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44.  Collections - History and Overview 

This chapter is the first in our coverage of collections. 

Collections are used to organize and process a number of objects or values of the same type. In almost any 
real-life program, collections of objects or values play important roles.  

Collections fit nicely in our agenda of object-oriented programming. A collection holds a number of objects 
(of the same type), but a concrete collection is also itself an object. The commonalities of a number of 
collections objects are described by the type of the collection objects. In the following chapters we will 
encounter a number of different interfaces and classes, which represent collection types. Not surprisingly, 
generic types as discussed in Chapter 42, play an important role when we wish to deal with collections that 
are constrained to contain only objects of a particular element type. 

In the rest of this short introductory chapter we will briefly outline the historic development of collection 
programming. In the main part of the lecture, Chapter 45 and Chapter 46, we deal with two main categories 
of collections: Lists and Dictionaries. 

  

44.1.  A historic View on Collection Programming 
Lecture 12 - slide 2 

We identify three stages or epochs related to the development of collections: 

 • Native arrays and custom made lists 
• Fixed sized arrays - limited set of operations 
• Variable sized linked lists - direct pointer manipulation 

• First generation collection classes 
• Elements of type Object  - Flexible sizing - Rich repertoire of operations 
• Type unsafe - Casting - Inhomogeneous collections 

• Second generation collection classes 
• The flexibility of the first generation collections remains 
• Type safe - Generic - Type parameterized - Homogeneous 

 

Arrays are fundamental in imperative programming, for instance in C. In older programs - or old-fashioned 
programs - many collections are dealt with by means of arrays. Many modern programs still use arrays for 
collections, either due to old habits or because of the inherent efficiency of array processing. The efficiency 
of arrays stems from the fact that the memory needed for the elements is allocated as a single consecutive 
area of fixed size. 

Another fundamental technique for dealing with collections is encountered in linked lists. In linked list one 
elements is connected to the next element by a pointer. The linking is done by use of pointers. In single-
linked list, an element is linked to its successor. In double-linked list, an element is both linked to its 
successor and to its predecessor. Linked trees, such as binary trees, are also common. In some languages 
(such as C and Pascal) linked data structures require explicit pointer manipulation. Other languages (such as 
Lisp) hide the pointers behind the scene.  
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First generation collection classes deemphasize the concrete representation of collections. Instead, the 
capabilities and interfaces (such as insertion, deletion, searching, conversion, etc) of collections are brought 
into focus. This reflects good and solid object-oriented thinking. Typical first-generation collection classes 
blur the distinction between (consecutive) arrays and (linked) lists. The concept of an ArrayList  is seen both 
in early versions of Java and C#. Collection concepts are organized in type hierarchies: A List  is a 
Collection  and a Set  is a Collection  (see Section 25.2). The element type of collections is the most 
general type in the system, namely Object . As a consequence of this, it is hard to avoid collection of "pears" 
and "bananas" (inhomogeneous collections). Thus, type safeness must be dealt with at run-time. This is 
against the trend of static type checking and type safety. We will briefly review the first generation collection 
classes of C# in Chapter 47. 

The second (and current) generation of collections make use of generic types (type parameterized classes and 
interfaces), as discussed in Chapter 42. The weaknesses of the first generation collection classes have been 
the primary motivation for introduction all the complexity of genericity (see Chapter 41 where we motivated 
generic classes by a study of the class Set ). With use of type parameterized classes we can statically express 
List<Banana>  and List<Pear>  and hereby eliminate the risk of type errors at run time. In the following 
chapters we will - with the exception of Chapter 47 - limit ourselves to study type parameterized collections. 
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45.  Generic Collections in C# 

In this chapter we will study different list interfaces and classes.  

  

45.1.  Overview of Generic Collections in C# 
Lecture 12 - slide 4 

We start by showing a type hierarchy of list-related types. The white boxes in Figure 45.1 are interfaces and 
the grey boxes are classes. 

 
Figure 45.1    The class and interface inheritance tree related to Lists 

All interfaces and classes seen in Figure 45.1, apart from Stack<T>  and Queue<T>, will be discussed in the 
forthcoming sections of the current chapter. 

The class System.Array  (see Section 28.2 ) which conceptually is the superclass of all native array types in 
C#, also implements the generic interfaces IList<T> . Notice, however, that Array  's implementation of 
IList<T>  is carried out by special means, and that it does not show up in the usual C# documentation. A 
more detailed discussion of the Array  class is carried out in Section 47.1. 

Version 3.5 of the .NET Framework contains a class, HashSet<T> , that supports the mathematical set 
concept. As such, it is similar to the class Set<T> , which we used as example for introduction of generic 
types in Section 42.1. HashSet<T>  is, however, much more efficient than Set<T> . 

  

45.2.  The Interface IEnumerable<T> 
Lecture 12 - slide 5 

At the most general level of Figure 45.1 traversability is emphasized. This covers the ability to step through 
all elements of a collection. The interface IEnumerable<T>  announces one parameterless method called 
GetEnumerator . The type parameter T is the type of the elements in the collection. 

 • Operations in the interface IEnumerable<T> : 
• IEnumerator<T>  GetEnumerator  ( ) 
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As the name indicates, GetEnumerator  returns an enumerator, which offers the following interface: 

 • Operations in the interface IEnumerator<T> : 
• T Current  
• bool  MoveNext ( ) 
• void  Reset  ( ) 

 

We have discussed the non-generic versions of both interfaces in Section 31.6. An IEnumerator  object is 
used as the basis of traversal in a foreach  loop. 

Without access to an IEnumerator  object it would not be possible to traverse the elements of a collection in 
a foreach loop. You do not very often use the GetEnumerator  operation explicitly in your own program, but 
you most probably rely on it implicitly! The reason is that many of your collections are traversed, from one 
end to the other, by use of foreach. The foreach control structure would not work without the operation 
GetEnumerator . As you can see from Figure 45.1 all of our collections implement the interface 
IEnumerable<T>  and hereby they provide the operation GetEnumerator . 

It is worth noticing that an object of type IEnumerator<T>  does not support removal of elements from the 
collection. In C# it is therefore not allowed to remove elements during traversal of a collection in a foreach 
loop. In the Java counterpart to IEnumerator<T>  (called Iterator  in Java), there is a remove  method. The 
remove  method can be called once for each step forward in the collection. remove  is an optional operation in 
the Java Iterator  interface. Consequently, removal of elements is not necessarily supported by all 
implementations of the Java Iterator  interface. 

  

45.3.  The Interface ICollection<T> 
Lecture 12 - slide 6 

At the next level of Figure 45.1 we encounter the ICollection<T>  interface. It can be summarized as 
follows. 

 • Operations in the interface ICollection<T> : 
• The operation prescribed in the superinterface IEnumerable<T>  
• bool Contains (T element) 
• void Add(T element) 
• bool Remove(T element) 
• void Clear () 
• void CopyTo(T[]  targetArray, int startIndex) 
• int Count  
• bool IsReadOnly  

 

In addition to traversability, elements of type T can be added to and removed from objects of type 
ICollection<T> . At this level of abstraction, it is not specified where in the collection an element is added. 
As listed about, a few other operations are supported: Membership testing (Contains ), resetting (Clear ), 
copying of the collection to an array (CopyTo), and measuring of size (Count ). Some collections cannot be 
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mutated once they have been created. The IsReadOnly  property allows us to find out if a given ICollection  
object is a read only collection. 

  

45.4.  The Interface IList<T> 
Lecture 12 - slide 7 

At the next level of interfaces in Figure 45.1 we meet IList<T> . This interface prescribes random access to 
elements. 

 • Operations in the interface IList<T> : 
• Those prescribed in the superinterfaces ICollection<T>  and IEnumerable<T>  
• T this [int index] 
• int IndexOf (T element) 
• void Insert (int index, T element) 
• void RemoveAt (int index) 

 

In addition to ICollection<T> , the type IList<T>  allows for indexed access to the T elements. The first 
mentioned operation (this ) is an indexer, and IndexOf  is its inverse operation. (See Chapter 19 for a general 
discussion of indexers). In addition, IList<T>  has operations for inserting and removing elements at given 
index positions. 

  

45.5.  Overview of the class Collection<T> 
Lecture 12 - slide 8 

We now encounter the first class in the collection hierarchy, namely Collection<T> . Most interfaces and 
classes discussed in this chapter belong to the namespace System.Collections.Generic , but of some odd 
reason the class Collection<T>  belongs to System.Collections.ObjectModel . 

As can be seen from Figure 45.1 the generic class Collection<T>  implements the generic interface 
IList<T> . As such it supports all the operations of the three interfaces we discussed in Section 45.2 - Section 
45.4. As it appears from Figure 45.1 the generic class List<T>  implements the same interface. It turns out 
that Collection<T>  is a minimal class which implements the three interfaces, and not much more. As we 
will see in Section 45.9, List<T>  has many more operations, most of which are not prescribed by the 
interfaces it implement. 

Basically, an instance of Collection<T>  supports indexed access to its elements. Contrary to arrays, 
however, there is no limit on the number of elements in the collection. The generic class Collection<T>  has 
another twist: It is well suited as a superclass for specialized (non-generic) collections. We will see why and 
how in Section 45.7. 

We will not summarize the public interface of Collection<T>  in the paper version of material, because it is 
the sum of the interfaces of IEnumerable<T> , ICollection<T> , and IList<T> . You should, however notice 
the two constructors of Collection<T> , a parameterless constructor and a non-copying, "wrapping" 
constructor on an IList<T> . 



 412 

Collection initializers are new in C# 3.0. Instead of initializing a collection via an IList , typically an array, 
such as in 

 
  Collection<int> lst = new Collection<int>(new int []{1, 2, 3, 4}); 

it is possible in C# 3.0 to make use of collection initializers: 

 
  Collection<int> lst = new Collection{1, 2, 3, 4};  

A collection initializer uses the Add method repeatedly to insert the elements within {...}  into an empty list. 

Collection initializers are often used in concert with object initializers, see Section 18.4, to provide for 
smooth creation of collection of objects, which are instances of our own types. 

You may be interested to know details of the actual representation (data structure) used internally in the 
generic class Collection<T> . Is it an array? Is it a linked list? Or is it something else, such as a mix of 
arrays and lists, or a tree structure? Most likely, it is a resizeable array. Notice however that from an object-
oriented programming point of view (implying encapsulation and visibility control) it is inappropriate to ask 
such a question. It is sufficient to know about the interface of Collection<T>  together with the time 
complexities of the involved operations. (As an additional remark, the source code of the C# libraries written 
by Microsoft is not generally available for inspection. Therefore we cannot easily check the representation 
details of the class). The interface of Collection<T>  includes details about the execution times of the 
operations of Collection<T>  relative to the size of a collection. We deal with timing issues of the operations 
in the collection classes in Section 45.17. 

  

45.6.  Sample use of class Collection<T> 
Lecture 12 - slide 9 

Let us now write a program that shows how to use the central operations in Collection<T> . In Program 45.1 
we use an instance of the constructed class Collection<char> . Thus, we deal with a collection of character 
values. It is actually worth noticing that we in C# can deal with collections of value types (such as 
Collection<char> ) as well as collections of reference types (such as Collection<Point> ). 
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using System; 
using System.Collections.ObjectModel; 
using System.Collections.Generic; 
 
class BasicCollectionDemo{ 
 
  public static void Main(){ 
 
    // Initialization - use of a collection initializer . After that add 2 elements. 
    IList<char> lst = new Collection<char> {'a', 'b', 'c'} ; 
    lst.Add('d'); lst.Add('e');  
    ReportList("Initial List", lst);                   
 
    // Mutate existing elements in the list: 
    lst[0] = 'z'; lst[1]++;  
    ReportList("lst[0] = 'z'; lst[1]++;", lst);        
 
    // Insert and push towards the end: 



 413 

19 
20 
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47 

    lst.Insert(0,'n');   
    ReportList("lst.Insert(0,'n');", lst);             
 
    // Insert at end - with Insert: 
    lst.Insert(lst.Count,'x');       // equivalent to lst.Add('x'); 
    ReportList("lst.Insert(lst.Count,'x');", lst);     
 
    // Remove element 0 and pull toward the beginning: 
    lst.RemoveAt(0);  
    ReportList("lst.RemoveAt(0);", lst);               
 
    // Remove first occurrence of 'c': 
    lst.Remove('c');   
    ReportList("lst.Remove('c');", lst);               
 
    // Remove remaining elements: 
    lst.Clear();   
    ReportList("lst.Clear(); ", lst);                  
 
  } 
 
  public static void ReportList<T>(string explanati on, IList<T> list){ 
    Console.WriteLine(explanation); 
    foreach(T el in list) 
      Console.Write("{0, 3}", el); 
    Console.WriteLine(); Console.WriteLine(); 
  } 
 
} 

  Program 45.1    Basic operations on a Collection of 
characters.  

 

The program shown above explains itself in the comments, and the program output in Listing 45.2 is also 
relatively self-contained. Notice the use of the collection initializer in line 9 of Program 45.1. As mentioned 
in Section 45.5 collection initializers have been introduced in C# 3.0. In earlier versions of C# it was 
necessary to initialize a collection by use or an array initializer (see the discussion of Program 6.7) via the 
second constructor mentioned above. 

1 
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16 
17 
18 
19 

Initial List 
  a  b  c  d  e 
 
lst[0] = 'z'; lst[1]++; 
  z  c  c  d  e 
 
lst.Insert(0,'n'); 
  n  z  c  c  d  e 
 
lst.Insert(lst.Count,'x'); 
  n  z  c  c  d  e  x 
 
lst.RemoveAt(0); 
  z  c  c  d  e  x 
 
lst.Remove('c'); 
  z  c  d  e  x 
 
lst.Clear(); 

  Listing 45.2    Output of the program with basic operations on a 
Collection of characters.  
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We make the following important observations about the operations in Collection<T> : 

 • The indexer   lst[idx] = expr    mutates an existing element in the collection 
• The length of the collection is unchanged 

• The Insert  operation splices a new element into the collection 
• Push subsequent elements towards the end of the collection 
• Makes the collection longer 

• The Remove and RemoveAt  operations take elements out of the collections 
• Pull subsequent elements towards the beginning of the collection 
• Makes the collection shorter 

 

  

45.7.  Specialization of Collections 
Lecture 12 - slide 10 

Let us now assume that we wish to make our own, specialized (non-generic) collection class of a particular 
type of objects. Below we will - for illustrative purposes - write a class called AnimalFarm  which is intended 
to hold instances of class Animal . It is reasonable to program AnimalFarm  as a subclass of an existing 
collection class. In this section we shall see that Collection<Animal>  is a good choice of superclass of 
AnimalFarm . 

The class AnimalFarm  depends on the class Animal . You are invited to take a look at class Animal  via the 
accompanying slide . We do not include class Animal  here because it does not add new insight to our 
interests in collection classes. The four operations of class AnimalFarm  are shown below. 
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using System; 
using System.Collections.ObjectModel; 
 
public class AnimalFarm: Collection<Animal> { 
 
  protected  override void InsertItem (int i, Animal a){ 
    base.InsertItem(i,a); 
    Console.WriteLine("**InsertItem: {0}, {1}", i, a); 
  } 
 
  protected  override void SetItem (int i, Animal a){ 
    base.SetItem(i,a); 
    Console.WriteLine("**SetItem: {0}, {1}", i, a);  
  } 
 
  protected  override void RemoveItem (int i){ 
    base.RemoveItem(i); 
    Console.WriteLine("**RemoveItem: {0}", i); 
  } 
 
  protected  override void ClearItems (){ 
    base.ClearItems(); 
    Console.WriteLine("**ClearItems"); 
  } 
 
} 

  Program 45.3    A class AnimalFarm - a subclass of Collection<Animal> - testing protected members.   
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It is important to notice that the four highlighted operations in Program 45.3 are redefinitions of virtual, 
protected methods in Collection<Animal> . Each of the methods activate the similar method in the 
superclass (this is method combination). In addition, they reveal on standard output that the protected method 
has been called. A more realistic example of class AnimalFarm  will be presented in Program 45.6. 

The four operations are not part of the client interface of class AnimalFarm . They are protected operations. 
The client interface of AnimalFarm  is identical to the public operations inherited from Collection<Animal> . 
It means that we use the operations Add, Insert , Remove etc. on instances of class AnimalFarm . 

We should now understand the role of the four protected operations InsertItem , RemoveItem , SetItem , and 
ClearItems  relative to the operations in the public client interface. Whenever an element is inserted into a 
collection, the protected method InsertItem  is called. Both Add and Insert  are programmed by use of 
InsertItem . Similarly, both Remove and RemoveAt  are programmed by use of RemoveItem . And so on. We 
see that the major functionality behind the operations in Collection<T>  is controlled by the four protected 
methods InsertItem , RemoveItem , SetItem , and ClearItems . 
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using System; 
using System.Collections.ObjectModel; 
 
class App{ 
 
  public static void Main(){ 
 
    AnimalFarm af = new AnimalFarm(); 
 
    // Populating the farm with Add 
    af.Add (new Animal("elephant")); 
    af.Add (new Animal("giraffe")); 
    af.Add (new Animal("tiger")); 
    ReportList("Adding elephant, giraffe, and tiger  with Add(...)", af); 
 
    // Additional population with Insert 
    af.Insert (0, new Animal("dog")); 
    af.Insert (0, new Animal("cat")); 
    ReportList("Inserting dog and cat at index 0 wi th Insert(0, ...)", af); 
 
    // Mutate the animal farm: 
    af[1]  = new Animal("herring", AnimalGroup.Fish, Sex.Male ); 
    ReportList("After af[1] = herring", af); 
 
    // Remove tiger 
    af.Remove (new Animal("tiger")); 
    ReportList("Removing tiger with Remove(...)", a f); 
 
    // Remove animal at index 2 
    af.RemoveAt (2); 
    ReportList("Removing animal at index 2, with Re moveAt(2)", af); 
 
    // Clear the farm 
    af.Clear (); 
    ReportList("Clear the farm with Clear()", af); 
  } 
 
  public static void ReportList<T>(string explanati on, Collection<T> list){ 
    Console.WriteLine(explanation); 
    foreach(T el in list) 
      Console.WriteLine("{0, 3}", el); 
    Console.WriteLine(); Console.WriteLine(); 
  } 
} 
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  Program 45.4    A sample client of AnimalFarm - revealing use of protected Collection<Animal> 
methods.  

 

Take a close look at the output of Program 45.4 in Listing 45.5. The output explains the program behavior. 
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**InsertItem:  0, Animal: elephant 
**InsertItem:  1, Animal: giraffe 
**InsertItem:  2, Animal: tiger 
Adding elephant, giraffe, and tiger with Add(...) 
Animal: elephant 
Animal: giraffe 
Animal: tiger 
 
 
**InsertItem:  0, Animal: dog 
**InsertItem:  0, Animal: cat 
Inserting dog and cat at index 0 with Insert(0, ... ) 
Animal: cat 
Animal: dog 
Animal: elephant 
Animal: giraffe 
Animal: tiger 
 
 
**SetItem:  1, Animal: herring 
After af[1] = herring 
Animal: cat 
Animal: herring 
Animal: elephant 
Animal: giraffe 
Animal: tiger 
 
 
**RemoveItem:  4 
Removing tiger with Remove(...) 
Animal: cat 
Animal: herring 
Animal: elephant 
Animal: giraffe 
 
 
**RemoveItem:  2 
Removing animal at index 2, with RemoveAt(2) 
Animal: cat 
Animal: herring 
Animal: giraffe 
 
 
**ClearItems  
Clear the farm with Clear() 

  Listing 45.5    Output from sample client of AnimalFarm.   
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45.8.  Specialization of Collections - a realistic example 
Lecture 12 - slide 11 

The protected methods in class AnimalFarm , as shown in Section 45.7, did only reveal if/when the protected 
methods were called by other methods. In this section we will show a more realistic example that redefines 
the four protected methods of Collection<T>  in a more useful way. 

In the example we program the following semantics of the insertion and removal operations of class 
AnimalFarm:  

• If we add an animal, an additional animal of the opposite sex is also added. 

• Any animal removal or clearing of an animal farm is rejected. 

In addition, we add a GetGroup  operation to AnimalFarm , which returns a collection (an sub animal farm) of 
all animals that belongs to a given group (such as all birds). 

The class Animal  has not been changed, and it still available via accompanying slide. 
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using System; 
using System.Collections.ObjectModel; 
 
public class AnimalFarm: Collection<Animal> { 
 
  // Auto insert animal of opposite sex 
  protected  override void InsertItem (int i, Animal a){ 
    if(a.Sex == Sex.Male){ 
      base.InsertItem(i,a); 
      base.InsertItem(i, new Animal(a.Name, a.Group , Sex.Female)); 
    } else { 
      base.InsertItem(i,a); 
      base.InsertItem(i,new Animal(a.Name, a.Group,  Sex.Male)); 
    }    
  } 
 
  // Prevent removal 
  protected  override void RemoveItem (int i){ 
    Console.WriteLine("[Removal denied]"); 
  } 
 
  // Prevent clearing 
  protected  override void ClearItems (){ 
    Console.WriteLine("[Clearing denied]"); 
  } 
 
  // Return all male animals in a given group 
  public AnimalFarm GetGroup(AnimalGroup g){ 
    AnimalFarm res = new AnimalFarm(); 
    foreach(Animal a in this) 
      if (a.Group == g && a.Sex == Sex.Male) res.Ad d(a); 
    return res; 
  }  
 
} 

  
Program 45.6    The class AnimalFarm - a subclass of 
Collection<Animal>.  

 

Notice the way we implement the rejection in RemoveItem  and ClearItems : We do not call the superclass 
operation. 
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In Program 45.7 (only on web) we show an AnimalFarm  client program similar (but not not identical) to 
Program 45.4. The program output in Listing 45.8 (only on web) reveals the special semantics of the virtual, 
protected operations from Collection<T>  - as redefined in Program 45.6. 

  

45.9.  Overview of the class List<T> 
Lecture 12 - slide 12 

We are now going to study the generic class List<T> . As it appears from Figure 45.1 both List<T>  and 
Collection<T>  implement the same interface, namely IList<T> , see Section 45.4. But as already noticed, 
List<T>  offers many more operations than Collection<T> . 

In the same style as in earlier sections, we provide an overview of the important operations of List<T> . 

 • Constructors 
• List() ,   List(IEnumerable<T>) ,   List(int)  
• Via a collection initializer: new List<T> {t1, t2, ..., tn}  

• Element access 
• this[int] ,   GetRange(int, int)  

• Measurement 
• Count ,   Capacity  

• Element addition 
• Add(T) ,   AddRange(IEnumerable<T>) ,   Insert(int, T) ,  

InsertRange(int, IEnumerable<T>)  
• Element removal 

• Remove(T) ,   RemoveAll(Predicate<T>) ,   RemoveAt(int) ,   RemoveRange(int, 

int) ,   Clear()  
• Reorganization 

• Reverse() ,   Reverse(int, int) ,  
Sort() ,   Sort(Comparison<T>) ,  
Sort(IComparer<T>) ,   Sort(int, int, IComparer<T>)  

• Searching 
• BinarySearch(T) ,   BinarySearch(int, int, T, IComparer<T>) ,   BinarySearch(T, 

IComparer<T>)  
• Find(Predicate<T>) ,   FindAll(Predicate<T>) ,   FindIndex(Predicate<T>) ,  

FindLast(Predicate<T>) ,   FindLastIndex(Predicate<T>) ,   IndexOf(T) ,   LastIndexOf(T)  
• Boolean queries 

• Contains(T) ,   Exists(Predicate<T>) ,   TrueForAll(Predicate<T>)  
• Conversions 

• ConvertAll<TOutput>(Converter<T,TOutput>) ,   CopyTo(T[]) ,   

 

Compared with Collection<T>  the class List<T>  offers sorting, searching, reversing, and conversion 
operations. List<T>  also has a number of "range operations" which operate on a number of elements via a 
single operation. We also notice a number of higher-order operations: Operations that take a delegate value 
(a function) as parameter. ConvertAll  is a generic method which is parameterized with the type TOutput . 
ConvertAll  accepts a function of delegate type which converts from type T to TOutput . 
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45.10.  Sample use of class List<T> 
Lecture 12 - slide 13 

In this and the following sections we will show how to use some of the operations in List<T> . We start with 
a basic example similar to Program 45.1 in which we work on a list of characters: List<char> . We insert a 
number of char  values into a list, and we remove some values as well. The program appears in Program 45.9 
and the self-explaining output can be seen in Listing 45.10 (only on web). Notice in particular how the range 
operations InsertRange  (line 28) and RemoveRange (line 40) operate on the list. 
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using System; 
using System.Collections.Generic; 
 
/* Very similar to our illustration of class Collec tion<char> */ 
class BasicListDemo{                                                       
 
  public static void Main(){ 
                                                                           
    // List initialization and adding elements to the e nd of the list:     
    List<char> lst = new List<char> {'a', 'b', 'c'} ;                        
    lst.Add('d'); lst.Add('e');                                            
    ReportList("Initial List", lst);                   
 
    // Mutate existing elements in the list 
    lst[0] = 'z'; lst[1]++;  
    ReportList("lst[0] = 'z'; lst[1]++;", lst);        
 
    // Insert and push towards the end 
    lst.Insert(0,'n');   
    ReportList("lst.Insert(0,'n');", lst);             
 
    // Insert at end - with Insert 
    lst.Insert(lst.Count,'x');       // equivalent to lst.Add('x'); 
    ReportList("lst.Insert(lst.Count,'x');", lst);     
 
    // Insert a new list into existing list, at positio n 2. 
    lst.InsertRange(2, new List<char>{'1', '2', '3', '4 '});  
    ReportList("lst.InsertRange(2, new List<char>{'1', '2', '3', '4'});", lst);    
 
    // Remove element 0 and push toward the beginning 
    lst.RemoveAt(0); 
    ReportList("lst.RemoveAt(0);", lst);               
 
    // Remove first occurrence of 'c' 
    lst.Remove('c');  
    ReportList("lst.Remove('c');", lst);               
 
    // Remove 2 elements, starting at element 1 
    lst.RemoveRange(1, 2);  
    ReportList("lst.RemoveRange(1, 2);", lst);         
  
    // Remove all remaining digits 
    lst.RemoveAll(delegate(char ch){return Char.IsD igit(ch);});  
    ReportList("lst.RemoveAll(delegate(char ch){return Char.IsDigit(ch);});", lst);   
 
    // Test of all remaining characters are letters 
    if (lst.TrueForAll(delegate(char ch){return Cha r.IsLetter(ch);}))  
      Console.WriteLine("All characters in lst are letters"); 
    else  
      Console.WriteLine("NOT All characters in lst are letters"); 
  } 



 420 

52 
53 
54 
55 
56 
57 
58 
59 
60 

 
  public static void ReportList<T>(string explanati on, List<T> list){ 
    Console.WriteLine(explanation); 
    foreach(T el in list) 
      Console.Write("{0, 3}", el); 
    Console.WriteLine(); Console.WriteLine(); 
  } 
 
} 

  Program 45.9    Basic operations on a List of characters.   

  

45.11.  Sample use of the Find operations in List<T> 
Lecture 12 - slide 14 

In this section we will illustrate how to use the search operations in List<T> . More specifically, we will 
apply the methods Find , FindAll  and IndexOf  on an instance of List<Point> , where Point  is a type, such 
as defined by the struct in Program 14.12. The operations discussed in this section do all use linear search. It 
means that they work by looking at one element after the other, in a rather trivial way. As a contrast, we will 
look at binary search operations in Section 45.13, which searches in a "more advanced" way. 

In the program below - Program 45.11 - we declare a List<Point>  in line 11, and we add six points to the 
list in line 13-16. In line 20 we shown how to use Find  to locate the first point in the list whose x-coordinate 
is equal to 5. The same is shown in line 25. The difference between the two uses of Find  is that the first 
relies on a delegate given on the fly: delegate(Point q){return (q.Getx() == 5);} , while the other 
relies on an existing static method FindX5  (defined in line 40 - 42). The approach shown in line 20 is, in my 
opinion, superior. 

In line 29 we show how to use the variant FindAll , which returns a Point  list instead of just a single Point , 
as returned by Find . In line 36 we show how IndexOf  can be used to find the index of a given Point  in a 
Point  list. It is worth asking how the Point  parameter of IndexOf  is compared with the points in Point  list. 
The documentation states that the points are compared by use of the default equality comparer of the type T, 
which in our case is struct Point . We have discussed the default equality comparer in Section 42.9 in the 
slipstream of our coverage of the generic interfaces IEquatable<T>  and IEqualityComparer<T> . 

We use the static method ReportList  to show a Point  list on standard output. We call ReportList  several 
times in Program 45.11. The program output is shown in Listing 45.12. 
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using System; 
using System.Collections.Generic; 
 
class C{ 
 
  public static void Main(){ 
                                                                  
     System.Threading.Thread.CurrentThread.CurrentC ulture =       
        new System.Globalization.CultureInfo("en-US ");            
                                                                  
     List<Point> pointLst = new List<Point>();                    
                                                                  
     // Construct points and point list: 
     pointLst.Add(new Point(0,0)); pointLst.Add(new  Point(5, 9));  
     pointLst.Add(new Point(5,4)); pointLst.Add(new  Point(7.1,-13));  
     pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));  
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     ReportList("Initial point list", pointLst); 
 
     // Find first point in list with x coordinate 5 
     Point p = pointLst.Find(delegate(Point q){return (q.Getx() ==  5);}); 
     Console.WriteLine("Found with delegate predica te: {0}\n", p); 
 
     // Equivalent. Use predicate which is a static meth od  
     p = pointLst.Find(new Predicate<Point>(FindX5)); 
     Console.WriteLine("Found with static member pr edicate: {0}\n", p); 
 
     // Find all points in list with x coordinate 5 
     List<Point> resLst = new List<Point>(); 
     resLst = pointLst.FindAll(delegate(Point q){return (q.Getx()  == 5);}); 
     ReportList("All points with x coordinate 5", r esLst); 
 
     // Find index of a given point in pointLst. 
     // Notice that Point happens to be a struct - thus value comparison 
     Point searchPoint = new Point(5,4); 
     Console.WriteLine("Index of {0} {1}", searchPo int,  
                        pointLst.IndexOf(searchPoint) ); 
 
  } 
 
  public static bool FindX5(Point p){ 
    return p.Getx() == 5; 
  }  
 
  public static void ReportList<T>(string explanati on,List<T> list){ 
    Console.WriteLine(explanation); 
    int cnt = 0; 
    foreach(T el in list){ 
      Console.Write("{0, 3}", el); 
      cnt++; 
      if (cnt%4 == 0) Console.WriteLine(); 
    } 
    if (cnt%4 != 0) Console.WriteLine(); 
    Console.WriteLine(); 
  } 
} 

  Program 45.11    Sample uses of List.Find.   
 
 
 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Initial point list 
Point:(0,0). Point:(5,9). Point:(5,4). Point:(7.1,- 13).  
Point:(5,-2). Point:(14,-3.4).  
 
Found with delegate predicate: Point:(5,9).  
 
Found with static member predicate: Point:(5,9).  
 
All points with x coordinate 5 
Point:(5,9). Point:(5,4). Point:(5,-2).  
 
Index of Point:(5,4).  2 

  Listing 45.12    Output from the Find program.   
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45.12.  Sample use of Sort in List<T> 
Lecture 12 - slide 15 

As a client user of the generic class List<T>  it is likely that you never need to write a sorting procedure! You 
are supposed to use one of the already existing Sort  methods in List<T> . 

Sorting the elements in a collection of elements of type T depends on a less than or equal operation on T. If 
the type T is taken directly from the C# libraries, it may very well be the case that we can just use the default 
less than or equal operation of the type T. If T is one of our own types, we will have to supply an 
implementation of the comparison operation ourselves. This can be done by passing a delegate object to the 
Sort  method. 

Below, in Program 45.13 we illustrate most of the four overloaded Sort  operations in List<T> . The actual 
type parameter in the example, passed for T, is int . The program output (the lists before and after sorting) is 
shown in Listing 45.14 (only on web). 
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using System; 
using System.Collections.Generic; 
 
class C{ 
 
  public static void Main(){ 
 
     List<int> listOriginal = new List<int>{5, 3, 2 , 7, -4, 0},   
               list;                                              
                                                                  
     // Sorting by means of the default comparer of int:  
     list = new List<int>(listOriginal); 
     ReportList(list); 
     list.Sort();  
     ReportList(list); 
     Console.WriteLine(); 
 
     // Equivalent - explicit notatation of the Comparer : 
     list = new List<int>(listOriginal); 
     ReportList(list); 
     list.Sort(Comparer<int>.Default);  
     ReportList(list); 
     Console.WriteLine(); 
 
     // Equivalent - explicit instantiation of an IntCom parer: 
     list = new List<int>(listOriginal); 
     ReportList(list); 
     list.Sort(new IntComparer());  
     ReportList(list); 
     Console.WriteLine(); 
 
     // Similar - use of a delegate value for comparison : 
     list = new List<int>(listOriginal); 
     ReportList(list); 
     list.Sort(delegate(int x, int y){ 
                 if (x < y) 
                    return -1; 
                 else if (x == y) 
                    return 0; 
                 else return 1;});  
     ReportList(list); 
     Console.WriteLine(); 
  } 
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  public static void ReportList<T>(List<T> list){ 
    foreach(T el in list) 
      Console.Write("{0, 3}", el); 
    Console.WriteLine(); 
  } 
 
} 
 
public class IntComparer: Comparer<int>{       
  public override int Compare(int x, int y){   
    if (x < y)                                 
      return -1; 
    else if (x == y) 
      return 0; 
    else return 1; 
  } 
}    

  Program 45.13    Four different activations of the List.Sort 
method.  

 

Throughout Program 45.13 we do several sortings of listOriginal , as declared in line 8. In line 14 we rely 
the default comparer of type int . The default comparer is explained in the following way in the .NET 
framework documentation of List.Sort : 

This method uses the default comparer Comparer.Default  for type T to determine the order 
of list elements. The Comparer.Default  property checks whether type T implements the 
IComparable  generic interface and uses that implementation, if available. If not, 
Comparer.Default  checks whether type T implements the IComparable  interface. If type T 
does not implement either interface, Comparer.Default  throws an 
InvalidOperationException . 

The sorting done in line 21 is equivalent to line 14. In line 21 we show how to pass the default comparer of 
type int  explicitly to the Sort  method. 

Let us now assume the type int  does not have a default comparer. In other words, we will have to implement 
the comparer ourselves. The call of Sort  in line 28 passes a new IntComparer  instance to Sort . The class 
IntComparer  is programmed in line 53-61, at the bottom of Program 45.13. Notice that IntComparer  is a 
subclass of Comparer<int> , which is an abstract class in the namespace System.Collections.Generic with 
an abstract method named Compare. The generic class Comparer<T>  is in many ways similar to the class 
EqualityComparer<T> , which we touched on in Section 42.9. Most important, both have a static Default  
property, which returns a comparer object. 

As a final resort that always works we can pass a comparer function to Sort . In C#, such a function is 
programmed as a delegate. (Delegates are discussed in Chapter 22). Line 35-40 shows how this can be done. 
Notice that the delegate we use is programmed on the fly. This style of programming is a reminiscence of 
functional programming. 

I find it much more natural to pass an ordering method instead of an object of a class with an ordering 
method. (The latter is a left over from older object-oriented programming languages in which the only way to 
pass a function F as parameter is via an object of a class in which F is an instance method). In general, I also 
prefer to be explicit about the ordering instead of relying on some default ordering which may turn out to 
surprise you. 

Let us summarize the lessons that we have learned from the example: 
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 • Some types have a default comparer which is used by List.Sort()  
• The default comparer of T can extracted by Comparer<T>.Default  
• An anonymous delegate comparer is attractive if the default comparer of the type does not exist, 

of if it is inappropriate. 

 
 

 Exercise 12.1. Shuffle List 

Write a Shuffle  operation that disorders the elements of a collection in a random fashion. A shuffle 
operation is useful in many context. There is no Shuffle  operation in 
System.Collections.Generic.List<T> . In the similar Java libraries there is a shuffle method. 

In which class do you want to place the Shuffle  operation? You may consider to make use of extension 
methods. 

You can decide on programming either a mutating or a non-mutating variant of the operation. Be sure to 
understand the difference between these two options. 

Test the Shuffle operation, for instance on List<Card> . The class Card  (representing a playing card) is one 
of the classes we have seen earlier in the course. 

 
 Exercise 12.2. Course and Project classes 

In the earlier exercise about courses and projects (found in the lecture about abstract classes and interfaces) 
we refined the program about BooleanCourse , GradedCourse , and Project . Revise your solution (or the 
model solution) such that the courses in the class Project  are represented as a variable of type 
List<Course>  instead of by use of four variables of type Course . 

Reimplement and simplify the method Passed  in class Project . Take advantage of the new representation 
of the courses in a project, such that the "3 out of 4 rule" (see the original exercise) is implemented in a 
more natural way. 

 
  

45.13.  Sample use of BinarySearch in List<T> 
Lecture 12 - slide 16 

The search operations discussed in Section 45.11 all implemented linear search processes. The search 
operations of this section implement binary search processes, which are much faster when applied on large 
collections. On collections of size n, linear search has - not surprisingly - time complexity O(n). Binary 
search has time complexity O(log n). When n is large, the difference between n and log n is dramatic. 

The BinarySearch  operations in List<T>  require, as a precondition, that the list is ordered before the search 
is performed. If necessary, the Sort  operation (see Section 45.12) can be used to establish the ordering. 

You may ask why we should search for an element which we - in the starting point - is able to pass as input 
to the BinarySearch  method. There is a couple of good answers. First, we may be interested to know if the 
element is present or not in the list. Second, it may also be possible to search for an incomplete object (by 
only comparing some selected fields in the Comparer  method). Using this approach we are actually interested 
in finding the complete object, with all the data fields, in the collection. 
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If the BinarySearch  operation finds an element in the list, the index of the element is returned. This is a non-
negative integer. If the element is not found, a negative integer, say i, is returned. Below we will see that that 
-i (or more precisely the bitwise complement ~i) in that case is the position of the element, if it had been 
present in the list. 
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using System; 
using System.Collections.Generic; 
 
class BinarySearchDemo{ 
 
  public static void Main(){ 
 
     System.Threading.Thread.CurrentThread.CurrentCultur e =  
        new System.Globalization.CultureInfo("en-US ");  
 
     List<Point> pointLst = new List<Point>();  // Point is a struct. 
 
     // Construct points and point list: 
     pointLst.Add(new Point(0,0)); pointLst.Add(new  Point(5, 9));  
     pointLst.Add(new Point(5,4)); pointLst.Add(new  Point(7.1,-13));  
     pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));  
     ReportList("The initial point list", pointLst) ; 
 
     // Sort point list, using a specific point Comparer . 
     // Notice the PointComparer:  
     // Ordering according to sum of x and y coordinates  
     IComparer<Point> pointComparer = new PointComp arer(); 
     pointLst.Sort(pointComparer) ; 
     ReportList("The sorted point list", pointLst);  
 
     int res; 
     Point searchPoint; 
 
     // Run-time error. 
     // Failed to compare two elements in the array . 
//   searchPoint = new Point(5,4); 
//   res = pointLst.BinarySearch(searchPoint);  
//   Console.WriteLine("BinarySearch for {0}: {1}",  searchPoint, res); 
 
     searchPoint = new Point(5,4); 
     res = pointLst.BinarySearch(searchPoint, pointComparer) ; 
     Console.WriteLine("BinarySearch for {0}: {1}",  searchPoint, res); 
 
     searchPoint = new Point(1,8); 
     res = pointLst.BinarySearch(searchPoint, pointComparer) ; 
     Console.WriteLine("BinarySearch for {0}: {1}",  searchPoint, res); 
 
  } 
 
  public static void ReportList<T>(string explanati on,List<T> list){ 
    Console.WriteLine(explanation); 
    int cnt = 0; 
    foreach(T el in list){ 
      Console.Write("{0, 3}", el); 
      cnt++; 
      if (cnt%4 == 0) Console.WriteLine(); 
    } 
    if (cnt%4 != 0) Console.WriteLine(); 
    Console.WriteLine(); 
  } 
 
} 
 
// Compare the sum of the x and y coordinates. 
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// Somewhat non-traditional! 
public class PointComparer: Comparer<Point>{ 
  public override int Compare(Point p1, Point p2){ 
    double p1Sum = p1.Getx() + p1.Gety(); 
    double p2Sum = p2.Getx() + p2.Gety(); 
    if (p1Sum < p2Sum) 
      return -1; 
    else if (p1Sum == p2Sum) 
      return 0; 
    else return 1; 
  }  
} 

  Program 45.15    Sample uses of List.BinarySearch.   

Program 45.15 works on a list of points. Six points are created and inserted into a list in line 13-16. Next, in 
line 23, the list is sorted. As it appears from the Point  comparer programmed in line 62-72, a point p is less 
than or equal to point q, if p.x + p.y <= q.x + q.y. You may think that this is odd, but it is our decision for this 
particular program example. 

In line 33 we attempt to activate binary searching by use of the default comparer. But such a comparer does 
not exist for class Point. This problem is revealed at run-time. 

In line 37 and 41 we search for the points (5,4) and (1,8) respectively. In both cases we expect to find the 
point (5,4), which happens to be located at place 3 in the sorted list. The output of the program, shown in 
Program 45.17 (only on web) confirms this. 

In the next program, Program 45.17 we illustrate what happens if we search for a non-existing point with 
BinarySearch . The class PointComparer  and the generic method ReportList  are not shown in the paper 
version of Program 45.17. Please consult Program 45.15 where they both appear. 
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using System; 
using System.Collections.Generic; 
 
class BinarySearchDemo{ 
 
  public static void Main(){ 
 
     System.Threading.Thread.CurrentThread.CurrentC ulture =  
        new System.Globalization.CultureInfo("en-US "); 
 
     List<Point> pointLst = new List<Point>(); 
 
     // Construct points and point list: 
     pointLst.Add(new Point(0,0)); pointLst.Add(new  Point(5, 9));  
     pointLst.Add(new Point(5,4)); pointLst.Add(new  Point(7.1,-13));  
     pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));  
     ReportList("Initial point list", pointLst); 
 
     // Sort point list, using a specific point Comparer : 
     IComparer<Point> pointComparer = new PointComp arer(); 
     pointLst.Sort(pointComparer) ; 
     ReportList("Sorted point list", pointLst); 
 
     int res; 
     Point searchPoint; 
 
     searchPoint = new Point(1,1); 
     res = pointLst.BinarySearch(searchPoint, pointComparer) ; 
     Console.WriteLine("BinarySearch for {0}: {1}\n ", searchPoint, res); 
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     if ( res < 0 ){    // search point not found 
       pointLst.Insert( ~res , searchPoint);  // Insert searchPoint such 
                                            // that pointLst remains sorted 
       Console.WriteLine("Inserting {0} at index {1 }", searchPoint, ~res); 
       ReportList("Point list after insertion", poi ntLst); 
     } 
  } 
 
  // ReportList not shown 
} 
 
// Class PointComparer not shown 

  Program 45.17    Searching for a non-existing Point.   

The scene of Program 45.17 is the same as that of Program 45.15. In line 28 we do binary searching, looking 
for the point (1,1). None of the points in the program have an "x plus y sum" of 2. Therefore, the point (1,1) 
is not located by BinarySearch . The BinarySearch  method returns a negative ghost index. The ghost index 
is the bitwise complement of the index where to insert the point in such a way that the list will remain sorted. 
(Notice the bitwise complement operation ~ which turns 0 to 1 and 1 to 0 at the binary level). The program 
output reveals that position ~(-3) is the natural place of the point (1,1) to maintain the ordering of the list. 
Notice that the value of ~(-3) is 2, due the use of two's complement arithmetic. This explains the rationale of 
the negative values returned by BinarySearch . 

The output of Program 45.17 is shown in Listing 45.18 (only on web). 

Contrary to Sort , it is not possible to pass a delegate to BinarySearch . This seems to be a flaw in the design 
of the List<T>  library. 

We have learned the following lessons about BinarySearch : 

 • Binary search can only be done on sorted lists 
• In order to use binary search, we need - in general - to provide an explicit Comparer  object 
• Binary search returns a (non-negative) integer if the element is found 

• The index of the located element 
• Binary search returns a negative integer if the element is not found 

• The complement of this number is a ghost index 
• The index of the element if it had been in the list 

 

  

45.14.  Overview of the class LinkedList<T> 
Lecture 12 - slide 17 

The collections implemented by Collection<T>  of Section 45.5 and List<T>  of Section 45.9 were based on 
arrays. We will now turn our interest towards a list type, which is based on a linked representation. 

Below, in Figure 45.2 we show the object-structure of a double linked list. 
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Figure 45.2    A double linked list where instances of LinkedListNode keep 
the list together 

The generic class LinkedList<T>  relies on a "building block class" LinkedListNode<T> . We need to deal 
with instances of LinkedListNode s when we work with linked lists in C#. In other words, LinkedListNode  
is not just a class behind the scene - it is an important class for clients of LinkedListNode<T> . In Figure 45.2 
the five rectangular nodes are instances of LinkedListNode<T>  for some element type T. The circular, green 
nodes are instances of the element type T. We will study LinkedListNode<T>  in Section 45.15 after we have 
surveyed the list operations in LinkedList<T> . 

As it can be seen from the class diagram of the list class in Figure 45.1, LinkedList<T>  implements the 
interface ICollection<T> , see Section 45.3. Unlike Collection<T>  and List<T> , LinkedList<T>  does not 
implement indexed access, as of Ilist<T> . This is a natural choice because indexed access is not efficient in 
a linked representation. The following operations are available in LinkedList<T> : 

 • Constructors 
• LinkedList() ,   LinkedList(IEnumerable<T>)  

• Accessors (properties) 
• First , Last , Count  

• Element addition 
• AddFirst(T) ,   AddFirst(LinkedListNode<T>) ,   AddLast(T) ,  

AddLast(LinkedListNode<T>) ,   AddBefore(LinkedListNode<T>, 

T) ,   AddBefore(LinkedListNode<T>, LinkedListNode<T>) ,  
AddAfter(LinkedListNode<T>, T) ,  
AddAfter(LinkedListNode<T>, LinkedListNode<T>) ,   Add(T)  

• Element removal 
• Remove(T) ,   Remove(LinkedListNode<T>) ,   RemoveFirst() ,  

RemoveLast() ,   Clear()  
• Searching 

• Find(T) ,   FindLast(T)  
• Boolean queries 

• Contains(T)  

 

A linked list can be constructed as an empty collection or as a collection filled with elements from another 
collection, represented as an IEnumerable<T> , see Section 45.2. 

The First  and Last  properties access the first/last LinkedListNode  in the double linked list. Count  returns 
the number of elements in the list - not by counting them each time Count  is referred - but via some 
bookkeeping information encapsulated in a linked list object. Thus, Count  is an O(1) operation. 

Although LinkedList<T>  implements the generic interface ICollection<T> , which has a method named 
Add, the Add operation is not readily available on linked lists. We will in Program 45.19 show that Add is 
present as an explicit interface implementation, see Section 31.8. Instead of Add, the designers of 
LinkedList<T>  want us to use one of the AddRelative operations: AddFirst , AddLast , AddBefore , and 
AddAfter . None of these are prescribed by the interface ICollection<T> , however. Each of the AddRelative 
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operations are overloaded in two variants, such that we can add an element of type T or an object of type 
LinkedListNode<T>  (which in turn reference an object of type T). 

Using the Remove methods, it is possible to remove an element of type T or a specific instance of 
LinkedListNode<T> . Remove(T)  is an O(n) operation; Remove(LinkedListNode<T>)  is an O(1) operation. 
There are also parameter-less methods for removing the first/last element in the linked list. The time 
complexity of these are O(1). 

Finally there are linear search operations from either end of the list: Find  and FindLast . The boolean 
Contains  operation is similar to the Find  operations. These operations all seem to rely on the Equals  
operation inherited from class Object . In that way Find , FindLast  and Contains  are more primitive (not as 
well-designed) as the similar methods in List<T> . (The documentation in the .NET libraries is silent about 
these details). 

  

45.15.  The class LinkedListNode<T> 
Lecture 12 - slide 18 

As illustrated in Figure 45.2, instances of the generic class LinkedListNode<T>  keep a linked list together. 
In the figure, the rectangular boxes are instances of LinkedListNode<T> . From the figure it appears that each 
instance of LinkedListNode<T>  has three references: One to the left, one to the element, and one to the right. 
Actually, there is a fourth reference, namely to the linked list instance to which a given LinkedListNode  
object belongs. 

 The class LinkedListNode<T>  is sealed, generic class that represents a non-mutable node in a 
linked list 

A LinkedListNode  can at most belong to a single linked list 
 

 

The members of LinkedListNode<T>  are as follows: 

 • A single constructor LinkedListNode(T)  
• Four properties 

• Next      - getter 
• Previous      - getter 
• List      - getter 
• Value      - getter and setter 

 

The properties Next  and Previous  access neighbor instances of LinkedListNode<T> . Value  accesses the 
element of type T. List  accesses the linked list to which the instance of LinkedListNode  belongs. Next , 
Previous , and List  are all getters. Value  is both a getter and a setter. 

It is not possible to initialize or to mutate the fields behind the properties Next , Previous , and List  via 
public interfaces. It is clearly the intention that the linked list - and only linked list - has authority to change 
these fields. If we programmed our own, special-purpose linked list class it would therefore not be easy to 
reuse the class LinkedListNode<T> . This is unfortunate. 
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Related to the discussion about the interface of LinkedListNode<T>  we may ask how LinkedList  is allowed 
to access the private/internal details of an instance of LinkedListNode . The best guess seems to be that the 
fields are internal. 

  

45.16.  Sample use of class LinkedList<T> 
Lecture 12 - slide 19 

We will illustrate the use of LinkedList<T>  and LinkedListNode<T>  in Program 45.19. In line 8 we make a 
linked list of integers from an array. Notice the use of the LinkedList  constructor 
LinkedList (IEnumerable<T> ). 

In line 16 we attempt to add the integer 17 to the linked list. This is not possible, because the method Add is 
not easily available, see the discussion in Section 45.14. If we insist to use Add, it must be done as in line 20. 
Most likely, you should use one of the Add variants instead, for instance AddFirst  or AddLast . 
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using System; 
using System.Collections.Generic; 
 
class LinkedListDemo{ 
 
  public static void Main(){ 
 
     LinkedList<int> lst = new LinkedList<int>( 
                                new int[]{5, 3, 2, 7, -4, 0}); 
 
     ReportList("Initial LinkedList", lst); 
 
     // Using Add. 
     // Compile-time error: 'LinkedList<int>' does not c ontain a  
     //                                      definition for 'Add' 
     // lst.Add(17) ; 
     // ReportList("lst.Add(17);" lst); 
 
     // Add is implemented as an explicit interface impl ementation 
     ((ICollection<int>)lst).Add(17) ; 
     ReportList("((ICollection<int>)lst).Add(17);", lst) ; 
 
     // Using AddFirst and AddLast 
     lst.AddFirst(-88);  
     lst.AddLast(88);  
     ReportList("lst.AddFirst(-88); lst.AddFirst(88);", lst); 
 
     // Using Remove. 
     lst.Remove(17);  
     ReportList("lst.Remove(17);", lst); 
 
     // Using RemoveFirst and RemoveLast 
     lst.RemoveFirst(); lst.RemoveLast();  
     ReportList("lst.RemoveFirst(); lst.RemoveLast();", lst); 
 
     // Using Clear 
     lst.Clear();  
     ReportList("lst.Clear();", lst); 
 
  } 
 
  public static void ReportList<T>(string explanati on, LinkedList<T> list){ 
    Console.WriteLine(explanation); 
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    foreach(T el in list) 
      Console.Write("{0, 4}", el); 
    Console.WriteLine();  Console.WriteLine(); 
  } 
 
} 

  Program 45.19    Basic operations on a LinkedList of 
integers.  

 

The output of Program 45.19 is shown in Listing 45.20. By studying Listing 45.20 you will learn additional 
details of the LinkedList  operations. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Initial LinkedList 
   5   3   2   7  -4   0 
 
((ICollection<int>)lst).Add(17); 
   5   3   2   7  -4   0  17 
 
lst.AddFirst(-88); lst.AddFirst(88); 
 -88   5   3   2   7  -4   0  17  88 
 
lst.Remove(17); 
 -88   5   3   2   7  -4   0  88 
 
lst.RemoveFirst(); lst.RemoveLast(); 
   5   3   2   7  -4   0 
 
lst.Clear(); 

  Listing 45.20    Output of the program with basic operations on 
a LinkedList.  

 

The LinkedList  example in Program 45.19 did not show how to use LinkedListNode s together with 
LinkedList<T> . To make up for that we will in Program 45.21 concentrate on the use of LinkedList<T>  
and LinkedListNode<T>  together. 
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using System; 
using System.Collections.Generic; 
 
class LinkedListNodeDemo{ 
 
  public static void Main(){ 
 
     LinkedList<int> lst = new LinkedList<int>( 
                                new int[]{5, 3, 2, 7, -4, 0}); 
     ReportList("Initial LinkedList", lst); 
 
     LinkedListNode<int> node1, node2, node; 
     node1 = lst.First; 
     node2 = lst.Last; 
 
     // Run-time error.  
     // The LinkedListNode is already in the list. 
     // Error message: The LinkedList node belongs a Lin kedList. 
/*   lst.AddLast(node1);    */ 
 
     // Move first node to last node in list 
     lst.Remove(node1); lst.AddLast(node1);  
     ReportList("node1 = lst.First; lst.Remove(node1); l st.AddLast(node1);", lst); 
 
     // Navigate in list via LinkedListNode objects 
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     node1 = lst.First;  
     Console.WriteLine("Third element in list: node 1 = lst.First;  
node1.Next.Next.Value    {0}\n",  
                        node1.Next.Next.Value); 
 
     // Add an integer after a LinkedListNode object 
     lst.AddAfter(node1, 17);  
     ReportList("lst.AddAfter(node1, 17);", lst); 
 
     // Add a LinkedListNode object after another Linked ListNode object 
     lst.AddAfter(node1, new LinkedListNode<int>(18 )); 
     ReportList("lst.AddAfter(node1, new LinkedListNode< int>(18));" , lst); 
 
     // Navigate in LinkedListNode objects and add an in t before a node: 
     node = node1.Next.Next.Next;  
     lst.AddBefore(node, 99);  
     ReportList("node = node1.Next.Next.Next; lst.AddBef ore(node, 99); " , lst); 
 
     // Navigate in LinkedListNode objects and remo ve a node. 
     node = node.Previous;  
     lst.Remove(node);      
     ReportList("node = node.Previous; lst.Remove(node); " , lst); 
 
  } 
 
  // Method ReportList not shown in this version. 
} 

  
Program 45.21    Basic operations on a LinkedList of integers - 
using LinkedListNodes.  

 

In line 8-9 we make the same initial integer list as in Program 45.19. In line 13-14 we see how to access to 
the first/last LinkedListNode  objects of the list. 

In line 19 we attempt to add node1 , which is the first LinkedListNode  in lst , as the last node of the list. 
This fails because it could bring the linked list into an inconsistent state. (Recall in this context that a 
LinkedListNode  knows the list to which it belongs). Instead, as shown in line 22, we should first remove 
node1  and then add node1  with AddLast .  

Please take a close look at the remaining addings, navigations, and removals in Program 45.21. As above, we 
show a self-explaining output of the program, see Listing 45.22. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Initial LinkedList 
   5   3   2   7  -4   0 
 
node1 = lst.First; lst.Remove(node1); lst.AddLast(n ode1); 
   3   2   7  -4   0   5 
 
Third element in list: node1 = lst.First;  node1.Ne xt.Next.Value    7 
 
lst.AddAfter(node1, 17); 
   3  17   2   7  -4   0   5 
 
lst.AddAfter(node1, new LinkedListNode<int>(18)); 
   3  18  17   2   7  -4   0   5 
 
node = node1.Next.Next.Next; lst.AddBefore(node, 99 );  
   3  18  17  99   2   7  -4   0   5 
 
node = node.Previous; lst.Remove(node); 
   3  18  17   2   7  -4   0   5 

  Listing 45.22    Output of the program with LinkedListNode 
operations on a LinkedList.  

 

  

45.17.  Time complexity overview: Collection classes  
Lecture 12 - slide 20 

In this section we will discuss the efficiency of selected and important list operations in the three classes 
Collection<T> , List<T> , and LinkedList<T> . This is done by listing the time complexities of the 
operations in a table, see Table 45.1. If you are not comfortable with Big O notation, you can for instance 
consult Wikipedia [Big-O] or a book about algorithms and data structures. 

The time complexities of the list operations are most often supplied as part of the documentation of the 
operations. The choice of one list type in favor of another is often based on requirements to the time 
complexities of important operations. Therefore you should pay careful attention to the information about 
time complexities in the C# library documentation. 

Throughout the discussion we will assume that the lists contain n elements. It may be helpful to relate the 
table with the class diagram in Figure 45.1 from which it appears which interfaces to expect from the list 
classes. 
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Operation Collection<T>  List<T>  LinkedList<T>  

this[i]  O(1)  O(1)  -  

Count  O(1)  O(1)  O(1)  

Add(e)  O(1) or O(n)  O(1) or O(n)  O(1)  

Insert(i,e)  O(n)  O(n)  -  

Remove(e)  O(n)  O(n)  O(n)  

IndexOf(e)  O(n)  O(n)  -  

Contains(e)  O(n)  O(n)  O(n)  

BinarySearch(e)  - O(log n)  -  

Sort()  - O(n log n) or O(n2) -  

AddBefore(lln)  - - O(1)  

AddAfter(lln,e)  - - O(1)  

Remove(lln)  - - O(1)  

RemoveFirst()  - - O(1)  

RemoveLast()  - - O(1)  

Table 45.1    Time complexities of important operations in the classes 
Collection<T>, List<T>, and LinkedList<T>. 

As it can be seen in the class diagram of Figure 45.1 all three classes implement the ICollection<T>  
interface with the operations Count , Add, Remove, and Contains . Thus, these four operations appear for all 
classes in Table 45.1. 

Count  is efficient for all lists, because it maintains an internal counter, the value of which can be returned by 
the Count  property. Thus, independent of the length of a list, Count  runs in constant time. 

For all three types of lists, Add(e)  adds an element e (of type T) to the end of the list. This can be done in 
constant time, because all the three types of lists have direct access the rear end of the list. The time 
complexity O(1)/O(n) given for Collection<T>  and List<T>  reflects that under normal circumstances it 
takes only constant time to add an element to a Collection  or a List . If however, the list is full it may need 
resizing, and in that case the run time is linear in n. 

Remove(e)  and Contains(e) , where e is of type T, will have to search for e in the list. This behavior is 
common for all three types of lists. Therefore the run times of Remove and Contains  are O(n). 

The indexer this[i]  is only available in the lists that implement Ilist<T> . Such lists are based on arrays, 
and therefore the runtime of the indexer is O(1). (Recall that in arrays it is possible to compute the location 
of an element with a given index; No searching, whatsoever, is involved). 

BinarySearch  and Sort  are operations in List<T> . Sort  implements a Quicksort variant, and as such the 
worst possible time complexity is O(n2), but the expected time complexity is O(n log n). The runtime of 
BinarySearch  is, as expected, O(log n). 

The bottom five operations in the table belong to LinkedList . The methods AddBefore , AddAfter , and 
Remove all work on a LinkedListNode , lln , and as such their runtimes do not depend on n. (Only a few 
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references need to be assigned. The number of pointer assignments do not depend on n). Thus, when applied 
on objects of type LinkedListNode  the runtime of these three operations are O(1). RemoveFirst  and 
RemoveLast  are of time complexity O(1) because a linked list maintain direct references to both ends of the 
list. 

  

45.18.  Using Collections through Interfaces 
Lecture 12 - slide 21 

We started this chapter with a discussion of list interfaces, and we will end the chapter in a similar way. 

It is, of course, necessary to use one of the collection classes (such as List<T> ) when you need a collection 
in your program. The morale of this section is, however, that you should not use list classes more than 
necessary. In short, you should typically use List<T>  or Collection<T>  (for some type T) when you make a 
collection object. All other places you are better off using one of the interface types, such as IList<T> . The 
key observations can be summarized as follows. 

 It is an advantage to use collections via interfaces instead of classes 

If possible, only use collection classes in instantiations, just after new 

This leads to programs with fewer bindings to concrete implementations of collections 

With this approach, it is easy to replace a collection class with another 
 

 

Thus, please consider the following when you use collections: 

Program against collection interfaces, not collection classes 

If the types of variables and parameters are given as interfaces it is easy, a later point in time, to change the 
representation of your collections (say, from Collection<T>  to one of your own collections which 
implements Ilist<T> ). Notice that if you, for instance, apply List<T>  operations, which are not prescribed 
by one of the interfaces, you need to declare your list of type List<T>  for some type T. 

Let us illustrate how this can be done in Program 45.23. The thing to notice is that the only place we refer to 
a list class (here Collection<Animal> () ) is in line 9: new Collection<Animal> . All other places, as 
emphasized with purple, we use the interface ICollection<Animal> . If we, tomorrow, wish to change the 
representation of the animal collection, the only place to modify is line 9. 
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using System; 
using System.Collections.Generic; 
using System.Collections.ObjectModel; 
 
 
class CollectionInterfaceDemo{ 
 
  public static void Main(){ 
    ICollection<Animal>  lst = new Collection<Animal>() ; 
 
    // Add elements to the end of the empty list: 
    lst.Add(new Animal("Cat"));  lst.Add(new Animal ("Dog", Sex.Female)); 
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    lst.Add(new Animal("Mouse"));  lst.Add(new Anim al("Rat")); 
    lst.Add(new Animal("Mouse", Sex.Female));  lst. Add(new Animal("Rat")); 
    lst.Add(new Animal("Herring", AnimalGroup.Fish,  Sex.Female));   
    lst.Add(new Animal("Eagle", AnimalGroup.Bird, S ex.Male));    
 
    // Report in various ways on the animal collection:  
    Print("Initial List", lst); 
    ReportFemaleMale(lst); 
    ReportGroup(lst); 
  } 
 
  public static void Print<T>(string explanation, ICollection<T>  list){ 
    Console.WriteLine(explanation); 
    foreach(T el in list) 
      Console.WriteLine("{0, 3}", el); 
    Console.WriteLine(); Console.WriteLine(); 
  } 
 
  public static void ReportFemaleMale( ICollection<Animal>  list){ 
    int numberOfMales = 0, 
        numberOfFemales = 0; 
 
    foreach(Animal a in list) 
      if (a.Sex == Sex.Male) numberOfMales++; 
      else if (a.Sex == Sex.Female) numberOfFemales ++; 
 
    Console.WriteLine("Males: {0}, Females: {1}",  
                       numberOfMales, numberOfFemal es); 
  } 
 
  public static void ReportGroup( ICollection<Animal>  list){ 
    int numberOfMammals = 0, 
        numberOfBirds = 0, 
        numberOfFish = 0; 
 
    foreach(Animal a in list) 
      if (a.Group == AnimalGroup.Mammal) numberOfMa mmals++; 
      else if (a.Group == AnimalGroup.Bird) numberO fBirds++; 
      else if (a.Group == AnimalGroup.Fish) numberO fFish++; 
 
    Console.WriteLine("Mammals: {0}, Birds: {1}, Fi sh: {2}",  
                       numberOfMammals, numberOfBir ds, numberOfFish); 
  } 
 
} 

  Program 45.23    A program based on ICollection<Animal> - with a Collection<Animal>.   

On the accompanying slide we show versions of Program 45.23, which are tightly bound to the class 
Collection<Animal> , and we show a version in which we have replaced Collection<Animal>  with 
List<Animal> . 

  

45.19.  References 

[Big-O] Wikipedia: Big O Notation 
http://en.wikipedia.org/wiki/Big_O_notation 
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46.  Generic Dictionaries in C# 

In the same style as our coverage of lists in Chapter 45 we will in this chapter discuss generic interfaces and 
classes for dictionaries. This covers the high-level concept of associative arrays and the low-level concept of 
hash tables. 

  

46.1.  Overview of Generic Dictionaries in C# 
Lecture 12 - slide 24 

A dictionary is a data structure that maps keys to values. A given key can have at most one value in the 
dictionary. In other words, the key of a key-value pair must be unique in the dictionary. A given value can be 
associated with many different keys. 

At the conceptual level, a dictionary can be understood as an associative array (see Section 19.2) or as a 
collection of key-value pairs. In principle the collection classes from Chapter 45 can be used as an 
underlying representation. It is, however, convenient to provide a specialized interface to dictionaries which 
sets them apart from collections in general. In addition we often need good performance (fast lookup), and 
therefore it is more than justified to have special support for dictionaries in the C# libraries. 

Figure 46.1 gives an overview of the generic interfaces and the generic classes of dictionaries. The figure is 
comparable with Figure 45.1 for collections. As such, the white boxes represent interfaces and the grey 
boxes represent classes. As it appears from Figure 46.1 we model dictionaries as IEnumerable s (see Section 
45.2) and ICollection s (see Section 45.3) at the highest levels of abstractions. From the figure we can 
directly read that a dictionary is a ICollection  of KeyValuePair s. (The is a relation is discussed in Section 
25.2). 

 
Figure 46.1    The class and interface inheritance tree related to Dictionaries 

The symbol K stands for the type of keys, and the symbol V stands for the type of values. 
KeyValuePair<K,V>  is a simple struct that aggregates a key and a value to a single object. 

Dictinonary<K,V>  is implemented in terms of a hashtable that maps objects of type K to objects of type V. 
SortedDictinonary<K,V>  relies on binary search trees. SortedList<K,V>  is based on a sorted arrays. More 
details can be found in Section 46.5. In Section 46.6 we review the time complexities of the operations of the 
three dictionary classes shown above. 
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46.2.  The interface IDictionary<K,V> 
Lecture 12 - slide 25 

From Figure 46.1 we see that the interface IDictionary<K,V>  is a subinterface of 
ICollection<KeyValuePair<K,V>> . We gave an overview of the generic interface ICollection<T>  in 
Section 45.3. Because of this subinterface relationships we know that it is possible to use the operations 
Contains , Add, Remove on objects of type KeyValuePair<K,V> . Notice, however, that these operations are 
rather inconvenient because the generic class KeyValuePair  is involved. Instead of Add(new 

KeyValuePair(k,v))  we prefer another overload of Add, namely Add(k,v) . The mentioned operations 
Contains , Add, and Remove on KeyValuePairs  are available in the Dictionary  classes of Figure 46.1, but 
they are degraded to explicit interface implementations (see Section 31.8). 

The following provides an overview of the operations in IDictionary<K,V> : 

 • The operations prescribed in ICollection<KeyValuePair<K,V>>  
• The operations prescribed in IEnumerable<KeyValuePair<K,V>>  
• V this [K key]     - both getter and setter; the setter adds or mutates 
• void Add(K key, V value)     - only possible if key is not already present 
• bool Remove(K key) 
• bool ContainsKey (K key) 
• bool TryGetValue (K key, out V value) 
• ICollection<K> Keys      - getter 
• ICollection<V> Values      - getter 

 

V this[K key]  is an indexer via which we can set and get a value of a given key by means of array notation 
(see Section 19.1). If dict  is declared of type IDictionary<K,V>  then the indexer notation allows us to 
express 

 
   valVar = dict[someKey]; 
   dict[someKey] = someValue; 

The first line accesses (gets/reads) the value associated with someKey. If no value is associated with someKey 
an KeyNotFoundException  is thrown. The second line adds (sets/writes) an association between someKey 
and someValue  to dict . If the association is already in the dictionary, the setter mutates the value associated 
with someKey. 

The operation Add(key,value)  adds an association between key  and value  to the dictionary. If the key is 
already associated with (another) value in the dictionary an ArgumentException  will be thrown. 

Remove(key)  removes the association of key  and its associated value. Via the value returned, the Remove 
operation signals if the removal was successful. Remove returns false if key is not present in the dictionary. 

ContainsKey(key)  tells if key  is present in the dictionary. 

The operation call TryGetValue(key, valueVar)  accesses the value of key , and it passes the value via an 
output parameter (see Section 20.7). If no value is associated with key, the default value of type V (see 
Section 12.3) is passed back in the output parameter. This method is added of convenience. Alternatively, the 
indexer can be used in combination with ContainsKey . 
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The properties Keys  and Values  return collections of the keys and the values of a dictionary. 

  

46.3.  Overview of the class Dictionary<K,V> 
Lecture 12 - slide 26 

The generic class Dictionary<K,V>  is based on hashtables. Dictionary<K,V>  implements the interface 
IDictionary<K,V>  as described in Section 46.2. Almost all methods and properties of Dictionary<K,V>  are 
prescribed by the direct and indirect interfaces of the class. In the web version of the material we enumerate 
the most important operations of Dictionary<K,V> . 

As it appears from the discussion of dictionaries above, it is necessary that two keys can be compared for 
equality. The equality comparison can be provided in several different ways. It is possible to pass an 
EqualityComparer  object to the Dictionary  constructor. Alternatively, we fall back on the default equality 
comparer of the key type K. The property Comparer  of class Dictionary<K,V>  returns the comparer used 
for key comparison in the current dictionary. See also the discussion of equality comparison in Section 42.9. 

As already mentioned, a dictionary is implemented as a hash table. A hash table provides very fast access to 
the a value of a given key. Under normal circumstances - and with a good hash function - the run times of the 
access operations are constant (the run times do not depend on the size of the dictionary). Thus, the time 
complexity is O(1). Please consult Section 46.6 for more details on the efficiency of the dictionary 
operations. 

  

46.4.  Sample use of class Dictionary<K,V> 
Lecture 12 - slide 27 

In this section we will illustrate the use of dictionaries with a simple example. We go for a dictionary that 
maps objects of type Person  to objects of type BankAccount . Given a Person  object (the key) we wish to 
have efficient access to the person's BankAccount  (the value). 

The class Person  is similar to Program 20.3. The class BankAccount  is similar to Program 25.1. The exact 
versions of Person  and BankAccount , as used in the dictionary example, can be accessed via the 
accompanying slide page, or via the program index of this lecture. 
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using System; 
using System.Collections.Generic; 
 
class DictionaryDemo{ 
 
  public static void Main(){ 
 
    IDictionary<Person, BankAccount> bankMap =  
      new Dictionary<Person,BankAccount>( new PersonComparer() ); 
 
    // Make bank accounts and person objects 
    BankAccount ba1 =  new BankAccount("Kurt", 0.01 ), 
                ba2 =  new BankAccount("Maria", 0.0 2), 
                ba3 =  new BankAccount("Francoi", 0 .03), 
                ba4 =  new BankAccount("Unknown", 0 .04); 
 
    Person p1 = new Person("Kurt"), 
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           p2 = new Person("Maria"), 
           p3 = new Person("Francoi"); 
 
    ba1.Deposit(100); ba2.Deposit(200); ba3.Deposit (300);  
 
    // Populate the bankMap:  
    bankMap.Add(p1, ba1);   
    bankMap.Add(p2, ba2);  
    bankMap.Add(p3, ba3);  
    ReportDictionary("Initial map", bankMap); 
 
    // Print Kurt's entry in the map: 
    Console.WriteLine("{0}\n", bankMap[p1]);  
 
    // Mutate Kurt's entry in the map 
    bankMap[p1] = ba4;  
    ReportDictionary("bankMap[p1] = ba4;", bankMap); 
 
    // Mutate Maria's entry in the map. PersonComparer crucial! 
    ba4.Deposit(400); 
    bankMap[new Person("Maria")] = ba4;  
    ReportDictionary("ba4.Deposit(400);  bankMap[new Pe rson(\"Maria\")] = ba4;", 
bankMap); 
 
    // Add p3 yet another time to the map 
    // Run-time error: An item with the same key has al ready been added. 
/*  bankMap.Add(p3, ba1);  
    ReportDictionary("bankMap.Add(p3, ba1);", bankMap);   
 */ 
 
    // Try getting values of some given keys 
    BankAccount ba1Res = null, 
                ba2Res = null; 
    bool res1 = false, 
         res2 = false; 
    res1 = bankMap.TryGetValue(p2, out ba1Res);          
    res2 = bankMap.TryGetValue(new Person("Anders"), out ba2Re s);  
    Console.WriteLine("Account: {0}. Boolean result  {1}", ba1Res, res1); 
    Console.WriteLine("Account: {0}. Boolean result  {1}", ba2Res, res2); 
    Console.WriteLine(); 
 
    // Remove an entry from the map 
    bankMap.Remove(p1);  
    ReportDictionary("bankMap.Remove(p1);", bankMap); 
 
    // Remove another entry - works because of PersonCo mparer 
    bankMap.Remove(new Person("Francoi"));   
    ReportDictionary("bankMap.Remove(new Person(\"Franc oi\"));", bankMap); 
  } 
 
  public static void ReportDictionary<K, V>(string explanation,  
                                            IDictio nary<K,V> dict){ 
    Console.WriteLine(explanation); 
    foreach(KeyValuePair<K,V> kvp in dict) 
      Console.WriteLine("{0}: {1}", kvp.Key, kvp.Va lue); 
    Console.WriteLine();  
  } 
} 
 
public class PersonComparer: IEqualityComparer<Pers on>{ 
 
  public bool Equals(Person p1, Person p2){ 
    return (p1.Name == p2.Name); 
  } 
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  public int GetHashCode(Person p){ 
    return p.Name.GetHashCode(); 
  } 
}    

  
Program 46.1    A program working with 
Dictionary<Person,BankAccount>.  

 

In line 8-9 we make the dictionary bankMap of type Dictionary<Person,BankAccount> . We pass an 
instance of class PersonComparer , see line 76-86, which implements IEqualityComparer<Person> . In line 
11-19 we make sample BankAccount  and Person  objects, and in line 24-26 we populate the dictionary 
bankMap. 

In line 30 we see how to access the bank account of person p1 (Kurt). We use the provided indexer of the 
dictionary. In line 33 we mutate the bankMap: Kurt's bank account is changed from the one referenced by ba1  
to the one referenced by ba4 . In line 38 we mutate Maria's bank account in a similar way. Notice, however, 
that that the relative weak equality of Person  objects (implemented in class PersonComparer ) implies that 
the new person("Maria")  in line 38 is equal to the person referenced by p2, and therefore line 38 mutates 
the dictionary entry for Maria. 

In line 43 we attempt add yet another entry for Francoi. This is illegal because there is already an entry for 
Francoi in the dictionary. If the comments around line 43 are removed, a run time error will occur. 

In line 52-53 we illustrate TryGetValue . First, in line 52, we attempt to access Maria's account. The out 
parameter baRes1  is assigned to Maria's account and true  is returned from the method. In line 53 we attempt 
to access the account of a brand new Person  object, which has no bank account in the dictionary. null  is 
returned through ba2Res , and false  is returned from the method. 

Finally, in line 58-64 we remove entries from the dictionary by use of the Remove method. First Kurt's entry 
is removed after which Francoi's entry is removed. 

The output of the program is shown in Listing 46.2 (only on web). 

 
 Exercise 12.3. Switching from Dictionary to SortedDictionary 

The program on this slide instantiates a Dictionary<Person,BankAccount> . As recommended earlier in 
this lecture, we should work with the dictionary via a variable of the interface type IDictionary<K,V> . 

You are now asked to replace Dictionary<Person,BankAccount>  with 
SortedDictionary<Person,BankAccount>  in the above mentioned program. 

This causes a minor problem. Identify the problem, and fix it. 

Can you tell the difference between the output of the program on this slide and the output of your revised 
program? 

You can access the BankAccount  and Person  classes in the web version of the material. 
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46.5.  Notes about Dictionary Classes 
Lecture 12 - slide 28 

As can be seen from Figure 46.1 several different generic classes implement the IDictionary<K,V>  
interface. Dictionary<K,V> , as discussed in Section 46.3 and Section 46.4 is based on a hash table 
representation. SortedDictionary<K,V>  is based on a binary tree, and (as the name signals) 
SortedList<K,V>  is based on an array of key/value pairs, sorted by keys. 

The following provides an itemized overview of the three generic dictionary classes. 

 • Class Dictionary<K,V>  
• Based on a hash table 
• Requires that the keys in type K can be compared by an Equals  operation 
• Key values should not be mutated 
• The efficiency of class dictionary relies on a good hash function for the key type K 

• Consider overriding the method GetHashCode  in class K 
• A dictionary is enumerated in terms of the struct KeyValuePair<K,V>  

• Class SortedDictionary<K,V>  
• Based on a binary search tree 
• Requires an IComparer  for keys of type K - for ordering purposes 

• Provided when a sorted dictionary is constructed 
• Class SortedList<K,V>  

• Based on a sorted collection of key/value pairs 
• A resizeable array 

• Requires an IComparer  for keys, just like SortedDictionary<K,V> . 
• Requires less memory than SortedDictionary<K,V> . 

 

When you have to chose between the three dictionary classes the most important concern is the different run 
time characteristics of the operations of the classes. The next section provides an overview of these.  
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 46.6.  Time complexity overview: Dictionary classes  
Lecture 12 - slide 29 

We will now review the time complexities of the most important dictionary operations. This is done in the 
same way as we did for collections (lists) in Section 45.17. We will assume that we work on a dictionary that 
holds n entries of key/value pairs. 

 

Operation Dictionary<K,V>  SortedDictionary<K,V>  SortedList<K,V>  

this[key]  O(1)  O(log n)  O(log n) or O(n) 

Add(key,value)  O(1) or O(n)  O(log n)  O(n)  

Remove(key)  O(1)  O(log n)  O(n)  

ContainsKey(key)  O(1)  O(log n)  O(log n)  

ContainsValue(value)  O(n)  O(n)  O(n)  

Table 46.1    Time complexities of important operations in the classes 
Dictionary<K,V>, SortedDictionary<K,V>, and 
SortedList<K,V>. 
 

As noticed in Section 46.5 an object of type Dictionary<K,V>  is based on hash tables. Eventually, it will be 
necessary to enlarge the hashtable to hold new elements. It is good wisdom to enlarge the hashtable when it 
becomes half full. The O(1) or O(n) time complexity for Add reflects that a work proportional to n is needed 
when it becomes necessary to enlarge the hash table. 

Most operations on the binary tree representation of SortedDictionary<K,V>  are logarithmic in n. The only 
exception (among the operations listed in the table) is ContainsValue , which in the worst case requires a full 
tree traversal. 

In SortedList<K,V>  the indexer is efficient, O(log n) when an existing item is mutated. If use of the indexer 
causes addition of a new entry, the run time is the same as the run time of Add. Adding elements to a sorted 
list requires, in average, that half of the elements are pushed towards the end of the list in order to create free 
space for the new entry. This is an O(n) operation. Remove is symmetric, pulling elements towards the 
beginning of the list, and therefore also O(n). ContainsKey  is efficient because we can do binary search on 
the sorted list. ContainsValue  requires linear search, and therefore it is an O(n) operation. 

Given the table in Table 46.1 it is tempting to conclude that Dictionary<K,V>  is the best of the three classes. 
Notice, however, that the difference between a constant run time c1 and c2 log(n) is not necessarily 
significant. If the constant c1 is large and the constant c2 is small, the binary tree may be an attractive 
alternative. Furthermore, we know that the hashtable will be slow when it is almost full. In that case more 
and more collisions can be expected. At some point in time the hash table will stop working if it is not 
resized. This is not an issue if we work with balanced binary trees. Finally, the hashtable depends critically 
on a good hash function, preferable programmed specifically for the key type K. This is not an issue if we use 
binary trees. 
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47.  Non-generic Collections in C# 

This is a short chapter in which we discuss the non-generic collection classes. You may encounter use of 
these classes in many older C# programs. In Section 44.1 these collection classes were called first generation 
collection classes. 

  

47.1.  The non-generic collection library in C# 
Lecture 12 - slide 31 

The overview of the non-generic collection interfaces and classes in Figure 47.1 is a counterpart to the sum 
of Figure 45.1 and Figure 46.1. The white boxes represent interfaces and the grey boxes represent classes. 
Most classes and interfaces shown in Figure 46.1 belong to the namespace System.Collections . 

 The non-generic collection classes store data of type Object  
 

 

As the most important characteristics, the elements of the lists are of type Object . Both keys and values of 
dictionaries are Objects . Without use of type parametrization, there are no means to constraint the data in 
collections to of a more specific type. Thus, if we for instance work with a collection of bank accounts, we 
cannot statically guarantee that all elements of the collection are bank accounts. We may accidentally insert 
an object of another type. We will find the error at runtime. Most likely, an exception will be raised when we 
try to cast an Object  to BankAccount . 

 
Figure 47.1    The class and interface inheritance tree related to collections 

The IEnumerable , ICollection , IList  and IDictionary  interfaces of Figure 47.1 are natural counterparts 
to the generic interfaces IEnumerable<T> , ICollection<T> , IList<T>  and IDictionary<K,V> . 

The class ArrayList  corresponds to List<T> . As such, ArrayList  is a class with a rich repertoire of 
operations for searching, sorting, and range operations. ArrayList  is undoubtedly the most widely used 
collection class in C# 1.0 programs. 

The Array  class shown next to ArrayList  in Figure 47.1 deserves some special clarification. It belongs to 
the System  namespace. You cannot instantiate class Array  in your programs, because Array  is an abstract 
class. And you cannot use Array  as a superclass of one of your own classes. So, class Array  seems pretty 
useless. At least it is fair to state the class Array  is rather special compared to the other classes in Figure 47.1. 

Let us now explain the role of class Array . As mentioned earlier, see Section 28.2 , class Array  acts as the 
superclass of all "native" array types in C#. (See the discussion of arrays in Section 6.4). Consequently, all 
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the nice operation in System.Array  can be used on all "native" arrays that you use in your C# programs. If, 
for instance, we have the array declarations 

 
   int[] ia = new int[3]; 
   string[] sa = new string[5,6]; 
   BankAccount[] baa = new BankAccount[10]; 

the following are legal expressions 

 
   ia.Length  
   a.Rank  
   Array.BinarySearch(ia, 5) 
   Array.Find(sa, IsPalindrome) 
   Array.Sort(baa) 

In the Array  class, you should pay attention to the (overloaded) static method CreateInstance , which 
allows for programmatic creation on an arbitrary array. The Array  instance methods GetValue  and SetValue  
allow us to access elements in arbitrary arrays - independent of element type and rank. 

When we talk about "native arrays" in C# we refer to the array concept implemented in the language as such. 
The compiler provides special support for these native arrays. In contrast, generic and non-generic 
collections are provided via the class library. The C# compiler and the C# interpreter do not have particular 
knowledge or support of the collection classes. We could have written these classes ourselves! It is 
interesting to notice that the native arrays, as derived from class Array  in Figure 47.1, are type safe. The type 
safeness of native arrays is due to the special support by the compiler, which allows for declaration of the 
element types of the arrays (see the examples of int , string , and BankAccount  arrays above). 

The class HashTable  in Figure 47.1 corresponds to the generic class Dictionary<K,V> , see Section 46.3 and 
Section 46.4). 

The class ListDictionary , which belongs to the namespace System.Collections.Specialized , has no 
natural generic counterpart. ListDictionary  is based on linear search in an unordered collection of 
key/value pairs. ListDictionary  should therefore only be used for small dictionaries. 

As the name suggests, class SortedList  corresponds to SortedList<K,V> . Both rely on a (linear) list 
representation, sorted by keys. 

The class BitArray  is - by nature - a non-generic collection class. The binary digit 1 is represented as 
boolean true, and the binary digit 0 is represented as boolean false. BitArray  provides a compact 
representation of a bit arrays. In the context of indexers, see Program 19.4, we have earlier discussed a 
partial reproduction of the class BitArray . 

In addition to the types shown in Figure 47.1 there exist some specialized collections in the namespace 
System.Collections.Specialized . As an example, the class StringCollection  is a collection of strings. 
The class CollectionBase  in the namespace System.Collection  is intended as the superclass of new, 
specialized collection classes. In the documentation of this class, an example shows how to define an 
Int16Collection  as a subclass of CollectionBase . Needless to say, all these classes are obsolete relative 
to both C#2.0 and C#3.0. As of today, the classes may be necessary for backward compatibility, but, 
unfortunately, they also add to the complexity of the .NET class libraries. 
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48.  Patterns and Techniques 

In earlier parts of this material (Section 31.6 and Section 45.2) we have at length discussed enumerators in 
C#, including their relationship to foreach loops. 

In this section we first briefly rephrase this to the design pattern known as Iterator. Following that we will 
show how to implement iterators (enumerators) with use of yield return, which is a variant of the return 
statement. 

  

48.1.  The Iterator Design Pattern 
Lecture 12 - slide 34 

The Iterator design pattern provides sequential access to an aggregated collection. At an overall level, an 
iterator  

 • Provides for a smaller interface of the collection class 
• All members associated with traversals have been refactored to the iterator class 

• Makes it possible to have several simultaneous traversals 
• Does not reveal the internal representation of the collection 

 

As we have seen in Section 31.6 and Section 45.2, traversal of a collection requires a few related operations, 
such as Current , MoveNext , and Reset . We could imagine a slightly more advanced iterator which could 
move backwards as well. With use of iterators we have factored these operations out of the collection classes, 
and organized them in iterators (enumerators). With this refactoring, a collection can be asked to deliver an 
iterator: 

 
   aCollection.GetEnumerator() 

Each iterator maintains the state, which is necessary to carry out a traversal of a collection. If we need two 
independent, simultaneous traversals we can ask for two iterators of the collections. This could, for instance 
be used to manage simultaneous iteration from both ends of a list. 

In more primitive collections, such as linked lists (see Section 45.14) it is necessary to reveal the object 
structure that keeps the list together. (In LinkedList<T>  this relates to the details of LinkedListNode<T>  
instances). With use of iterators it is not necessary to reveal such details. An iterator is an encapsulated, 
abstract representation of some state that manages a traversal. The concrete representation of this state is not 
leaked to clients. This is very satisfactory in an object-oriented programming context. 

Iterators (enumerators) are typically used via foreach loops. As an alternative, it is of course also possible to 
use the operations in the IEnumerator  interface directly to carry out traversals. Exercise 12.4 is a 
opportunity to train such a more direct use of iterators. 

 
 Exercise 12.4. Explicit use of iterator - instead of using foreach 
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In this program we will make direct use of an iterator (an enumerator) instead of traversing with use of 
foreach. 

In the animal collection program, which we have seen earlier in this lecture, we traverse the animal 
collections several times with use of foreach. Replace each use of foreach with an application of an 
iterator. 

 
  

48.2.  Making iterators with yield return 
Lecture 12 - slide 35 

In this section we will show how to use the special-purpose yield return statement to define iterators, or as 
they are called in C#, enumerators. First, we will program a very simple collection of up to three, fixed 
values. Next we will revisit the integer sequence enumeration, which can be found in Section 58.3. 

In Program 48.1 we will program a collection class, called GivenCollection , which just covers zero, one, 
two or three values of some arbitrary type T. As a simpleminded approach, we represent these T values with 
three instance variables of type T, and with three boolean variables which tells if the corresponding T values 
are present. As an invariant, the instance variables are filled from the lower end. It would be tempting to use 
the type T? instead of T, and the value null  for a missing value. But this is not possible if T is class. 

It is important that the class GivenCollection  implements the generic interface IEnumerable<T> . Because 
this interface, in turn, implements the non-generic IEnumerable , we must both define the generic and the 
non-generic GetEnumerator  method. The latter must be defined as an explicit interface (see Section 31.8), in 
order not to conflict with the former. If we forget the non-generic GetEnumerator , we get a slightly 
misleading error message: 

'GivenCollection<T> ' does not implement interface member 
'System.Collections.IEnumerable.GetEnumerator()'.  
'GivenCollection<T> ' is either static, not public, or has the wrong return type. 

This message can cause a lot of headache, because the real problem (the missing, non-generic 
GetEnumerator  method) is slightly camouflaged in the error message. 

The implementation of the non-generic enumerator just delegates its work to the generic version. 

The implementation of the generic Enumerator  method uses the yield return statement. Let us assume that 
an instance of GivenCollection<T>  holds three T values (in first , second , and third ). The three boolean 
variables firstDefined , secondDefined , and thirdDefined  are all true. The GetEnumerator  method has 
three yield return statements in sequence (see line 50-52). By means of these, GetEnumerator  can return 
three values before it is done. This is entirely different from a normal method, which only returns once (after 
which it is done). The GetEnumerator  in class GivenCollection  acts as a coroutine in relation to its calling 
place (which is the foreach statement in the client program Program 48.2). A coroutine can resume 
execution at the place where execution stopped in an earlier call. A normal method always (re)starts from its 
first statement each time it is called. 
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using System; 
using System.Collections.Generic; 
using System.Collections; 
 
public class GivenCollection<T> : IEnumerable<T>{ 
  
  private T first, second, third; 
  private bool firstDefined, secondDefined, thirdDe fined; 
  
  public GivenCollection(){ 
    this.firstDefined = false;  
    this.secondDefined = false; 
    this.thirdDefined = false;  
  } 
 
  public GivenCollection(T first){ 
    this.first = first;  
    this.firstDefined = true; 
    this.secondDefined = false; 
    this.thirdDefined = false;  
  } 
 
  public GivenCollection(T first, T second){ 
    this.first = first; 
    this.second = second;  
    this.firstDefined = true; 
    this.secondDefined = true; 
    this.thirdDefined = false;  
  } 
 
  public GivenCollection(T first, T second, T third ){ 
    this.first = first; 
    this.second = second; 
    this.third = third; 
    this.firstDefined = true; 
    this.secondDefined = true; 
    this.thirdDefined = true;  
  } 
 
  public int Count(){ 
    int res; 
    if (!firstDefined) res = 0; 
    else if (!secondDefined) res = 1; 
    else if (!thirdDefined) res = 2; 
    else res = 3; 
    return res; 
  } 
 
  public IEnumerator<T> GetEnumerator(){ 
    if (firstDefined) yield return first; 
    if (secondDefined) yield return second;  // not  else 
    if (thirdDefined) yield return third;    // not  else 
  }  
 
  IEnumerator IEnumerable.GetEnumerator(){ 
    return GetEnumerator(); 
  }  
 
} 

  Program 48.1    A collection of up to three instance variables of 
type T - with an iterator.  
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In Program 48.2 we show a simple program that instantiates a GivenCollection  of the integers 7, 5, and 3. 
The foreach loop in line 11-12 traverses the three corresponding instance variables, and prints each of them. 

1 
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16 
17 

using System; 
 
class Client{ 
 
  public static void Main(){ 
 
     GivenCollection<int> gc = new GivenCollection< int>(7,5,3); 
 
     Console.WriteLine("Number of elements in given Collection: {0}",  
                        gc.Count()); 
     foreach(int i in gc){      // Output:  7 5 3 
       Console.WriteLine(i);  
     }  
 
  } 
 
} 

  Program 48.2    A sample iteration of the three instance variable 
collection.  

 
 

 Exercise 12.5. The iterator behind a yield 

Reprogram the iterator in class GivenCollection  without using the yield return statement in the 
GetEnumerator  method. 

 

Let us now revisit the integer enumeration classes of Section 58.3. The main point in our first discussion of 
these classes was the Composite design pattern, cf. Section 32.1, as illustrated in Figure 58.1 of Section 58.3. 
The three classes IntInterval , IntSingular , and IntCompSeq  all inherit the abstract class IntSequece . 
You can examine the abstract class IntSequence  in Program 58.9 in the appendix of this material. The three 
concrete subclasses were programmed in Program 58.10, Program 58.11, and Program 58.12. 

The GetEnumerator  methods of IntInterval , IntSingular , and IntCompSeq  are all emphasized below in 
Program 48.3, Program 48.4, and Program 48.5. Notice the use of yield return in all of them. 

In Program 48.3 the if-else of GetEnumerator  in line 19-24 distinguishes between increasing and decreasing 
intervals. The GetEnumerator  method of IntSingular  is trivial. The GetEnumerator  method of 
IntCompSeq  in Program 48.5 is surprisingly simple - at least compared with the counterpart in Program 
58.12. The two foreach statements (in sequence) in line 19-22 activate all the machinery, which we 
programmed manually in Program 58.12. This includes recursive access to enumerators of composite 
sequences. 

The simplicity of enumerators, programmed with yield return, is noteworthy compared to all the underlying 
stuff of explicitly programmed classes that implement the interface IEnumerator . 

Iterators (iterator blocks), programmed with yield return , are only allowed to appear in methods that 
implement an enumerator or an enumerable interface (such as IEnumerator  or IEnumerator  and their 
generic counterparts). Such methods are handled in a very special way by the compiler, and a number of 
restrictions apply to these methods. The compiler generates all the machinery, which we program ourselves 
when a class implements the enumerator or enumerable interfaces. Methods with iterator blocks that 
implement and enumerator or an enumerable interface return an enumerator object, on which the MoveNext  
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can be called a number of times. For more details on iterators please consult Section 10.14 in the C# 3.0 
Language Specification [csharp-3-spec]. 
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public class IntInterval: IntSequence{ 
 
  private int from, to; 
 
  public IntInterval(int from, int to){ 
    this.from = from; 
    this.to = to; 
  } 
 
  public override int? Min{ 
    get {return Math.Min(from,to);} 
  } 
 
  public override int? Max{ 
    get {return Math.Max(from,to);} 
  } 
     
  public override IEnumerator GetEnumerator (){ 
    if (from < to) 
     for(int i = from; i <= to; i++) 
       yield return i; 
    else 
     for(int i = from; i >= to; i--) 
       yield return i; 
  }  
 
} 

  Program 48.3    The class IntInterval - Revisited.   
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public class IntSingular: IntSequence{ 
 
  private int it; 
 
  public IntSingular(int it){ 
    this.it = it; 
  } 
 
  public override int? Min{ 
    get {return it;} 
  } 
 
  public override int? Max{ 
    get {return it;} 
  } 
 
  public override IEnumerator GetEnumerator(){ 
    yield return it; 
  }  
} 

  Program 48.4    The class IntSingular - Revisited.   
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public class IntCompSeq: IntSequence{ 
 
  private IntSequence s1, s2; 
 
  public IntCompSeq(IntSequence s1, IntSequence s2)  { 
    this.s1 = s1; 
    this.s2 = s2; 
  } 
 
  public override int? Min{ 
    get {return (s1.Min < s2.Min) ? s1.Min : s2.Min ;} 
  } 
 
  public override int? Max{ 
    get {return (s1.Max > s2.Max) ? s1.Max : s2.Max ;} 
  } 
 
  public override IEnumerator GetEnumerator (){ 
    foreach(int i in s1) 
      yield return i; 
    foreach(int i in s2) 
      yield return i; 
  }  
 
} 

  Program 48.5    The class IntCompSeq - Revisited.   

In the web edition of the material we show a sample client program that contains a couple of IntSequence s. 
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