10. Classes: An Initial Example

This is the first chapter about classes. It is #iedfirst chapter in the first lecture about céssOur basic
coverage of classes runs until Chapter 13.

10.1. The Die Class

Lecture 3 - slide 2

In this section we encounter a number of impor@@P ideas, observations, and principles. We wily ve
briefly preview many of these in a concrete waghie context of a simple initial class. Later welwiscuss
the ideas in depth.

We use the example ofdée, which is the singular form of "dice", see Progradnl. One of the teaching
assistants in 2006 argued that the ctassis a sad beginning of the story about classesl, W& maybe
right. | think, however, that the concept of aidi@a good initial example. So we will go for it!

On purpose, we are concerned with use of eithesitigailar or the plural forms of class names. Tihgudar
form is used when we wish to describe and prograimgle phenomenon/thing/object. The plural form is
most often used for collections, to which we cad addelete (singular) objects. Notice that we wetke
multiple instances of a class, such astiaeclass. In this way we can create a number of dice.

The clas®ie in Program 10.1 is programmed in C#. We prograireauch that each given die has a fixed
maximum number of eyes, determined by the constatNumberOfEyes . The clasencapsulatethe

instance variablesnumberOfEyes , randomNumberSupplier , and the constamtaxNumberOfEyes . They are
shown in line 4-6. The instance variable are ingehith describe th&tateof abie object, which is an
instanceof theDie class. The instance variablenberofEyes is the most important variable. The variable
randomNumberSupplier ~ makes it possible for@ie to request a random number frorRandonobject.

After the instance variables comes a constructais iE line 8-11. The purpose of the constructaois
initialize a newly createie object. The constructor makes the random numbgligu, which is an instance
of thesystem.Random class. The constructor happens to initialize anabsix-eyed die. The expression
DateTime.Now.Ticks ~ returns aong integer, which we type cast to an . The use of annchecked context
implies that we get ant out of the cast, even if theng value does not fit the rangeiof . (The use of
unchecked eliminates overflow checking). The value assigimetimberOfEyes is achieved by tossing the
die once via activation of the methmewTossHowManyEyes. The call ofNewTossHowManyEyes on line 10
delivers a number between 1 and 6. In this wayiriial state - the number of eyes - of a newidieandom.

Then follows three operations. In most object-dedrprogramming languages the operations are called
methodsTheToss operation modifies the value of themberOfEyes variable, hereby simulating the tossing
of a die. Theross operation makes use of a private method caled ossHowManyEyes, which interacts

with the random number supplier. TRemberOfEyes method just accesses the value of the instandcablar
numberOfEyes . TheToString method delivers a string, which for instance camiged if we decide "to print
a Die object". Thaostring method in clasbie overrides a more general method of the same name.

We notice that the instance variables are privatkthat the constructors and methods are publicater
instance variables cannot be used/seen from oldses. This turns out to be important for us Sesion
11.4.

61

using System;

public class Die {
private int numberOfEyes ;
private Random randomNumberSupplier
private const int maxNumberOfEyes = 6;

public Die(){
randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
numberOfEyes = NewTossHowManyEyes();

}

public void Toss (){
numberOfEyes = NewTossHowManyEyes();

}
private int NewTossHowManyEyes (){
return randomNumberSupplier.Next(1,maxNumberOfE yes + 1);
}
public int NumberOfEyes () {
return numberOfEyes;
}
public override String ToString (){
return String.Format("[{0}]", numberOfEyes);
}
}

Program 10.1 The class Die

Below, in Program 10.2 we see a client of claiss which creates and repeatedly tosses three dickerit
of aDie uses a die via a numbermé references. In Program 1Qi2, d2, andd3 are references w@ie
objects. Section 10.2 is about clients and servers.

When we run the program we get the output showluisiting 10.3

using System;
class diceApp {

public static void Main(){

Die dl = new Die() ,
d2 = new Die()
d3 = new Die() ;
for(inti=1;i<10; i++){
Console.WriteLine("Die 1: {0}", d1); /[l Inplicitly
Console.WriteLine("Die 2: {0}", d2); /Il calls
Console.WriteLine("Die 3: {0}", d3); /1l ToString in Die
dl.Toss() ; d2.Toss() ; d3.Toss() ;
}
}
}
Program 10.2 A program that tosses three di
Die 1: [1]
Die 2: [1]
Die 3: [1]
Die 1: [2]

62

Die 2: [2]
Die 3: [2]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [4]
Die 2: [4]
Die 3: [4]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [2]
Die 2: [2]
Die 3: [2]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [2]
Die 2: [2]
Die 3: [2]
Die 1: [1]
Die 2: [1]
Die 3: [1]

Listing 10.3 Sample program outpt

The output shown in Program 10.1 seems suspect?\Wake a close look. We will come back to this
problem in Exercise 3.7, which we encounter ini®act1.10. (At that location in the material we bav
learned enough to come up with a good solutiohégtroblem).

The Die class is ®emplateor blueprintfrom which we can create an arbitrary number of di
objects

The term blueprint is often used as a metaphoratdiss (seen in relation to objects). The wordeplint' is,
for instance, used for an architect's drawing bbase. In general, a blueprint refers to a detailad for
something that, eventually, is going to be consgicThe blueprint can be used as a prescriptam fr
which craftsmen can actually built a house.

The clas®ie from Program 10.1 is only useful if we apply itsome context where dice are actually needed.
We use dice in various games. In Exercise 3.1 wpqse that you make a simple Yahtzee game, witlofuse
five dice (five instances of thme class).

Exercise 3.1. Yahtzee

Write a very simple Yahtzee program based orptheclass. Yahtzee is played by use of five dice énat
tossed simultaneously. The players are suppositidot a table of results. The table should allow
registration of ones, ..., sixes, three-of-a-kifiodir-of-a-kind, full-house, small-straight, largeesght,
yahtzee, and chance. See wikipedia for more detadsnspiration.

Be sure to use the version of thie class that shares tRandom class with the other dice. This version of
theDie class is produced in another exercise in thisitect

This program is for a single player, who tosseditieedice repeatedly. Each time the five dicetassed a
table cell is filled. No re-tossing is done witlsdethan five dice. The first category that fits\aeg toss is

63

filled. (Try yahtzee first, Chance last). Keepiihple!

You may consider to write ahtzeeTable class which represents the single user table tasextjister the
state of the game. Consider the interface and tipasaof this class.

10.2. Clients and Servers

Lecture 3 - slide 3

The nameslientandserveris often used when we are concerned with compuAessrver denominate a
computer that provides services to its surroundingpuld be a file server or a web server.

In the context of object-oriented programming therds client and server will be usedaigect rolesin a

given situation an object plays a given role. Ajeotx is called a client of if x makes use of the services
(operations) provided by. An objecty is called a server &fif it provides services (operations)x®o

In a dice game the objects act, in turn¢léent andservers

+ Die object = Random object|

Die object || Random object]
4 Die object = Random object|

Figure 10.1 Interacting Game, Die, and Random objects. The Galojext is a
client of the Die objects, which in turn are clismtf the Random objects.

Figure 10.1 shows a single game object, threelgexts, and three random objects. The client-senles
of these objects can be summarized as follows:

» TheGameobject is a client of a number bk objects
« AgivenDie objectis a client of aandom object
« Inturn, aDie object act as a server for themeobject, andRandom objects act as servers foie

objects

In the figure, the arrows are oriented from cligntservers.

10.3. Message Passing

Lecture 3 - slide 4

A client interacts with its connected servers vessage passing.

As a metaphor, we pretend that objects communimataeans ofmessage passing

64

Message passing actually covers a procedure catteBure calling is a technical matter. Messagsipgss
an everyday term that covers some communicationdmst one person and another, for instance vialposta
mail. In some setups, message passing also invtileagceiving of a reply. As already stressedararise

of metaphors is very important for getting new &lesnd for raising the level of abstraction.

In Figure 10.2 we illustrate message passing iwéen a game object, three dice, and three randgeutsb

>

Die object ——= Random object|

Die object ——»|Random object|

[Die object |—»[Random object]

Figure 10.2 InteractingGane, Di e, andRandomobjects

In some versions of this teaching material you balable to animate the figure, such that you ctuadly
see the acts of passing a message and receiviapdyaBefore sending a message, the sending dbject
emphasized. When emphasized, we say that the ébjiaacurrent object In a single threaded program
execution, there is always a single current objEuis is the object, which most recently receivedessage.
In football, message passing corresponds to patsenigall from player to player. At some level of
abstraction, there is always a single player -biddekeeper' - who posses the ball. He or sheesponds to
the current object.

Here follows some general remarks about messagipas

« We often prefer to think of the interaction betwedfects as message passing.
« The receiver of an object locates a procedurefonetion which can answer the message -

method lookup
« Aresult may be sent back from the receiver toséreder of the message.

In the next chapter we will dive into the detaifgtee class concept.

65

66

11. Classes

The most important programming concept in obje@ried programming is the class. The programmer
writes the classes in his or her source progranmuitime, classes are used as blueprints/temgdiates
instantiation of classes (creation of objects}this chapter we will explore the concept of clas3éss will
be a relatively long journey through visibility isss, representation independence, instance argl clas
variables, instance and class methods, and théarot the current object. At the end of the cleapin
Section 11.14 we will discuss the important differes between classes and objects.

11.1. Classes

Lecture 3 - slide 6

The single most important aspect of classenapsulationAs a matter of fact, | believe that the most
important achievement of object-oriented prograngmsnthe idea oystematic encapsulation of variables
and operations that belong together

A class is a construct that surrounds a numbeefafitions, which belong together. Some of these
definitions can be seen from the outside, wherdar® are only relevant seen from the inside. ltataws
a short 'definition’ of a class:

A classencapsulatedata and operations that belong together, armhirals the visibilityof

both data and operations. A class can be usedyas en the programming language

The parts of a class which are visible from othasses forms thelient interfaceof the class. In the figure,
the interface of a class is drawn on the bordéh@box that surrounds the variables and operatidnss, in
the figure, only a subset of the operations - @yi2, Op3, and Op4 - form the client interface @f thass.
All data parts are kept inside the class, and tdaeyot be directly used from other classes.

Opl

Hi

2]

3

Figure 11.1 A class and its interface to other classes. Therfate is often
called the client interface. In this illustratiohe operations Op1, Op2, Op3, and
Op4 form the client interface of the class.

The notion of interfaces between program part®giam building blocks - is important in generalthis
section we talk about the interfaces between ciadstirns out that a class may have severalréifite
interfaces. The interface we care most about nglat is called thelient interfaceof a class C. There is
another interface between C and classes that extargpecializes C. We have more to say about this
interface in Section 27.2.

67

Exercise 3.2. Time Classes

This is not a programming exercise, but an exemwtsieh asks you to consider data and operations of
classes related to time.

Time is very important in our everyday life. Thenef, many of the programs we write somehow dedd wit
time.

Design a clasBointinTime , which represents a single point in time. How dorepresent a point in time?
Which variables (data) should be encapsulateddrtldss? Design the variables in terms of theirazam
and types.

Which operations should constitute the client iiatee of the class? Design the operations in tefrtteedr
names, formal parameters (and their types), anty/fes of their return values.

Can you imagine other time-related classes HuaninTime ?

Avoid looking at the time-related types in the @#dry before you solve this exercise. During tharse
we will come back the time related types in C#.

11.2. Perspectives on classes

Lecture 3 - slide 7

In this section we discuss different ways to unteid classes relative to already established utasheliggs.
You may safely skip this section if such discussloes not appeal to you.

Depending on background and preferences, diffgnergrammers may have different understandings of
classes. Here follows some of these.

- Different perspectives on classes:
- An abstract datatype
« A generalization of a record (struct)
« A definition procedure
« A module

Typesandabstract datatypeare topics of general importance in computer egeBut it is probably fair to
state that the topic of types is of particular imigonce in the theoretical camp. Abstract datatyza® been
studied extensively by mathematically inclined comep scientists, not least from an interest of Bjpation.
Boiled down to essence, a type can be seen ahwsdties that possess a number of common preperti
An abstract datatype is a set of such values aad af operations on these values. The operati@ke ine
values useful. When we talk about abstract datestyiine data details of the values in the typgardehind
the scene.

In most imperative programming language, includfagcal and C, a record (a struct in C) is a datatate

that groups data together. We often say that data preaggregatedn a record. Records are called structs
in C. It is a natural and nice idea to organizedperations of the grouped data together with #te d

68

themselves; In other words, to 'invite' the operation records/structs into the record itself. # €ructs
are used as a "value variant” of a class. Thisdgdpic in Section 14.1.

Abstractions can be formed on top of expressiohs [Eads to the functions. In the same way, proeed
are abstractions of commands/statements. A callfofiction is itself an expression, and a call of a
procedure is a command/statement. From a thedrpbaat of view it is possible to abstract othentgctic
categories as well, including a set of definitidBach abstractions have been catlefinition procedures
[Tennent81]. Classes can therefore be seen astibefiprocedures. Following the pattern from abdhe,
activation of a definition procedure leads to défans. It is not obvious, however, if multiple a@tions of
a definition procedure is useful.

Finally, a module is an encapsulation, which da®sact as a type. A module may, on the other hand,
contain a type (typically a struct) that we tremba abstract datatype. See Section 2.3 for olierear
discussion of modules.

11.3. Visibility - the Iceberg Analogy

Lecture 3 - slide 8

As stated in Section 11.1 visibility-control is mmportant aspect of classes. Inspired by Bertraegdvis
seminal boolObject-oriented software constructidieyer88], we will compare a class with an iceper

A class can be seen asieaberg Only a minor part of it should be visible fronetbutside. The
majority of the class details should be hidden.

Figure 11.2 An Iceberg. Only a minor fraction of the icebergisible above
water. In the same way, only a small part of theitledf a class should be visible
from other classes.

Clients of a class C cannot directly depend ondmdoarts of C.

Thus, the invisible parts in C can more easily i@nged than the parts which constitute the
interface of the class.

69

Visibility-control is important because it protethke invisible parts of a class from being direeitressed
from other classes. No other parts of the programrely directly on details, which they cannot ascéf
some detail (typically a variable) of a class cdrb®seen outside the class, it is much easieotifynthis
detail (e.g. replace the variable by a set of otlaeiables) at a later point in time.

You may ask why we would like to modify detailsanfr class. We can, of course, hope that we doemd n
to. But if the program is successful, and if ilive many years ahead, it is most likely that wedto

change it eventually. Typically, we will have taemd it somehow. It is also typical that we havetliange
the representation of some of our data. It is westly if these changes cause a ripple effectdhidg for
manymodifications throughout the whole program. lvésy attractive if we can limit the area of the
program that needs attention due to the modifinca#foprogrammer who use a programming language that
guaranties a given visibility control policy is@ngood position to deal with the consequenceseof th
mentioned program modifications.

11.4. Visible and Hidden aspects

Lecture 3 - slide 9

Let us now be more concrete about class visibilityhis section we will describe which aspect ¢ef as
class secrets, and which aspect to spread outsdgdss.

- Visible aspects

« The name of the class

« The signatures of selected operations: The interfdithe class
« Hidden aspects

« The representation of data

» The bodies of operations

« Operations that solely serve as helpers of otheradjons

The visible aspects should be kept at minimum IéMeé class name must be visible. The major intertz
the class is formed by the signatures of selegbedadions. Asignature of a methoid the name of the
method together with the types of the method patarmeand the type of the value returned by thénaukt

It is always recommended to keep the representafidata secret. It is almost always wrong to ekpor

knowledge about the instance variables of a clalgsnts of the class should not care about - andlsimot
know - data details. If we reveal data details wery hard to change the data presentation &radaint in
time. Let us stress again that it is a very typioalification of a program to alter the represeatadf data.

The bodies of the operations (the operation deba@j®nd the operation signature) are hidden because

operations are themselves abstractions (of eitkppessions or command). Finally, some operationgesas
helper operations in order to encourage internaeevithin the class, and in order to prevent herations
of the class to become too large. Such helper tipesashould also be invisible to the clients @ thass.

In Program 11.1 we show and emphasize the vistnis pf thedie class from Program 10.1. We have
dimmed the aspects of th& class which are invisible to client classes (thgeats 'below the surface'
relative to Figure 11.2).

70

using System;

class Die

Die()

void Toss()

int NumberOfEyes()

String ToString()

Program 11.1 The class Die - aspects visible to clients
emphasized.

Some programming language enforce that all instaagables of a class are hidden. Smalltalk [Golg83]
is one such language. C# is not in this categarywe will typically strive for such discipline the way we
program in C#.

11.5. Program modification - the Fire Analogy

Lecture 3 - slide 10

In continuation of the iceberg analogy, which itrased visibility issues, we will here illustrateogram
modification issues by an analogy to the spreditaf

A minor modification of a program may spread aseathroughout the program.

Such a fire may ruin most of the program in theseghat major parts of the program may need
to be reprogrammed.

71

Figure 11.3 A house - with firewalls - on fire. The fire is nigely to spread to
other apartments because of the solid firewalls.

The use of firewalls prevents the spread of a fire.

Similarly, encapsulation and visibility control pent program modifications from having
global consequences.

In large buildings, firewalls prevent a fire to tteg more than a single part of a building. Simitafire
roads in forest areas are intended to keep firksctdized regions of the forest.

11.6. Representation Independence

Lecture 3 - slide 11

Let us now coin an important OOP programming pgleciThe principle of representation independence.

Representation independen€#ients of the class C should not be affectedhmnges of C's
data representation

In essence, this is the idea we have already disdus Section 11.4 and Section 11.5. Now we haween
for it!

Below, in Program 11.2 we will show a class thatukerable in relation to the principle of repnasdion
independence. The class is written in C#. The ¢leias in Program 11.2 reveals its data representation to
clients. This is becauseandy are public. In Program 11x2andy are parts of the client interface of class
Point .

/I A very simple point with public data representat ion.
/I NOT RECOMMENDED because of public data represent ation.

using System;

public class Point {
public double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public void Move(double dx, double dy){
X +=dx; y +=dy;
}

public override string ToString(){

72

return "("+ X +""Hy + ")
}
}

Program 11.2 A Point class with public instance variables -
NOT Recommended .

The class shown below in Program 11.3 is a cliépbit . It prompts the user for three points that we will
assume form the shape of a triangle. In line 24+8Xalculate the circumference of this trianglethiese
calculations we use theandy coordinates of points directly, and quite heavily!

Il A client of Point that instantiates three points and calculates
/I the circumference of the implied triangle.

using System;
public class Application{

public static Point PromptPoint(string prompt){
double x, y;
Console.WriteLine(prompt);
x = double.Parse(Console.ReadLine());
y = double.Parse(Console.ReadLine());
return new Poaint(x,y);

}

public static void Main(){
Point p1, p2, p3;
double p1p2Dist, p2p3Dist, p3pl1Dist, circumfer ence;

pl = PromptPoint("Enter first point");
p2 = PromptPoint("Enter second point");
p3 = PromptPoint("Enter third point");

plp2Dist = Math.Sqrt((plx - p2x)*(plx - p2x)+
ply - p2y)*(ply - p2y));
p2p3Dist = Math.Sqrt((p2.x - p3.x)*(p2x - p3x)+
(p2y - p3y)*(p2y - p3y));
p3plDist = Math.Sqrt((p3.x - plx)*(p3x - plx)+
(p3y - ply)*(p3y - ply));
circumference = p1p2Dist + p2p3Dist + p3plDist;
Console.WriteLine("Circumference: {0} {1} {2}: {3},

pl, p2, p3, circumference);

Console.ReadLine();

}

}
Program 11.3 A Client of Point

Now assume that the programmer of ckasist changes his or her mind with respect to the reptesion
of points. Instead of using rectangular x and yrdmates the programmer shifts to polar coordindibss is
a representation of points that uses an angle bet@&nd 2 pi, and a radius. The motivation bettiedshift
of representation may easily be that some othgraromers request a rotation operation of the ¢laiss .
It is easy to rotate a "polar point". This leadsiteew version of clag®int , as sketched in Program 11.4.
We are, of course, interested in the survival aigPam 11.3 and other similar program. Imagineeféh
exists thousands of similar code lines in othess#a!.

73

Il A very simple class point with public data repre sentation.
/I An incomplete sketch.

/I This version uses polar representation.

/I NOT RECOMMENDED because of public data represent ation.

using System;

public class Point {
public double radius, angle;

public Point(double x, double y){
radius = ...
angle = ...

}

public void Move(double dx, double dy){
radius = ...
angle = ...

}

public void Rotate(double angle){
this.angle += angle;

}

public override string ToString(){

.
}

Program 11.4 A version of class Point modified to use polar
coordinates - NOT Recommended.

We will not solve the rest of the problem at thisr in time. We leave the solution as challenggdoin
Exercise 3.3. In the lecture, which | give basedh@se notes, | am likely discuss additional eléseha
good solution in C#.

Encapsulated data should alwayshimdenandprivate within the clas

Exercise 3.3. Public data representation

It is recommended that you use the web editiomefnaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In the accompanyingoint andPoint client classes the data representatiopobift is available to the
client class. This may be tempting for the progranrbecause we most likely wish to make the x and y
coordinates of points available to clients.

Why is it a bad solution? It is very important tlyati can express and explain the problem to fellow
programmers. Give it a try!

Now assume that we are forced (by the boss) togehtdre data representationrafnt . As a realistic
scenario, we may introduce polar coordinates idstéahe rectangular x and y coordinates. Recall th
polar coordinates consist of a radius and an ginmgl@dians or degrees).

What will happen to client classes, such as théntlwhen this change is introduced? Is it an easy
difficult modification to the given client classagine that in a real-life situation we can havaigands

74

of similar lines of code in client programs thdergo x and y coordinates.

Rewrite selected parts of clamsnt such that the client "survives" the change of depaesentation. In
your solution, the instance variables should begpei in theroint class. Are you able to make a solution
such that the client class should not be changati?at

In the web edition we link to special version asgroint , which contains method for conversions
between rectangular and polar coordinates. Weipat&that these methods are useful for you when yo
solve this exercise.

The client class aboint calculates the distances between pairs of paiiiis.is not a good idea because
far too many details occur repeatedly in the cliSuiggest a reorganization and implement it.

11.7. Classes in C#

Lecture 3 - slide 12

In this and the following sections we will studasses in C#, instance variables, instance methlags,
variables (static variables), and class methodsi¢shethods).

The syntactic composition of classes is as follows.

cl ass-nodi fiersclass class-name{
vari abl e- decl arati ons
construct or-decl arati ons
net hod- decl ar ati ons

}

Syntax 11.1 The syntactic composition of a C# Class. This igmetvhole story. There are other members
than variables, constructors and methods. Notice #iat it is NOT required that variables come before
constructors and that constructors come before ousth

Notice, however, that the full story is somewhatencomplicated. Inheritance is not taken into aotoand
only a few class members are listed. In additibe,drder of the class members is not constrained as
suggested by Syntax 11.1.

The default visibility of members in a class isvpte. It means that if you do not provide a vigipinodifier
of a variable or a method, the variable or methddbe private. This is unfortunate, because a mgss
visibility modifier typically signals that the progmmer forgot to decide the visibility of the membe
would have been better design of C# to get a catmpi error or - at least - a warning.

The following gives an overview of different kindEmembers - variables and methods - in a class:

e Instancevariable
» Defines state that is related to each individugab

« Classvariable
- Defines state that is shared between all objects

e Instance method
- Activated on an object. Can access both instandelass variables

« Classmethod

75

« Accessed via the class. Can only access clasdbleria

In the following four sections - from Section 11d8Section 11.11 - we will study instance variaples
instance methods, class variables, and class nethadiditional details. This is long journey! Yaill be
back on track in Section 11.12.

11.8. Instance Variables

Lecture 3 - slide 14

All objects of a particular class have the samefteariables. Each object allocates enough merspage
to hold its own set of variables. Thus, the valoethese variables may vary from one instance (pje
another. Therefore the variables are knowmsisnce variables

An instance variablelefines a piece of data in the class. Each oljesated as an instance o

the class, holds a separate copy of the instantbles.

Unfortunately, the terminology varies a lot. Instarvariables are officially known &eldsin C#. Instance
variables are, together with constants, knowdada membersThe termmembeiis often used for all
declarations contained in a class; This covers mat@bers and function members (constructors, method
properties, indexers, overloaded operators, anef®thSome object-oriented programming languagiieE
for instance) talk abouwtttributesinstead of instance variables. (In C#, attribuédsr to an entirely different
concept, see Section 39.6).

Below, in Program 11.5, we show an outline @aakAccount class programmed in C#. The methods are
not shown in this version of the class. The classthree instance variables, nametytestRate (of type
double), owner (Of typestring), andbalance (Of typedecimal , a type often used to hold monetary data).
In addition the class has three constructors amehaber methods, which are not shown here.

using System;
public class BankAccount {

private double interestRate;
private string owner;
private decimal balance;

public BankAccount(string owner) {
this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate) {
this.interestRate = interestRate;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate,
decimal balance) {

76

this.interestRate = interestRate;
this.owner = owner;
this.balance = balance;

}

/I Remaining methods are not shown here

}

Program 11.5 Instance variables in a sketch of the class
BankAccount.

In theBankAccountClient class in Program 11.6 we create three diffeBanitAccount objects. The
variablesa1, a2, anda3 hold references to these objects.

using System;

public class BankAccountClient {

public static void Main(){

BankAccount al = new BankAccount("Kurt", 0.02) ,
a2 = new BankAccount("Bent", 0.03) ,
a3 = new BankAccount("Thomas", 0.02) ;

al.Deposit(100.0M);
a2.Deposit(1000.0M); a2.AddInterests();
a3.Deposit(3000.0M); a3.AddInterests();

Console.WriteLine(al); // 100 kr.
Console.WriteLine(a2); // 1030 kr.
Console.WriteLine(a3); // 3060 kr.

Program 11.6 Creation of three bank accoun

Following the calls of theeposit andAddinterests operations the three objects can be depictedagsh
in Figure 11.4. Please make sure that understatessbf the object (the values of the individuatamce
variables of each of the objects). The output efgtogram is shown in Figure 11.4. Listing 11.7\famn
web).

Figure 11.4 Three objects of class BankAccount, each holdirggtmstance
variablesi nt er est Rat e, owner, andbal ance. The values of variables are
determined by the bank account transactions thginegrammed in the class
BankAccount C i ent . The state of the variables is shown relative totthree

Wit eLi ne calls.

Exercise 3.4. How private are private instance variables?

The purpose of this exercise is to find out howaeprivate instance variableare in C#.

77

Given theBankAccount class. Now modify this class such that each backwnt has a backup account.
For the backup account you will need a new (privetgtance variable of typ@ankAccount . Modify the
withdraw method, such that if there is not enough monejlahla in the current account, then withdraw
the money from the backup accoufst an experiment, accessthe balance of the backup account
directly, in thefollowing way:

backupAccount.balance -= ...

Is it possible to modify the private state of @a@kAccount from anotheBankAccount ? Discuss and
explain your findings. Are you surprised?

11.9. Instance Methods

Lecture 3 - slide 15

Instance methods are intended to work on (do coamtipats on) the instance variables of an objectalass.
An instance methosi must always be activated on an instance (an Qlgétte class to whickibelongs.

Activating or calling an instance method is ofteaught of as message passing (see Section 2.1pbjéet,
on which the method is activated, is called theirssr of the message. The callee (the object frémehvthe
message is sent) is - quite naturally - calledsdreder.

An instance metho@ an operation in a class that can read and/difgnone or more instance

variables.

« Aninstance methoslin a clas<
« must be activated on an object which is an instafice
- is activated bybject.m(...) from outsidec
» is activated bynis.M(...) or justm(...) insidec
« can access all membersmf

Notice that an instance method can access allnostaariables of a class, including the privatesoAa
instance method can also access class variableSétion 11.10).

The formobject.M(...) must be used if a methods activated on an object different from the catre
object. The short formi(...) can be used in casgs activated on the current object. It is, howewoéten
more clear to writehis.M(...) With this notation we are explicit about the reeeiof the message; Also,
with the notationhis.M(...) , we use dot notation consistently whenever wevaigtian instance method.
The choice betweem(...) andthis.M(...) depends on the choseonding style For more details otis
see Section 11.15.

Conceptually you may imagine that each individugeot has its own instance methods, in the sameasay
we in Section 11.8 argued that each individual aij@s its own instance variables. In reality, hosveall
instances of a given class can share the instaati®ous.

Program 11.8 shows a version of BakAccount class in which the instance methods are highlgjhteée

methodLogTransaction relies on the enumeration typecountTransaction defined just before the class
itself.

78

In the web-version of the material we show a versibclasBankAccount with a new instance method
LogTransaction . This method is used as the starting point of &ger3.5.

Exercise 3.5. The method LogTransaction in class BankAccount

In the accompanyingankAccount class we have sketched and used a private metirodch
LogTransaction . Implement this private method and test it with BankAccount client class.

Exercise 3.6. Course and Project classes

In this exercise you are asked to program threglsiciasses which keep track of the grading ofnapday
student. The classes are calledieanCourse , GradedCourse , andProject

A BooleanCourse encapsulates a course name and a registraticasség/not passed for our sample
student.

A GradedCourse encapsulates a course name and the grade otittenstFor grading we use the Danish
7-step, numerical grades 12, 10, 7, 4, 2, 0 ande8.are also welcome use the enumeration type
ECTSGrade from an earlier exercise. The grade 2 is the lowassing grade.

In bothBooleanCourse andGradedCourse you should write a method calledssed . The method is
supposed to return whether our sample student p#sseourse.

The clas$roject aggregates two boolean courses and two gradedesoufou can assume that a project
Is passed if at least three out of the four couasepassed. Write a metheaksed in classProject which
implements this passing policy.

Make a project with four courses, and try out ysalution.

In this exercise you are supposed to make a siemgdeaather primitive solution. We will come backliis
exercise when we have learned about inheritancealfettion classes.

11.10. Class Variables

Lecture 3 - slide 16

A class variable in a class C is shared betwednsiinces (objects) of C. In addition, a classhmunsed
even in the case where there does not exist atgnices of C at all. Some classes are not intendbd to
instantiated. Such classes act as modules, cliscussion of modules in Section 2.3.

A class variablebelongs to the class, and it is shared amongstthinces of the cla

« Class variables
- are declared by use of theatic modifier in C#
« may be used agobal variables associated with a given class
« do typically holdmeta informatiorabout the class, such as the number of instances

79

In Program 11.10 we show a new version ofgheAccount class, in which there is a private, static

variablenextAccountNumber

of typelong . When we make BankAccount object, we give it a unique

account number. The output, which is shown in hgptl1.12, is produced by a client similar to Pragra
11.6. The program output reveals the effect ofsthéc variablaextAccountNumber

using System;

public class BankAccount {

private double interestRate;

private string owner;
private decimal balance;

private long accountNumber;

private static long nextAccountNumber = 0;

public BankAccount(string owner) {
nextAccountNumber++;
this.accountNumber = nextAccountNumber;

this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;

this.owner = owner;
this.balance = 0.0M;

}

/I Some methods not shown in this version

public override string ToString() {
return owner + "'s account, no. " + accountNumber + "holds " +

Program 11.10 The sketch of class BankAccount with a clas
variable.

holds 100 kroner
holds 1030 kroner

+ balance + " kroner";
}
}
Kurt's account, no. 1
Bent's account, no. 2
Thomas's account, no. 3

holds 3060 kroner
Listing 11.12 Output of the BankAccount client progre

Exercise 3.7. Sharing the Random Generator

In theDbie class shown in the start of this lecture, e@iehobject creates its owkandom object. (If you
access this exercise from the web edition theréiaeet links to the relevant versions of clags and

classRandom).

We observed that tosses of two or more instancessfDie will be identical. Explain the reason of this

behavior.

Modify the Die class such that all of them share a simgl@lom object. Consider different ways to
implement this sharing. Rerun tbee program and find out if "the parallel tossing patt' observed

80

above has been alleviated.

11.11. Class Methods

Lecture 3 - slide 17

Class methods are not connected to any instangelass. Thus, class methods can be activatedwitho
providing any instance of the class. A class methinda class is activated by.m(...) . The tree dots
stand for possible actual parameters.

The static methodhain plays a particular role in a C# program, becalbsetogram execution startsnmin .
(Notice thatMain starts with a capital M). It is crucial thatin is static, because there are objects around at
the timeMain is called. Thus, it is not possible to activatg astance method at that point in time! We have
seerMain used many times already. There can bria method in more than one claswin is either
parameter less, or it may take an array of strfpfs/pestringl]).

A class methods associated with the class itself, as opposeah tabject of the cla

» Aclass methotin a class<
« is declared by use of teatic modifier in C#
- can only access static members of the class
« must be activated on the class as such
« is activated as.M(...) from outsidec
« can also be activated &1$..) from inside C

In order to illustrate the use of static method€#hwe extend Program 11.10 with a couple of stagthods,
see line 32-41 of Program 11.13. The static methwakccount is the most interesting one. It searches the
staticaccounts variable (of typeirrayList) for an account with a given number. It returres litcated bank
account if it is found. If not, it returnsill . Notice the way theetAccount method is used in Program
11.14.

using System;
using System.Collections;

public class BankAccount {

private double interestRate;
private string owner;

private decimal balance;
private long accountNumber;

private static long nextAccountNumber = 0;
private static ArrayList accounts = new ArrayList() ;

public BankAccount(string owner) {
nextAccountNumber++;
accounts.Add(this);
this.accountNumber = nextAccountNumber;
this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

81

public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
accounts.Add(this);
this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;
this.owner = owner;
this.balance = 0.0M;

public static long NumberOfAccounts (){
return nextAccountNumber;

}

public static BankAccount GetAccount (long accountN umber){
foreach(BankAccount ba in accounts)
if (ba.accountNumber == accountNumber)
return ba;
return null;

}

/I Some BankAccount methods are not shown in thi S version

Program 11.13 A sketch of a BankAccount class with static
methods.

using System;
public class BankAccountClient {

public static void Main(){
BankAccount al = new BankAccount("Kurt", 0.02),
a2 = new BankAccount("Bent", 0.03),
a3 = new BankAccount("Thomas", 0.02);

al.Deposit(100.0M);
a2.Deposit(1000.0M); a2.AddInterests();
a3.Deposit(3000.0M); a3.AddInterests();

BankAccount a = BankAccount.GetAccount(2) ;
if (@ != null)
Console.WriteLine(a);

else
Console.WriteLine("Cannot find account 2");

}

Program 11.14 A client BankAccoun

When we run Program 11.14 we get the output shaviusting 11.15 (only on web).

In Program 11.16 we show an example of a typicalret bet that you will experience this error maimes
yourself. Can you see the problem? If not, readakebelow Program 11.16.

using System;

public class BankAccountClient {

BankAccount
al = new BankAccount("Kurt", 0.02), /I Error:
a2 = new BankAccount("Bent", 0.03), /I An object reference is
a3 = new BankAccount("Thomas", 0.02); / required for the

82

[/l nonstatic field
public static void Main(){

al.deposit(100.0);
a2.deposit(1000.0); a2.addInterests();
a3.deposit(3000.0); a3.addInterests();

Console.WriteLine(al);
Console.WriteLine(a2);
Console.WriteLine(a3);

Program 11.16 A typical problem: A class method that
accesses instance variables.

The variablea1, a2, anda3 in Program 11.16 are instance variable of ckasgAccountClient . Thus,
these variables are used to hold the state of ishpé¢ypeBankAccountClient . The problem is that there
does not exist any object of typenkAccountClient . We only have the clagankAccountClient

Therefore we need to declarg a2, anda3 as static. Alternatively, we can rearrange thgom such that
al, a2, anda3 become local variables of thain method. As yet another alternative, we can ingt@nthe
classBankAccountClient , and move the body &fain to an instance method. The latter alternative is
illustrated in Program 11.17.

11.12. Static Classes and Partial Classes in C#

Lecture 3 - slide 18

A staticclass C can only have static members

A partial class is defined in two or more source files

- Staticclass
« Serves as modulerather than alass
« Prevents instantiation, subclassing, instance mesnhad use as a type.
« Examplessystem.Math , System.lO.File , andSystem.lO.Directory
- Partial class
« Usage: To combine manually authored and autombtigaherated class parts.

It is possible to use the modifier 'static' onassl A class marked aatic can only have static members,
and it cannot be instantiated. A static classnslar to a sealed class (see Section 30.4) whictaveot (or
cannot) instantiate. However, a static class isemestrictive, because it also disallows instaneebers,
and it cannot be used as a type in field declaratamd in method parameter lists.

There are some pre-existing C# classes that exelysiontain static methods. The clagstem.Math is
such a class. It contains mathematical constants &se andpi. It also contains commonly used
mathematical functions such aiss, Cos, Sin , Log, andexp. It would be strange (and therefore illegal) to
attempt an instantiation of such a class.

The static classagle andbDirectory in the namespa®stem.l0 are discussed in Chapter 38.

83

A partial class, marked with thpartial modifier, can be used if it is practical to aggrega class from
more than one source file. This is, in particuteandy when a class is built from automatically gete=l
parts and manually authored parts (such as a @GdsxlUse of partial classes may also turn oué teamdy
when a group of programmers participate in the raogning of a single, large class.

11.13. Constant and readonly variables

Lecture 3 - slide 19

The variables we have seen until now can be agsigneew values at any time during the program
execution. In this section we will study variableéghano or limited assignment possibilities. Of odws
reasons, it is confusing to call these "variablésierefore we use the term "constant" instead.

C# supports two different kinds of constants. Soomstants, denoted with thenst modifier, are bound at
compile time. Others, denoted with tleedonly modifier, are bound at object creation time.

Constants and readonly variables cannot be chahgéty program execution

« Constantdeclared with use of thenst keyword
« Computed at compile-time
« Must be initialized by an initializer
« The initializer is evaluated at compile time
« No memory is allocated to constants
« Must be of a simple type, a string, or a referdgype
» Readonly variabledeclared with use of theadonly modifier
« Computed at object-creation time
« Must either be initialized by an initializer or @nconstructor
« Cannot be modified in other parts of the program

It can be noticed that compile-time bound constaeatsonly be of simple typesying , or a reference type.
In addition, for non-string reference types, thé/qossible value isull .

Program 11.17 demonstrate some legal uses of cdr@sid readonly variables. The elements emphasized
with green are all legal and noteworthy. Notice first that Wwelain instantiates theonstbemo class, such
that we can work on instance variables, as opptsésdatic) class variables.

In line 4 we bind the constasd to 5.0 and the constattt to 6.0. This is done by the compiler, before the
program starts executing. Notice that the comider carry out simple computations, as in line Sina 7
and 8 we bind the readonly variables androb to 7.0 and to the value of the expressiagie) . Itis
possible to assign tea androb in the constructor, but after the execution of¢bestructoroa androb

are non-assignable. In line 11 we assigya to a newBankAccount . Notice that it - in addition - is legal to
assign to read-only variables in constructors (lideand 15). This is - on the other hand - thepassible,
legal assignments toa androba . In line 24 we see that we can mutate a bank adamspite that the
account is referred by a readonly variable. We fiydtie object, not the variable that referencesothject.

using System;

class ConstDemo {
const double ca=5.0

84

cb=ca+1

private readonly double roa=7.0 ,
rob = Math.Log(Math.E) ;

private readonly BankAccount
roba = new BankAccount("Anders")

public ConstDemo(){ // CONSTRUCTOR
roa=8.0 ;
roba = new BankAccount("Tim") ;

}

public static void Main(){
ConstDemo self = new ConstDemao();
self.Go();

}

public void Go(){
roba.Deposit(100.0M)
}

}

Program 11.17 Legal use of constants and readonly
variables.

Program 11.18 domonstrates a number of illegal asesnstants and readonly variables. The elements
emphasized withed are all illegal. The compiler catches all of thémline 12 and 21 we attempt an
assignment to the (compile-time) constantThis is illegal - even in a constructor. In liB2 and 23 we see
that it is illegal to assign to readonly variablesch agoa androba , once they have been initialized.

using System;

class ConstDemo {
const double ca=5.0;

private readonly double roa = 7.0;

private readonly BankAccount
roba = new BankAccount("Anders");

public ConstDemo(){ // CONSTRUCTOR
ca=6.0 ;
}

public static void Main(){
ConstDemo self = new ConstDemao();
self.Go();

public void Go(){
ca=6.0 ;
roa =8.0
roba = new BankAccount("Peter") ;

Program 11.18 lllegal use of constant and readonly
variables.

85

11.14. Objects and Classes

Lecture 3 - slide 20

At an overall level (as for instance in OOA and OQ@jects are often characterized in termglehtity,
state andbehavior Let us briefly address each of these, and réhate to programming concepts.

An object has ardentitywhich makes it different and distinct from anyetlobject. Two objects which are
created by two activations of thew operator never share identity (they are not idaijti In the practical
world, the identity of an object is associatedt$dacation in the memory: its address. Two objacts
identical if their addresses are the same. Butlbeful here. The address of an object is not nacgsfixed
and constant through the life time of the objebie Dbject may be moved around in the memory of the
computer, without losing its identify.

Thestateof the object corresponds to the data, as presthly the class to which the object belongs. As
such, the state pertains to the instance varialflgee class, see Section 11.8.

Thebehaviorof the object is prescribed by the operationdefdlass, to which the object belongs. We have
already discussed instance methods in Section lChapter 18 through Chapter 23 we will discuss
operations, and hereby object behavior, in gretilde

We practiceobject-oriented programmindput we write classes in our programs. This mag bele
confusing. Shouldn't we rather talk abolass-oriented programmirg

When we write an object-oriented program, we ate bprogram all (forthcoming) objects of a given
type/class together. This is done by writing thessl Thus, we write the classes in our source anagrbut
we often imagine a (forthcoming) situation where ¢hass "is an object" which interacts with a nunidfe
other objects - of the same type or of differepety.

At run time, the class that we wrote, prescribeskibhavior of all the objects which are instandab@class.

In our source program we deal with classes. Thesekexist for a long time - typically years. la tonning
program we have objects. The objects exist whitepfogram is running. A typical program runs a few

seconds, minutes, or perhaps hours. Often, we twgreserve our objects in between program exataitio
This turns out to be a challenge! We discuss hopréserve objects with use of serialization in Bec89.1.

All objects cease to exist when the program exeaugrminates.

This is in conflict with the behavior of correspamgi real-life phenomena, and it causes a lot of
problems and challenges in many programs

There are no objects in the source programs! Cabkses. You may ask if there are classes in th@angn
program. It makes sense to represent the clas$les imanning program, such that we can accesddkseas
as data. Most object-oriented systems today repréise classes as particular objects calediaobjects
This is connected to an area in computer scientedaeaflection

Classes are written and described in source pragram

Objects are created and exist while programs ameimg

86

11.15. The current object - this

Lecture 3 - slide 21

We have earlier discussed the role of the currkject, see Section 10.3.
The current object in a C# program execution ioteshby the variablais
this is used for several different purposes in C#:

+ Reference to shadowed instance variables
« Activation of another constructor

« Definition of indexers

« In definition of extension methods

This use ofhis for access of shadowed instance variables hasussehin many of the classes we have
seen until now. For an example see line 10 of Rrogt1.2.

Use ofthis for activation of another constructor is, for arste, illustrated in line 10 and 14 of Program
12.4.

Use ofthis in relation to definition of indexers is discussedection 19.1, illustrated for instance in line
10 of Program 19.1.

11.16. Visibility Issues

Lecture 3 - slide 22

In this section we will clarify some issues that eglated to visibility. We will, in particular, sy a type of
error which is difficult to deal with.

Let us first summarize some facts about visibityypes and members:

« Types in namespaces
« Either public or internal
» Default visibility: internal
« Members in classes
- Either private, public, internal, protected or i@ protected
» Default visibility: private
« Visibility inconsistencies
« Atype T can be less accessible than a methodehans a value of type T

Below we will rather carefully explain the mentiahieconsistency problem.

87

In Program 11.19 we have shown an internal atdesa namespaae As given in Program 11.1®is only
supposed to be used inside the namespalcereality we have forgotten to state toas public inN. | every
now and then forget the modifigsublic " in front of "class ¢ " (line 3). | guess that you will run into this
problem too - sooner og later.

Based on the internal clas$n the namespaacewe will now describe a scenario that leads toreor ¢hat
can be difficult to understand. The class also located in, and therefor® can usec. ClassD is public inN.
(If o had been located in another namespace, it wodlldawe access to class A methodvin classd
makes and returnscaobject.

We cannot compile the program just described. Wegdnconsistent accessibility errarThe compiler
tells you that the return type of methagwhich isc) is less accessible than the methotself. In other
words,Mreturns an object of a type, which cannot be asks

The cure is to make the claspublic in its namespace. Thus, just addiic modifier in front of "class
C"in line 3 of Program 11.19.

namespace N{
class C{

}

public class D{

public C M({ /I Compiler-time error message:
return new C();
/I Inconsistent accessibility:
[l return type 'N.C' is less
/I accessible than method 'N.D.M()'

Program 11.19 An illustration of the 'Inconsistent Accessibili
problem.

Please notice this kind of compiler error, andwiag to proceed when you get it. | have witnessed a
prospective student programmer who used severaltdaigure out what the compiler meant with the
"inconsistent accessibility errarNow you are warned!

11.17. References

[Goldberg83] Adele Goldberg and David Robs8malltalk-80 The Language and its
ImplementationAddison-Wesley Publishing Company, 1983.

[Meyer88] Bertrand MeyelQbject-oriented software constructiddrentice Hall, 1988.

[Tennent81] Tennent, R.CPrinciples of Programming Languagdrentice Hall, 1981.

88

12. Creating and Deleting Objects

In this chapter we will explore the creation ofexdijfrom classes, and how to get rid of the objent® they
are not longer needed. Creation of objects - ittistiion of classes - is tightly connected withiadization of
new objects. Object initialization is thereforecads important theme in this chapter.

12.1. Creating and Deleting Objects

Lecture 3 - slide 24

Our goal in this section is to obtain everall understanding of object creation and deletiomparticular in
relation to the dimension of explicit/implicit ctg@n and deletion. If you dislike such overall dission,
please proceed to Section 12.2. We identify theviehg approaches to creation and deletion of dbjec

» Creating Objects
« By instantiating classes
« Implicitly: via variable declarations
« Explicitly: on demand, by command
» By copying existing objectcloning
« Deleting Objects
« Explicitly: on demand, by command
- Implicitly: deleted when not used any longer - uge ofgarbage collection

The most important way to create objects is taamsite a class. Instantiation takes place whenseehe
class as a template for creating a new object. \Afemve an explicit way to express this (such as th
operatomew), or it may be implicitly done via declarationaf/ariable of the type of the class. Relative to
this understanding, C# uses explicit creation ¢géctls from classes, and implicit creation of olggetlues)
from structs.

Instantiationis the process of allocating memory to a new dljésome clag

Instantiation comes in two flavors:

- Staticinstantiation:
« The object is automatically created (and destroyd®n the surrounding object or block
is created.
« Dynamic instantiation:
« The object is created on demand, by calling a@adr operatorrew).

Static instantiationis implicit. The object is automatically createcshd destroyed) when the surrounding
object or block is create@ynamic instantiations explicit. The object is created on demand,)»ceting a
command. In C# and similar language we callndveoperator for the purpose of dynamic class insasioti.

We should also be aware of the possibility of obfapying. If we already have a nice object, sgy, we
can create a new object (of the same typsvjasby copyingobj . Some object-oriented programming

89

languages (most notably Self) use this as the walyof creating objects. The original objects itf Se
calledprototypesand they are created directly by the programinstgad of classes).

Older object-oriented programming languages, sgdb-a+, use explicit deleting of objects. Most newer
object-oriented programming languages use impiigjiect deleting, by means of garbage collectiore tise
of garbage collection turns out to be a major dquali an object-oriented programming language. €iés
on garbage collection.

Modern object-oriented languages support expligiect creation and implicit object deletion
(by means of garbage collection)

12.2. Instantiation of classes in C#

Lecture 3 - slide 26

We illustrate instantiation of classes in C# usangient of aPoint class, such as Program 11.2, or even
better a similar class with non-public instancdalaes. The accompanying slide shows such a class.

Classes must be instantiated dynamically with diskenew operator

Thenew operator returns a reference to the new object

The clas®pplication in Program 12.1 uses clagsnt . Recall that classpplication IS said to be a client
of classpoint . We have threeoint variableso, p1, andp2. The two latter variables are local variables in
Main . pO is static, because it is used from a static method

We see a single instantiation of clessit at thepurple place.po is automatically initialized teul and

p1 is uninitialized before the assignmepts-p1=p2 . After the assignments all three variables rafer t
the samePoint object , and therefore you should be able to wgtdied the program output shown in Listing
12.2. Notice themove message in line 12 and the implementatiom®# in line 13-15 of Program 11.2.

using System;
public class Application{
private static Point pO; /I Initialized to null
public static void Main(){
Point pl, /I NOT initialized
p2 = new Point(1.1, 2.2)
PO = pl = p2;
p2.Move(3.3, 0);
Console.WriteLine("{0} {1} {2}", pO, p1, p2);
}

}

Program 12.1 Use of the class Point in a client class called
Application.

90

Move in line 12 moves the object referred by the tivagableso, p1, andp2. If you have problems with
this, you are encouraged to review this examplenwloel have read Section 13.2.

Point: (4,4, 2,2). Point: (4,4, 2,2). Point: (4,4 , 2,2).
Listing 12.2 Output from the Point client prograr

12.3. Initialization of objects

Lecture 3 - slide 27

Initialization should always follow class instatitian.

Initialization is the process of ascribing initial values toitistance variables of an obj

There are several ways to do initialization. Weoramend that you amexplicit about initializationin your
programs. With use of explicit initialization yoigsal that you have actually thought about theah#ation.
If you rely on default values, it may equally wiedl the case that you have not considered thelimtin at
all!

Initialization of an object of type T can be done

« Via use ofdefault values of T

« zerofor numeric typesfalsefor bool , \x0000' for char , andnull for reference types
« Via use of annitializer
« Via special methods callembnstructors

In C# you can denote the default value of a typg use of the expressianfault(T) . For a reference type
RT, default(RT) isisnull . For a value typ®T, default(vT) is the default value ofT. Thedefault valueof
numeric types igerq the default value afool isfalse the defaulthar value is the null character, and the
default value of reference types is null. The ditfeaiue of a struct type is aggregated by the ulefalues
of the fields of the struct.

In Program 12.1 we have seen that local variabiesat initialized to the default value of theipgs.
Instance variables (fields) in classes are, howéugs is confusing, and it may easily lead to eibyou
forget the exact rules of the language.

An initializer is, for instance, the expressiondaling ='in a declaration such asi=5+j;

It is not recommended to initialize instance variables ritdlizers. Initializers are static code, and from
static code you cannot refer to the current obpaad, you cannot refer to other instance variables.

You should write one or more constructors of evdags, and you should explicitly initialize all taace
variables in your constructors. By following thide you do not have to care about default values.

91

It is very important that a newly born object igiadized to a healthy citizen in the population of
objects

Explicit initialization is always preferred over jiicit initialization

Always initialize instance variables in construstor

12.4. Constructors in C#

Lecture 3 - slide 28

As recommended in Section 12.3, initializationredftance variables takes place in constructors.

A constructoris a special method which is called automaticallgrder to initialize a new

instance of a class

« Constructors in C#
« Have the same name as the surrounding class
« Do not specify any return value type
- Are often overloaded - several different constrigtmn appear in a class
« May - in a special way - delegate the initializatjob to another constructor
« In case no constructors are defined, there isanpeterlesslefault constructor
« As its only action, it calls the parameterless tamsor in the superclass
« In case a constructor is defined there will be aameterless default constructor

There is noconstructor ' keyword in C#. By the way, there is n@thod ' keyword either. So how do we
recognize constructors? The answer is given intiivs bullet points above: A constructor has theesa
name as the surrounding class, and it specifiestuon type.

Overloading takes place if we have two construdforsnethods) of the same name. Overloaded
constructors are distinguished by different typlggamameters. In Program 11.5 there are three aaseld
constructors. Overload resolution takes place atpdle time. It means that a constructor usegkincy...)
is determined and bound at compile time - not attime.

The special delegation mentioned in bullet pointr fis illustrated by the difference between Progizh3
and Program 12.4. In the latter, the two first ¢targors activate the third constructor. The thiothstructor
in Program 12.4 is the most general one, becawsaihandle the jobs of the two first mentioned
constructors as special cases. Noticattike..) syntax in between the constructor head and body.

As already stressed, | recommend that you alwayglgat least one constructor in the classes yogram.
In that case, there will be no parameterless diefanistructor available to you. You can always, éoev,
program a parameterless constructor yourself. Tilegophy is that if you have started to program
constructors in your class, you should finish i jit is not sound to mix your own, "custom" couastors
(which are based on a deep knowledge about ths)alaih the system's default initialization (basedvery
little knowledge of the class).

In Program 11.5 we have seeBaakAccount class with three constructors. In Program 12.4hav
another version of thBankAccount class, also with three constructors. In both waisiof the class, the three

92

constructors reflect different ways to initializ&xew bank account. They provide convenience taotsief
theBankAccount class. Program 12.4 is better than Program 1k&use there is less overlap between the
constructors. Thus, Program 12.4 is easier to maitihan Program 11.5. (Just count the lines angpaoe).

Make sure to program your constructors like in lPaiogl12.4.

using System;

public class BankAccount {
private double interestRate;
private string owner;

private decimal balance;

public BankAccount(string owner):

this(owner, 0.0, 0.0M) {
}
public BankAccount(string owner, double interest
this(owner, interestRate, 0.0M) {
}

public BankAccount(string owner, double interest
decimal balance) {
this.interestRate = interestRate;
this.owner = owner;
this.balance = balance;

}

/Il BankAccount methods here

Rate):

Rate,

Program 12.4 Improved constructors in class

BankAccount.

We also show and emphasize the constructors ini¢helass, which we meet in Program 10.1 of Section
10.1. Below, in Program 12.5, the fitsé constructor call the second one, hereby making eygd die.
Notice that the secormle constructor creates a n&®andom object. It is typical that a constructor in a slas
instantiates a number of other classes, which againinstantiate other classes, etc.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;
public Die (): this(6) {}
public Die (int maxNumberOfEyes){
randomNumberSupplier =
new Random(unchecked((int)DateTime.Now.Ticks)
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = NewTossHowManyEyes();
}

/I Die methods here

Program 12.5 Constructors in the class Di

93

12.5. Copy constructors

Lecture 3 - slide 29

Copy constructors can be used for making copiexisting objects. A copy constructor can be recoggphi
by the fact that it takes a parameter of the sgme as the class to which it belongs. Object capigran
intricate matter, because we will have to decidbéfreferred object should be copied too (shatopying,
deep copying, or something in between, see moeelsiaét Section 13.4 and Section 32.6).

It is sometimes useful to have a constructor thedtes an identical copy of an existing ohject

In Program 12.6 we show timé&e class with an emphasized copy constructor. NotiaetheRandom object
is shared between the origimaé and the copy of theie . This is shallow copying.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;

public Die (Die d){

numberOfEyes = d.numberOfEyes;
randomNumberSupplier = d.randomNumberSupplier;
maxNumberOfEyes = d.maxNumberOfEyes;

}
public Die (): this(6){}

public Die (int maxNumberOfEyes){

randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = randomNumberSupplier.Next(1,maxN umberOfEyes + 1);

}

/I Die methods here

Program 12.6 The class Die with a copy construct

The use of copy constructors is particularly useflaén we deal with mutable objects

Objects are mutable if their state can be chanf@iedthe constructor has been called. It is oftecassary to
copy a mutable object. Why? Because of aliasingbgect may be referred from several different gtadf
the object is mutable, all these places will obserchange, and this is not always what we wardrefbre,
we can protect against this by copying certain abje

The observation from above is illustrated by meafresn example - privacy leak - in Section 16.5.

94

12.6. Initialization of class variables

Lecture 3 - slide 30
It is too late - and not natural - to initializeast variables in ordinary constructors

Constructors initialize new instances of classéass<instances are objects. Class variables (§igltis) do
not belong to any object. They belong to the ctassuch, but they can be used from instances aldbe as
well. Class variables can be useful even in the ed®ere no instances of the class will ever be made

Therefore we will need other means than constradtomitialize class variables in C#. Initializai of a
class variable of type T takes place at class tioael

e Viathedefault value of type T
» Via thestatic field initializers
« Via astatic constructor

Initialization of class variable (static fields)f typeT takes place implicitly. The variableis, at load time,
bound the distinguished default value of type

A static initializer is the expression at the rigiaind side of2" in a static field declaration. In Program 12.7
we have emphasized four examples of static iregas from line 13 to 16. The static initializers axecuted
in the order of appearance at class load time.

In Program 12.7 we show a simple playing card ataiedcard in which we organize all spade cards, all
heart cards, all club cards, and all diamond cardsatic arrays. The arrays are created in statializers
from line 13 to 16. It is convenient to initialitee elements of the arrays in a for loops. Thetnigce of
these for loops is in a static constructor. We shatatic constructor in line 18-25 of Program 12.7

Notice in line 19 of Program 12.7 how we get actesdl enumeration values in a given enumeratype t
ET by the expressioBnum.GetValues(typeof(ET))

using System;

public class Card{

public enum CardSuite { Spade, Heart, Club, Diamo nd};
public enum CardValue { Ace =1, Two = 2, Three = 3, Four = 4, Five = 5,
Six = 6, Seven = 7, Eight =8, Nine=9,
Ten =10, Jack = 11, Quee n =12, King = 13,
7

private CardSuite suite;
private CardValue value;

public static Card[] allSpades = new Card[14];
public static Card[] allHearts = new Card[14];
public static Card[] allClubs = new Card[14];
public static Card[] allDiamonds = new Card[14];

static Card(){

foreach(CardValue cv in Enum.GetValues(typeof(C ardValue))){
allSpades|(int)cv] = new Card(CardSuite.Spade , CV);
allHearts[(int)cv] = new Card(CardSuite.Heart , CV);
allClubs](int)cv] = new Card(CardSuite.Club, cv);

95

allDiamonds](int)cv] = new Card(CardSuite.Dia mond, cv);

}

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

public CardValue Value{
get { return this.value; }

}

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}
}

Program 12.7 The class PlayingCard with a static
constructor.

We also show how the static arrays can be use®reggam 12.8 and the output of the program, sstinbi
12.9 (only on web).

using System;
class Client{

public static void Main(){
foreach (Card cin Card.allSpades)
Console.WriteLine(c);

}

}
Program 12.8 A client of class PlayingCari

We recommend explicit initialization of all vari@slin a class, including static variables. It oramended
to initialize all instance variables in (instancepstructors. Most static variables can and shbeld
initialized via use of initializers, directly assated with their declaration. In some special catsiss
convenient to do a systematic initialization ofsslaariables, for instance in a for loop. This bardone in a
static initializer.

96

