44. Collections - History and Overview

This chapter is the first in our coverage of cdllmts.

Collections are used to organize and process a @uaflobjects or values of the same type. In alraogt
real-life program, collections of objects or valydgy important roles.

Collections fit nicely in our agenda of object-ared programming. A collection holds a number géots
(of the same type), but a concrete collectionss #@kelf an object. The commonalities of a nundfer
collections objects are described by the type efctbllection objects. In the following chapters wi#
encounter a number of different interfaces andselaswhich represent collection types. Not sumgigi
generic types as discussed in Chapter 42, plagnpartant role when we wish to deal with collectiimat
are constrained to contain only objects of a paldicelement type.

In the rest of this short introductory chapter wit lriefly outline the historic development of ¢ettion
programming. In the main part of the lecture, Caagb and Chapter 46, we deal with two main caiegor
of collections: Lists and Dictionaries.

44.1. A historic View on Collection Programming

Lecture 12 - slide 2

We identify three stages or epochs related to dveldpment of collections:

» Native arrays and custom made lists
» Fixed sized arrays - limited set of operations
« Variable sized linked lists - direct pointer manipulation
» First generation collection classes
« Elements of typ®bject - Flexible sizing - Rich repertoire of operations
« Type unsafe - Casting - Inhomogeneous collections
« Second generation collection classes
« The flexibility of the first generation collectiomsmains
« Type safe - Generic - Type parameterized - Homogene

Arrays are fundamental in imperative programmig,ifistance in C. In older programs - or old-faskid
programs - many collections are dealt with by mesdrearays. Many modern programs still use arrays f
collections, either due to old habits or becaush@inherent efficiency of array processing. Tfiigiency
of arrays stems from the fact that the memory nedéalethe elements is allocated as a single cotisecu
area of fixed size.

Another fundamental technique for dealing with ections is encountered in linked lists. In linkesd bne
elements is connected to the next element by a@guoifhe linking is done by use of pointers. Ingén
linked list, an element is linked to its successodouble-linked list, an element is both linkedts
successor and to its predecessor. Linked treels,asubinary trees, are also common. In some lamguag
(such as C and Pascal) linked data structuresreequplicit pointer manipulation. Other languagasch as
Lisp) hide the pointers behind the scene.

407

First generation collection classes deemphasizedherete representation of collections. Instelaal, t
capabilities and interfaces (such as insertioretitel, searching, conversion, etc) of collectiorestaought
into focus. This reflects good and solid objecented thinking. Typical first-generation collecticlasses
blur the distinction between (consecutive) arrays @inked) lists. The concept of anayList is seen both
in early versions of Java and C#. Collection coteape organized in type hierarchiesLi& isa

Collection and aSet isaCollection (see Section 25.2). The element type of collestisrthe most
general type in the system, namebject . As a consequence of this, it is hard to avoitectibn of "pears"
and "bananas" (inhomogeneous collections). Thpg, $afeness must be dealt with at run-time. This is
against the trend of static type checking and safety. We will briefly review the first generationllection
classes of C# in Chapter 47.

The second (and current) generation of collectinake use of generic types (type parameterizededassd
interfaces), as discussed in Chapter 42. The weaksef the first generation collection classeg teeen
the primary motivation for introduction all the cplaxity of genericity (see Chapter 41 where we waitd
generic classes by a study of the cles9. With use of type parameterized classes we @itally express
List<Banana> andList<Pear> and hereby eliminate the risk of type errors attrmne. In the following
chapters we will - with the exception of Chapter-4imit ourselves to study type parameterizedesilbns.

408

45. Generic Collections in C#

In this chapter we will study different list intades and classes.

45.1. Overview of Generic Collections in C#

Lecture 12 - slide 4

We start by showing a type hierarchy of list-retatypes. The white boxes in Figure 45.1 are inteseand
the grey boxes are classes.

IEnumerable<T>= |Stack<T>
JICollection<T> | © Queue<T
IList<T>
Y

S

HashSet<T> | IJsl:::T:r| Collection<T> | LinkedList<T> |

Figure 45.1 Theclassand interface inheritance treerelated to Lists

All interfaces and classes seen in Figure 45.1rt ifgen Stack<T> andQueue<T>, will be discussed in the
forthcoming sections of the current chapter.

The classystem.Array (see Section 28.2) which conceptually is the siiass of all native array types in
C#, also implements the generic interfaces<T> . Notice, however, thatrray 's implementation of
IList<T> is carried out by special means, and that it d@¢show up in the usual C# documentation. A
more detailed discussion of theay class is carried out in Section 47.1.

Version 3.5 of the .NET Framework contains a classhset<T> , that supports the mathematical set
concept. As such, it is similar to the claes<T> , which we used as example for introduction of gene
types in Section 42.HashSet<T> is, however, much more efficient thae<T> .

45.2. The Interface IEnumerable<T>

Lecture 12 - slide 5
At the most general level of Figure 4%t&versability is emphasized. This covers the ability to stepugh

all elements of a collection. The interfaeeumerable<T> announces one parameterless method called
GetEnumerator . The type parameteris the type of the elements in the collection.

« Operations in the interfacenumerable<T>
» IEnumerator<T> GetEnumerator ()

409

As the name indicatesgtEnumerator returns an enumerator, which offers the followimgrface:

» Operations in the interfacenumerator<T>
e T Current
* bool MoveNext ()
e void Reset ()

We have discussed the non-generic versions ofibtgifaces in Section 31.6. ABnumerator object is
used as the basis of traversal iaraach loop.

Without access to aenumerator object it would not be possible to traverse tlareints of a collection in
aforeach loop. You do not very often use tBetEnumerator operation explicitly in your own program, but
you most probably rely on it implicitly! The reasi@that many of your collections are traverseoinflone
end to the other, by use far each. Theforeach control structure would not work without the ogera
GetEnumerator . As you can see from Figure 45.1 all of our cditets implement the interface
IEnumerable<T> and hereby they provide the operat@nEnumerator

It is worth noticing that an object of typEumerator<T> does not support removal of elements from the
collection. In C# it is therefore not allowed torm@ve elements during traversal of a collection for@ach
loop. In the Java counterpartiumerator<T> (callediterator in Java), there is@move method. The
remove Method can be called once for each step forwatldeirtollectionremove is an optional operation in
the Javaterator interface. Consequently, removal of elements iseoessarily supported by all
implementations of the Jawuarator interface.

45.3. The Interface ICollection<T>

Lecture 12 - slide 6

At the next level of Figure 45.1 we encounterith@iection<T> interface. It can be summarized as
follows.

« Operations in the interfageollection<T>
» The operation prescribed in the superinterface IEnumerable<T>
« boolcContains (T element)
« void Add(T element)
« boolRemove(T element)
e void Clear ()
« void CopyTo(T[] targetArray, int startindex)
« int Count
« boolIsrReadOnly

In addition to traversability, elements of typean be added to and removed from objects of type
ICollection<T> . At this level of abstraction, it is not specifiathere in the collection an element is added.
As listed about, a few other operations are supdofNembership testingéntains), resetting €lear),
copying of the collection to an arragopyTo), and measuring of sizedunt). Some collections cannot be

410

mutated once they have been created.idHwadonly property allows us to find out if a givéDollection
object is a read only collection.

45.4. The Interface IList<T>

Lecture 12 - slide 7

At the next level of interfaces in Figure 45.1 weatiLisi<T> . This interface prescribes random access to
elements.

« Operations in the interfacgst<T>
» Those prescribed in the superinterfaces ICollection<T> and IEnumerable<T>
e Tthis [intindex]
« intIndexOf (T element)
« voidInsert (intindex,T element)
« void RemoveAt(int index)

In addition toiCollection<T> , the typelList<T> allows for indexed access to thelements. The first
mentioned operationh{s) is an indexer, an@dexOf is its inverse operation. (See Chapter 19 forreegs
discussion of indexers). In additianist<T> has operations for inserting and removing elemantgven
index positions.

45.5. Overview of the class Collection<T>

Lecture 12 - slide 8

We now encounter the first class in the collectimrarchy, namelgollection<T> . Most interfaces and
classes discussed in this chapter belong to thesenesystem.Collections.Generic , but of some odd
reason the clasllection<T> belongs tystem.Collections.ObjectModel

As can be seen from Figure 45.1 the generic daiggtion<T> implements the generic interface

IList<T> . As such it supports all the operations of theg¢hnterfaces we discussed in Section 45.2 - Sectio
45.4. As it appears from Figure 45.1 the geneastlist<T> implements the same interface. It turns out
thatCollection<T> is a minimal class which implements the threerfates, and not much more. As we

will see in Section 45.9jst<T> has many more operations, most of which are restqoibed by the
interfaces it implement.

Basically, an instance @abllection<T> supports indexed access to its elements. Cortvasrays,
however, there is no limit on the number of eleraémthe collection. The generic classlection<T> has
another twist: It is well suited as a superclassfecialized (non-generic) collections. We wikk sehy and
how in Section 45.7.

We will not summarize the public interfaceafilection<T> in the paper version of material, because it is
the sum of the interfaces @humerable<T> , ICollection<T> , andiList<T> . You should, however notice
the two constructors afollection<T> , a parameterless constructor and a non-copyingppng"
constructor on anist<T>

411

Collectioninitializers are new in C# 3.0. Instead of initializing a cotlen via anList , typically an array,
such as in

Collection<int> Ist = new Collection<int>(new int [H1, 2, 3, 4});

it is possible in C# 3.0 to make use of colleciitializers:

Collection<int> Ist = new Collection{1, 2, 3, 4};
A collection initializer uses thedd method repeatedly to insert the elements within into an empty list.

Collection initializers are often used in concetitiwobject initializers, see Section 18.4, to provide for
smooth creation of collection of objects, which mstances of our own types.

You may be interested to know details of the aateptesentation (data structure) used internaltiién
generic classollection<T> . Is it an array? Is it a linked list? Or is it setiing else, such as a mix of
arrays and lists, or a tree structure? Most likielig, a resizeable array. Notice however that faomobject-
oriented programming point of view (implying encalasion and visibility control) it is inappropriate ask
such a question. It is sufficient to know aboutititerface ofCollection<T> together with the time
complexities of the involved operations. (As aniaddal remark, the source code of the C# libraveisten
by Microsoft is not generally available for insgent Therefore we cannot easily check the reprasient
details of the class). The interfacecofiection<T> includes details about the execution times of the
operations otollection<T> relative to the size of a collection. We deal withing issues of the operations
in the collection classes in Section 45.17.

45.6. Sample use of class Collection<T>

Lecture 12 - slide 9

Let us now write a program that shows how to usectintral operations ollection<T> . In Program 45.1
we use an instance of the constructed atagsction<char> . Thus, we deal with a collection of character
values. It is actually worth noticing that we in € deal with collections of value types (such as
Collection<char>) as well as collections of reference types (susatoection<Point>).

using System;
using System.Collections.ObjectModel;
using System.Collections.Generic;
class BasicCollectionDemo{
public static void Main(){
/I Initialization - use of a collection initializer . After that add 2 elements.

IList<char> Ist = new Collection<char> {a','b', 'c'}
Ist. Add('d"); Ist. Add(‘e");

/I Mutate existing elements in the list:
Ist[0] = 'Z"; Ist[1]++;

/I Insert and push towards the end:

412

Ist.Insert(0,'n");

/I Insert at end - with Insert:
Ist.Insert(Ist.Count,'x"); /I equivalent to Ist. Add('x");

/ Remove element 0 and pull toward the beginning:
Ist. RemoveAt(0);

/I Remove first occurrence of 'c':
Ist. Remove('c’);

/ Remove remaining elements:
Ist.Clear();

}

public static void ReportList<T>(string explanati on, IList<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.Write("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}

Program 45.1 Basic operations on a Collection of
characters.

The program shown above explains itself in the cemisy and the program output in Listing 45.2 i als
relatively self-contained. Notice the use of tolection initializer in line 9 of Program 45.1. As mentioned
in Section 45.5 collection initializers have beetmaduced in C# 3.0. In earlier versions of C#atsw
necessary to initialize a collection by use oaamy initializer (see the discussion of Program 6.7) via the
second constructor mentioned above.

Initial List
abcde

Ist[0] = 'Z"; Ist[1]++;
zccde

Ist.Insert(0,'n");
nzccde

Ist.Insert(Ist.Count,'x’);
nzccdex

Ist. RemoveAt(0);
zccdex

Ist. Remove('c’);
zcdex

Ist.Clear();

Listing 45.2 Output of the program with basic operations on a
Collection of characters.

413

We make the following important observations alibatoperations iollection<T>

» The indexer Istfidx] = expr mutates an existing element in the collection
» Thelength of the callection is unchanged
« Thelnsert operation splices a new element into the collectio
« Push subsequent elements towards the end of tleetamh
« Makesthe collection longer
« TheRemove andremoveAt operations take elements out of the collections
» Pull subsequent elements towards the beginninigeofollection
« Makesthe collection shorter

45.7. Specialization of Collections

Lecture 12 - slide 10

Let us now assume that we wish to make our owrgialimed (non-generic) collection class of a paitc
type of objects. Below we will - for illustrativeupposes - write a class callesimalFarm which is intended
to hold instances of clagaimal . It is reasonable to programimalFarm as a subclass of an existing
collection class. In this section we shall see tlvaéction<Animal> is a good choice of superclass of

AnimalFarm .

The classinimalFarm depends on the classimal . You are invited to take a look at clagsmal via the
accompanying slide . We do not include classal here because it does not add new insight to our

interests in collection classes. The four operatiainclassAnimalFarm are shown below.

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {
protected override void Insertltem (int i, Animal a){
base.Insertltem(i,a);
Console.WriteLine("**Insertlitem: {0}, {1}", i, a);
}
protected override void Setltem (int i, Animal a){

base.Setltem(i,a);
Console.WriteLine("**Setltem: {0}, {1}", i, a);
}

protected override void Removeltem (int i){
base.Removeltem(i);
Console.WriteLine("**Removeltem: {0}", i);

}

protected override void Clearltems (){
base.Clearltems();
Console.WriteLine("**Clearltems");

}
}

Program 45.3 A class AnimalFarm - a subclass of Col | ect i on<Ani nmal > - testing protected members.

414

It is important to notice that the four highlightederations in Program 45.3 are redefinitions dieil,
protected methods iollection<Animal> . Each of the methods activate the similar methatie
superclass (this is method combination). In addjtibey reveal on standard output that the pratectethod
has been called. A more realistic example of chassalFarm will be presented in Program 45.6.

The four operations are not part of the clientriaige of clasanimalFarm . They are protected operations.
The client interface ofnimalFarm is identical to the public operations inheriteghfrCollection<Animal>
It means that we use the operatians, Insert , Remove etc. on instances of classimalFarm .

We should now understand the role of the four ptetoperationssertitem , Removeltem , Setltem , and
Clearltems relative to the operations in the public cliertenface. Whenever an element is inserted into a
collection, the protected methodertitem is called. Botindd andinsert are programmed by use of
Insertitem . Similarly, bothRemove andremoveAt are programmed by use Rémoveltem . And so on. We
see that the major functionality behind the operetiinCollection<T> is controlled by the four protected
methodgnsertitem , Removeltem , Setltem , andClearltems

using System;
using System.Collections.ObjectModel;

class App{
public static void Main(){
AnimalFarm af = new AnimalFarm();

/I Populating the farm with Add
af.Add (new Animal("elephant"));
af.Add (new Animal("giraffe));
af.Add (new Animal("tiger"));
ReportList("Adding elephant, giraffe, and tiger with Add(...)", af);

/I Additional population with Insert
af.Insert (0, new Animal("dog"));
af.Insert (0, new Animal("cat"));
ReportList("Inserting dog and cat at index 0 wi th Insert(0, ...)", af);

/l Mutate the animal farm:
af[1l] = new Animal("herring", AnimalGroup.Fish, Sex.Male);
ReportList("After af[1] = herring”, af);

/I Remove tiger
af.Remove (new Animal("tiger"));
ReportList("Removing tiger with Remove(...)", a f);

/l Remove animal at index 2
af.RemoveAt (2);
ReportList("Removing animal at index 2, with Re moveAt(2)", af);

/I Clear the farm
af.Clear ();
ReportList("Clear the farm with Clear()", af);

}

public static void ReportList<T>(string explanati on, Collection<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.WriteLine("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();
}
}

415

Program 45.4 A sample client of AnimalFarm - revealing use of protected Col | ect i on<Ani mal >
methods.

Take a close look at the output of Program 4514isting 45.5. The output explains the program bébrav

**|nsertltem: 0, Animal: elephant
**|nsertltem: 1, Animal: giraffe
**Insertltem: 2, Animal: tiger

Adding elephant, giraffe, and tiger with Add(...)
Animal: elephant
Animal: giraffe

Animal: tiger

**|nsertltem: 0, Animal: dog

**|nsertltem: 0, Animal: cat

Inserting dog and cat at index 0 with Insert(0, ...)
Animal: cat

Animal: dog

Animal: elephant
Animal: giraffe
Animal: tiger

**Setltem: 1, Animal: herring
After af[1] = herring

Animal: cat

Animal: herring

Animal: elephant

Animal: giraffe

Animal: tiger

**Removeltem: 4

Removing tiger with Remove(...)
Animal: cat

Animal: herring

Animal: elephant

Animal: giraffe

*Removeltem: 2

Removing animal at index 2, with RemoveAt(2)
Animal: cat

Animal: herring

Animal: giraffe

**Clearltems
Clear the farm with Clear()

Listing 45.5 Output from sample client of AnimalFarm.

416

45.8. Specialization of Collections - a realigi@mple

Lecture 12 - slide 11

The protected methods in classmalFarm , as shown in Section 45.7, did only reveal if/wlites protected
methods were called by other methods. In this eatie will show a more realistic example that revkf
the four protected methods ©dllection<T> in a more useful way.

In the example we program the following semantiasie insertion and removal operations of class
AnimalFarm:

- If we add an animal, an additional animal of thpagite sex is also added.

« Any animal removal or clearing of an animal farmagected.

In addition, we add aetGroup operation toanimalFarm , which returns a collection (an sub animal farm) o
all animals that belongs to a given group (sucélldsrds).

The classinimal has not been changed, and it still available e@mpanying slide.

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {

/I Auto insert animal of opposite sex
protected override void Insertltem (int i, Animal a){
if(a.Sex == Sex.Male){
base.Insertltem(i,a);

base.Insertltem(i, new Animal(a.Name, a.Group , Sex.Female));
}else {
base.Insertltem(i,a);
base.Insertltem(i,new Animal(a.Name, a.Group, Sex.Male));
}
}
/I Prevent removal
protected override void Removeltem (int i){
Console.WriteLine("[Removal denied]");
}
/I Prevent clearing
protected override void Clearltems ()X
Console.WriteLine("[Clearing denied]");
}

/I Return all male animals in a given group
public AnimalFarm GetGroup(AnimalGroup gX{
AnimalFarm res = new AnimalFarm();
foreach(Animal a in this)
if (a.Group == g && a.Sex == Sex.Male) res.Ad d(a);
return res;

}

Program 45.6 The class AnimalFarm - a subclass of
Col | ecti on<Ani mal >.

Notice the way we implement the rejectiorRiEmoveltem andcClearltems : We do not call the superclass
operation.

417

In Program 45.7 (only on web) we showsaimalFarm client program similar (but not not identical) to
Program 45.4. The program output in Listing 458y@n web) reveals the special semantics of theali
protected operations frogvllection<T> - as redefined in Program 45.6.

45.9. Overview of the class List<T>

Lecture 12 - slide 12

We are now going to study the generic classT> . As it appears from Figure 45.1 baik<T> and
Collection<T> implement the same interface, nameist<T> , see Section 45.4. But as already noticed,
List<T> offers many more operations thasllection<T>

In the same style as in earlier sections, we peogit overview of the important operationg.iefT>

« Constructors
e List() , List(IEnumerable<T>) , List(int)
« Via acollectioninitializer: new List<T> {t1, t2, ..., tn}
« Element access
« thigint] , GetRange(int, int)
« Measurement
e Count, Capacity
« Element addition

e Add(T) , AddRange(IEnumerable<T>) , Insert(int, T) ,
InsertRange(int, IEnumerable<T>)

« Element removal

* Remove(T) , RemoveAll(Predicate<T>) , RemoveAt(int) , RemoveRange(int,
int) , Clear()
» Reorganization
* Reverse() , Reverse(int, int) ,
Sort() , Sort(Comparison<T>) ,
Sort(IComparer<T>) , Sort(int, int, IComparer<T>)
» Searching
* BinarySearch(T) , BinarySearch(int, int, T, IComparer<T>) , BinarySearch(T,
IComparer<T>)
* Find(Predicate<T>) , FindAll(Predicate<T>) , Findindex(Predicate<T>) ,
FindLast(Predicate<T>) , FindLastIndex(Predicate<T>) , IndexOf(T) , LastindexOf(T)
» Boolean queries
e Contains(T) , Exists(Predicate<T>) , TrueForAll(Predicate<T>)
« Conversions
e ConvertAll<TOutput>(Converter<T,TOutput>) , CopyTo(T[) ,

Compared witlcollection<T> the classist<T> offers sorting, searching, reversing, and coneersi
operationsList<T> also has a number of "range operations” whichaipesn a number of elements via a
single operation. We also notice a numbehigher-order operations. Operations that take a delegate value
(a function) as parametagonvertAll is a generic method which is parameterized wightyipeTOutput .
ConvertAll accepts a function of delegate type which convesta typeT to TOutput .

418

45.10. Sample use of class List<T>

Lecture 12 - slide 13

In this and the following sections we will show htawise some of the operationg.isi<T> . We start with

a basic example similar to Program 45.1 in whichweek on a list of charactersist<char> . We insert a
number ofchar values into a list, and we remove some valuesedls The program appears in Program 45.9
and the self-explaining output can be seen intgsti5.10 (only on web). Notice in particular how tlange
operationsnsertRange (line 28) andremoveRange (line 40) operate on the list.

1 using System;

2 using System.Collections.Generic;

3

4 [* Very similar to our illustration of class Collec tion<char> */
5 class BasicListDemo{

6

7 public static void Main(){

8

9 /I List initialization and adding elements to the e nd of the list:
10 List<char> Ist = new List<char> {a', 'b', 'c'} ;

11 Ist.Add('d"); Ist.Add(‘e");

12

13

14 /I Mutate existing elements in the list

15 Ist[0] = 'Z"; Ist[1]++;

16

17

18 /I Insert and push towards the end

19 Ist.Insert(0,'n’);

20

21

22 /I Insert at end - with Insert

23 Ist.Insert(Ist.Count,'x’); /I equivalent to Ist.Add('x’);
24

25

26 /I Insert a new list into existing list, at positio n2.
27 Ist.InsertRange(2, new List<char>{'1', '2', '3, '4 D
28

29

30 /I Remove element 0 and push toward the beginning

31 Ist.RemoveAt(0);

32

88

34 /I Remove first occurrence of 'c'

35 Ist.Remove('c);

36

37

38 /I Remove 2 elements, starting at element 1

39 Ist.RemoveRange(1, 2);

40

41

42 /I Remove all remaining digits

43 Ist.RemoveAll(delegate(char ch){return Char.IsD igit(ch);});
44

45

46 /I Test of all remaining characters are letters

47 if (Ist. TrueForAll(delegate(char ch){return Cha r.IsLetter(ch);}))
48 Console.WriteLine("All characters in Ist are letters");
49 else

50 Console.WriteLine("NOT All characters in Ist are letters");
51 }

419

public static void ReportList<T>(string explanati on, List<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.Write(*{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}
}

Program 45.9 Basic operationson a List of characters.

45.11. Sample use of the Find operations in List<T

Lecture 12 - slide 14

In this section we will illustrate how to use thearch operations inst<T> . More specifically, we will
apply the methodsind , FindAll andindexOf on an instance afst<Point> , wherePoint is a type, such
as defined by the struct in Program 14.12. Theaifmers discussed in this section do all use lisearch. It
means that they work by looking at one element #fie other, in a rather trivial way. As a contrag will
look at binary search operations in Section 45:M8¢ch searches in a "more advanced" way.

In the program below - Program 45.11 - we declaretePoint> in line 11, and we add six points to the
listin line 13-16. In line 20 we shown how to umel to locate the first point in the list whose x-ctioate
is equal to 5. The same is shown in line 25. Tlferdince between the two usesroild is that the first
relies on a delegate given on the flytegate(Point g){return (q.Getx() == 5);} , while the other
relies on an existing static metheiddxs (defined in line 40 - 42). The approach showririg RO is, in my
opinion, superior.

In line 29 we show how to use the variamtiall , which returns &oint list instead of just a singkint
as returned bgind . In line 36 we show howdexOf can be used to find the index of a giveint ina
Point list. It is worth asking how theoint parameter ohdexof is compared with the points Roint list.
The documentation states that the points are caddar use of the default equality comparer of yipe T,
which in our case is struebint . We have discussebe default equality comparer in Section 42.9 in the
slipstream of our coverage of the generic inteda®guatable<T> andiEqualityComparer<T>

We use the static meth@dportList to show aoint list on standard output. We cakbporiList ~ several
times in Program 45.11. The program output is shiomitisting 45.12.

using System;
using System.Collections.Generic;

class C{
public static void Main(){

System.Threading.Thread.CurrentThread.CurrentC ulture =
new System.Globalization.Culturelnfo("en-US ");

List<Point> pointLst = new List<Point>();

/I Construct points and point list:

pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));

420

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 }

O©CoOoO~NOoOUh, WNBE

ReportList("Initial point list", pointLst);

// Find first point in list with x coordinate 5
Pointp = pointLst.Find(delegate(Point g){return (gq.Getx() == 5):D;
Console.WriteLine("Found with delegate predica te: {O)\n", p);

/I Equivalent. Use predicate which is a static meth od
p= pointLst.Find(new Predicate<Point>(FindX5));
Console.WriteLine("Found with static member pr edicate: {0}\n", p);

/I Find all points in list with x coordinate 5
List<Point> resLst = new List<Point>();
resLst = pointLst.FindAll(delegate(Point g){return (q.Getx() ==5);};
ReportList("All points with x coordinate 5", r esLst);

// Find index of a given point in pointLst.
/I Notice that Point happens to be a struct - thus value comparison
Point searchPoint = new Point(5,4);
Console.WriteLine("Index of {0} {1}", searchPo int,
pointLst.IndexOf(searchPoint));

public static bool FindX5(Point p){
return p.Getx() == 5;

public static void ReportList<T>(string explanati on,List<T> list){
Console.WriteLine(explanation);
intcnt = 0;
foreach(T el in list){
Console.Write(*{0, 3}", el);
cnt++;
if (cnt%4 == 0) Console.WriteLine();

}
if (cnt%4 != 0) Console.WriteLine();
Console.WriteLine();

Program 45.11 Sample uses of List.Find.

Initial point list

Point:(0,0). Point:(5,9). Point:(5,4). Point:(7.1,- 13).
Point:(5,-2). Point:(14,-3.4).

Found with delegate predicate: Point:(5,9).

Found with static member predicate: Point:(5,9).

All points with x coordinate 5

10 Point:(5,9). Point:(5,4). Point:(5,-2).

11

12 Index of Point:(5,4). 2

Listing 45.12 Output fromthe Find program.

421

45.12. Sample use of Sort in List<T>

Lecture 12 - slide 15

As a client user of the generic clags<T> it is likely that you never need to write a sogtiprocedure! You
are supposed to use one of the already existing methods inist<T>

Sorting the elements in a collection of elementypéT depends on kessthan or equal operation onT. If

the typerT is taken directly from the C# libraries, it mayryevell be the case that we can just use the defaul
less than or equal operation of the typer. If T is one of our own types, we will have to supply an
implementation of the comparison operation oursel¥dis can be done by passing a delegate objéut to
Sort method.

Below, in Program 45.13 we illustrate most of therfoverloadedort operations inist<t> . The actual
type parameter in the example, passed fasint . The program output (the lists before and aftetirsg) is
shown in Listing 45.14 (only on web).

using System;
using System.Collections.Generic;

class C{
public static void Main(){

List<int> listOriginal = new List<int>{5, 3, 2 . 7,-4, 0},
list;

/I Sorting by means of the default comparer of int:
list = new List<int>(listOriginal);
ReportList(list);
list.Sort();
ReportList(list);
Console.WriteLine();

/I Equivalent - explicit notatation of the Comparer
list = new List<int>(listOriginal);
ReportList(list);
list.Sort(Comparer<int>.Default);
ReportList(list);
Console.WriteLine();

/I Equivalent - explicit instantiation of an IntCom parer:
list = new List<int>(listOriginal);
ReportList(list);
list.Sort(new IntComparer());
ReportList(list);
Console.WriteLine();

/I Similar - use of a delegate value for comparison
list = new List<int>(listOriginal);
ReportList(list);

list.Sort(delegate(int x, int y){

if (x<vy)
return -1;
else if (x ==y)
return O;
else return 1;});
ReportList(list);
Console.WriteLine();

}

422

public static void ReportList<T>(List<T> list){
foreach(T el in list)
Console.Write("{0, 3}", el);
Console.WriteLine();

}
}

public class IntComparer: Comparer<int>{
public override int Compare(int x, int y){

if (x <vy)
return -1;
else if (x ==y)
return O;
else return 1;
}
}
Program 45.13 Four different activations of the List.Sort
method.
Throughout Program 45.13 we do several sortingstOfiginal , as declared in line 8. In line 14 we rely

the default comparer of typ& . The default comparer is explained in the follogwmay in the .NET
framework documentation a@fst.Sort

This method uses the default comparenparer.Default for typeT to determine the order
of list elements. Theomparer.Default ~ property checks whether typémplements the
IComparable generic interface and uses that implementaticavailable. If not,
Comparer.Default ~ checks whether typeimplements thé&Comparable interface. If typer
does not implement either interfac@mparer.Default ~ throws an

InvalidOperationException

The sorting done in line 21 is equivalent to lide [h line 21 we show how to patbe default comparer of
typeint explicitly to thesort method.

Let us now assume the type does not have a default comparer. In other wavdsyill have to implement
the comparer ourselves. The callsoft in line 28 passes a newComparer instance t®ort . The class
IntComparer is programmed in line 53-61, at the bottom of Paog45.13. Notice thattComparer is a
subclass o€omparer<int> , which is an abstract class in the namespggiem.Collections.Generic with
an abstract method nameempare. The generic classomparer<T> is in many ways similar to the class
EqualityComparer<T> , which we touched on in Section 42.9. Most impatithoth have a statimefault
property, which returns a comparer object.

As a final resort that always works we can passmaparer function tgort . In C#, such a function is
programmed as a delegate. (Delegates are discusSedpter 22). Line 35-40 shows how this can beedo
Notice that the delegate we use is programmed®fiythThis style of programming is a reminiscente
functional programming.

| find it much more natural to pass amtlering method instead ofan object of a class with an ordering

method. (The latter is a left over from older object-oried programming languages in which the only way to
pass a functior as parameter is via an object of a class in whishan instance method). In general, | also
prefer to be explicit about the ordering insteadebfing on some default ordering which may turm tou
surprise you.

Let us summarize the lessons that we have learnedthe example:

423

« Some types have a default comparer which is usedtsort()

« The default comparer of T can extracteddoyparer<T>.Default

« An anonymous delegate comparer is attractive if the default comparer of the tyjmes not exist,
of if it is inappropriate.

Exercise 12.1. Shuffle List

Write ashuffle operation that disorders the elements of a cadleéh a random fashion. A shuffle
operation is useful in many context. There isshafle operation in
System.Collections.Generic.List<T> . In the similar Java libraries there is a shuffiethod.

In which class do you want to place gmffle operation? You may consider to make use of extensi
methods.

You can decide on programming either a mutating won-mutating variant of the operation. Be sure to
understand the difference between these two options

Test the Shuffle operation, for instanceLamcard> . The clasard (representing a playing card) is one
of the classes we have seen earlier in the course.

Exercise 12.2. Course and Project classes

In the earlier exercise about courses and profemisd in the lecture about abstract classes aedates)
we refined the program abosidoleanCourse , GradedCourse , andProject . Revise your solution (or the
model solution) such that the courses in the dtagsct are represented as a variable of type
List<Course> instead of by use of four variables of typeirse .

Reimplement and simplify the methedssed in classProject . Take advantage of the new representation
of the courses in a project, such that the "3 ddtmile" (see the original exercise) is implemeritea
more natural way.

45.13. Sample use of BinarySearch in List<T>

Lecture 12 - slide 16

The search operations discussed in Section 45.Irh@kementedinear search processes. The search
operations of this section implemdaibary search processes, which are much faster when appliedrge |
collections. On collections of size linear search has - not surprisingly - time caxjpy O(n). Binary
search has time complexi®(log n). Whenn is large, the difference betweemandlog n is dramatic.

TheBinarySearch ~ operations inist<T> require, as a precondition, that the list is ceddvefore the search
is performed. If necessary, tBert operation (see Section 45.12) can be used tolisstdhe ordering.

You may ask why we should search for an elementhwie - in the starting point - is able to pasmpat
to theBinarySearch method. There is a couple of good answers. Kiestnay be interested to know if the
element is present or not in the list. Seconday @so be possible to search for an incompletecoifpy
only comparing some selected fields in thenparer method). Using this approach we are actually asted
in finding the complete object, with all the daigds, in the collection.

424

If theB

inarySearch

operation finds an element in the list, the indéthe element is returned. This is a non-

negative integer. If the element is not found, gatiee integer, say is returned. Below we will see that that
-i (or more precisely the bitwise complemeijtin that case is the position of the element, lifad been
present in the list.

u
u

sing System;
sing System.Collections.Generic;

class BinarySearchDemo{

I
I
I

public static void Main(){

System.Threading.Thread.CurrentThread.CurrentCultur
new System.Globalization.Culturelnfo("en-US

List<Point> pointLst = new List<Point>();

/I Construct points and point list:
pointLst.Add(new Point(0,0)); pointLst. Add(new
pointLst.Add(new Point(5,4)); pointLst. Add(new
pointLst.Add(new Point(5,-2)); pointLst.Add(ne
ReportList("The initial point list", pointLst)

/I Sort point list, using a specific point Comparer

/I Notice the PointComparer:

/I Ordering according to sum of x and y coordinates
IComparer<Point> pointComparer = new PointComp

pointLst.Sort(pointComparer) ;
ReportList("The sorted point list", pointLst);

int res;
Point searchPoint;

/[Run-time error.
// Failed to compare two elements in the array
searchPoint = new Point(5,4);
res = pointLst.BinarySearch(searchPoint);
Console.WriteLine("BinarySearch for {0}: {1}",

searchPoint = new Point(5,4);
res =
Console.WriteLine("BinarySearch for {0}: {1}",

searchPoint = new Point(1,8);
res =
Console.WriteLine("BinarySearch for {0}: {1}",

}

public static void ReportList<T>(string explanati
Console.WriteLine(explanation);
int cnt = 0;
foreach(T el in list){
Console.Write("{0, 3}", el);
cnt++;
if (cnt%4 == 0) Console.WriteLine();

}
if (cnt%4 != 0) Console.WriteLine();
Console.WriteLine();

}
}

/I Compare the sum of the x and y coordinates.

425

pointLst.BinarySearch(searchPoint, pointComparer)

pointLst.BinarySearch(searchPoint, pointComparer)

")

/I Point is a struct.

Point(5, 9));
Point(7.1,-13));
w Point(14,-3.4));

arer();

searchPoint, res);
searchPoint, res);
searchPoint, res);

on,List<T> list){

/I Somewhat non-traditional!
public class PointComparer: Comparer<Point>{
public override int Compare(Point p1, Point p2){
double p1Sum = pl.Getx() + p1.Gety();
double p2Sum = p2.Getx() + p2.Gety();
if (p1Sum < p2Sum)
return -1;
else if (p1Sum == p2Sum)
return O;
else return 1;

Program 45.15 Sample uses of List.BinarySearch.

Program 45.15 works on a list of points. Six poarts created and inserted into a list in line 13Néxt, in
line 23, the list is sorted. As it appears fromprhat comparer programmed in line 62-72, a pping less
than or equal to poirt, if p.x +p.y <=q.X +g.y. You may think that this is odd, but it is owgcision for this
particular program example.

In line 33 we attempt to activate binary searclogpgise of the default comparer. But such a compioes
not exist for clas®oint. This problem is revealed at run-time.

In line 37 and 41 we search for the points (5,4) @n8) respectively. In both cases we expectrto fihe
point (5,4), which happens to be located at plaitetBe sorted list. The output of the program vetin
Program 45.17 (only on web) confirms this.

In the next program, Program 45.17 we illustratawtappens if we search for a non-existing poitt wi
BinarySearch . The clas®ointComparer and the generic meth@&&portList are not shown in the paper
version of Program 45.17. Please consult ProgradbAkhere they both appear.

using System;
using System.Collections.Generic;

class BinarySearchDemo{
public static void Main(){

System.Threading.Thread.CurrentThread.CurrentC ulture =
new System.Globalization.Culturelnfo("en-US ");

List<Point> pointLst = new List<Point>();

/I Construct points and point list:

pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));

ReportList("Initial point list", pointLst);

/I Sort point list, using a specific point Comparer :
IComparer<Point> pointComparer = new PointComp arer();
pointLst.Sort(pointComparer) ;
ReportList("Sorted point list", pointLst);

int res;
Point searchPoint;

searchPoint = new Point(1,1);

res = pointLst.BinarySearch(searchPoint, pointComparer) ;
Console.WriteLine("BinarySearch for {0}: {1}\n ", searchPoint, res);

426

if (res<0) /I search point not found

pointLst.Insert(~res , searchPoint); Il Insert searchPoint such

// that pointLst remains sorted
Console.WriteLine("Inserting {0} at index {1 }", searchPoint, ~res);
ReportList("Point list after insertion”, poi ntLst);

}

/I ReportList not shown

}

/I Class PointComparer not shown

Program 45.17 Searching for a non-existing Point.

The scene of Program 45.17 is the same as thaibgfdMm 45.15. In line 28 we do binary searchingkiog
for the point (1,1). None of the points in the paog have an "x plus y sum" of 2. Therefore, thenp(i,1)
is not located byinarySearch . TheBinarySearch method returns a negatighost index. The ghost index
is the bitwise complement of the index where t@ihthe point in such a way that the list will remsorted.
(Notice the bitwise complement operatiowhich turns 0 to 1 and 1 to 0 at the binary levEle program
output reveals that position ~(-3) is the natutate of the point (1,1) to maintain the orderingha list.
Notice that the value of ~(-3) is 2, due the useval's complement arithmetic. This explains theratle of
the negative values returned iyarySearch

The output of Program 45.17 is shown in Listingl85only on web).

Contrary tosort , it is not possible to pass a delegatpitarySearch . This seems to be a flaw in the design
of theList<T> library.

We have learned the following lessons alB#rySearch

« Binary search can only be done on sorted lists
« In order to use binary search, we need - in genreoaprovide an expliciComparer object
- Binary search returns a (non-negative) integdrafélement is found
« The index of the located element
« Binary search returns a negative integer if thenel# is not found
« The complement of this number igjl@ost index
« The index of the element if it had been in the list

45.14. Overview of the class LinkedList<T>

Lecture 12 - slide 17

The collections implemented lapllection<T> of Section 45.5 andst<T> of Section 45.9 were based on
arrays. We will now turn our interest towards atige, which is based onliaked representation.

Below, in Figure 45.2 we show the object-structafra double linked list.

427

iii g Iiﬁ T :L; jr= ;l: = iii
(1) (a2} (a3} (at) (a5}
oo Lo W i e

Figure 45.2 Adoublelinked list whereinstances of Li nkedLi st Node keep
the list together

The generic clagsnkedList<T> relies on a "building block classihkedListNode<T> . We need to deal
with instances ofinkedListNode s when we work with linked lists in C#. In otherngs, LinkedListNode

is not just a class behind the scene - it is aroitapt class for clients afnkedListNode<T> . In Figure 45.2
the five rectangular nodes are instancasmsédListNode<T> for some element type The circular, green
nodes are instances of the element typ&/'e will studyLinkedListNode<T> in Section 45.15 after we have
surveyed the list operationslimkedList<T>

As it can be seen from the class diagram of theléss in Figure 45.1jnkedList<T> implements the
interfacelCollection<T> , See Section 45.3. Unlil@llection<T> andList<T> , LinkedList<T> does not
implement indexed access, aglief<T> . This is a natural choice because indexed acses# iefficient in
a linked representation. The following operatioresavailable ininkedList<T>

« Constructors
* LinkedList() , LinkedList(IEnumerable<T>)
« Accessors (properties)
e First ,Last , Count
« Element addition
e AddFirst(T) , AddFirst(LinkedListNode<T>) , AddLast(T)
AddLast(LinkedListNode<T>) , AddBefore(LinkedListNode<T>,
T), AddBefore(LinkedListNode<T>, LinkedListNode<T>) ,
AddAfter(LinkedListNode<T>, T))
AddAfter(LinkedListNode<T>, LinkedListNode<T>)
« Element removal
e Remove(T) , Remove(LinkedListNode<T>) , RemoveFirst() ,
Removelast() , Clear()
» Searching
e Find(T) , FindLast(T)
- Boolean queries
* Contains(T)

, Add(T)

A linked list can be constructed as an empty cotbecor as a collection filled with elements fromosher
collection, represented as @numerable<T> , see Section 45.2.

TheFirst andLast properties access the first/lasikedListNode in the double linked listCount returns
the number of elements in the list - not by coumtimem each timeount is referred - but via some
bookkeeping information encapsulated in a linketldbject. Thusgount is anO(1) operation.

AlthoughLinkedList<T> implements the generic interfa®llection<T> , which has a method named
Add, theAdd operation is not readily available on linked lidige will in Program 45.19 show thadd is
present as an explicit interface implementatior, Section 31.8. Instead add, the designers of
LinkedList<T> want us to use one of thedRelative operationsaddFirst , AddLast , AddBefore , and
AddAfter . None of these are prescribed by the interfaciction<T> , however. Each of theddRelative

428

operations are overloaded in two variants, suctwtleacan add an element of typer an object of type
LinkedListNode<T> (which in turn reference an object of type

Using theremove methods, it is possible to remove an elementyé fly or a specific instance of
LinkedListNode<T> . Remove(T) IS anO(n) operationRemove(LinkedListNode<T>) is anO(1) operation.
There are also parameter-less methods for rema@irst/last element in the linked list. The time
complexity of these ar@(1).

Finally there are linear search operations fromegiend of the listtind andFindLast . The boolean
Contains operation is similar to theind operations. These operations all seem to relyreBaduals
operation inherited from clag®ject . In that wayFind , FindLast andContains are more primitive (not as
well-designed) as the similar methods.isi<T> . (The documentation in the .NET libraries is dilebout
these details).

45.15. The class LinkedListNode<T>

Lecture 12 - slide 18

As illustrated in Figure 45.2, instances of theegenclass.inkedListNode<T> keep a linked list together.

In the figure, the rectangular boxes are instan€esgkedListNode<T> . From the figure it appears that each
instance otinkedListNode<T> has three references: One to the left, one teldraent, and one to the right.
Actually, there is a fourth reference, namely ® lihked list instance to which a giveinkedListNode

object belongs.

The class.inkedListNode<T> is sealed, generic class that represents a nocabheutode in a
linked list

A LinkedListNode can at most belong to a single linked list
The members dfinkedListNode<T> are as follows:

» A single constructorinkedListNode(T)
» Four properties

e Next - gQetter

* Previous - getter

« List - getter

e \Value - getter and setter

The propertiesiext andPrevious access neighbor instanced bkedListNode<T> . Value accesses the
element of typa. List accesses the linked list to which the instanagneédListNode belongsNext ,
Previous , andList are all gettersvalue is both a getter and a setter.

It is not possible to initialize or to mutate thelds behind the propertie&xt , Previous , andList via
public interfaces. It is clearly the intention thia¢ linked list - and only linked list - has autitypto change
these fields. If we programmed our own, speciappae linked list class it would therefore not bsye@
reuse the clagsnkedListNode<T> . This is unfortunate.

429

Related to the discussion about the interfaaen@édListNode<T> we may ask howinkedList is allowed
to access the private/internal details of an irc#afLinkedListNode . The best guess seems to be that the
fields are internal.

45.16. Sample use of class LinkedList<T>

Lecture 12 - slide 19

We will illustrate the use dfinkedList<T> andLinkedListNode<T> in Program 45.19. In line 8 we make a
linked list of integers from an array. Notice theewof theLinkedList ~ constructor
LinkedList ~ (IEnumerable<T>).

In line 16 we attempt to add the integer 17 tolithle=d list. This is not possible, because the me#ud is
not easily available, see the discussion in Seattoh4. If we insist to usedd, it must be done as in line 20.
Most likely, you should use one of thed variants instead, for instangedFirst or AddLast .

using System;
using System.Collections.Generic;

class LinkedListDemof{
public static void Main(){

LinkedList<int> Ist = new LinkedList<int>(

new int[]{5, 3, 2, 7,-4,0});
// Using Add.
/I Compile-time error: 'LinkedList<int>' does not ¢ ontain a
I definition for 'Add’

Il IstAdd(17)
I

/I Add is implemented as an explicit interface impl ementation
((ICollection<int>)Ist).Add(17) ;

/I Using AddFirst and AddLast
Ist. AddFirst(-88);
Ist. AddLast(88);

/I Using Remove.
Ist.Remove(17);

/I Using RemoveFirst and RemovelLast
Ist. RemoveFirst(); Ist. RemoveLast();

/I Using Clear
Ist.Clear();

}

public static void ReportList<T>(string explanati on, LinkedList<T> list){
Console.WriteLine(explanation);

430

foreach(T el in list)
Console.Write("{0, 4}", el);
Console.WriteLine(); Console.WriteLine();

}

}

Program 45.19 Basic operations on a LinkedList of
integers.

The output of Program 45.19 is shown in Listing245 By studying Listing 45.20 you will learn additial
details of theinkedList ~ operations.

Initial LinkedList
532740

((ICollection<int>)Ist).Add(17);
532 7-4 017

Ist. AddFirst(-88); Ist. AddFirst(88);
-88 5 3 2 7 -4 017 88

Ist. Remove(17);
-88 5 3 2 7 -4 088

Ist. RemoveFirst(); Ist. RemoveLast();
532740

Ist.Clear();

Listing 45.20 Output of the program with basic operations on
a LinkedList.

ThelLinkedList ~example in Program 45.19 did not show how toLirs@dListNode S together with
LinkedList<T> . To make up for that we will in Program 45.21 cemitate on the use oihkedList<T>
andLinkedListNode<T> together.

using System;
using System.Collections.Generic;

class LinkedListNodeDemo{
public static void Main(){
LinkedList<int> Ist = new LinkedList<int>(

new int[[{5, 3, 2, 7, -4, 0});

LinkedListNode<int> nodel, node2, node;
nodel = Ist.First;
node?2 = Ist.Last;

/l Run-time error.
/I The LinkedListNode is already in the list.
/I Error message: The LinkedList node belongs a Lin kedList.
I* Ist. AddLast(nodel); */
/I Move first node to last node in list
Ist. Remove(nodel); Ist. AddLast(nodel);

/I Navigate in list via LinkedListNode objects

431

nodel = Ist.First;
Console.WriteLine("Third element in list: node 1 = Ist.First;
nodel.Next.Next.Value {O0}\n",
nodel.Next.Next.Value);

/I Add an integer after a LinkedListNode object
Ist. AddAfter(nodel, 17);

/I Add a LinkedListNode object after another Linked ListNode object
Ist. AddAfter(nodel, new LinkedListNode<int>(18);
/I Navigate in LinkedListNode objects and add an in t before a node:

node = nodel.Next.Next.Next;
Ist. AddBefore(node, 99);

/I Navigate in LinkedListNode objects and remo ve a node.
node = node.Previous;
Ist. Remove(node);

}

/l Method ReportList not shown in this version.

}

Program 45.21 Basic operations on a LinkedList of integers -
using Li nkedLi st Nodes.

In line 8-9 we make the same initial integer listmProgram 45.19. In line 13-14 we see how t@s&to
the first/lastLinkedListNode ~ objects of the list.

In line 19 we attempt to ad@del , which is the firstinkedListNode inist , as the last node of the list.
This fails because it could bring the linked ligioi an inconsistent state. (Recall in this contieat a
LinkedListNode ~ knows the list to which it belongs). Instead, lagven in line 22, we should first remove
nodel and then addodel with AddLast .

Please take a close look at the remaining addivaysgations, and removals in Program 45.21. As aboe
show a self-explaining output of the program, sisting 45.22.

432

Initial LinkedList
53 27-40

nodel = Ist.First; Ist. Remove(nodel); Ist. AddLast(n odel);
3274005

Third element in list: nodel = Ist.First; nodel.Ne xt.Next.Value 7

Ist. AddAfter(nodel, 17);
317 2 7 -4 0 5

Ist. AddAfter(nodel, new LinkedListNode<int>(18));
31817 2 7 -4 0 5

node = nodel.Next.Next.Next; Ist. AddBefore(node, 99);
3181799 2 7 -4 0 5

node = node.Previous; Ist. Remove(node);
31817 2 7 -4 0 5

Listing 45.22 Output of the program with LinkedListNode
operationson a LinkedList.

45.17. Time complexity overview: Collection classe

Lecture 12 - slide 20

In this section we will discuss the efficiency efexted and important list operations in the tlulasses
Collection<T> , List<T> , andLinkedList<T> . This is done by listing thime complexities of the
operations in a table, see Table 45.1. If you ateeamfortable with Big O notation, you can fortansce
consult Wikipedia [Big-O] or a book about algorithrand data structures.

The time complexities of the list operations areshaften supplied as part of the documentatiomef t
operations. The choice of one list type in favoanbdther is often based on requirements to the time
complexities of important operations. Therefore gbould pay careful attention to the informationatb
time complexities in the C# library documentation.

Throughout the discussion we will assume thatigie tontaim elements. It may be helpful to relate the
table with the class diagram in Figure 45.1 fromohtit appears which interfaces to expect fromlite
classes.

433

Operation Collection<T> List<T> LinkedList<T>

thisi] 0(2) 0O(1) -
Count 0(1) O(1) O(1)
Add(e) O(1) or O(n) O(1) or O(n) o(1)
Insert(i,e) O(n) O(n) -
Remove(e) O(n) O(n) O(n)
IndexOf(e) O(n) o(n) -
Contains(e) O(n) O(n) O(n)
BinarySearch(e) - O(log n) =
Sort() - O(nlog n) or O(n’) -
AddBefore(lin) - - 0o(1)
AddAfter(lin,e) - - O(1)
Remove(lin) - - 0o(1)
RemoveFirst() - = 0(1)
RemovelLast() - - 0o(1)

Table 45.1 Time complexities of important operations in the classes
Col | ecti on<T>, Li st <T>, and Li nkedLi st <T>.

As it can be seen in the class diagram of Figur& dbthree classes implement tbellection<T>
interface with the operatio®unt , Add, Remove, andContains . Thus, these four operations appear for all
classes in Table 45.1.

count is efficient for all lists, because it maintainsiaternal counter, the value of which can be regdrby
thecount property. Thus, independent of the length oftadisunt runs in constant time.

For all three types of listadd(e) adds an elemeit(of typeT) to the end of the list. This can be done in
constant time, because all the three types oftist® direct access the rear end of the list. ifine t
complexityO(1)/O(n) given forcCollection<T> andList<T> reflects that under normal circumstances it
takes only constant time to add an elementdelliaction or aList . If however, the list is full it may need
resizing, and in that case the run time is linaar. i

Remove(e) andContains(e) , wheree is of typeT, will have to search far in the list. This behavior is
common for all three types of lists. Therefore tilne times ofRemove andContains areO(n).

The indexethis[i] is only available in the lists that implemest<T> . Such lists are based on arrays,
and therefore the runtime of the indexe®{d). (Recall that in arrays it is possible to compthtlocation
of an element with a given index; No searching, tatever, is involved).

BinarySearch ~andSort are operations inist<T> . Sort implements a Quicksort variant, and as such the
worst possible time complexity &(n?), but the expected time complexityGgn log n). The runtime of
BinarySearch IS, as expected(log n).

The bottom five operations in the table belongiigedList . The methodaddBefore , AddAfter , and
Remove all work on aLinkedListNode , lin , and as such their runtimes do not depend. ¢@nly a few

434

references need to be assigned. The number oepaissignments do not depend®nThus, when applied
on objects of typeinkedListNode the runtime of these three operations@f#¥). RemoveFirst and
RemoveLast are of time complexit{D(1) because a linked list maintain direct referenodsoth ends of the
list.

45.18. Using Collections through Interfaces

Lecture 12 - slide 21

We started this chapter with a discussion of figgrfaces, and we will end the chapter in a sinway.

It is, of course, necessary to use one of the cddie classes (such asi<T>) when you need a collection

in your program. The morale of this section is, beer, that you should not use list classes mone tha
necessary. In short, you should typically useT> or Collection<T> (for some type T) when you make a
collection object. All other places you are betifrusing one of the interface types, suchLas<T> . The
key observations can be summarized as follows.

It is an advantage to use collections via intedanstead of classes
If possible, only use collection classes in ing&diuns, just aftenew
This leads to programs with fewer bindings to cetermplementations of collections

With this approach, it is easy to replace a calbectlass with another

Thus, please consider the following when you uslecions:
Program against collection interfaces, not collection classes

If the types of variables and parameters are gagimterfaces it is easy, a later point in timegtiange the
representation of your collections (say, fronmflection<T> to one of your own collections which
implementglist<T>). Notice that if you, for instance, appligt<T> operations, which are not prescribed
by one of the interfaces, you need to declare {isuof typeList<T> for some typq.

Let us illustrate how this can be done in Progr&n23. The thing to notice is that the only placerefer to
a list class (hereollection<Animal> ()) is in line 9: newCollection<Animal> . All other places, as
emphasized witlpur ple, we use the interfageollection<Animal> . If we, tomorrow, wish to change the
representation of the animal collection, the oncp to modify is line 9.

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;

class CollectioninterfaceDemo{

public static void Main(){
ICollection<Animal> Ist = new Collection<Animal>()

/I Add elements to the end of the empty list:
Ist. Add(new Animal("Cat")); Ist.Add(new Animal ("Dog", Sex.Female));

435

Collection<Animal>
List<Animal>

Ist. Add(new Animal("Mouse")); Ist.Add(new Anim al("Rat"));

Ist. Add(new Animal("Mouse", Sex.Female)); Ist. Add(new Animal("Rat"));
Ist. Add(new Animal("Herring", AnimalGroup.Fish, Sex.Female));
Ist. Add(new Animal("Eagle", AnimalGroup.Bird, S ex.Male));

/I Report in various ways on the animal collection:
Print("Initial List", Ist);
ReportFemaleMale(Ist);
ReportGroup(lst);

}

public static void Print<T>(string explanation, ICollection<T>
Console.WriteLine(explanation);
foreach(T el in list)
Console.WriteLine("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}

public static void ReportFemaleMale(ICollection<Animal> list){
int numberOfMales = 0,
numberOfFemales = 0;

foreach(Animal a in list)
if (a.Sex == Sex.Male) numberOfMales++;
else if (a.Sex == Sex.Female) numberOfFemales ++;

Console.WriteLine("Males: {0}, Females: {1}",
numberOfMales, numberOfFemal es);
}

public static void ReportGroup(ICollection<Animal> list{
int numberOfMammals = 0,
numberOfBirds = 0,
numberOfFish = 0;

foreach(Animal a in list)
if (a.Group == AnimalGroup.Mammal) numberOfMa mmals++;
else if (a.Group == AnimalGroup.Bird) numberO fBirds++;
else if (a.Group == AnimalGroup.Fish) numberO frish++;

Console.WriteLine("Mammals: {0}, Birds: {1}, Fi sh: {2}",

list){

numberOfMammals, numberOfBir ds, numberOfFish);

Program 45.23 A programbased on | Col | ect i on<Ani rmal > - witha Col | ecti on<Ani mal >.

45.19. References

[Big-O] Wikipedia: Big O Notation

http://en.wikipedia.org/wiki/Big_O_notation

436

On the accompanying slide we show versions of Rragt5.23, which are tightly bound to the class
, and we show a version in which we have replazdéction<Animal> with

46. Generic Dictionaries in C#

In the same style as our coverage of lists in Gragl we will in this chapter discuss generic ifstegs and
classes fodictionaries. This covers the high-level conceptasbociative arrays and the low-level concept of
hash tables.

46.1. Overview of Generic Dictionaries in C#

Lecture 12 - slide 24

A dictionary is a data structure that maps keysalaes. A given key can have at most one valuken t
dictionary. In other words, the key of a key-vapser must be unique in the dictionary. A given watan be
associated with many different keys.

At the conceptual level, a dictionary can be unet as an associative array (see Section 192 ar
collection of key-value pairs. In principle the leation classes from Chapter 45 can be used as an
underlying representation. It is, however, convenie provide a specialized interface to dictioaearnvhich
sets them apart from collections in general. Intaaidwe often need good performance (fast lookapyl
therefore it is more than justified to have spesigdport for dictionaries in the C# libraries.

Figure 46.1 gives an overview of the generic irteet and the generic classes of dictionaries. ifjheefis
comparable with Figure 45.1 for collections. Aslsube white boxes represent interfaces and the gre
boxes represent classes. As it appears from Fitfuewe model dictionaries &humerable S (see Section
45.2) andcollection S (see Section 45.3) at the highest levels of attébns. From the figure we can
directly read that a dictionaig a ICollection of KeyvaluePair S. (Theisarelation is discussed in Section
25.2).

[Enumerable<KeyValuePalr<k, V>3
ICollection <KeyValuePalr<k, V>>

[Dictionary <K.v>

"Dictionary<K.V> | | SortedDictionary<K,V> | | SortedList<K,V> |
Figure 46.1 The class and interface inheritance tree related to Dictionaries

The symbok stands for the type of keys, and the symbstiands for the type of values.
KeyValuePair<k,V> is a simple struct that aggregates a key andue\tala single object.

Dictinonary<K,V> is implemented in terms of a hashtable that majects of type to objects of type.
SortedDictinonary<K,V> relies on binary search tressrtedList<k,v> is based on a sorted arrays. More
details can be found in Section 46.5. In Sectiol 4& review the time complexities of the operagiohthe
three dictionary classes shown above.

437

46.2. The interface IDictionary<K,V>

Lecture 12 - slide 25

From Figure 46.1 we see that the interfas&ionary<K,v> is a subinterface of
ICollection<KeyValuePair<K,V>> . We gave an overview of the generic interfexglection<T> in
Section 45.3. Because of this subinterface relakips we know that it is possible to use the opmrat
Contains , Add, Remove 0N objects of typ&eyVvaluePair<k,v> . Notice, however, that these operations are
rather inconvenient because the generic ®aggaluePair is involved. Instead ofdd(new

KeyValuePair(k,v)) we prefer another overload add, namelyaddk,v) . The mentioned operations
Contains , Add, andRemove ONKeyValuePairs ~ are available in theictionary classes of Figure 46.1, but
they are degraded to explicit interface implemeoist (see Section 31.8).

The following provides an overview of the operatidmiDictionary<K,v>

» The operations prescribed in ICollection<KeyValuePair<K,V>>

» The operations prescribed in IEnumerable<KeyValuePair<K,V>>

« Vithis [Kkey] - both getter and setter; the settatsadr mutates

« void Add(K key, V value) - only possible if key is nalteady present
» boolRemove(K key)

» boolcontainskey (K key)

» boolTryGetvalue (K key, out V value)

* ICollection<k> Keys - getter

* ICollection<V> Values - getter

V this[K key] is an indexer via which we can set and get a vall@egiven key by means of array notation
(see Section 19.1). dict is declared of typ®ictionary<K,v> then the indexer notation allows us to
express

valVar = dict[someKey];
dict[someKey] = someValue;

The first line accesses (gets/reads) the valueded withsomeKey. If no value is associated wishmekey
anKeyNotFoundException is thrown. The second line adds (sets/writes)saoaation betweesomeKey
andsomeValue todict . If the association is already in the dictiondhg setter mutates the value associated
with someKey.

The operatioradd(key,value) ~ adds an association betwaen andvalue to the dictionary. If the key is
already associated with (another) value in theatiery anArgumentException will be thrown.

Remove(key) removes the associationiely and its associated value. Via the value returtietRemove
operation signals if the removal was succesgkihove returnsfalse if key is not present in the dictionary.

ContainsKey(key) tells ifkey is present in the dictionary.

The operation caltryGetvalue(key, valueVar) accesses the valuelkafy , and it passes the value via an
output parameter (see Section 20.7). If no valasseciated with key, the default value of tygsee
Section 12.3) is passed back in the output paranétes method is added of convenience. Alternativie
indexer can be used in combination withhtainsKey

438

The propertiegeys andvalues return collections of the keys and the values a@ictionary.

46.3. Overview of the class Dictionary<K,V>

Lecture 12 - slide 26

The generic classictionary<K,v> is based on hashtabl@sctionary<k,v> implements the interface
IDictionary<K,V> as described in Section 46.2. Almost all methauk@operties obictionary<k,v> are
prescribed by the direct and indirect interfacethefclass. In the web version of the material wmengerate
the most important operations mittionary<k,V>

As it appears from the discussion of dictionariesva, it is necessary that two keys can be comdared
equality. The equality comparison can be provigeseveral different ways. It is possible to pass an
EqualityComparer oObject to thepictionary ~ constructor. Alternatively, we fall back on thefault equality
comparer of the key typeK. The propertyComparer of clasDictionary<K,v> returns the comparer used
for key comparison in the current dictionary. Skse #he discussion of equality comparison in Secta.9.

As already mentioned, a dictionary is implemented &ash table. A hash table provides very fagisaco
the a value of a given key. Under normal circumstan and with a good hash function - the run tiofake
access operations are constant (the run timestdiepend on the size of the dictionary). Thus tithe
complexity is O(1). Please consult Section 46.61ore details on the efficiency of the dictionary
operations.

46.4. Sample use of class Dictionary<K,V>

Lecture 12 - slide 27

In this section we will illustrate the use of dastaries with a simple example. We go for a dictigrihat
maps objects of typeerson to objects of typ@ankAccount . Given aPerson object (the key) we wish to
have efficient access to the pers@aiskAccount (the value).

The classerson is similar to Program 20.3. The clagskAccount is similar to Program 25.1. The exact
versions ofPerson andBankAccount , as used in the dictionary example, can be acdesa¢he
accompanying slide page, or via the program indeRis lecture.

using System;
using System.Collections.Generic;

class DictionaryDemo{
public static void Main(){

IDictionary<Person, BankAccount> bankMap =
new Dictionary<Person,BankAccount>(new PersonComparer());

/l Make bank accounts and person objects

BankAccount bal = new BankAccount("Kurt", 0.01),
ba2 = new BankAccount("Maria", 0.0 2),
ba3 = new BankAccount("Francoi", 0 .03),
ba4 = new BankAccount("Unknown", O .04);

Person pl = new Person("Kurt"),

439

18 p2 = new Person("Maria"),

19 p3 = new Person("Francoi");

20

21 bal.Deposit(100); ba2.Deposit(200); ba3.Deposit (300);
22

23 /I Populate the bankMap:

24 bankMap.Add(p1, bal);

25 bankMap.Add(p2, ba2);

26 bankMap.Add(p3, ba3);

27

28

29 /[Print Kurt's entry in the map:

30 Console.WriteLine("{O}\n", bankMap[p1]);

31

87, /I Mutate Kurt's entry in the map

33 bankMap[pl] = ba4;

34

85

36 /I Mutate Maria's entry in the map. PersonComparer crucial!
37 ba4.Deposit(400);

38 bankMap[new Person("Maria")] = ba4;

39

40

41

42 /I Add p3 yet another time to the map

43 /I Run-time error: An item with the same key has al ready been added.
44 I* bankMap.Add(p3, bal);

45

46 */

47

48 /I Try getting values of some given keys

49 BankAccount balRes = null,

50 ba2Res = null;

51 bool resl = false,

52 res2 = false;

53 resl= bankMap.TryGetValue(p2, out balRes);

54 res2 = bankMap.TryGetValue(new Person("Anders"), out ba2Re S);

55 Console.WriteLine("Account: {0}. Boolean result
56 Console.WriteLine("Account: {0}. Boolean result
57 Console.WriteLine();

58

59 /l Remove an entry from the map

60 bankMap.Remove(pl);

61

62

63 /l Remove another entry - works because of PersonCo
64 bankMap.Remove(new Person("Francoi"));
65

66 }

67

68 public static void ReportDictionary<K, V>(string
69 IDictio

70 Console.WriteLine(explanation);

71 foreach(KeyValuePair<K,V> kvp in dict)

72 Console.WriteLine("{0}: {1}", kvp.Key, kvp.Va
73 Console.WriteLine();

74 }

75}

76

77 public class PersonComparer: IEqualityComparer<Pers
78

79 public bool Equals(Person p1, Person p2){

80 return (p1l.Name == p2.Name);

81 }

82

440

{1}", balRes, resl);
{1}", ba2Res, res2);

mparer

explanation,
nary<K,V> dict){

lue);

on>{

public int GetHashCode(Person p){
return p.Name.GetHashCode();

}
}

Program 46.1 A programworking with
Di cti onar y<Per son, BankAccount >.

In line 8-9 we make the dictionabgnkMap of typeDictionary<Person,BankAccount> . We pass an
instance of clasBersonComparer , see line 76-86, which implemenigualityComparer<Person> . Inline
11-19 we make sampBankAccount andPerson objects, and in line 24-26 we populate the diargn
bankMap.

In line 30 we see how to access the bank accoymgrsbrp1 (Kurt). We use the provided indexer of the
dictionary. In line 33 we mutate tihankmap: Kurt's bank account is changed from the one eefezd byail
to the one referenced by4. In line 38 we mutate Maria's bank account imailar way. Notice, however,
that that the relative weak equalityrafrson objects (implemented in claBsrsonComparer) implies that
the newperson("Maria") in line 38 is equal to the person referencegddyand therefore line 38 mutates
the dictionary entry for Maria.

In line 43 we attempt add yet another entry fomEa. This is illegal because there is alreadyrarnydor
Francoi in the dictionary. If the comments around U3 are removed, a run time error will occur.

In line 52-53 we illustrat@ryGetvalue . First, in line 52, we attempt to access Mariatoant. The out
parametebaResl is assigned to Maria's account atad is returned from the method. In line 53 we attempt
to access the account of a brand mewon object, which has no bank account in the dictignan is
returned througha2Res, andfalse is returned from the method.

Finally, in line 58-64 we remove entries from thetionary by use of theemove method. First Kurt's entry
is removed after which Francoi's entry is removed.

The output of the program is shown in Listing 4@8&ly on web).

Exer cise 12.3. Switching from Dictionary to SortedDictionary

The program on this slide instantiateSi@ionary<Person,BankAccount> . As recommended earlier in
this lecture, we should work with the dictionarg a variable of the interface tymactionary<k,v>

You are now asked to replabetionary<Person,BankAccount> with
SortedDictionary<Person,BankAccount> in the above mentioned program.

This causes a minor problem. Identify the probland fix it.

Can you tell the difference between the outpuhefgrogram on this slide and the output of yoursesV
program?

You can access thBankAccount andPerson classes in the web version of the material.

441

46.5. Notes about Dictionary Classes

Lecture 12 - slide 28

As can be seen from Figure 46.1 several differenegjc classes implement timéctionary<k,v>
interface Dictionary<K,v> , as discussed in Section 46.3 and Section 4®dsisd on a hash table
representatiorsortedDictionary<K,V> is based on a binary tree, and (as the name sjgnal
SortedList<K,v> is based on an array of key/value pairs, sortekklyg.

The following provides an itemized overview of theee generic dictionary classes.

« ClassbDictionary<K,v>
« Based on a hash table
» Requires that the keys in tygecan be compared by &quals operation
« Key values should not be mutated
« The efficiency of class dictionary relies on a gdadh function for the key type
« Consider overriding the meth@#tHashCode in clask
« Adictionary is enumerated in terms of the stiugtvaluePair<k,v>
« ClasssSortedDictionary<K,V>
- Based on a binary search tree
« Requires amcomparer for keys of typex - for ordering purposes
« Provided when a sorted dictionary is constructed
o ClassSortedList<K,V>
- Based on a sorted collection of key/value pairs
» Aresizeable array
« Requires amcomparer for keys, just likeSortedDictionary<K,v>
« Requires less memory thanrtedDictionary<K,v>

When you have to chose between the three dictiatiasges the most important concern is the diffexen
time characteristics of the operations of the @as$he next section provides an overview of these.

442

46.6. Time complexity overview: Dictionary classes

Lecture 12 - slide 29

We will now review the time complexities of the masportant dictionary operations. This is doné¢ha
same way as we did for collections (lists) in Setd5.17. We will assume that we work on a dictigrinat
holdsn entries of key/value pairs.

Operation Dictionary<K,V> SortedDictionary<K,V> SortedList<K,V>
this[key] o1 O(log n) O(log n) or O(n)
Add(key,value) O(1) or O(n) O(log n) O(n)
Remove(key) o1 O(log n) O(n)
ContainsKey(key) o) O(log n) O(log n)
ContainsValue(value) O(n) O(n) O(n)

Table 46.1 Time complexities of important operations in the classes
Di cti onary<K, V>, Sort edDi cti onary<K, V>, and
Sort edLi st <K, V>,

As noticed in Section 46.5 an object of typeionary<k,v> is based on hash tables. Eventually, it will be
necessary to enlarge the hashtable to hold neweelsnit is good wisdom to enlarge the hashtablenwh
becomes half full. Th®(1) or O(n) time complexity foradd reflects that a work proportional tais needed
when it becomes necessary to enlarge the hash table

Most operations on the binary tree representati@mdDictionary<K,v> are logarithmic im. The only
exception (among the operations listed in the Jableontainsvalue , which in the worst case requires a full
tree traversal.

In SortedList<K,v> the indexer is efficienD(log n) when an existing item is mutated. If use of thaeixer
causes addition of a new entry, the run time isstimae as the run time afd. Adding elements to a sorted
list requires, in average, that half of the elerseme pushed towards the end of the list in o@lerdate free
space for the new entry. This is @n) operationRemove is symmetric, pulling elements towards the
beginning of the list, and therefore aldn). Containskey is efficient because we can do binary search on
the sorted listContainsvalue requires linear search, and therefore it i©ém operation.

Given the table in Table 46.1 it is tempting to dade thabDictionary<k,v> is the best of the three classes.
Notice, however, that the difference between atamisun timecl andc2 log(n) is not necessarily
significant. If the constardl is large and the constarft is small, the binary tree may be an attractive
alternative. Furthermore, we know that the hashktalill be slow when it is almost full. In that casere

and more collisions can be expected. At some [oititne the hash table will stop working if it istn

resized. This is not an issue if we work with bakhbinary trees. Finally, the hashtable deperitisadly

on a good hash function, preferable programmedfigadly for the key typex. This is not an issue if we use
binary trees.

443

444

47. Non-generic Collections in C#

This is a short chapter in which we discuss thegmmeric collection classes. You may encounteiofise
these classes in many older C# programs. In Sedtidnhthese collection classes were cdiliesti generation
collection classes.

47.1. The non-generic collection library in C#

Lecture 12 - slide 31

The overview of the non-generic collection inteda@nd classes in Figure 47.1 is a counterpaneteum
of Figure 45.1 and Figure 46.1. The white boxesasgnt interfaces and the grey boxes represerseslas
Most classes and interfaces shown in Figure 48dnbeo the namespasgstem.Collections

The non-generic collection classes store dataps dyject

As the most important characteristics, the elemehtise lists are of typebject . Both keys and values of
dictionaries ar®bjects . Without use of type parametrization, there areneans to constraint the data in
collections to of a more specific type. Thus, if flseinstance work with a collection of bank acctnve
cannot statically guarantee that all elements efctiilection are bank accounts. We may accideniasigrt
an object of another type. We will find the errorantime. Most likely, an exception will be raisetien we
try to cast ambject t0 BankAccount .

IEnumerable | Queue
ction 2 | stack
ICollecion 53— [BitArray
e L.z

|Ami;ru§t | Array ListDictionary |Hasﬁ1‘ahle Sorte_l:_liJstl

Figure 47.1 Theclassand interface inheritance tree related to collections

ThelEnumerable |, ICollection , IList andiDictionary interfaces of Figure 47.1 are natural counterparts
to the generic interfaceBnumerable<T> | ICollection<T> , IList<T> andIDictionary<K,V>

The classrrayList — corresponds toist<T> . As suchArrayList is a class with a rich repertoire of
operations for searching, sorting, and range ojp@i@trrayList is undoubtedly the most widely used
collection class in C# 1.0 programs.

TheArray class shown next tarrayList in Figure 47.1 deserves some special clarificatitoimelongs to
thesystem namespace. You cannot instantiate class in your programs, becauseay is an abstract
class. And you cannot useay as a superclass of one of your own classes. &xsActay seems pretty
useless. At least it is fair to state the classy is rather special compared to the other classEgyiure 47.1.

Let us now explain the role of classay . As mentioned earlier, see Section 28.2 , chasg acts as the
superclass of all "native" array types in C#. (8mediscussion of arrays in Section 6.4). Conseityyeil

445

the nice operation igystem.Array can be used on all "native" arrays that you ug@ur C# programs. If,
for instance, we have the array declarations

int[] ia = new int[3];
string[] sa = new string[5,6];
BankAccount[] baa = new BankAccount[10];

the following are legal expressions

ia.Length

a.Rank
Array.BinarySearch(ia, 5)
Array.Find(sa, IsPalindrome)
Array.Sort(baa)

In theArray class, you should pay attention to the (overloadttic methodtreatelnstance , which
allows for programmatic creation on an arbitramagr TheArray instance methodsetvalue andSetvalue
allow us to access elements in arbitrary arrapgependent of element type and rank.

When we talk about "native arrays" in C# we refethie array concept implemented in the languageiels.
The compiler provides special support for thesé&vaatrrays. In contrast, generic and non-generic
collections are provided via the class library. T#compiler and the C# interpreter do not havéqaar
knowledge or support of the collection classes.cdldd have written these classes ourselves! It is
interesting to notice that the native arrays, as/ed from class\rray in Figure 47.1, are type safe. The type
safeness of native arrays is due to the specilostipy the compiler, which allows for declaratioithe
element types of the arrays (see the exampl@s obtring , andBankAccount arrays above).

The classiashTable in Figure 47.1 corresponds to the generic aéssnary<k,v> , see Section 46.3 and
Section 46.4).

The class.istDictionary , wWhich belongs to the namespagystem.Collections.Specialized , has no
natural generic counterpartstDictionary is based on linear search in an unordered callect
key/value pairsListDictionary should therefore only be used for small dictioesri

As the name suggests, classedList corresponds tBortedList<K,V> . Both rely on a (linear) list
representation, sorted by keys.

The clas®itArray is - by nature - a non-generic collection clagse Binary digit 1 is represented as
boolearntrue, and the binary digit O is represented as bodlaae BitArray provides a compact
representation of a bit arrays. In the contexnhdekers, see Program 19.4, we have earlier distasse
partial reproduction of the clasgArray

In addition to the types shown in Figure 47.1 thexist some specialized collections in the namespac
System.Collections.Specialized . As an example, the classingCollection is a collection of strings.
The clas<CollectionBase in the namespac®stem.Collection is intended as the superclass of new,
specialized collection classes. In the documemaifdhis class, an example shows how to define an
Int16Collection as a subclass abllectionBase . Needless to sagll these classes are obsolete relative
to both C#2.0 and C#3.0. As of today, the classmglme necessary for backward compatibility, but,
unfortunately, they also add to the complexityhaf tNET class libraries.

446

48. Patterns and Technigues

In earlier parts of this material (Section 31.6 &adtion 45.2) we have at length discussed enuaneriat
C#, including their relationship for each loops.

In this section we first briefly rephrase this e tdesign pattern known Hsrator. Following that we will
show how to implement iterators (enumerators) wgé ofyield return, which is a variant of thesturn
statement.

48.1. The Iterator Design Pattern

Lecture 12 - slide 34

Thelterator design pattern provides sequential access tognegated collection. At an overall level, an
iterator

« Provides for a smaller interface of the collectitass

« All members associated with traversals have bectagred to the iterator class
« Makes it possible to have several simultaneou®tsas
« Does not reveal the internal representation otdikection

As we have seen in Section 31.6 and Section 4a&rsal of a collection requires a few relatedratens,
such asurrent , MoveNext , andReset . We could imagine a slightly more advanced iteratioich could
move backwards as well. With use of iterators weeHactored these operations out of the colleatiasses,
and organized them in iterators (enumerators). Withrefactoring, a collection can be asked tovdelan
iterator:

aCollection.GetEnumerator()

Each iterator maintains the state, which is necgdeaarry out a traversal of a collection. If weed two
independent, simultaneous traversals we can agléoiterators of the collections. This could, fiestance
be used to manage simultaneous iteration from &ods of a list.

In more primitive collections, such as linked ligtee Section 45.14) it is hecessary to reveablbject
structure that keeps the list together.LitedList<T> this relates to the details hkedListNode<T>
instances). With use of iterators it is not necgsgareveal such details. An iterator is an enakgied,
abstract representation of some state that mamemasgersal. The concrete representation of thie $$ not
leaked to clients. This is very satisfactory inodject-oriented programming context.

Iterators (enumerators) are typically used viadoleloops. As an alternative, it is of course glgssible to
use the operations in tEnumerator interface directly to carry out traversals. Exeeci2.4 is a
opportunity to train such a more direct use ofiters.

Exercise 12.4. Explicit use of iterator - instead of using foreach

447

In this program we will make direct use of an itergan enumerator) instead of traversing with afse
foreach.

In the animal collection program, which we havensearlier in this lecture, we traverse the animal
collections several times with use of foreach. BRepleach use of foreach with an application of an
iterator.

48.2. Making iterators with yield return

Lecture 12 - slide 35

In this section we will show how to use the spepiaiposeyield return statement to define iterators, or as
they are called in C#, enumerators. First, we pvitigram a very simple collection of up to threred
values. Next we will revisit the integer sequencareration, which can be found in Section 58.3.

In Program 48.1 we will program a collection clasa]edGivencCollection , which just covers zero, one,
two or three values of some arbitrary typéAs a simpleminded approach, we represent theséues with
three instance variables of typeand with three boolean variables which tell§i&@ torresponding values
are present. As an invariant, the instance variadnle filled from the lower end. It would be tempgtio use
the typeT? instead off, and the valueull for a missing value. But this is not possibl& i class.

It is important that the clagsvenCollection implements the generic interfa@@umerable<T> . Because
this interface, in turn, implements the non-genmomerable , we must both define the generic and the
non-genericGetEnumerator method. The latter must be defined as an exphtetface (see Section 31.8), in
order not to conflict with the former. If we forgdie non-generiGetEnumerator , we get a slightly
misleading error message:

'GivenCollection<T> ' does not implement interface member
'System.Collections.|IEnumerable.GetEnumerator()'.
‘GivenCollection<T> 'is either static, not public, or has the wronyine type.

This message can cause a lot of headache, bet®ussal problem (the missing, non-generic
GetEnumerator method) is slightly camouflaged in the error mgssa

The implementation of the non-generic enumeratstrgelegates its work to the generic version.

The implementation of the genedgumerator method uses thgeld return statement. Let us assume that
an instance o6ivenCollection<T> holds threa values (infirst , second , andthird). The three boolean
variablesirstDefined , secondDefined , andthirdDefined are all true. The&etEnumerator method has
three yield return statements in sequence (se®&0r&2). By means of theseetEnumerator can return
three values before it is done. This is entireffedent from a normal method, which only returngeafter
which it is done). Th&etEnumerator in classGivenCollection acts as a coroutine in relation to its calling
place (which is théoreach statement in the client program Program 48.2)o/gtine can resume
execution at the place where execution stopped @adier call. A normal method always (re)startsrf its
first statement each time it is called.

448

using System;
using System.Collections.Generic;
using System.Collections;

public class GivenCollection<T> : IEnumerable<T>{

private T first, second, third;
private bool firstDefined, secondDefined, thirdDe fined;

public GivenCollection(){
this.firstDefined = false;
this.secondDefined = false;
this.thirdDefined = false;

}

public GivenCollection(T first){
this.first = first;
this.firstDefined = true;
this.secondDefined = false;
this.thirdDefined = false;

}

public GivenCollection(T first, T second){
this.first = first;
this.second = second;
this.firstDefined = true;
this.secondDefined = true;
this.thirdDefined = false;

}

public GivenCollection(T first, T second, T third)i
this.first = first;
this.second = second;
this.third = third;
this.firstDefined = true;
this.secondDefined = true;
this.thirdDefined = true;

}

public int Count(){
int res;
if (MfirstDefined) res = 0;
else if (!secondDefined) res = 1;
else if ('thirdDefined) res = 2;
else res = 3;
return res;

public IEnumerator<T> GetEnumerator(){

if (firstDefined) yield return first;

if (secondDefined) yield return second; // not else
if (thirdDefined) yield return third; // not else

}

IEnumerator IEnumerable.GetEnumerator(){
return GetEnumerator();

}

Program 48.1 A collection of up to three instance variables of
type T - with an iterator.

449

In Program 48.2 we show a simple program that mistées sGivenCollection of the integers 7, 5, and 3.
Theforeach loop in line 11-12 traverses the three correspandistance variables, and prints each of them.

using System;
class Client{
public static void Main(){
GivenCollection<int> gc = new GivenCollection< int>(7,5,3);

Console.WriteLine("Number of elements in given Collection: {0}",
gc.Count());
foreach(intiingc){ // Output: 753
Console.WriteLine(i);

}

Program 48.2 A sampleiteration of the three instance variable
collection.

Exercise 12.5. Theiterator behind ayield

Reprogram the iterator in classenCollection without using theield return statement in the
GetEnumerator method.

Let us now revisit the integer enumeration clasdée&®ection 58.3. The main point in our first dissios of
these classes was tBemposite design pattern, cf. Section 32.1, as illustrateHigure 58.1 of Section 58.3.
The three classestinterval , IntSingular ~, andintCompSeq all inherit the abstract claggSequece

You can examine the abstract clasSequence in Program 58.9 in the appendix of this matefihle three
concrete subclasses were programmed in Prograr,3&.dgram 58.11, and Program 58.12.

TheGetEnumerator methods ofntinterval , IntSingular ~, andintCompSeq are all emphasized below in
Program 48.3, Program 48.4, and Program 48.5. <itie use ofield return in all of them.

In Program 48.3 the if-else GktEnumerator in line 19-24 distinguishes between increasing dexteasing
intervals. ThesetEnumerator method ofintSingular is trivial. TheGetEnumerator method of

IntCompSeq in Program 48.5 is surprisingly simple - at leashpared with the counterpart in Program
58.12. The two foreach statements (in sequend&)ari9-22 activate all the machinery, which we
programmed manually in Program 58.12. This includesrsive access to enumerators of composite
sequences.

The simplicity of enumerators, programmed with ¢iegturn, is noteworthy compared to all the undedy
stuff of explicitly programmed classes that impletie interfaceEnumerator

Iterators (iterator blocks), programmed wgtéld return , are only allowed to appear in methods that
implement an enumerator or an enumerable inte(fEh asEnumerator Or IEnumerator ~ and their
generic counterparts). Such methods are handlad/ény special way by the compiler, and a number of
restrictions apply to these methods. The compgeregates all the machinery, which we program ovesel
when a class implements the enumerator or enuneeirstbifaces. Methods with iterator blocks that
implement and enumerator or an enumerable intertstoen an enumerator object, on which MeeeNext

450

can be called a number of times. For more detail¢epators please consult Section 10.14 in th& O#
Language Specification [csharp-3-spec].

public class Intinterval: IntSequence{
private int from, to;

public Intinterval(int from, int to){
this.from = from;
this.to = to;

}

public override int? Min{
get {return Math.Min(from,to);}

}

public override int? Max{
get {return Math.Max(from,to);}

public override IEnumerator GetEnumerator (){
if (from < to)
for(int i = from; i <= to; i++)
yield return i;
else
for(int i = from; i >= to; i--)
yield return i;

}

Program 48.3 Theclass Intinterval - Revisited.

public class IntSingular: IntSequence{
private int it;
public IntSingular(int it){

this.it = it;
}

public override int? Min{
get {return it;}

public override int? Max{
get {return it;}

public override IEnumerator GetEnumerator(){
yield return it;

}
}

Program 48.4 Theclass IntSingular - Revisited.

451

public class IntCompSeq: IntSequence{

private IntSequence s1, s2;

public IntCompSeq(IntSequence s1, IntSequence s2) {
this.s1 = s1;
this.s2 = s2;

}

public override int? Min{
get {return (s1.Min < s2.Min) ? s1.Min : s2.Min i}

public override int? Max{
get {return (s1.Max > s2.Max) ? s1.Max : s2.Max i}

public override IEnumerator GetEnumerator (){
foreach(intiin sl)

yield return i;
foreach(int i in s2)

yield return i;

}

Program 48.5 The class IntCompSeq - Revisited.

In the web edition of the material we show a sargfint program that contains a couplart$equence s.

48.3. References

[Csharp-3-spec] "The C# Language Specification,3.0"

452

