoint, pointComparer) ;
 Console.WriteLine("BinarySearch for {0}: {1}", searchPoint, res);

 searchPoint = new Point(1,8);
 res = pointLst.BinarySearch(searchPoint, pointComparer) ;
 Console.WriteLine("BinarySearch for {0}: {1}", searchPoint, res);

 }

 public static void ReportList<T>(string explanati on,List<T> list){
 Console.WriteLine(explanation);
 int cnt = 0;
 foreach(T el in list){
 Console.Write("{0, 3}", el);
 cnt++;
 if (cnt%4 == 0) Console.WriteLine();
 }
 if (cnt%4 != 0) Console.WriteLine();
 Console.WriteLine();
 }

}

// Compare the sum of the x and y coordinates.

 426

60
61
62
63
64
65
66
67
68
69
70
71

// Somewhat non-traditional!
public class PointComparer: Comparer<Point>{
 public override int Compare(Point p1, Point p2){
 double p1Sum = p1.Getx() + p1.Gety();
 double p2Sum = p2.Getx() + p2.Gety();
 if (p1Sum < p2Sum)
 return -1;
 else if (p1Sum == p2Sum)
 return 0;
 else return 1;
 }
}

 Program 45.15 Sample uses of List.BinarySearch.

Program 45.15 works on a list of points. Six points are created and inserted into a list in line 13-16. Next, in
line 23, the list is sorted. As it appears from the Point comparer programmed in line 62-72, a point p is less
than or equal to point q, if p.x + p.y <= q.x + q.y. You may think that this is odd, but it is our decision for this
particular program example.

In line 33 we attempt to activate binary searching by use of the default comparer. But such a comparer does
not exist for class Point. This problem is revealed at run-time.

In line 37 and 41 we search for the points (5,4) and (1,8) respectively. In both cases we expect to find the
point (5,4), which happens to be located at place 3 in the sorted list. The output of the program, shown in
Program 45.17 (only on web) confirms this.

In the next program, Program 45.17 we illustrate what happens if we search for a non-existing point with
BinarySearch . The class PointComparer and the generic method ReportList are not shown in the paper
version of Program 45.17. Please consult Program 45.15 where they both appear.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System;
using System.Collections.Generic;

class BinarySearchDemo{

 public static void Main(){

 System.Threading.Thread.CurrentThread.CurrentC ulture =
 new System.Globalization.CultureInfo("en-US ");

 List<Point> pointLst = new List<Point>();

 // Construct points and point list:
 pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
 pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
 pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));
 ReportList("Initial point list", pointLst);

 // Sort point list, using a specific point Comparer :
 IComparer<Point> pointComparer = new PointComp arer();
 pointLst.Sort(pointComparer) ;
 ReportList("Sorted point list", pointLst);

 int res;
 Point searchPoint;

 searchPoint = new Point(1,1);
 res = pointLst.BinarySearch(searchPoint, pointComparer) ;
 Console.WriteLine("BinarySearch for {0}: {1}\n ", searchPoint, res);

 427

30
31
32
33
34
35
36
37
38
39
40
41
42

 if (res < 0){ // search point not found
 pointLst.Insert(~res , searchPoint); // Insert searchPoint such
 // that pointLst remains sorted
 Console.WriteLine("Inserting {0} at index {1 }", searchPoint, ~res);
 ReportList("Point list after insertion", poi ntLst);
 }
 }

 // ReportList not shown
}

// Class PointComparer not shown

 Program 45.17 Searching for a non-existing Point.

The scene of Program 45.17 is the same as that of Program 45.15. In line 28 we do binary searching, looking
for the point (1,1). None of the points in the program have an "x plus y sum" of 2. Therefore, the point (1,1)
is not located by BinarySearch . The BinarySearch method returns a negative ghost index. The ghost index
is the bitwise complement of the index where to insert the point in such a way that the list will remain sorted.
(Notice the bitwise complement operation ~ which turns 0 to 1 and 1 to 0 at the binary level). The program
output reveals that position ~(-3) is the natural place of the point (1,1) to maintain the ordering of the list.
Notice that the value of ~(-3) is 2, due the use of two's complement arithmetic. This explains the rationale of
the negative values returned by BinarySearch .

The output of Program 45.17 is shown in Listing 45.18 (only on web).

Contrary to Sort , it is not possible to pass a delegate to BinarySearch . This seems to be a flaw in the design
of the List<T> library.

We have learned the following lessons about BinarySearch :

 • Binary search can only be done on sorted lists
• In order to use binary search, we need - in general - to provide an explicit Comparer object
• Binary search returns a (non-negative) integer if the element is found

• The index of the located element
• Binary search returns a negative integer if the element is not found

• The complement of this number is a ghost index
• The index of the element if it had been in the list

45.14. Overview of the class LinkedList<T>
Lecture 12 - slide 17

The collections implemented by Collection<T> of Section 45.5 and List<T> of Section 45.9 were based on
arrays. We will now turn our interest towards a list type, which is based on a linked representation.

Below, in Figure 45.2 we show the object-structure of a double linked list.

 428

Figure 45.2 A double linked list where instances of LinkedListNode keep
the list together

The generic class LinkedList<T> relies on a "building block class" LinkedListNode<T> . We need to deal
with instances of LinkedListNode s when we work with linked lists in C#. In other words, LinkedListNode
is not just a class behind the scene - it is an important class for clients of LinkedListNode<T> . In Figure 45.2
the five rectangular nodes are instances of LinkedListNode<T> for some element type T. The circular, green
nodes are instances of the element type T. We will study LinkedListNode<T> in Section 45.15 after we have
surveyed the list operations in LinkedList<T> .

As it can be seen from the class diagram of the list class in Figure 45.1, LinkedList<T> implements the
interface ICollection<T> , see Section 45.3. Unlike Collection<T> and List<T> , LinkedList<T> does not
implement indexed access, as of Ilist<T> . This is a natural choice because indexed access is not efficient in
a linked representation. The following operations are available in LinkedList<T> :

 • Constructors
• LinkedList() , LinkedList(IEnumerable<T>)

• Accessors (properties)
• First , Last , Count

• Element addition
• AddFirst(T) , AddFirst(LinkedListNode<T>) , AddLast(T) ,

AddLast(LinkedListNode<T>) , AddBefore(LinkedListNode<T>,

T) , AddBefore(LinkedListNode<T>, LinkedListNode<T>) ,
AddAfter(LinkedListNode<T>, T) ,
AddAfter(LinkedListNode<T>, LinkedListNode<T>) , Add(T)

• Element removal
• Remove(T) , Remove(LinkedListNode<T>) , RemoveFirst() ,

RemoveLast() , Clear()
• Searching

• Find(T) , FindLast(T)
• Boolean queries

• Contains(T)

A linked list can be constructed as an empty collection or as a collection filled with elements from another
collection, represented as an IEnumerable<T> , see Section 45.2.

The First and Last properties access the first/last LinkedListNode in the double linked list. Count returns
the number of elements in the list - not by counting them each time Count is referred - but via some
bookkeeping information encapsulated in a linked list object. Thus, Count is an O(1) operation.

Although LinkedList<T> implements the generic interface ICollection<T> , which has a method named
Add, the Add operation is not readily available on linked lists. We will in Program 45.19 show that Add is
present as an explicit interface implementation, see Section 31.8. Instead of Add, the designers of
LinkedList<T> want us to use one of the AddRelative operations: AddFirst , AddLast , AddBefore , and
AddAfter . None of these are prescribed by the interface ICollection<T> , however. Each of the AddRelative

 429

operations are overloaded in two variants, such that we can add an element of type T or an object of type
LinkedListNode<T> (which in turn reference an object of type T).

Using the Remove methods, it is possible to remove an element of type T or a specific instance of
LinkedListNode<T> . Remove(T) is an O(n) operation; Remove(LinkedListNode<T>) is an O(1) operation.
There are also parameter-less methods for removing the first/last element in the linked list. The time
complexity of these are O(1).

Finally there are linear search operations from either end of the list: Find and FindLast . The boolean
Contains operation is similar to the Find operations. These operations all seem to rely on the Equals
operation inherited from class Object . In that way Find , FindLast and Contains are more primitive (not as
well-designed) as the similar methods in List<T> . (The documentation in the .NET libraries is silent about
these details).

45.15. The class LinkedListNode<T>
Lecture 12 - slide 18

As illustrated in Figure 45.2, instances of the generic class LinkedListNode<T> keep a linked list together.
In the figure, the rectangular boxes are instances of LinkedListNode<T> . From the figure it appears that each
instance of LinkedListNode<T> has three references: One to the left, one to the element, and one to the right.
Actually, there is a fourth reference, namely to the linked list instance to which a given LinkedListNode
object belongs.

 The class LinkedListNode<T> is sealed, generic class that represents a non-mutable node in a
linked list

A LinkedListNode can at most belong to a single linked list

The members of LinkedListNode<T> are as follows:

 • A single constructor LinkedListNode(T)
• Four properties

• Next - getter
• Previous - getter
• List - getter
• Value - getter and setter

The properties Next and Previous access neighbor instances of LinkedListNode<T> . Value accesses the
element of type T. List accesses the linked list to which the instance of LinkedListNode belongs. Next ,
Previous , and List are all getters. Value is both a getter and a setter.

It is not possible to initialize or to mutate the fields behind the properties Next , Previous , and List via
public interfaces. It is clearly the intention that the linked list - and only linked list - has authority to change
these fields. If we programmed our own, special-purpose linked list class it would therefore not be easy to
reuse the class LinkedListNode<T> . This is unfortunate.

 430

Related to the discussion about the interface of LinkedListNode<T> we may ask how LinkedList is allowed
to access the private/internal details of an instance of LinkedListNode . The best guess seems to be that the
fields are internal.

45.16. Sample use of class LinkedList<T>
Lecture 12 - slide 19

We will illustrate the use of LinkedList<T> and LinkedListNode<T> in Program 45.19. In line 8 we make a
linked list of integers from an array. Notice the use of the LinkedList constructor
LinkedList (IEnumerable<T>).

In line 16 we attempt to add the integer 17 to the linked list. This is not possible, because the method Add is
not easily available, see the discussion in Section 45.14. If we insist to use Add, it must be done as in line 20.
Most likely, you should use one of the Add variants instead, for instance AddFirst or AddLast .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

using System;
using System.Collections.Generic;

class LinkedListDemo{

 public static void Main(){

 LinkedList<int> lst = new LinkedList<int>(
 new int[]{5, 3, 2, 7, -4, 0});

 ReportList("Initial LinkedList", lst);

 // Using Add.
 // Compile-time error: 'LinkedList<int>' does not c ontain a
 // definition for 'Add'
 // lst.Add(17) ;
 // ReportList("lst.Add(17);" lst);

 // Add is implemented as an explicit interface impl ementation
 ((ICollection<int>)lst).Add(17) ;
 ReportList("((ICollection<int>)lst).Add(17);", lst) ;

 // Using AddFirst and AddLast
 lst.AddFirst(-88);
 lst.AddLast(88);
 ReportList("lst.AddFirst(-88); lst.AddFirst(88);", lst);

 // Using Remove.
 lst.Remove(17);
 ReportList("lst.Remove(17);", lst);

 // Using RemoveFirst and RemoveLast
 lst.RemoveFirst(); lst.RemoveLast();
 ReportList("lst.RemoveFirst(); lst.RemoveLast();", lst);

 // Using Clear
 lst.Clear();
 ReportList("lst.Clear();", lst);

 }

 public static void ReportList<T>(string explanati on, LinkedList<T> list){
 Console.WriteLine(explanation);

 431

44
45
46
47
48
49

 foreach(T el in list)
 Console.Write("{0, 4}", el);
 Console.WriteLine(); Console.WriteLine();
 }

}

 Program 45.19 Basic operations on a LinkedList of
integers.

The output of Program 45.19 is shown in Listing 45.20. By studying Listing 45.20 you will learn additional
details of the LinkedList operations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Initial LinkedList
 5 3 2 7 -4 0

((ICollection<int>)lst).Add(17);
 5 3 2 7 -4 0 17

lst.AddFirst(-88); lst.AddFirst(88);
 -88 5 3 2 7 -4 0 17 88

lst.Remove(17);
 -88 5 3 2 7 -4 0 88

lst.RemoveFirst(); lst.RemoveLast();
 5 3 2 7 -4 0

lst.Clear();

 Listing 45.20 Output of the program with basic operations on
a LinkedList.

The LinkedList example in Program 45.19 did not show how to use LinkedListNode s together with
LinkedList<T> . To make up for that we will in Program 45.21 concentrate on the use of LinkedList<T>
and LinkedListNode<T> together.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

using System;
using System.Collections.Generic;

class LinkedListNodeDemo{

 public static void Main(){

 LinkedList<int> lst = new LinkedList<int>(
 new int[]{5, 3, 2, 7, -4, 0});
 ReportList("Initial LinkedList", lst);

 LinkedListNode<int> node1, node2, node;
 node1 = lst.First;
 node2 = lst.Last;

 // Run-time error.
 // The LinkedListNode is already in the list.
 // Error message: The LinkedList node belongs a Lin kedList.
/* lst.AddLast(node1); */

 // Move first node to last node in list
 lst.Remove(node1); lst.AddLast(node1);
 ReportList("node1 = lst.First; lst.Remove(node1); l st.AddLast(node1);", lst);

 // Navigate in list via LinkedListNode objects

 432

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 node1 = lst.First;
 Console.WriteLine("Third element in list: node 1 = lst.First;
node1.Next.Next.Value {0}\n",
 node1.Next.Next.Value);

 // Add an integer after a LinkedListNode object
 lst.AddAfter(node1, 17);
 ReportList("lst.AddAfter(node1, 17);", lst);

 // Add a LinkedListNode object after another Linked ListNode object
 lst.AddAfter(node1, new LinkedListNode<int>(18));
 ReportList("lst.AddAfter(node1, new LinkedListNode< int>(18));" , lst);

 // Navigate in LinkedListNode objects and add an in t before a node:
 node = node1.Next.Next.Next;
 lst.AddBefore(node, 99);
 ReportList("node = node1.Next.Next.Next; lst.AddBef ore(node, 99); " , lst);

 // Navigate in LinkedListNode objects and remo ve a node.
 node = node.Previous;
 lst.Remove(node);
 ReportList("node = node.Previous; lst.Remove(node); " , lst);

 }

 // Method ReportList not shown in this version.
}

Program 45.21 Basic operations on a LinkedList of integers -
using LinkedListNodes.

In line 8-9 we make the same initial integer list as in Program 45.19. In line 13-14 we see how to access to
the first/last LinkedListNode objects of the list.

In line 19 we attempt to add node1 , which is the first LinkedListNode in lst , as the last node of the list.
This fails because it could bring the linked list into an inconsistent state. (Recall in this context that a
LinkedListNode knows the list to which it belongs). Instead, as shown in line 22, we should first remove
node1 and then add node1 with AddLast .

Please take a close look at the remaining addings, navigations, and removals in Program 45.21. As above, we
show a self-explaining output of the program, see Listing 45.22.

 433

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Initial LinkedList
 5 3 2 7 -4 0

node1 = lst.First; lst.Remove(node1); lst.AddLast(n ode1);
 3 2 7 -4 0 5

Third element in list: node1 = lst.First; node1.Ne xt.Next.Value 7

lst.AddAfter(node1, 17);
 3 17 2 7 -4 0 5

lst.AddAfter(node1, new LinkedListNode<int>(18));
 3 18 17 2 7 -4 0 5

node = node1.Next.Next.Next; lst.AddBefore(node, 99);
 3 18 17 99 2 7 -4 0 5

node = node.Previous; lst.Remove(node);
 3 18 17 2 7 -4 0 5

 Listing 45.22 Output of the program with LinkedListNode
operations on a LinkedList.

45.17. Time complexity overview: Collection classes
Lecture 12 - slide 20

In this section we will discuss the efficiency of selected and important list operations in the three classes
Collection<T> , List<T> , and LinkedList<T> . This is done by listing the time complexities of the
operations in a table, see Table 45.1. If you are not comfortable with Big O notation, you can for instance
consult Wikipedia [Big-O] or a book about algorithms and data structures.

The time complexities of the list operations are most often supplied as part of the documentation of the
operations. The choice of one list type in favor of another is often based on requirements to the time
complexities of important operations. Therefore you should pay careful attention to the information about
time complexities in the C# library documentation.

Throughout the discussion we will assume that the lists contain n elements. It may be helpful to relate the
table with the class diagram in Figure 45.1 from which it appears which interfaces to expect from the list
classes.

 434

Operation Collection<T> List<T> LinkedList<T>

this[i] O(1) O(1) -

Count O(1) O(1) O(1)

Add(e) O(1) or O(n) O(1) or O(n) O(1)

Insert(i,e) O(n) O(n) -

Remove(e) O(n) O(n) O(n)

IndexOf(e) O(n) O(n) -

Contains(e) O(n) O(n) O(n)

BinarySearch(e) - O(log n) -

Sort() - O(n log n) or O(n2) -

AddBefore(lln) - - O(1)

AddAfter(lln,e) - - O(1)

Remove(lln) - - O(1)

RemoveFirst() - - O(1)

RemoveLast() - - O(1)

Table 45.1 Time complexities of important operations in the classes
Collection<T>, List<T>, and LinkedList<T>.

As it can be seen in the class diagram of Figure 45.1 all three classes implement the ICollection<T>
interface with the operations Count , Add, Remove, and Contains . Thus, these four operations appear for all
classes in Table 45.1.

Count is efficient for all lists, because it maintains an internal counter, the value of which can be returned by
the Count property. Thus, independent of the length of a list, Count runs in constant time.

For all three types of lists, Add(e) adds an element e (of type T) to the end of the list. This can be done in
constant time, because all the three types of lists have direct access the rear end of the list. The time
complexity O(1)/O(n) given for Collection<T> and List<T> reflects that under normal circumstances it
takes only constant time to add an element to a Collection or a List . If however, the list is full it may need
resizing, and in that case the run time is linear in n.

Remove(e) and Contains(e) , where e is of type T, will have to search for e in the list. This behavior is
common for all three types of lists. Therefore the run times of Remove and Contains are O(n).

The indexer this[i] is only available in the lists that implement Ilist<T> . Such lists are based on arrays,
and therefore the runtime of the indexer is O(1). (Recall that in arrays it is possible to compute the location
of an element with a given index; No searching, whatsoever, is involved).

BinarySearch and Sort are operations in List<T> . Sort implements a Quicksort variant, and as such the
worst possible time complexity is O(n2), but the expected time complexity is O(n log n). The runtime of
BinarySearch is, as expected, O(log n).

The bottom five operations in the table belong to LinkedList . The methods AddBefore , AddAfter , and
Remove all work on a LinkedListNode , lln , and as such their runtimes do not depend on n. (Only a few

 435

references need to be assigned. The number of pointer assignments do not depend on n). Thus, when applied
on objects of type LinkedListNode the runtime of these three operations are O(1). RemoveFirst and
RemoveLast are of time complexity O(1) because a linked list maintain direct references to both ends of the
list.

45.18. Using Collections through Interfaces
Lecture 12 - slide 21

We started this chapter with a discussion of list interfaces, and we will end the chapter in a similar way.

It is, of course, necessary to use one of the collection classes (such as List<T>) when you need a collection
in your program. The morale of this section is, however, that you should not use list classes more than
necessary. In short, you should typically use List<T> or Collection<T> (for some type T) when you make a
collection object. All other places you are better off using one of the interface types, such as IList<T> . The
key observations can be summarized as follows.

 It is an advantage to use collections via interfaces instead of classes

If possible, only use collection classes in instantiations, just after new

This leads to programs with fewer bindings to concrete implementations of collections

With this approach, it is easy to replace a collection class with another

Thus, please consider the following when you use collections:

Program against collection interfaces, not collection classes

If the types of variables and parameters are given as interfaces it is easy, a later point in time, to change the
representation of your collections (say, from Collection<T> to one of your own collections which
implements Ilist<T>). Notice that if you, for instance, apply List<T> operations, which are not prescribed
by one of the interfaces, you need to declare your list of type List<T> for some type T.

Let us illustrate how this can be done in Program 45.23. The thing to notice is that the only place we refer to
a list class (here Collection<Animal> ()) is in line 9: new Collection<Animal> . All other places, as
emphasized with purple, we use the interface ICollection<Animal> . If we, tomorrow, wish to change the
representation of the animal collection, the only place to modify is line 9.

1
2
3
4
5
6
7
8
9
10
11
12

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;

class CollectionInterfaceDemo{

 public static void Main(){
 ICollection<Animal> lst = new Collection<Animal>() ;

 // Add elements to the end of the empty list:
 lst.Add(new Animal("Cat")); lst.Add(new Animal ("Dog", Sex.Female));

 436

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 lst.Add(new Animal("Mouse")); lst.Add(new Anim al("Rat"));
 lst.Add(new Animal("Mouse", Sex.Female)); lst. Add(new Animal("Rat"));
 lst.Add(new Animal("Herring", AnimalGroup.Fish, Sex.Female));
 lst.Add(new Animal("Eagle", AnimalGroup.Bird, S ex.Male));

 // Report in various ways on the animal collection:
 Print("Initial List", lst);
 ReportFemaleMale(lst);
 ReportGroup(lst);
 }

 public static void Print<T>(string explanation, ICollection<T> list){
 Console.WriteLine(explanation);
 foreach(T el in list)
 Console.WriteLine("{0, 3}", el);
 Console.WriteLine(); Console.WriteLine();
 }

 public static void ReportFemaleMale(ICollection<Animal> list){
 int numberOfMales = 0,
 numberOfFemales = 0;

 foreach(Animal a in list)
 if (a.Sex == Sex.Male) numberOfMales++;
 else if (a.Sex == Sex.Female) numberOfFemales ++;

 Console.WriteLine("Males: {0}, Females: {1}",
 numberOfMales, numberOfFemal es);
 }

 public static void ReportGroup(ICollection<Animal> list){
 int numberOfMammals = 0,
 numberOfBirds = 0,
 numberOfFish = 0;

 foreach(Animal a in list)
 if (a.Group == AnimalGroup.Mammal) numberOfMa mmals++;
 else if (a.Group == AnimalGroup.Bird) numberO fBirds++;
 else if (a.Group == AnimalGroup.Fish) numberO fFish++;

 Console.WriteLine("Mammals: {0}, Birds: {1}, Fi sh: {2}",
 numberOfMammals, numberOfBir ds, numberOfFish);
 }

}

 Program 45.23 A program based on ICollection<Animal> - with a Collection<Animal>.

On the accompanying slide we show versions of Program 45.23, which are tightly bound to the class
Collection<Animal> , and we show a version in which we have replaced Collection<Animal> with
List<Animal> .

45.19. References

[Big-O] Wikipedia: Big O Notation
http://en.wikipedia.org/wiki/Big_O_notation

 437

46. Generic Dictionaries in C#

In the same style as our coverage of lists in Chapter 45 we will in this chapter discuss generic interfaces and
classes for dictionaries. This covers the high-level concept of associative arrays and the low-level concept of
hash tables.

46.1. Overview of Generic Dictionaries in C#
Lecture 12 - slide 24

A dictionary is a data structure that maps keys to values. A given key can have at most one value in the
dictionary. In other words, the key of a key-value pair must be unique in the dictionary. A given value can be
associated with many different keys.

At the conceptual level, a dictionary can be understood as an associative array (see Section 19.2) or as a
collection of key-value pairs. In principle the collection classes from Chapter 45 can be used as an
underlying representation. It is, however, convenient to provide a specialized interface to dictionaries which
sets them apart from collections in general. In addition we often need good performance (fast lookup), and
therefore it is more than justified to have special support for dictionaries in the C# libraries.

Figure 46.1 gives an overview of the generic interfaces and the generic classes of dictionaries. The figure is
comparable with Figure 45.1 for collections. As such, the white boxes represent interfaces and the grey
boxes represent classes. As it appears from Figure 46.1 we model dictionaries as IEnumerable s (see Section
45.2) and ICollection s (see Section 45.3) at the highest levels of abstractions. From the figure we can
directly read that a dictionary is a ICollection of KeyValuePair s. (The is a relation is discussed in Section
25.2).

Figure 46.1 The class and interface inheritance tree related to Dictionaries

The symbol K stands for the type of keys, and the symbol V stands for the type of values.
KeyValuePair<K,V> is a simple struct that aggregates a key and a value to a single object.

Dictinonary<K,V> is implemented in terms of a hashtable that maps objects of type K to objects of type V.
SortedDictinonary<K,V> relies on binary search trees. SortedList<K,V> is based on a sorted arrays. More
details can be found in Section 46.5. In Section 46.6 we review the time complexities of the operations of the
three dictionary classes shown above.

 438

46.2. The interface IDictionary<K,V>
Lecture 12 - slide 25

From Figure 46.1 we see that the interface IDictionary<K,V> is a subinterface of
ICollection<KeyValuePair<K,V>> . We gave an overview of the generic interface ICollection<T> in
Section 45.3. Because of this subinterface relationships we know that it is possible to use the operations
Contains , Add, Remove on objects of type KeyValuePair<K,V> . Notice, however, that these operations are
rather inconvenient because the generic class KeyValuePair is involved. Instead of Add(new

KeyValuePair(k,v)) we prefer another overload of Add, namely Add(k,v) . The mentioned operations
Contains , Add, and Remove on KeyValuePairs are available in the Dictionary classes of Figure 46.1, but
they are degraded to explicit interface implementations (see Section 31.8).

The following provides an overview of the operations in IDictionary<K,V> :

 • The operations prescribed in ICollection<KeyValuePair<K,V>>
• The operations prescribed in IEnumerable<KeyValuePair<K,V>>
• V this [K key] - both getter and setter; the setter adds or mutates
• void Add(K key, V value) - only possible if key is not already present
• bool Remove(K key)
• bool ContainsKey (K key)
• bool TryGetValue (K key, out V value)
• ICollection<K> Keys - getter
• ICollection<V> Values - getter

V this[K key] is an indexer via which we can set and get a value of a given key by means of array notation
(see Section 19.1). If dict is declared of type IDictionary<K,V> then the indexer notation allows us to
express

 valVar = dict[someKey];
 dict[someKey] = someValue;

The first line accesses (gets/reads) the value associated with someKey. If no value is associated with someKey
an KeyNotFoundException is thrown. The second line adds (sets/writes) an association between someKey
and someValue to dict . If the association is already in the dictionary, the setter mutates the value associated
with someKey.

The operation Add(key,value) adds an association between key and value to the dictionary. If the key is
already associated with (another) value in the dictionary an ArgumentException will be thrown.

Remove(key) removes the association of key and its associated value. Via the value returned, the Remove
operation signals if the removal was successful. Remove returns false if key is not present in the dictionary.

ContainsKey(key) tells if key is present in the dictionary.

The operation call TryGetValue(key, valueVar) accesses the value of key , and it passes the value via an
output parameter (see Section 20.7). If no value is associated with key, the default value of type V (see
Section 12.3) is passed back in the output parameter. This method is added of convenience. Alternatively, the
indexer can be used in combination with ContainsKey .

 439

The properties Keys and Values return collections of the keys and the values of a dictionary.

46.3. Overview of the class Dictionary<K,V>
Lecture 12 - slide 26

The generic class Dictionary<K,V> is based on hashtables. Dictionary<K,V> implements the interface
IDictionary<K,V> as described in Section 46.2. Almost all methods and properties of Dictionary<K,V> are
prescribed by the direct and indirect interfaces of the class. In the web version of the material we enumerate
the most important operations of Dictionary<K,V> .

As it appears from the discussion of dictionaries above, it is necessary that two keys can be compared for
equality. The equality comparison can be provided in several different ways. It is possible to pass an
EqualityComparer object to the Dictionary constructor. Alternatively, we fall back on the default equality
comparer of the key type K. The property Comparer of class Dictionary<K,V> returns the comparer used
for key comparison in the current dictionary. See also the discussion of equality comparison in Section 42.9.

As already mentioned, a dictionary is implemented as a hash table. A hash table provides very fast access to
the a value of a given key. Under normal circumstances - and with a good hash function - the run times of the
access operations are constant (the run times do not depend on the size of the dictionary). Thus, the time
complexity is O(1). Please consult Section 46.6 for more details on the efficiency of the dictionary
operations.

46.4. Sample use of class Dictionary<K,V>
Lecture 12 - slide 27

In this section we will illustrate the use of dictionaries with a simple example. We go for a dictionary that
maps objects of type Person to objects of type BankAccount . Given a Person object (the key) we wish to
have efficient access to the person's BankAccount (the value).

The class Person is similar to Program 20.3. The class BankAccount is similar to Program 25.1. The exact
versions of Person and BankAccount , as used in the dictionary example, can be accessed via the
accompanying slide page, or via the program index of this lecture.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

using System;
using System.Collections.Generic;

class DictionaryDemo{

 public static void Main(){

 IDictionary<Person, BankAccount> bankMap =
 new Dictionary<Person,BankAccount>(new PersonComparer());

 // Make bank accounts and person objects
 BankAccount ba1 = new BankAccount("Kurt", 0.01),
 ba2 = new BankAccount("Maria", 0.0 2),
 ba3 = new BankAccount("Francoi", 0 .03),
 ba4 = new BankAccount("Unknown", 0 .04);

 Person p1 = new Person("Kurt"),

 440

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

 p2 = new Person("Maria"),
 p3 = new Person("Francoi");

 ba1.Deposit(100); ba2.Deposit(200); ba3.Deposit (300);

 // Populate the bankMap:
 bankMap.Add(p1, ba1);
 bankMap.Add(p2, ba2);
 bankMap.Add(p3, ba3);
 ReportDictionary("Initial map", bankMap);

 // Print Kurt's entry in the map:
 Console.WriteLine("{0}\n", bankMap[p1]);

 // Mutate Kurt's entry in the map
 bankMap[p1] = ba4;
 ReportDictionary("bankMap[p1] = ba4;", bankMap);

 // Mutate Maria's entry in the map. PersonComparer crucial!
 ba4.Deposit(400);
 bankMap[new Person("Maria")] = ba4;
 ReportDictionary("ba4.Deposit(400); bankMap[new Pe rson(\"Maria\")] = ba4;",
bankMap);

 // Add p3 yet another time to the map
 // Run-time error: An item with the same key has al ready been added.
/* bankMap.Add(p3, ba1);
 ReportDictionary("bankMap.Add(p3, ba1);", bankMap);
 */

 // Try getting values of some given keys
 BankAccount ba1Res = null,
 ba2Res = null;
 bool res1 = false,
 res2 = false;
 res1 = bankMap.TryGetValue(p2, out ba1Res);
 res2 = bankMap.TryGetValue(new Person("Anders"), out ba2Re s);
 Console.WriteLine("Account: {0}. Boolean result {1}", ba1Res, res1);
 Console.WriteLine("Account: {0}. Boolean result {1}", ba2Res, res2);
 Console.WriteLine();

 // Remove an entry from the map
 bankMap.Remove(p1);
 ReportDictionary("bankMap.Remove(p1);", bankMap);

 // Remove another entry - works because of PersonCo mparer
 bankMap.Remove(new Person("Francoi"));
 ReportDictionary("bankMap.Remove(new Person(\"Franc oi\"));", bankMap);
 }

 public static void ReportDictionary<K, V>(string explanation,
 IDictio nary<K,V> dict){
 Console.WriteLine(explanation);
 foreach(KeyValuePair<K,V> kvp in dict)
 Console.WriteLine("{0}: {1}", kvp.Key, kvp.Va lue);
 Console.WriteLine();
 }
}

public class PersonComparer: IEqualityComparer<Pers on>{

 public bool Equals(Person p1, Person p2){
 return (p1.Name == p2.Name);
 }

 441

83
84
85

 public int GetHashCode(Person p){
 return p.Name.GetHashCode();
 }
}

Program 46.1 A program working with
Dictionary<Person,BankAccount>.

In line 8-9 we make the dictionary bankMap of type Dictionary<Person,BankAccount> . We pass an
instance of class PersonComparer , see line 76-86, which implements IEqualityComparer<Person> . In line
11-19 we make sample BankAccount and Person objects, and in line 24-26 we populate the dictionary
bankMap.

In line 30 we see how to access the bank account of person p1 (Kurt). We use the provided indexer of the
dictionary. In line 33 we mutate the bankMap: Kurt's bank account is changed from the one referenced by ba1
to the one referenced by ba4 . In line 38 we mutate Maria's bank account in a similar way. Notice, however,
that that the relative weak equality of Person objects (implemented in class PersonComparer) implies that
the new person("Maria") in line 38 is equal to the person referenced by p2, and therefore line 38 mutates
the dictionary entry for Maria.

In line 43 we attempt add yet another entry for Francoi. This is illegal because there is already an entry for
Francoi in the dictionary. If the comments around line 43 are removed, a run time error will occur.

In line 52-53 we illustrate TryGetValue . First, in line 52, we attempt to access Maria's account. The out
parameter baRes1 is assigned to Maria's account and true is returned from the method. In line 53 we attempt
to access the account of a brand new Person object, which has no bank account in the dictionary. null is
returned through ba2Res , and false is returned from the method.

Finally, in line 58-64 we remove entries from the dictionary by use of the Remove method. First Kurt's entry
is removed after which Francoi's entry is removed.

The output of the program is shown in Listing 46.2 (only on web).

 Exercise 12.3. Switching from Dictionary to SortedDictionary

The program on this slide instantiates a Dictionary<Person,BankAccount> . As recommended earlier in
this lecture, we should work with the dictionary via a variable of the interface type IDictionary<K,V> .

You are now asked to replace Dictionary<Person,BankAccount> with
SortedDictionary<Person,BankAccount> in the above mentioned program.

This causes a minor problem. Identify the problem, and fix it.

Can you tell the difference between the output of the program on this slide and the output of your revised
program?

You can access the BankAccount and Person classes in the web version of the material.

 442

46.5. Notes about Dictionary Classes
Lecture 12 - slide 28

As can be seen from Figure 46.1 several different generic classes implement the IDictionary<K,V>
interface. Dictionary<K,V> , as discussed in Section 46.3 and Section 46.4 is based on a hash table
representation. SortedDictionary<K,V> is based on a binary tree, and (as the name signals)
SortedList<K,V> is based on an array of key/value pairs, sorted by keys.

The following provides an itemized overview of the three generic dictionary classes.

 • Class Dictionary<K,V>
• Based on a hash table
• Requires that the keys in type K can be compared by an Equals operation
• Key values should not be mutated
• The efficiency of class dictionary relies on a good hash function for the key type K

• Consider overriding the method GetHashCode in class K
• A dictionary is enumerated in terms of the struct KeyValuePair<K,V>

• Class SortedDictionary<K,V>
• Based on a binary search tree
• Requires an IComparer for keys of type K - for ordering purposes

• Provided when a sorted dictionary is constructed
• Class SortedList<K,V>

• Based on a sorted collection of key/value pairs
• A resizeable array

• Requires an IComparer for keys, just like SortedDictionary<K,V> .
• Requires less memory than SortedDictionary<K,V> .

When you have to chose between the three dictionary classes the most important concern is the different run
time characteristics of the operations of the classes. The next section provides an overview of these.

 443

 46.6. Time complexity overview: Dictionary classes
Lecture 12 - slide 29

We will now review the time complexities of the most important dictionary operations. This is done in the
same way as we did for collections (lists) in Section 45.17. We will assume that we work on a dictionary that
holds n entries of key/value pairs.

Operation Dictionary<K,V> SortedDictionary<K,V> SortedList<K,V>

this[key] O(1) O(log n) O(log n) or O(n)

Add(key,value) O(1) or O(n) O(log n) O(n)

Remove(key) O(1) O(log n) O(n)

ContainsKey(key) O(1) O(log n) O(log n)

ContainsValue(value) O(n) O(n) O(n)

Table 46.1 Time complexities of important operations in the classes
Dictionary<K,V>, SortedDictionary<K,V>, and
SortedList<K,V>.

As noticed in Section 46.5 an object of type Dictionary<K,V> is based on hash tables. Eventually, it will be
necessary to enlarge the hashtable to hold new elements. It is good wisdom to enlarge the hashtable when it
becomes half full. The O(1) or O(n) time complexity for Add reflects that a work proportional to n is needed
when it becomes necessary to enlarge the hash table.

Most operations on the binary tree representation of SortedDictionary<K,V> are logarithmic in n. The only
exception (among the operations listed in the table) is ContainsValue , which in the worst case requires a full
tree traversal.

In SortedList<K,V> the indexer is efficient, O(log n) when an existing item is mutated. If use of the indexer
causes addition of a new entry, the run time is the same as the run time of Add. Adding elements to a sorted
list requires, in average, that half of the elements are pushed towards the end of the list in order to create free
space for the new entry. This is an O(n) operation. Remove is symmetric, pulling elements towards the
beginning of the list, and therefore also O(n). ContainsKey is efficient because we can do binary search on
the sorted list. ContainsValue requires linear search, and therefore it is an O(n) operation.

Given the table in Table 46.1 it is tempting to conclude that Dictionary<K,V> is the best of the three classes.
Notice, however, that the difference between a constant run time c1 and c2 log(n) is not necessarily
significant. If the constant c1 is large and the constant c2 is small, the binary tree may be an attractive
alternative. Furthermore, we know that the hashtable will be slow when it is almost full. In that case more
and more collisions can be expected. At some point in time the hash table will stop working if it is not
resized. This is not an issue if we work with balanced binary trees. Finally, the hashtable depends critically
on a good hash function, preferable programmed specifically for the key type K. This is not an issue if we use
binary trees.

 444

 445

47. Non-generic Collections in C#

This is a short chapter in which we discuss the non-generic collection classes. You may encounter use of
these classes in many older C# programs. In Section 44.1 these collection classes were called first generation
collection classes.

47.1. The non-generic collection library in C#
Lecture 12 - slide 31

The overview of the non-generic collection interfaces and classes in Figure 47.1 is a counterpart to the sum
of Figure 45.1 and Figure 46.1. The white boxes represent interfaces and the grey boxes represent classes.
Most classes and interfaces shown in Figure 46.1 belong to the namespace System.Collections .

 The non-generic collection classes store data of type Object

As the most important characteristics, the elements of the lists are of type Object . Both keys and values of
dictionaries are Objects . Without use of type parametrization, there are no means to constraint the data in
collections to of a more specific type. Thus, if we for instance work with a collection of bank accounts, we
cannot statically guarantee that all elements of the collection are bank accounts. We may accidentally insert
an object of another type. We will find the error at runtime. Most likely, an exception will be raised when we
try to cast an Object to BankAccount .

Figure 47.1 The class and interface inheritance tree related to collections

The IEnumerable , ICollection , IList and IDictionary interfaces of Figure 47.1 are natural counterparts
to the generic interfaces IEnumerable<T> , ICollection<T> , IList<T> and IDictionary<K,V> .

The class ArrayList corresponds to List<T> . As such, ArrayList is a class with a rich repertoire of
operations for searching, sorting, and range operations. ArrayList is undoubtedly the most widely used
collection class in C# 1.0 programs.

The Array class shown next to ArrayList in Figure 47.1 deserves some special clarification. It belongs to
the System namespace. You cannot instantiate class Array in your programs, because Array is an abstract
class. And you cannot use Array as a superclass of one of your own classes. So, class Array seems pretty
useless. At least it is fair to state the class Array is rather special compared to the other classes in Figure 47.1.

Let us now explain the role of class Array . As mentioned earlier, see Section 28.2 , class Array acts as the
superclass of all "native" array types in C#. (See the discussion of arrays in Section 6.4). Consequently, all

 446

the nice operation in System.Array can be used on all "native" arrays that you use in your C# programs. If,
for instance, we have the array declarations

 int[] ia = new int[3];
 string[] sa = new string[5,6];
 BankAccount[] baa = new BankAccount[10];

the following are legal expressions

 ia.Length
 a.Rank
 Array.BinarySearch(ia, 5)
 Array.Find(sa, IsPalindrome)
 Array.Sort(baa)

In the Array class, you should pay attention to the (overloaded) static method CreateInstance , which
allows for programmatic creation on an arbitrary array. The Array instance methods GetValue and SetValue
allow us to access elements in arbitrary arrays - independent of element type and rank.

When we talk about "native arrays" in C# we refer to the array concept implemented in the language as such.
The compiler provides special support for these native arrays. In contrast, generic and non-generic
collections are provided via the class library. The C# compiler and the C# interpreter do not have particular
knowledge or support of the collection classes. We could have written these classes ourselves! It is
interesting to notice that the native arrays, as derived from class Array in Figure 47.1, are type safe. The type
safeness of native arrays is due to the special support by the compiler, which allows for declaration of the
element types of the arrays (see the examples of int , string , and BankAccount arrays above).

The class HashTable in Figure 47.1 corresponds to the generic class Dictionary<K,V> , see Section 46.3 and
Section 46.4).

The class ListDictionary , which belongs to the namespace System.Collections.Specialized , has no
natural generic counterpart. ListDictionary is based on linear search in an unordered collection of
key/value pairs. ListDictionary should therefore only be used for small dictionaries.

As the name suggests, class SortedList corresponds to SortedList<K,V> . Both rely on a (linear) list
representation, sorted by keys.

The class BitArray is - by nature - a non-generic collection class. The binary digit 1 is represented as
boolean true, and the binary digit 0 is represented as boolean false. BitArray provides a compact
representation of a bit arrays. In the context of indexers, see Program 19.4, we have earlier discussed a
partial reproduction of the class BitArray .

In addition to the types shown in Figure 47.1 there exist some specialized collections in the namespace
System.Collections.Specialized . As an example, the class StringCollection is a collection of strings.
The class CollectionBase in the namespace System.Collection is intended as the superclass of new,
specialized collection classes. In the documentation of this class, an example shows how to define an
Int16Collection as a subclass of CollectionBase . Needless to say, all these classes are obsolete relative
to both C#2.0 and C#3.0. As of today, the classes may be necessary for backward compatibility, but,
unfortunately, they also add to the complexity of the .NET class libraries.

 447

48. Patterns and Techniques

In earlier parts of this material (Section 31.6 and Section 45.2) we have at length discussed enumerators in
C#, including their relationship to foreach loops.

In this section we first briefly rephrase this to the design pattern known as Iterator. Following that we will
show how to implement iterators (enumerators) with use of yield return, which is a variant of the return
statement.

48.1. The Iterator Design Pattern
Lecture 12 - slide 34

The Iterator design pattern provides sequential access to an aggregated collection. At an overall level, an
iterator

 • Provides for a smaller interface of the collection class
• All members associated with traversals have been refactored to the iterator class

• Makes it possible to have several simultaneous traversals
• Does not reveal the internal representation of the collection

As we have seen in Section 31.6 and Section 45.2, traversal of a collection requires a few related operations,
such as Current , MoveNext , and Reset . We could imagine a slightly more advanced iterator which could
move backwards as well. With use of iterators we have factored these operations out of the collection classes,
and organized them in iterators (enumerators). With this refactoring, a collection can be asked to deliver an
iterator:

 aCollection.GetEnumerator()

Each iterator maintains the state, which is necessary to carry out a traversal of a collection. If we need two
independent, simultaneous traversals we can ask for two iterators of the collections. This could, for instance
be used to manage simultaneous iteration from both ends of a list.

In more primitive collections, such as linked lists (see Section 45.14) it is necessary to reveal the object
structure that keeps the list together. (In LinkedList<T> this relates to the details of LinkedListNode<T>
instances). With use of iterators it is not necessary to reveal such details. An iterator is an encapsulated,
abstract representation of some state that manages a traversal. The concrete representation of this state is not
leaked to clients. This is very satisfactory in an object-oriented programming context.

Iterators (enumerators) are typically used via foreach loops. As an alternative, it is of course also possible to
use the operations in the IEnumerator interface directly to carry out traversals. Exercise 12.4 is a
opportunity to train such a more direct use of iterators.

 Exercise 12.4. Explicit use of iterator - instead of using foreach

 448

In this program we will make direct use of an iterator (an enumerator) instead of traversing with use of
foreach.

In the animal collection program, which we have seen earlier in this lecture, we traverse the animal
collections several times with use of foreach. Replace each use of foreach with an application of an
iterator.

48.2. Making iterators with yield return
Lecture 12 - slide 35

In this section we will show how to use the special-purpose yield return statement to define iterators, or as
they are called in C#, enumerators. First, we will program a very simple collection of up to three, fixed
values. Next we will revisit the integer sequence enumeration, which can be found in Section 58.3.

In Program 48.1 we will program a collection class, called GivenCollection , which just covers zero, one,
two or three values of some arbitrary type T. As a simpleminded approach, we represent these T values with
three instance variables of type T, and with three boolean variables which tells if the corresponding T values
are present. As an invariant, the instance variables are filled from the lower end. It would be tempting to use
the type T? instead of T, and the value null for a missing value. But this is not possible if T is class.

It is important that the class GivenCollection implements the generic interface IEnumerable<T> . Because
this interface, in turn, implements the non-generic IEnumerable , we must both define the generic and the
non-generic GetEnumerator method. The latter must be defined as an explicit interface (see Section 31.8), in
order not to conflict with the former. If we forget the non-generic GetEnumerator , we get a slightly
misleading error message:

'GivenCollection<T> ' does not implement interface member
'System.Collections.IEnumerable.GetEnumerator()'.
'GivenCollection<T> ' is either static, not public, or has the wrong return type.

This message can cause a lot of headache, because the real problem (the missing, non-generic
GetEnumerator method) is slightly camouflaged in the error message.

The implementation of the non-generic enumerator just delegates its work to the generic version.

The implementation of the generic Enumerator method uses the yield return statement. Let us assume that
an instance of GivenCollection<T> holds three T values (in first , second , and third). The three boolean
variables firstDefined , secondDefined , and thirdDefined are all true. The GetEnumerator method has
three yield return statements in sequence (see line 50-52). By means of these, GetEnumerator can return
three values before it is done. This is entirely different from a normal method, which only returns once (after
which it is done). The GetEnumerator in class GivenCollection acts as a coroutine in relation to its calling
place (which is the foreach statement in the client program Program 48.2). A coroutine can resume
execution at the place where execution stopped in an earlier call. A normal method always (re)starts from its
first statement each time it is called.

 449

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

using System;
using System.Collections.Generic;
using System.Collections;

public class GivenCollection<T> : IEnumerable<T>{

 private T first, second, third;
 private bool firstDefined, secondDefined, thirdDe fined;

 public GivenCollection(){
 this.firstDefined = false;
 this.secondDefined = false;
 this.thirdDefined = false;
 }

 public GivenCollection(T first){
 this.first = first;
 this.firstDefined = true;
 this.secondDefined = false;
 this.thirdDefined = false;
 }

 public GivenCollection(T first, T second){
 this.first = first;
 this.second = second;
 this.firstDefined = true;
 this.secondDefined = true;
 this.thirdDefined = false;
 }

 public GivenCollection(T first, T second, T third){
 this.first = first;
 this.second = second;
 this.third = third;
 this.firstDefined = true;
 this.secondDefined = true;
 this.thirdDefined = true;
 }

 public int Count(){
 int res;
 if (!firstDefined) res = 0;
 else if (!secondDefined) res = 1;
 else if (!thirdDefined) res = 2;
 else res = 3;
 return res;
 }

 public IEnumerator<T> GetEnumerator(){
 if (firstDefined) yield return first;
 if (secondDefined) yield return second; // not else
 if (thirdDefined) yield return third; // not else
 }

 IEnumerator IEnumerable.GetEnumerator(){
 return GetEnumerator();
 }

}

 Program 48.1 A collection of up to three instance variables of
type T - with an iterator.

 450

In Program 48.2 we show a simple program that instantiates a GivenCollection of the integers 7, 5, and 3.
The foreach loop in line 11-12 traverses the three corresponding instance variables, and prints each of them.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

using System;

class Client{

 public static void Main(){

 GivenCollection<int> gc = new GivenCollection< int>(7,5,3);

 Console.WriteLine("Number of elements in given Collection: {0}",
 gc.Count());
 foreach(int i in gc){ // Output: 7 5 3
 Console.WriteLine(i);
 }

 }

}

 Program 48.2 A sample iteration of the three instance variable
collection.

 Exercise 12.5. The iterator behind a yield

Reprogram the iterator in class GivenCollection without using the yield return statement in the
GetEnumerator method.

Let us now revisit the integer enumeration classes of Section 58.3. The main point in our first discussion of
these classes was the Composite design pattern, cf. Section 32.1, as illustrated in Figure 58.1 of Section 58.3.
The three classes IntInterval , IntSingular , and IntCompSeq all inherit the abstract class IntSequece .
You can examine the abstract class IntSequence in Program 58.9 in the appendix of this material. The three
concrete subclasses were programmed in Program 58.10, Program 58.11, and Program 58.12.

The GetEnumerator methods of IntInterval , IntSingular , and IntCompSeq are all emphasized below in
Program 48.3, Program 48.4, and Program 48.5. Notice the use of yield return in all of them.

In Program 48.3 the if-else of GetEnumerator in line 19-24 distinguishes between increasing and decreasing
intervals. The GetEnumerator method of IntSingular is trivial. The GetEnumerator method of
IntCompSeq in Program 48.5 is surprisingly simple - at least compared with the counterpart in Program
58.12. The two foreach statements (in sequence) in line 19-22 activate all the machinery, which we
programmed manually in Program 58.12. This includes recursive access to enumerators of composite
sequences.

The simplicity of enumerators, programmed with yield return, is noteworthy compared to all the underlying
stuff of explicitly programmed classes that implement the interface IEnumerator .

Iterators (iterator blocks), programmed with yield return , are only allowed to appear in methods that
implement an enumerator or an enumerable interface (such as IEnumerator or IEnumerator and their
generic counterparts). Such methods are handled in a very special way by the compiler, and a number of
restrictions apply to these methods. The compiler generates all the machinery, which we program ourselves
when a class implements the enumerator or enumerable interfaces. Methods with iterator blocks that
implement and enumerator or an enumerable interface return an enumerator object, on which the MoveNext

 451

can be called a number of times. For more details on iterators please consult Section 10.14 in the C# 3.0
Language Specification [csharp-3-spec].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

public class IntInterval: IntSequence{

 private int from, to;

 public IntInterval(int from, int to){
 this.from = from;
 this.to = to;
 }

 public override int? Min{
 get {return Math.Min(from,to);}
 }

 public override int? Max{
 get {return Math.Max(from,to);}
 }

 public override IEnumerator GetEnumerator (){
 if (from < to)
 for(int i = from; i <= to; i++)
 yield return i;
 else
 for(int i = from; i >= to; i--)
 yield return i;
 }

}

 Program 48.3 The class IntInterval - Revisited.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

public class IntSingular: IntSequence{

 private int it;

 public IntSingular(int it){
 this.it = it;
 }

 public override int? Min{
 get {return it;}
 }

 public override int? Max{
 get {return it;}
 }

 public override IEnumerator GetEnumerator(){
 yield return it;
 }
}

 Program 48.4 The class IntSingular - Revisited.

 452

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public class IntCompSeq: IntSequence{

 private IntSequence s1, s2;

 public IntCompSeq(IntSequence s1, IntSequence s2) {
 this.s1 = s1;
 this.s2 = s2;
 }

 public override int? Min{
 get {return (s1.Min < s2.Min) ? s1.Min : s2.Min ;}
 }

 public override int? Max{
 get {return (s1.Max > s2.Max) ? s1.Max : s2.Max ;}
 }

 public override IEnumerator GetEnumerator (){
 foreach(int i in s1)
 yield return i;
 foreach(int i in s2)
 yield return i;
 }

}

 Program 48.5 The class IntCompSeq - Revisited.

In the web edition of the material we show a sample client program that contains a couple of IntSequence s.

48.3. References

[Csharp-3-spec] "The C# Language Specification 3.0",

