Object-oriented
Programming in C#

for C and Java programmers

February 2010

Kurt Ngrmark ©

Department of Computer Science,
Aalborg University,

Denmark.

WEB version:

http://www.cs.aau.dk/~normark/oop-csharp/html/nibesne-index.htiin

Abstract

This is a teaching material about object-orientexypamming, illustrated with use of the
programming language C#. The initial version waistem i 2006.

It is assumed, as a prerequisite, that the redudaies some knowledge about imperative
programming, preferably knowledge about C. | baeighat it is best to learn object-oriented
programming after having learned and worked witpenative programming. Thus, we
adhere to an "object later approach”.

The starting point of of this teaching materiahisumber of slides. The slides are annotated
with explanations and additional resources. Thetmosiprehensive version of the material
has the form of a traditional textbook. You camkhof the textbook as grown on top of the
slide material.

Almost all programs in this material have been émwed together with the material.
However, a few programs come from other sourcebelforograms are not original, the
source programmers are mentioned and acknowledgeaul initial comment line of the
program.

The current version of the material is completéaifand including) the last chapter in
lecture about Contracts (chapter 53). The finaptdrs - corresponding to the lectures about
test and documentation - only contain slide makteria

The teaching material is an online material represktin HTML. A PDF version of the
textbook is also available. In order to limit theesof the PDF files some less important
programs have been left out from the PDF editinrthe web edition (in HTML files) the
full content is available.

We have used colors to emphasize aspects of tleesptograms in this material. It is
therefore recommeded that you read the materiad @olor medium.

We would like to point out a couple of qualitiestbé web edition of the material. First, we
have provided for extensive cross linking of theemial. Whenever relevant, we have
provided links from one part of the material to tes. We have also provided a
comprehensive subject index. Finally, there areusdp indexes of source programs and
exercises. The source program index provides limk®mplete, textual versions of the C#
programs of the material, ready for you to compiid use.

In the spring of 2008 the material has been usedciourse where the students have a
background in imperative Visual Basic programmée have therefore added a chapter
that compares the fundamental (non-objected) p&N$sual Basic with the similar parts of
C#. The chapter about Visual Basic is only avaédhlthe web-version.

Prior to the fall semester of 2008, selected asp&cC# 3.0 have been included in the
material. This includes automatic properties, objsitializers, extension methods, and
lambda expressions.

The January 2009 edition includes a number of lixesf(as collected during the fall of
2008) and some new exercises targeted at the Aploiversity OOPA spring course 2009
at the BAIT education.

The February 2010 edition is a minor revision coragawith the August 2009 edition. The
February 2010 edition is the last, and final, varf the teaching material.

Kurt Ngrmark
normark@cs.aau.dk

Department of Computer Science
Alborg University

Denmark

February 5, 2010

Colophon: This material has been made with the LENO systdeNQ@ is an XML language which is
defined by an XML DTD. LENO is used together witAML. LAML is a software package that makes
XML available in the Scheme programming language.this version of the material, LAML version 35.0
(development version) has been used. This setoywslis to write LENO material in the programming
language Scheme. Thus, the source of this matextabeen written in Scheme with use of the mirror
functions of LENO XML language. Most illustratiohave been written in an extension of SVG which
allows for high-level representations of graphgilBa.6 has been used to rasterize the SVG imagssme
versions of the material. The primary target forofahe teaching material is HTML. LENO can be used
produce different views of the material. In the amte material we make use of the slide view ard th
thematic view (the text book view). The aggregatik view is also available. The PDF version &f th
thematic view (the text book view) has been madPDB¥ Creator (version 0.9.5). Text breaking angepa
enumeration has been made in Microsoft Word 2083Rdit with Microsoft Word' in Internet Explorer
version 7.0.

A wbdpE

© o N o U

11.
12.

13.
14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24,

25.
26.
27.
28.

cContents

From structured programming to object-oriented paogning
Towards Object-oriented Programming

Phenomena and Concepts

Towards Object-oriented Programs

The C# Language and System
C# inrelationto C

C# in relation to Java

C# in relation to Visual Basic
C# Tools and IDEs

Classes: An Initial Example
Classes
Creating and Deleting Objects

Reference Types

Value Types

Organization of C# Programs
Patterns and Techniques

Accessing Data in Objects
Properties

Indexers

Methods

Overloaded Operators
Delegates

Events

Patterns and Techniques

Specialization of Classes
Extension of Classes
Inheritance in General
Inheritance in C#

13
19

23
25
53
57
59

61
67
89

97
103
117
123

133
135
147
151

165
173
183
189

195
203
209
215

29.
30.
31.
32.

33.
34.
35.
36.

37.
38.
39.
40.

4]1.
42.
43.

45,
46.
47.
48.

49.
50.
51
52.

Method Combination

Abstract Classes - Sealed Classes
Interfaces

Patterns and Techniques

Fundamental Questions about Exception Handling
Conventional Exception Handling

Object-oriented Exception Handling

Exceptions and Exception Handling in C#

Streams

Directories and Files
Serialization

Patterns and Techniques

Motivation for Generic Types
Generic Types
Generic Methods

Collections - History and Overview
Generic Collections in C#

Generic Dictionaries in C#
Non-generic Collections in C#
Patterns and Techniques

Correctness

Specification with preconditions and postconditions
Responsibilities and Contracts

Class Invariants

Vi

241
245
253
271

301
307
311
313

333
355
359
369

373
381
401

407
409
437
445
447

453
457
463
471

1. From structured programming to object-oriented
programming

We will assume that the reader of this materialdmase knowledge of imperative programming, and ttinet
reader already has been exposed to the ideasiofisd programming. More specifically, we will asse
that the reader has some background in C programnmirChapter 6 (corresponding to the second leatfir
the course) we summarize the relationships betWeand C#.

1.1. Structured Programming

Lecture 1 - slide 2

We approach object-oriented programming by revigvire dominating programming approach prior to
object-oriented programming. It is callstfuctured programmingA brief background on structured
programming, imperative programming, and - moreegalty - different schools of programming is prosad
in Focus box 1.1. | will recommend that you reaa \tikipedia article about structured programmingkw
str-pro]. It captures, very nicely, the essencthefideas.

Structured programmingelies on use of high-level control structuredend of low-level
jumping

Structured programming is also loosely coupled wagirdown programmingndprogram
development by stepwise refinement

Structured programming covers several, loosely lsalileas. As summarized above, one of these isdhe
of control structures (such as if, switch/case |Jevaind for) instead of gotos.

Use of relatively small procedures is another idewell-structured program should devote a single
procedure to the solution of a single problem. 3pléting of problems in subproblems should beaettd

by breaking down a single procedure into a numberacedures. The idea pfogram development by
stepwise refinemeififVirth71] advocates that this is done in a top-ddashion. The items below summarize
the way it is done.

- Start by writing the main program
« Use selective and iterative control structures
» Postulate and call procedures P1, ...,Pn
« Implement P1, ... Pn, and in turn the procedureg thake use of
« Eventually, the procedures become so simple tlegt¢an be implemented without introducing
additional procedures

Only few programmers are radical with respect izdown structured programming. In the practicallaor
it is probably much more typical to start somewtliarie middle, and then both work towards theaog
towards the bottom.

| mper ative programming, Structured programming, and Programming FOCUS BOX
paradigms. 1.1

Imperative programmings one of the four maiprogramming paradigmsThe others are functional
programming, object-oriented programming, and Iggimgramming.

Imperative programming is closely related to the Weav-level machine languages work: Commands arz
used to change the values of locations in the mgwiothe computer. In high-level languages, this is

achieved by use afssignment statementshich is used to change the values of variales.assignment
statement is therefore the archetypical commaiichfrerative programming. Control structures (seqaent
selection, and iteration) come on top of that tbhgetvith procedural abstractions.

Programming done in the early years of the compguia (before the introduction of Algol) is oftdmotight
of as "unstructured programming”. Unstructured paiogning is largely characterized by use of "jumping
around" by means @oto commands. The introduction idfandwhile control structures together with
procedures eliminated the need for gotos. Thisbeashown theoretically, but - more important 4$oa
holds true in the practical world of imperative gramming. Armed with the common control structuiés
andwhile, for instance) and procedural abstraction, venyfeogrammers are tempted to usgoto
statement in the programs they write. Such progriagmvithout use of goto statements, is often chlle
structured programming

1.2. A structured program: Hangman

Lecture 1 - slide 3

In order to be concrete we will look at parts @ @arogram. The program implements a simple and
rudimentary version of the well-known Hangman gawe. will pretend that the program has been
developed according to the structured programniegs described in Section 1.1.

The main Hangman programain , is shown in Program 1.1. The fragments showpuirple are postulated
(in the sense discussed in Section 1.1). l.e., dneyalled, but not yet defined at the callingetimhe
postulated procedures are meant to be defineditatee program development process. Some of threm a
shown below.

int main(void){
char *playerName;
answer again;

playerName = get Pl ayer Name();
i ni t Hangman();
dof
pl ayHangnman(playerName);
again = askUser ("Do you want to play again®);
} while (again == yes);

}

Program 1.1 The main function of the Hangman
program.

The functiongetPlayerName is intended to prompt the Hangman player for hisey name. As it appears in
Program 1.2 this function only uses functions fiitne C standard library. Therefore there are no esighd
parts ingetPlayerName

char *getPlayerName(){
char *playerName = (char*)malloc(NAME_MAX);

printf("What is your name? ");
fgets(playerName, NAME_MAX, stdin);
playerName[strlen(playerName)-1] = "\0";
return playerName;

Program 1.2 The function getPlayerName of me

The functioninitHangman calls an additional initialization function callettPuzzles , which reads a
puzzle from a text file. We will here assume tlas$ function does not give rise to additional refirent. We
do not show the implementationiaifPuzzles

void initHangman (void){
srand(time(NULL));
i ni t Puzzl es("puzzles.txt");

}

Program 1.3 The function initHangman of mai

askUser is a general purpose function, which was calledain in Program 1.1. We show it in Program 1.4
(only on web) and we see that it does not relyduitenal functions.

The functionplayHangman , seen in Program 1.5, is calledrbyin in the outer loop in Program 1.1.
playHangman contains an inner loop which is related to a gimgund of playing. As it appears from
Program 1.playHangman calls a lot of additional functions (all emphasizbut not all of them included
here).

void playHangman (char playerName[]){
int aPuzzleNumber, wonGame;
puzzl e secretPuzzle;
hangmanGaneSt at e gameState;
char playersGuess;

i ni t Gane(playerName, &gameState);
aPuzzleNumber = rand() % numberOfPuzzles();
secretPuzzle = get Puzzl e(aPuzzleNumber);

while ((gameState.numberOfWrongGuesses < N) &&
(gameState.numberOfCorrectGuesses < secret Puzzle.numberOfCharsToGuess)){
ganeSt ati sti cs(gameState, secretPuzzle);
present Puzzl eCut | i ne(secretPuzzle,gameState); printf("\n");
pr esent Rermai ni ngAl phabet (gameState); printf("\n");

if (CHEATING) pr esent Secr et Puzzl e(secretPuzzle);
printf("\n");
playersGuess = get User sCGuess();

clrconsole();
updat eGaneSt at e(&gamesState, secretPuzzle, playersGuess);

ganeSt ati sti cs(gameState, secretPuzzle);

wonGame = wonOr Lost (gameState,secretPuzzle);
handl eH ghscor e(gameState, secretPuzzle, wonGame);
}

Program 1.5 The function playHangman of ma

In Program 1.6 (only on web) and Program 1.7 (@mlyveb), we show two additional functionsiGame
andgetPuzzle , both of which are called islayHangman in Program 1.5.

As already brought up in Section 1.1 many prograrsrde not strictly adhere to structured programming
and top-down refinement when coding the hangmagrpro. Ifyouhave programmed Hangman, or a
similar game, it is an interesting exercise toadfh little on the actual approach that was takeimng your
own development. In Section 4.1 we return to thag#@an example, restructured as an object-oriented
program.

Exercise 1.1. How did you program the Hangman game?

This is an exercise for students who have a paixperience with the development of the Hangman
program, or a similar game.

Recall how you carried out the development of tfugy@mm.
To which degree did you adherettp-down development by stepwise refinefhent

If you did not use this development approach, fhlease try to characterize how you actually did it.

1.3. Observations about Structured Programming

Lecture 1 - slide 4

We will now attempt to summarize some of the weakee of structured programming. This will lead us
towards object-oriented programming.

Structured programming is nthte wrong wayo write programs. Similarly, object-oriented pragming is
not necessarilthe right way Object-oriented programming (OOP) is an altexeagirogram development
technique that often tends to be better if we déthl large programs and if we care about program
reusability.

We make the following observations about structymedjramming:

« Structured programming is narrowly oriented towasolwing one particular problem
« It would be nice if our programming efforts could driented more broadly
« Structured programming is carried out by graduabdeposition of the functionality
« The structures formed by functionality/actions/coharenot the mosstableparts of a
program
« Focusing on data structures instead of controtsira is an alternative approach
« Real systems have no single top - Real systemshianag/ multiple tops [Bertrand Meyer]
« It may therefore be natural to consider alternatieethe top-down approach

Let us briefly comment on each of the observations.

When we write a 'traditional’ structured prograins inost often the case that we have a single @ifn in
mind. This may also be the case when we write gcbbriented program. But with object-oriented
programming it is more common - side by side with tlevelopment of the application - also to foaus o
development of program pieces that can be usedearsed in different contexts.

The next observation deals with 'stable structuvgbat is most stable: the overall control struetof the
program, or the overall data structure of the prot? The former relates to use of various contratttres
and to the flow procedure calls. The latter relt&bedata types and classes (in the sense to besdisd in
Chapter 11). It is often argued that the overalppam data structure changes less frequently tleoverall
program control structure. Therefore, it is prolydi@tter to base the program structure on decorniposif
data types than on procedural decomposition.

The last observation is due to Bertrand Meyer [M88k He claims that "Real systems have no topt .use
take the Hangman program as an example. Eversifikely that we can identify a single top of most
hangman programs (in our programajn of Program 1.1) the major parts of the progranukhbe able to
survive in similar games, for instance in "WheeFoftune". In addition, a high score facility of ftaman
should be applicable in a broad range of gameshigiescore part of the Hangman program may easily
account for half of the total number of sourcediirtHangman, and therefore it is attractive tsesitiin
other similar games. The simple textual, line-ardruser interface could be replaceable by a niexéfe
user graphical user interface. In that way, everstmple Hangman program can easily be seen axjeapn
with no top, or a program with multiple tops.

Readers interested in a good and extended disousfitine road to object-orientation' should reelésted
parts of Bertrand Meyers book 'Object-oriented Bafe Construction' [Meyer88]. The book illustrates
object-oriented programming using the programmamgliage Eiffel, and as such it is not directly majble
to the project of this course. The book is avaddhltwo versions. Either of them can be used. yropinion
'‘Object-oriented Software Construction' is oneheflbest books about object-oriented programming.

1.4. Towards Object-oriented Programming

Lecture 1 - slide 5

We are now turning our interests towards 'the dghjeiented way'. Below we list some of the most
important ideas that we must care about when weerttek transition from structured programming to
object-oriented programming. This discussion isaweral ways, continued in Chapter 2.

« The gap between the problem and the level of thehma:
« Fill the gap bottom up
» Use the data as the basic building blocks
- Data, and relations between data,rame stablgéhan the actions on data
« Bundle data with their natural operations
» Build on the ideas ddibstract datatypes
« Consolidate the programming constructs that endaiesdata (structs/records)
« Concentrate on theoncepts and phenomendich should be handled by the program
« Make use of existing theories of phenomena andepiac
« Form new concepts from existing concepts
« Make use of a programming style that allows usoltapse the programming of objects

Our approach to object-oriented programming isiooet in Chapter 2. Before that, we will clarifyeth
concept of abstract data types.

1.5. Abstract Datatypes

Lecture 1 - slide 10

A data type(or, for short, dypé is a set of values. All the values in a type stnumber of properties. An
abstract data typé a data type where we focus on the possibleatipes on the values in the type, in
contrast to the representation of these values. [€ads to the following definitions.

A datatypeis a set of values with common properties. A ggais a classification of data tha
reflects the intended use of the data in a program.

An abstract datatypés a data type together with a set of operationghe values of the type.
The operations hide and protect the actual reptaten of the data.

In this material, boxes on a dark blue backgrouitd white letters are intended to give preciserdtfins
of concepts.

To strengthen our understanding of abstract daestyADTs) we will show a fewpecificationof well-
known data types: Stacks, natural numbers, andehosl! A specification answers "what questions", not
"how questions". The details are only shown invled version of the material.

1.6. References

[Meyer88] Bertrand MeyeQbject-oriented software constructiddrentice Hall, 1988.

[Wirth71] Niklaus Wirth, "Program Development byeptvise RefinementCommunications of
the ACM Vol. 14, No. 4, April 1971, pp. 221-227.

[Wiki-str-pro] Wikipedia: Structured_programming

http://en.wikipedia.org/wiki/Structured_programming

2. Towards Object-oriented Programming

In this and the following chapter we will graduallgveil important theoretical and conceptual aspett
object-oriented programming. After this, in Chaptere will be more concrete and practical, agaiteims
of the Hangman example.

In this chapter we will deal with a number of dr#fat aspects that lead in the direction of objetrted
programming. We do not attempt to relate thesecspe each other. Thus, in this chapter you will
encounter a number of fragmented observations thath individually and together - bring us towards
object-oriented programming.

2.1. Client, Servers, and Messages

Lecture 1 - slide 7

We will start with message passing in between abj€ane object (often called théent) sends a message
to another object (often called therve)). The client asks for a service. The server wlkide job, and
eventually return an answer to the client.

"Client" and "server" are general role names oéots. When the server receives a message, it ncajed®
forward the message to some subserver (becaumeniothandle the request - solve the problem lf)itée
this way, the server becomes a client of anotheese

We will primarily be concerned with message passihgre the client waits for an answer from the serv
Thus, nothing happens in the client before theesdmas completed its work. This is referred to as
synchronous message passigynchronous message pasdmglso possible. This involves parallel
activities. This is a slightly more advanced topic.

Peter orders a Pizza at AAU Pizza by email.

Via interaction between a number of service pradde pizza is delivered to Peters group room

Below we study an everyday example of messagengpbstween an object (person) who orders a pizza,
and a "Pizza server". The Pizza server relies beraubservers (subcontractors), in our exampléubeher,
the greengrocer, and a transport service. Thugizma crew are customers in other shops, andntiade
use of other services.

Notice that Peter - the hungry guy - is not awdréhe subcontractors. Peter only cares about teefate of
the Pizza server.

In some versions of this material you may intekaadyi play the Pizza scenario in order to find ootvithe
objects cooperate when Peter orders a Pizza. BHmauiso emphasizes that there is always a singlemur
object (at least as long as we deal with synchremoessage passing).

; s Butcher
Peter | | AAU Pizza g

— A
AAU Courier 1| Greengrocer

Figure 2.1 The scenario of pizza ordering. The scenario foswsea number of
objects (persons) who communicate by message passing

Is it reasonable that Peter is idle in the peribtihoe in between pizza ordering and pizza deli?dty
depends on the circumstances. If you wait in tetargant you may actually be left with feelingjaét
waiting'. If Peter orders the Pizza from his groapm, Peter probably prefers to send an asyncheonou
message. In that way he can do some work befongizka arrives. In this mode, we should, however, b
able to handle thimterruptin terms of the actual pizza delivery. Again, tisi more advanced topic.

A client asks for a service at some given service pro\sever).
This may lead the service provider (which now playdient role) to ask for subservices
Clients and servers communicategdagsing messages that return results

Try the accompanying SVG animation

In our model of message passing, it is inhereritrtiessages return a result. Alternatively, we coglel a
model in which the 'the message result' is haniojeal message in the other direction. We have chasen
model, which can be used directly in mainstreaneabpriented programming languages (such as C#).

We will come back to clients and servers in thetexinof the lecture about classes, see Section 10.2
Message passing is taken up in that lecture, set@8€.0.3.

2.2. Responsibilities

Lecture 1 - slide 8

Responsibility - and distribution of responsibilitis important in a network of cooperating objetts
Section 2.1 we studied a network of people andapmakers. The Pizza maker has certain assumptions
about orders from customers. We cannot expectiza maker to respond to an order where the custome
want to buy a car, or a pet. On the other handctiseomer will be unhappy if he or she receivegbpti

(or a chocolate bar) after having ordered a piztzone.

Objects that act as servers manage a certain arabragponsibility

We will talk about theesponsibility of an objeas such. The object is responsible to keep tree dduich it
encapsulates, in good shape. It should not behldedsi bring the object in an inconsistent state.

Theresponsibility of an operatioaf a class/object does also make good sensee Hahder of the message,
which activates an operation fulfills certain (m@)ditions, it is the obligation of the operationdeliver a
result which comply with a certain (post)condition.

The responsibilities of an object, together with thsponsibilities of the operations of the objsbgrpen the
profile of the object, and they provide for a higdegree of cohesion of the object.

« Responsibility
« Of an object, as reflected by the interface it pites to other objects
« Of an operation
« Precondition for activation - proposition aboutneiisites for calling
- Postcondition - proposition about result or effects
- Well-defined responsibilities provide for coherebjects

In Chapter 49 through Chapter 53 we will devoteatire lecture to discussion of responsibilities] aow
to specify the distribution of responsibilities amyoobjects. This will involveontracts which (again) is a
real-world concept - a metaphor - from which cancae gain useful inspiration when we develop saftwa

You should care about the responsibilities of lmiijects and operations

Thedistribution of responsibilitiesvill become a major theme later in the course

2.3. Data-centered modularity

Lecture 1 - slide 9

Message passing is mainly a dynamic (run-time) @spfeobject-oriented programs. Let us now focusion
static aspect: modularity.

Modularity is the property of a computer program that meastine extent to which it has bee

composed out of separate parts called modules péfika]

Non-modular programs (programs written without deposition) are unwieldy. The question we care about
here is the kind of modularity to use together witistract data types. We will identify the followikinds
of modularity:

» Procedural modularity
» Made up of individual procedures or functions
« Relatively fine grained
« Not sufficient for programming in the large
« Boxing modularity
« A wall around arbitrary definitions
« As coarse grained as needed
« Visibility may be controlled - import and export
« Data-centered modularity
« A module built around data that represents a siogiheept

« High degree of cohesion
» Visibility may be controlled
« The module may act as a datatype

Procedural modularity is used in structured prognamgy, e.g. in C programs. It covers both functiand
procedures. Procedural modularity remains to bg wmeportant, independent of programming paradigm!

Boxing modularity (our name of the concept) capguhe module concept known from, e.g. Ada [Ada80]
and Modula-2 [Wirth83]. In C, there are only fewans to deal with boxing modularity. Most C
programmers use the source files for boxing.

Boxing modularity allows us to box a data type #moperations that belong to the type in a modifleen
using data centered modularitie module becomes a type its€hiis is an important observation. Object-
oriented programming is based on data centered lanttgu

Object-oriented programming is based on data-cedterodularity

2.4. Reusability

Lecture 1 - slide 11

Let us now, for a moment, discuss reusability. itlea is that we wish to promote a programming Styde
allows us to use pieces of programs that we, @arsttihave already written, tested, and documented.
Procedure libraries are well-known. Object-orierpeagramming brings us one step further, in theation
of class libraries. Class libraries can - to somgree - be thought of as reusable abstract da¢s.typ

More reuse - Less software to manage

We identity the following reusability challenges:

- Find
« Where is the component, and how do | get it?
« Understand
« What does the component offer, and how does\itifit my own program?

« Modify
« Do I need to adapt the component in order to (eeh?s
¢ Integrate
« How do | actually organize and use the componegstteer with the existing
components?

Finding has been eased a lot the last decade, due tmtirgence of powerful search machines (servers!).
Understandings still a solid challenge. Documentation of realegarts is important. Tools like JavaDoc
(developed as on-line resources by Sun as paneafdva effort) are crucial. We will study integac
documentation of class libraries later in this mateModificationshould be used with great care. It is not a
good idea to find a procedure or a class on therriet, and rewrite it to fit your own needs. Whiee hext

10

version of the program is released you will bergag trouble. A modular modification approach, vihic
separates your contributions from the original dbntions, is needed. In object-oriented prograngnin
inheritance alleviates this problem. The actuadrmtionis relatively well-supported in modern object-
oriented programming languages, because in thegadges we have powerful means to deal with casflic
(such as name clashes) in between reused comp@rehtair own parts of the program.

2.5. Action on objects

Lecture 1 - slide 12

The final aspect that we want to bring up in owddowards object-oriented programming is the mfea
action on objects. Actions should always be tajatesome object. Actions should not appear 'jpshuhe
air'. Bertrand Meyer [Meyer88] has most likely béespired by a famous John F. Kennedy quote when he
formulated the idea in the following way:

Ask not what the system does: Ask what it doejit t
[Bertrand Meyer]

« Actions in general
« Implemented by procedure calls
- Often, but not always, with parameters
» Actions on objects
« Activated via messages
« A message always has a receiving object
« A message is similar to a procedure calls witleast one actual parameter
+ A message activates an operation (a method)
« The receiving object locates the best suited ojerais responder (method
lookup)

The activation of a concrete procedure or funcisatypically more complex than in ordinary impevati
programming. The message is sent to an objectrddeption of the message may cause the objechtorse
for the best suited operation (method) to handeréguest by the message. This process is sometatied
method lookupln some object-oriented language the method Ipgacess is rather complicated.

In the next section we continue our road towardsatoriented programming, by discussing concepts a
phenomena.

2.6. References

[Meyer88] Bertrand MeyelQbject-oriented software constructidPrentice Hall, 198¢
[Wirth83] Wirth, N., Programming in Modula-2third. Springer-Verlag, 1985.
[Ada80] Ada Reference ManudUnited States Department of Defence, July 1980.

11

12

3. Phenomena and Concepts

Metaphors from the real life are important inspimatwhen we program the computer. It is limitingnd in
fact counterproductive - to focus only on the techihcomputer concepts (bits, bytes, CPUs, memamds;
USB ports, etc). According to my favorite dictiopgthe American Heritage Dictionary of the English
Language) a metaphor is

"a figure of speech in which a word or phrase @rdinarily designates one thing is used to
designate another, thus making an implicit compatrfs

Many familiar programming concepts are not fromteehnical world of computers. Quite a few, suclngs
float, and double come directly from mathematicalrderparts. Messages and message passing, which we
discussed in Section 2.1, are widely known fromexearyday life. Even before email was invented pteo
communicated by means of messages (Morse codegrdeis, postal mail letters).

It turns out that the ideas of classes and obggets in part - inspired from the theory of concapd
phenomena. We will unveil this in the following §ens. Be warned that our coverage is brief andeeh
may very well be the case that it takes time far @digest some of the ideas and concept thatrevgang
to present.

3.1. Phenomena and Concepts

Lecture 1 - slide 14

A phenomenors a thing that has definite, individual existemnteeality or in the mind.
Anything real in itself.

A conceptis a generalized idea of a collection of phenombaaed on knowledge of commo
properties of instances in the collection

The definitions of phenomenon and concept are téoem the PhD thesis of Jgrgen Lindskov Knudsen and
Kristine Stougaard Thomsen, Aarhus University [#t]. This thesis is also the source behind Se@&ign
Section 3.4.

The characteristic aspects of a concept are thenfinig:

» The concept name

« Theintension: The collection of properties that characterizeghenomena in the extension of
the concept

« Theextension: The collection of phenomena that is covered byctreept

The name of the concept is also calleddbsignation The designation may cover a number of different
names, under which the concept is known.

The wordintensionis used in the less well-known meaning (from Ipdibe sum of the attributes contained
in a term" (see for instance the American HeritBggionary of the English Language).

13

The wordextensioris used in the meaning (again from logic): "Thessl of objects designated by a specific
term or concept” (according the same dictionarg) cBreful not to confuse this meaningegfensiorwith
the more common meaning of the word, used for m&tan Chapter 26 for extension of classes.

Concepts can be viewed in two different ways: Thistdtelian and the fuzzy way.

Using theAristotelian viewthe properties in the intension are divided ihefining propertieand
characteristic propertiestach phenomenon of a concept must possess tnendedroperties. It is assumed
that it is objectively determinable if a given pberenon belongs to an Aristotelian concept.

Using thefuzzy viewthe properties in the intension are only exampfgsossible properties. In addition to
the example properties, the intension is also cheariaed by a set of prototypical phenomena. tois
objectively determinable if a given phenomenon bg#oto a fuzzy concept.

We will primarily make use of the Aristotelian viemn concepts. The relative sharp borderline between
different concepts is attractive when we use cotscap the basis for the classes that we program in
object-oriented programming language. Many sucbsela represental-life conceptssimply because many
of our programs administrate things from the reatlék It is, however, also common to make use of
imaginary conceptsvhich have no real-life counterparts (such, asrfstance, a hashtable).

3.2. Classification and exemplification

Lecture 1 - slide 15

To classifyis to form a concept that covers a collectioniwfilar phenomens

To exemplifyis to focus on a phenomenon in the extensionettmncept

Classification and exemplification describe a fetabetween concepts and phenomena.

Classification forms a concept from a set of phemean Thentensionof the concept is the (defining)
properties that are shared by the set of phenoif@eearding to the Aristotelian view).

Exemplification is the inverse of classificatiorhus, the exemplification of a concept is a subkti®
extension of the concept.

= Concept

Classiffcation Exemplification
Phenomenan-=

Figure 3.1 The relationships between concepts and phenomewan @iconcept
we can identify the examples of phenomena in tlemgixin of the concept. Given
such an example, we can (the other way around) fiactoncept that classifies
the sample phenomenon.

14

3.3. Aggregation and Decomposition

Lecture 1 - slide 16

In this and the following section we will see wagdorm new concepts from existing concepts. First,
look at concepts related to 'parts' and 'wholes'.

To aggregates to form a concept that covers a number of

To decomposés to split a concept into a number of parts

The concept of a house is an aggregation of (&iamce) of the concepts wall, window, door, and.rbbe
latter are the decomposition of the house concept.

The intension of the aggregated concept correspionii® intensions of the part concepts. But, meo
casesthe whole is more than the sum of its paftsus, the aggregated concept may have additional
properties as well.

Concept Concept
ix,

Aggmgarhh . Deco#'rposfrionu
Concept Concept Concept Concept Concept Concept

Figure 3.2 An illustration of aggregation and decompositiomtie that the
relations between wholes and parts are in betweeneqs. Thus, aggregation
and decomposition show how to form new conceptsésasting concepts.

In Figure 3.3 we show an example, namely the aggi@yof a bike. Notice that we do not address the
number of parts of the aggregated concept (nomalities). Following the tradition of UML notatiomnje
use a diamond shape next to the aggregated compte, however, that it is not our intention &ewexact
UML notation in this material. We will primarily beoncerned with programming notation, as defined
(precisely) by a programming language.

4 Bike @
$
Frame -+ Wheel l# Hand brake
)

Gear Break spoke

Figure 3.3 An aggregation of a Bike in terms of Frame, WhBedke, etc. This
illustration does not capture the number of invdlyarts. Thus, the diagram does
not capture the number of spokes per wheel, anduh#er of wheels per bike.
The diamond shape is UML notation for aggregation.

15

Exercise 1.2. Aggregated Concepts

Take a look at the concepts which are representeldebphenomena in the room where you are located.
Identify at least four aggregated concepts. Enuteehe concepts of the decomposition.

3.4. Generalization and Specialization

Lecture 1 - slide 18

Generalizatiorforms a broader concept from a narrow co

Specializatiorforms a narrow concept from a broader con

Generalization and specialization are seen as teapsm a new concept from an existing concept. The
extension of a specialization S is a subset oé#tension of the generalization G.

It is more difficult to capture specialization ageneralization in terms of the intensions.
The concepts of Encyclopedia, Bible, and Dictioreng all specializations of the Book concept.

Encyclopedia, Bibles and Dictionaries are all stdve€Books. It may be the case that the set of
encyclopedia and the set of dictionaries are oppitay.

Broader Concept Broader Concept
i
Generalization Specialization
Y
Marrow Concept Marrow Concept

Figure 3.4 An illustration of generalization and specializatio

Below, in Figure 3.5 we show a generalization/sgléztion hierarchy of transportation concepts.Heac
parent in the tree is a generalization of its sons.

Means of Transport
-
Car Boat Alrplane
v v e
Truck Bus || Ferry 5all Boat | | Glider P‘assenggijet Flane

Airbus A3B0) [Baing 747

Figure 3.5 A generalization/specialization hierarchy of 'MeanisTransport'. All
the concepts in this diagram are specialized meditiansport. Notice that all the
nodes in the specialization trees are conceptd inaividual phenomena.

16

The ideas of generalization and specialization ajeamcepts are directly reflected in generalizatiod
specialization among classes (see Chapter 25)aead by inheritance in object-oriented programgmi
languages.

Exercise 1.3. Concepts and Phenomena
The purpose of this exercise is to train your @ibgito distinguish between concepts and phenomena.
Decide in each of the following cases if the mamgithitem is a concept or a phenomena:

1. The door used to enter this room.

2. Todays issue of your favorite newspaper.

3. Your copy of today's issue of your favorite newsgap
4. The collection of all copies of today's newpapers

5. Denmark.

6. European country.

7. Theinteger 7.

8. The set of integers between 1 and 10.

9. The set of all students who attend this course.

10. The oldest student who attend this course.

For an item considered as a phenomenon, idengfytiderlying concept.

Exercise 1.4. University Concepts

In a university study, the study activities arealljustructured in a number of semesters. Theréveoe
kinds of study activitities: projects and cours&isAalborg University, there are currently two kedf
courses: Study courses (dk: studieenhedskurseprajett courses (dk: projektenhedskurser).

Characterize the conceptswofiversity studystudy activitysemesterproject, course study coursgand
project courseaelative to Aggregation/Decomposition and Geneagidbn/Specialization.

3.5. References

[JIk-Kkst] A Conceptual Framework for Programminghbaages: Jargen Lindskov Knudsen
and Kristine Stougaard Thomsen, Department of Coengicience, Aarhus
Universitet, PB-192, April 1985.

17

18

4. Towards Object-oriented Programs

Below we will return to the example of the Hangngame, which we studied as a structured program in
Section 1.2.

4.1. An object-oriented program: Hangman

Lecture 1 - slide 21

In Figure 4.1 we show a class diagram of our olpeieinted version of the Hangman game.

The clas®uzzle encapsulates the data of a single puzzle (thg@atand the word phrase). The class also
offers an interface through which these informagioan be accessed.

The clas$uzzleCollection represents a number of puzzles. It is connectéktéile system (or a database)
where we keep the collection of puzzles while daying a game. How this 'persistency' is actuadigdied
is ignored for now.

Similar observations can be done fiighscoreEntry andHighscoreList

The classiangmanGameencapsulates the state of a single (round ofttheyman game. It has associations to
a player and a secret puzzle, and to the collextidpuzzles and highscore entries. We do not in
HangmanGamewant to commit ourselves to any particular us@rface. Thus, the actual user interface of the
game is not part of theangmanGameclass.

:__Fll;uam;- L -._'_l.laarimu-l';n; y
o #HangmanGamee o
Y
PuzzleCollection HighscoreList Player
Puzzle HighscoreEntry

Figure 4.1 The classes of a Hangman program. At the left el we see that
PuzzleCollection is formed by Puzzle parts. SinyilgHe HighscoreList is formed
by HighScoreEntry parts. The HangManGame claswifiéd by three parts:
PuzzleCollection, HighScoreList, and Player. Both $iystem and user interface
aspects are "cloudy" in this diagram.

Below we show sketches of the individual classébéngame. The classes and all the operations anesth
as abstract, because the operations of the class@®t implemented, and because the current OGkre
of the Hangman game is written at a very high levelbstraction. The concatenation of all clasees i
Program 4.1 - Program 4.5 can actually be compili¢ll a C# compiler. Abstract classes are discussed
Chapter 30.

The operation interfaces of the classes are mobipty not yet complete, but they are complete ghda
let you have an impression of the object-orientedyamming approach.

abstract class Puzzle {

19

public abstract string Category{
get;
}

public abstract string PuzzlePhrase{
get;
}

public abstract int NumberOfCharsToGuess();

Program 4.1 The class Puzzl

Given that Program 4.1 - Program 4.6 contain soymadastract operations we will touch a little bitvwhat
this means. It is not intended that you shouldi¢le details of abstract classes here, howevés.igthe
topic of Section 30.1. As noticed above, the absttass shown in Program 4.1 can actually be cleahpi
with a C# compiler. But it is clear that the claasinot be instantiated (no objects can be madis). It
necessary to create a subclasBuatle in which we give the details of the abstract opens (methods and
properties). Subclassing and inheritance will lsewsed in Chapter 25 and subsequent chapteh In t
subclass oPuzzle we need to supply puzzle data representationlgletai

abstract class HighScoreEntry {

public abstract Player Player {
get;
}

public abstract int Score{
get;
}
}

Program 4.2 The class HighScoreEntr

Let us make a technical remark related to progrargraf abstract classes in C#. It is hecessary i alh
operations (methods and properties) without boageabstract'. When a class contains at leasthstmat
operation, the class itself must also be markegbagact. It is not sufficient to use the abstractlifier on

the class.

abstract class Player {

public abstract string Name{
get;
}

}

Program 4.3 The class Playel

abstract class PuzzleCollection {

public abstract string Count{
get;
}

public abstract Puzzle this[int iJ{
get;
}

public abstract void Add(Puzzle p);

20

Program 4.4 The class PuzzleCollectic
abstract class HighScorelList {
/* Invariant: Entries always sorted */
public abstract void Open(string FileName);
public abstract string Count{

get;
}

public abstract HighScoreEntry this[int iJ{
get;
}

public abstract void Add(HighScoreEntry e);

public abstract void Close();

Program 4.5 The class HighScoreLis

The classiangmanGamein Program 4.6 (only on web) shows an outlineopflievel class, cf. Figure 4.1. The
operations in this class are intended to be cdliexttly or indirectly by thetain method (not shown).

21

22

5. The C# Language and System

This chapter, together with Chapter 6, Chaptend,@hapter 9, is an introduction to the C# language
the C# system. On Windows, the latter is knowrNas..On purpose, we will keep the .Net part of the
material very short. Our main interest in this leetis how to program in C#, and how this is reldte
programming in other languages such as C, Javaysundl Basic.

5.1. C# seen in a historic perspective

Lecture 2 - slide 2

It is important to realize that C# stands on theusdfers of other similar object-oriented programgnin
languages. Most notably, C# is heavily inspiredaya. Java, in turn, is inspired by C++, which again
the object-oriented side - can be traced backrii (and, of course, to C on the imperative side).

Here is an overview of the most important objedtmtied programming languages from which C# has been
derived:

« Simula (1967)
« The very first object-oriented programming language
« C++(1983)
« The first object-oriented programming languagehm € family of languages
« Java (1995)
« Sun's object-oriented programming language
« C# (2001)
« Microsoft's object-oriented programming language

5.2. The Common Language Infrastructure

Lecture 2 - slide 3

The Common Language Infrastructure (CLI) is a dpmtion that allows several different programming
languages to be used together on a given platfoh@.CLI has a lot of components, typically refertedby
three-letter abbreviations (acronyms). Here arentbst important parts of the Common Language
Infrastructure:

« Common Intermediate language (CIL) including a camrype system (CTS)
« Common Language Specification (CLS) - shared blaatjuages

» Virtual Execution System (VES)

« Metadata about types, dependent libraries, atafynd more

The following illustration, taken from Wikipedidlustrates the CLI and its context.

23

c# VELNET i

KET caimpatibie langsd (it compie
Commn i T 'n--unn. -.-lln'
----- sy Camman infsrmsdiale Lasgusgs §CIL1

Thar plarFons-spe-cife: Cory «-l.c-gm
presie Fushess (GLA] cxrmpii CIL Lo mas

resdabia code rmb—nuwdmlu
e plafzm

01001100100011
11010101100110

Figure 5.1 Wikipedia's overview diagram of the CLI

.Net is one particular implementation of the Comrhanguage Infrastructure, and it is undoubtedly the
most complete one. .Net is closely associated Withdows. .Net is, however, not the only implemeiotat
of the CLI. Mono is another one, which is intendedvork on several platforms. Mono is the primary
implementation of the CLI on Linux. Mono is alscadable on Windows.

MONO and .NET are both implementations of the Cominanguage Infrastructure

The C# language and the Common Language Infrasteuate standardized by ECMA and ISO

5.3. C# Compilation and Execution

Lecture 2 - slide 5

The Common Language Infrastructure supports a tejp-sompilation process

« Compilation

« The C# compiler: Translation of C# source to CIL

« Producesdil and.exe files

« Justin timecompilation: Translation of CIL to machine code
« Execution

« With interleavedust in Timecompilation

« On Mono: Explicit activation of the interpreter

- On Window: Transparent activation of the interprete

dil and.exe files are - with some limitations - portable inween different platforms

24

6. C# inrelationto C

As already mentioned in Chapter 1, this materigkisarily targeted at people who know the C
programming language. With this outset, we do eetdto dwell on issues such as elementary types,
operators, and control structures. The reasoraisGrand C# (and Java for that sake) are similtdrase
respects.

In this chapter we will discuss the aspects of Gittwvhave obvious counterparts in C. Hopefully, the
chapter will be helpful to C programmers who hanérgerest in C# programming.

In this chapter 'C#' refers to C# version 2.0. WAverdiscuss C we refer to ANSI C ala 1989.

6.1. Simple types

Lecture 2 - slide 7

C supports the simple typetsar , bool , int , float anddouble . In addition there are a number of variation
of some of these. In this context, we will alsosider pointers as simple types.

The major differences between C# and C with resjpesiimple types are the following:

« All simple C# types have fixed bit sizes
« C# has a boolean type callegb
« C# chars are 16 bit long
« In C# there is a high-precision 128 bit numeri@fixpoint type calledecimal
» Pointers are not supported in the normal parts@f @rogram
« In the unsafe part C# allows for pointers like in C
« All simple types are in reality structs in C#, ahdrefore they have members

In C it is not possible to tell the bit sizes of timple types. In some C implementationgan for instance,
will made by 4 bytes (32 bits), but in other C ieplentations amt may be longer or shorter. In C# (as
well as in Java) the bit sizes of the simple tygesdefined and fixed as part of the specificatibthe
language.

In C there is no boolean type. Boolean false isasgmted by zero values (such as integer 0) anddooo
true is represented by any other integer valuen(asahe integer 1). In C# there is a boolean tyamed
bool , that contain the natural values denotedday andfalse .

The handling of characters is messy in C. Charaate€ are supported by the type narded . Thechar
type is an integer type. There is a great deabofusion about signed and unsigned characterscalyypi
characters are represented by 8 bits in C, allofangepresentation of the extended ASCII alphalpe€#
the typechar represent 16 bits characters. In many respe@<;#typechar corresponds to the Unicode
alphabet. However, 16 bits are not sufficient Epresentation of all characters in the Unicodeabgh The
issue of character representation, for instantexifiles, relative to the typehar is a complex issue in C#.
In this material it will be discussed in the lee@bout 10, starting in Chapter 37. More specificalou
should consult Section 37.7.

25

The high-precision, 128 bit type calleetimal is new in C#. It is a decimal floating point tyfses opposed
tofloat anddouble which are binary floating point types). Valuesypedecimal are intended for
financial calculations. Internally, a decimal vakansists of a sign bit (representing positive @gative), a
96 bit integer (mantissa) and a scaling factor ¢evemt) implicitly between £oand 10°. The 96 bit integer
part allows for representation of (at least) 28met digits. The decimal exponent allows you totket
decimal point anywhere in the 28 decimal numbee décimal type uses 3 * 4 = 12 bytes for the maatis
and 4 bytes for the exponent. (Not all bits ineékponent are used, however). For more informasea,
[decimal-floating-point].

C pointers are not intended to be used in C#. Hew&V pointers are actually supported in the pa@#
known as the unsafe part of the language. The pboéeeferences is very important in C#. Refersrened
pointers are similar, but there are several diffees as well. Pointers and references will be ested and
discussed below, in Section 6.5.

All simple types in C# are in reality representsdstructs (but not all structs are simple types)séch, this
classifies the simple types in C#adue typesas a contrast t@ference typedn addition, in C#, this
provides for definition of methods of simple typ&#tucts are discussed in Section 6.6.

Below we show concrete C# program fragments wherhahstrate some aspects of simple types.

using System;
class BoolDemo{

public static void Main(){

bool b1, b2;
bl = true ;b2= default(bool) ;
Console.WriteLine("The value of b2 is {0}", b2) ; Il False

}
}

Program 6.1 Demonstrations of the simple type bool ii
Ct.

In Program 6.1 we have emphasized the parts tlzdé e the typ@ool . We declare two boolean variables
b1 andb2, and we initialize them in the line below theiictgations. Notice the possibility of asking foeth
default value of typeool . This possibility also applies to other types. Blgput of Program 6.1 reveals that
the default value of typieol is false.

26

using System;
class CharDemo{

public static void Main(){
N

char chl = ,

ch2 = \u0041'

ch3 = \u0Oc6' ,ch4= \u00d8' ,ch5= \u00c5'

ché;
Console.WriteLine("chl is a letter: {0}", char.IsLetter(chl));
Console.WriteLine("{0} {1} {2}", ch3, ch4, char.ToLower(ch5));
ché = char.Parse("B") ;
Console.WriteLine("{0} {1}", char.GetNumericValue('3")

char.GetNumericValue('a’));

Program 6.2 Demonstrations of the simple type char il
CH#.

In Program 6.2 we demonstrate the C# tyize . We declare a number of variables, ...che, of type
char . chl ...ch5 are immediately initialized. Notice the use ofgéinquote character notation, suchaas.
This is similar to the notation used in C. Alsoicetthe'u....' escape notatianThis is four digit unicode
character notation. Each dotwn... must be a hexadecimal digit between 0 and f (3. unicode
notation can be used to denote characters, whichamecessarily available on your keyboard, ssctine
Danish letters /&, @ and A shown in Program 6.2idéailso thehar operations, such asar.IsLetter ,
which is applied orh1 in the program. TechnicallysLetter is a static method in the stru@tar (see
Section 6.6 and Section 14.3 for an introductiosttacts). There are many similar operations treestsify
characters. These operations correspond to theaatishs (macros) in the C libratgype.h . Itis
recommended that you - as an exercise - lasadger in the C# library documentation. It is important
that you are able to find information about alreadisting types in the documentation pages. See als
Exercise 2.1.

Number Systems and Hexadecimal Numbers FOCUS BOX 6.1

In the program that demonstrated the type charave keen examples of hexadecimal numbers. It is
worthwhile to understand why hexadecimal numbegsuged for these purposes. This side box is a crash
course on humber systems and hexadecimal numbers.

The normal numbers are decimal, using base 10mEaming of the number 123 is
1*10+2*10+3*10

The important observation is that we can use aitranpbaseb, b > 1 as an alternative to 10 for

decomposition of a number. Base numbers which @aners of 2 are particularly useful. If we use b2see

get the binary numbers. Binary numbers correspinedttl to the raw digital representation used in
computers. The binary notation of 123 is 111101dabse

27

1*P+1*2+1*2+1*2+0*2+1*2+1*2
is equal to the decimal number 123.

Binary numbers are important when we approachawer level of a computer, but as can be seen aboy
binary numbers are unwieldy and not very practidaixadecimal numbers are used instead. Hexadecir
numbers use base 16, which is\®e need 16 digits for notation of hexadecimal bara. The first 10 digit
are 0 .. 9. In lack of better notation, we useléters A .. F as the six last digits. A = 10,F.5 15.

The important observation is thegroup of four binary digits (corresponding to fdaits) can be translate
to a single hexadecimal numbdhus, we can immediately translate the binarylmem01111011 to the tw
hexadecimal digits 7 and 11. These two hexadediigiék are denoted as 7 and B respectively. With th
observation, at single byte of eight bits can wntas exactly two hexadecimal digits. Groupinghite of
1111011 leads to 0111 1011. 0111 is 7. 1011 isHithas denoted by the hexadecimal digit B. The
hexadecimal number 7B means

7*16"+11* 16°
which is 123 (in decimal notation).

The explantion above is - in a nutshell - the reasby you should care about hexadecimal numbers. In

e,
nal

17

O

Exercise 2.2 we will write programs that deal wittkadecimal numbers.

using System;
using System.Globalization;

class NumberDemof{

public static void Main(){
shyte sbl = shyte.MinValue; // Signed 8 bit integer
System.SByte sb2 = System.SByte.MaxValue;
Console.WriteLine("sbyte: {0} : {1}", sb1l, sb2) ;

byte bl = byte.MinValue; // Unsigned 8 bit integer
System.Byte b2 = System.Byte.MaxValue;
Console.WriteLine("byte: {0} : {1}", b1, b2);

short sl = short.MinValue; // Signed 16 bi tinteger
System.Int16 s2 = System.Int16.MaxValue;

Console.WriteLine("short: {0} : {1}", s1, s2);

ushort usl = ushort.MinValue; // Unsigned 16 b it integer
System.UInt16 us2= System.UInt16.MaxValue;

Console.WriteLine("ushort: {0} : {1}", us1, us2);

int i1 = int.MinValue; /I Signed 32 bit integer
System.Int32 i2 = System.Int32.MaxValue;

Console.WriteLine("int: {0} : {1}", i1, i2);

uint uil = uint.MinValue; // Unsigned 32 bit integer
System.UInt32 ui2= System.UInt32.MaxValue;

Console.WriteLine("uint: {0} : {1}", uil, ui2);

long I1 = long.MinValue; /I Signed 64 b it integer
System.Int64 12 = System.Int64.MaxValue;

Console.WriteLine("long: {0} : {1}", 11, 12);

ulong ull = ulong.MinValue; // Unsigned 64 bit integer

28

System.UInt64 ul2= System.UInt64.MaxValue;
Console.WriteLine("ulong: {0} : {1}", ull, ul2)

float f1 = float.MinValue; // 32 bit float ing-point
System.Single f2= System.Single.MaxValue;
Console.WriteLine("float: {0} : {1}", f1, f2);

double d1 = double.MinValue; // 64 bit floati ng-point
System.Double d2= System.Double.MaxValue;

Console.WriteLine("double: {0} : {1}", d1, d2);

decimal dm1 = decimal.MinValue; // 128 bit fixed- point

System.Decimal dm2= System.Decimal.MaxValue;
Console.WriteLine("decimal: {0} : {1}", dm1, dm 2);

string s = sb1.ToString()
t= 123.ToString()

Program 6.3 Demonstrations of numeric types in (

In Program 6.3 we show a program that demonsteditesimeric types in C#. For illustrative purposes,

use both the simple type names (suchtas shown inpur ple) and the underlying struct type names (such as

System.Int32 shown inblue). To give you a feeling of the ranges of the typls program prints the
smallest and the largest value for each numerie. tgp the bottom of Program 6.3 we show how the
operationToString can be used for conversion from a numeric tygeedypestring . The output of the
numeric demo program is shown in Listing 6.4 (coyweb).

Hexadecimal Numbersin C# FOCUS BOX 6.2

In Focus box 6.1 we studied hexadecimal numberswiVaow see how to deal with hexadecimal numb
in C#.

A number prefixed with Ox is written in hexadecimalation. Thus, 0x123 is equal to the decimal nemt
291.

In C and Java the prefix 0 is used for octal notatThus, in C and Java 0123 is equal to the deciomaber
83. This convention is not used in C#. In C#, Oi28st a decimal number prefixed with a redunahgit
0.

While prefixesare used for encoding of number systesnffixesof number constants are used for encocl
of numerical types. As an example, 0X123L denotesxadecimal constant of typag (a 64 bit integer).
The following suffixes can be used for integer §p¢ (unsigned)L (long), andJL (unsigned long). The
following suffixes can be used for real typEqfloat), D (double), andM (decimal). Both lowercase and
uppercase suffixes will work.

A number can formatted in both decimal and hexawalchotation. In the context ofGnsole.WriteLine
call, the format specification (or placeholdg®} will write the value of the variabliein hexadecimal

ng

29

notation. This is demonstrated by the following geggram:

using System;
class NumberDemo{
public static void Main(){
inti=0123,
j=291;
long k = 0X123L;

Console.WriteLine("{0:X}", i); // 7B

Console.WriteLine("{0:D}", i); // 123
Console.WriteLine("{0:X}", j); // 123
Console.WriteLine("{0:D}", k); // 291

}
}

In the program shown abov@,means decimal and means hexadecimal. Some additional formattings pre
also provided for number€: (currency notation): (exponential notation}; (fixed point notation)
(Compact general notationly, (number notation) (percent notationR (round trip notation for float and
double). You should consult the online documentetoy additional explanations.

Exercise 2.1. Exploring the type Char
The typesystem.Char (a struct) contains a number of useful methodd,zacouple of constants.

Locate the typsystem.Char in your C# documentation and take a look at ththods available on
characters.

You may ask where you find the C# documentatiorer&lare several possibilities. You can find ithat t
Microsoft MSDN web site ahsdn.microsoft.com . It is also integrated in Visual Studio and - tone
degree - in Visual C# express. It comes with theSDK, as a separate browser. It is also part of the
documentation web pages that comes with Mono. ufy@ a Windows user | will recommend the
Windows SDK Documentation Browser which is bundieth the C# SDK.

Along the line of the character demo program abew#e a small C# program that uses the
predicatessDigit , IsPunctuation , andisSeparator

It may be useful to find the code position - alsowkn as theode point of a character. As an example,
the code position of ‘A’ is 65. Is there a methogystem.Char which gives access to this information? If
not, can you find another way to find the code timsiof a character?

Be sure to understand the semantics (meaningeahtthodsetNumericvValue in typecChar.

Exercise 2.2. Hexadecimal numbers

In this exercise we will write a program that camweert between decimal and hexadecimal notation of
numbers. Please consult the focus boxes about éeixaal numbers in the text book version if you need
to.

You might expect that this functionality is alreguhgsent in the C# libraries. And to some degtds, i

30

The static methodoint32(string, Int32) in classconvert converts the string representation of a
number (the first parameter) to an arbitrary nungystem (the second parameter). Similar methods exi
for other integer types.

The method oString(string) in the structnt32 , can be used for conversion from an integer to a
hexadecimal number, represented as a string. Thaenpter offoString is a format string. If you pass the
string "X" you get a hexadecimal number.

The program below shows examples:

using System;
class NumberDemof{
public static void Main(){

inti = Convert.ToInt32("7B", 16); // hexa decimal 7B (in base 16) - >
// deci mal 123
Console.WriteLine(i); /1123
Console.WriteLine(123.ToString("X")); // deci mal 123 -> hexadecimal 7B
}

}

Now, write a method which converts a list (or ajrafydigits in base 16 (or more generally, base >=
2) to a decimal number.

The other way around, write a method which convegtssitive decimal integer to a list (or arrayddaits
in base 16 (or more generally, bége

Here is an example where the requested methodsade

public static void Main(){

int r = BaseBToDecimal(16, new List{7, 11}); / /7B ->123
List s = DecimalToBaseB(16, 123); / /123 ->{7,11}=7B
List t = DecimalToBaseB(2, 123); / /123- >{1,1,1,1,0,1,1}=
/1111011

Console.WriteLine(r);
foreach (int digit in s) Console.Write("{0} ", digit); Console.WriteLine();
foreach (int digit in t) Console.Write("{0} ", digit);

}

31

6.2. Enumerations types

Lecture 2 - slide 8

Enumeration types in C# are similar to enumeratypes in C, but a number of extensions have been
introduced in C#:

- Enumeration types of several differemderlying type€an be defined (not just)

« Enumeration types inherit a number of methods ftloentypeSystem.Enum

« The symbolic enumeration constants can be primetj(st the underlying number)
« Values, for which no enumeration constant exist, lma dealt with

- Combined enumerations represent a collection afhenations

Below, in Program 6.5 we see that the enumeragipadnoff is based on the typste . The enumeration
typeRanking is - per default - based an .
using System;
class NonSimpleTypeDemo{
public enum Ranking {Bad, OK, Good}

public enum OnOff: byte{
On=1, Off = 0}

public static void Main(){
OnOff status = OonOff.On ;
Console.WriteLine();
Console.WriteLine("Status is {0}", status);

Ranking r = Ranking.OK ;
Console.WriteLine("Ranking is {0}", roo);
Console.WriteLine("Ranking is {0}", r+1);
Console.WriteLine("Ranking is {0}", r+2);
bool resl = Enum.IsDefined(typeof(Ranking), 3);
Console.WriteLine("{0} defined: {1}", 3, resl);
bool res2= Enum.IsDefined(typeof(Ranking), Ranking.Good);
Console.WriteLine("{0} defined: {1}", Ranking.G ood , res2);
bool res3= Enum.lsDefined(typeof(Ranking), 2);
Console.WriteLine("{0} defined: {1}", 2 , res3)
foreach(string s in Enum.GetNames(typeof(Ranking)))
Console.WriteLine(s);
}

}

Program 6.5 Demonstration of enumeration types in

In the example the method®efined andGetNames are examples of static methods inherited from
System.Enum .

In line 13 of Program 6.6nis printed. In a similar C program, the numberduld be printed.

32

In line 16 OK is printed, and line 17 prints Goddline 18 the value of + 2 is 3, which does not
correspond to any of the values in typeking . Therefore the base value 3 is printed.

All the output of Program 6.5 is listed in ListiBg.

Combined enumeration (sometimes knowflags enumerationis a slightly more advanced concept. We
introduce it in Focus box 6.3.

Let us point out some additional interesting detailProgram 6.5. There are two enumeration typése
program, namely a type call@dnking and another callednoff . When we declare variables, the types
Ranking andonoff are used via their names. C programmer will bievetl to find out that it is not
necessary (and not possible) to weitem Ranking andenum OnOff . Thus, no C-likaypedefs are
necessary to introduce simple naming.

In order to disambiguate the referencing of cortstaman enumeration type, dot notationRdaking.OK
must always be used. In the same way as in C nilma@ration constants have associated an integee.val
The operationsDefined allows us to check if a given value belongs t@aameration typasDefined is
an operation (a method) in a struct caliedm

As a very pleasant surprise for the C programrhergtis access to the names of enumeration cosi$tant
the program. We show in the program that the esyRSEnum.GetNames(typeof(Ranking)) returns a
string array with the elements "Bad", "OK", and '@8b. In the same direction - as we have already see
above - it is possible to print the symbolic narokthe enumeration constants. This is very uséfuC
programs we always need a tedieutiich to obtain a similar effect..

Combined Enumer ations FOCUS BOX 6.3

Combined enumerations can be used to deal with setalsymbolic constants. Here is an example:

[Flags]
public enum Direction: byte{

North = 1, East = 2, South = 4, West = 8,
}

The first thing to notice is the mapping of symbalonstants to powers of two. We can form an esjwas
North | West which is the bitwise combination of the underlyingeger values 1 and B.s a bitwise or
operator, see Table 6.1. At the binary level, 1s|@&juivalent to 0001 | 1000 = 1001, which repristhe
number 9. You should think of 1001 as a bit arréngxe the leftmost bit is the encodingvedst and the
rightmost bit is the encoding abrth .

[Flags] is an application of an attribute, see Sectio®.39instructs the compiler to generate symbolic
names of combinations, such as the composite namewest in the example below.

We can program with the enumeration type in thiefahg way:

Direction d = Direction.North | Direction.West;

Console.WriteLine("Direction {0}", d); /Il Direction North, West
Console.WriteLine("Direction {0}", (int)d); 119
Console.WriteLine(HasDirection(d, Direction.Nor th)); // True
Console.WriteLine(HasDirection(d, Direction.Sou th)); // False

33

The methodiasDirection is a method we have programmed in the following:wa

/l'Is d in the direction e
public static bool HasDirection(Direction d, Dire ction e){
return (d & e) == e;

}

It checks ife is contained inl in the a bitwise sense. It is also possible toenaome of the combinations
explicitly in the enumeration type:

[Flags]

public enum Direction: byte{
North = 1, East = 2, South = 4, West = 8,
NorthWest = North | West, NorthEast = North | E ast,
SouthWest = South | West, SouthEast = South | E ast

}

Exercise 2.3. ECTS Grades

Define an enumeration tyeTSGrade of the grades A, B, C, D, E, Fx and F and assetfs Danish 7-
step grades 12, 10, 7, 4, 2, 0, and -3 to the sfy;nBETS grades.

What is the most naturahderlying typeof ECTSGrade?

Write a small program which illustrates how to tfs& new enumeration type.

Exercise 2.4. Use of Enumeration types

Consult the documentation of type typ@tem.Enum , and get a general overview of the methods in this
struct.

Be sure that you are able to find the documentatf@ystem.Enum

Test drive the examplnumTest, which is part of MicroSoft's documentation. Beesto understand the
program relative to its output.

Write your own program with a simple enumeratigmetyUse th&num.CompareTo method to compare
two of the values of your enumeration type.

6.3. Non-simple types

Lecture 2 - slide 9

The most important non-simple types are definedlagses and structs. These types define non-atomic
objects/values. Because C# is a very rich languages are other non-simple types as well, such as
interfaces and delegates. We will not discuss thesigs chapter, but they will play important rslie later
chapters.

34

The most important similarities between C and Chwespect to non-simple types can be summarized in
the following way:

« Arrays in C#: Indexed from 0. Jagged arrays - aryarrays
« Strings in C#: Same notation as in C, and siméaape characters
« Structs in C#: A value type like in C.

The most important differences are:

« Arrays: Rectangular arrays in C#
« Strings: Noo termination in C#
« Structs: Much expanded in C#. Structs can have adsth

A C programmer, who have experience with arrayggd, and structs from C, will immediately feel
comfortable with these types in C#. But such a@mmmer will also quickly find out, that there are
substantial new possibilities in C# that makesd#dsier.

Arrays and strings will be discussed in Section Gldsses and structs are, basically, what theofébe
book is about. The story about classes starts apteh 10.

6.4. Arrays and Strings

Lecture 2 - slide 10

Arrays and strings are both non-simple types trateell-known by C programmers. In C# both arrays a
strings are defined by classes. As we will sea,l@tiés implies that arrays and strings are reprieskas
objects, and they are accessed via referencesstlnids as a contrast to C# structs, which areesalnd
therefore not accessed via references.

The syntax of array declaration and initializatisisimilar in C and C#. In C, a string is a poirttea the
first character in the string, and it is declaréthe typechar* . C# supports a type namsting . The
notation of string constants is also similar inr@ £#, although C# offers additional possibilitftree
@".." notation, see below).

The following summarizes important differences @tvireen C and C# with respect to arrays and strings:

« Arrays in C# can be rectangular or jagged (arrdygsrays)

« In C#, an array is not a pointer to the first elame

» Index out of bound checking is done in C#

- Strings are immutable in C#, but not in C

« In C# there are two kinds of string literalsstring\n* and@"a string\n"

A multi-dimensional array in C is constructed asaamay in which the elements are themselves arfysh
arrays are known as jagged arrays in C#, becaus#l monstituent arrays need to have the same Isize

35

addition C# supports a new kind of arrays, nametyangular arrays (of two or more dimensions). Such
arrays are similar to arrays in Pascal.

C is inherently unsafe, in part because indexesbbounds are not systematically caught at ruretiG¥ is
safe in this respect. An index out of bound inmning C# program raises an exception, see Chafter 3

C programmers may be puzzled by the fact thatgdrame immutable in C#. Once a string is constdjdte
is not possible to modify the character elementb@fstring. This is also a characteristic of gfsim Java.
This makes it possible to share a given stringiresl contexts. The bookkeeping behind this iedal
interning (You can, for instance, read about internindhimndocumentation of the static method
String.Intern). In case mutable strings are necessary, the saes. Text.StringBuilder makes them
available.

The well-known double quote string notation is ubeth in C and C#. Escape characters, prefixed with
backslashes (such as"in) are used in C as well and in C#. C# supportdtamative notation, called
verbatim string constantg"..." , in which the only escape notation'iswhich stands for the double quote
character itself. Inside a verbatim string constiapossible to have newline characters, and ak&lashes
appear as backslash characters in the string. Ampgbe of a verbatim strings will be shown in Progi@.9.

Below, in Program 6.7 we will demonstrate a nundfeaspects of arrays in C#.

using System;
class ArrayStringDemo{
public static void Main(){
string[] al,
a2 ={"a", "bb", "ccc"},
al = new string[[{"ccc", "bb", "a"};

int[] bl=new int[2,4],
b2 ={{1,2,3,4}, {5,6,7,8}};

double[][] c1 = { new double[{1.1, 2.2},

new double[]{3.3, 4.4, 5.5, 6.6} };
Console.WriteLine("Array lengths. al:{0} b2:{1 } c1:{2}",
al.Length b2.Length cl.Length);
Array.Clear(a2,0,3);
Array.Resize< string>(ref a2,10);
Console.WriteLine("Lenght of a2: {0}", a2.Leng th);
Console.WriteLine("Sorting al:");
Array.Sort(al);
foreach(string str in al) Console.WriteLine(st r;
}
}

Program 6.7 Demonstrations of array types in C

We declare two variables] anda2, of the typestring] . In other wordsal anda2 are both arrays of
strings.al is not initialized in its declaration. (Local vables in C# are not initialized to any default edlu
a2 is initialized by means of aarray initializer, namely{"a", "bb", "ccc"} . The length of the array is
determined by the number of expressions withirptie of curly braces.

36

The array$1 andb2 are both rectangular 2 times 4 arrays.
The arraye1 is an example of a jagged arrayf1] is an array of length 21[2] is an array of length 4.

Next we try out theength operation oral, b2 andcl. The resultis al:B2:8c1:2 . Please notice and
understand the outcome.

Finally we demonstrate a number of additional ofp@na on arraysClear , Resize , andsSort . These are all
methods in the classstem.Array

The output of the array demo program is shown stihg 6.8 (only on web).

Arrays, as discussed above, will be used in marypof future programs. But as an alternative, yoautd
be aware of the collection classes, in particulartype parameterized, "generic" collection clastkese
classes will be discussed in Chapter 45.

Now we will study a program example that illusteateses of the typaring

using System;
class ArrayStringDemo{

public static void Main(){

string s1 = "OOP";

System.String s2 = "\u004f\u004f\u0050" ; I/ equivalent
Console.WriteLine("s1 and s2: {0} {1}", s1, s2);
string s3 = @"OOP on

the \n semester "'Dat1/Inf1/SW3""
Console.WriteLine("\n{0}", s3);

string s4 = "OOP on \n the \\n semester \"Dat1/Infl/ SW3\"";
Console.WriteLine("\n{0}", s4);

string sb = "OOP E06".Substring(0,3) ;
Console.WriteLine("The substring is: {0}", s5)

Program 6.9 A demonstration of strings in C

The stringss1 ands2 in Program 6.9 contain the same three charactansely 'O', 'O’, and 'P"'.

Similarly, the strings referred kg ands4 are equal to each other (in the sense that thetpicothe same
sequences of characters). As already mentionedeabioe string constant in line 10-11 igexbatim string
constantin which an escape sequence likedenotes itself. In verbatim strings, onlyhss a special
interpretation, namely as a single quoute character

Finally, in Program 6.9, theubstring operation from the clasystem.String is demonstrated.

The output of the string demonstration programriogfPam 6.9 is shown in Listing 6.10 (only on web).

37

Exercise 2.5. Use of array types

Based on the inspiration from the accompanying gt@nyou are in this exercise supposed to expetimen
with some simple C# arrays.

First, consult the documentation of the clagsem.Array . Please notice the properties and methods that
are available on arrays in C#.

Declare, initialize, and print an array of namesg.(array of strings) of all members of your group.
Sort the array, and search for a given name sistigm.Array.BinarySearch method.

Reverse the array, and make sure that the revessirics.

Exercise 2.6. Use of string types

Based on the inspiration from the accompanying gtenyou are in this exercise supposed to expetimen
with some simple C# strings.

First, consult the documentation of the clagsem.String - either in your documentation browser or at
msdn.microsoft.com . Read the introduction (remarks) to string whiohtains useful information! There
exists a large variety of operations on stringeaB¢ make sure that you are aware of these. Mahg mof
will help you a lot in the future!

Make a string of your own first name, written witbcaped Unicode characters (like we did for "OQ@P" i
the accompanying example). If necessary, conseltitiicode code charts (Basic Latin and Latin-fjrtd
the appropriate characters.

Take a look at theystem.String.Insert method. Use this method to insert your last namtbe first

name string. Make your own observations abaugtt relative to the fact that strings in C# are
immutable.

6.5. Pointers and references

Lecture 2 - slide 11

Pointers are instrumental in almost all real-lif@i@grams, both for handling dynamic memory allmeat
and for dealing with arrays. Recall that an arragiis simply a pointer to the first element of dreay.

References in C# (and Java) can be understoodeasriated form of pointers. C# references are neve
explicitly dereferenced, references are not coupeatrays, and references cannot be operatechahei
arithmetic C# operators; There are no pointer ugtiic in (the safe part of) C#. As a special notic€++
programmers: References in C# have nothing to ttoneferences in C++.

Here follows an itemized overview of pointers aatérences.

38

« Pointers
« In normal C# programs: Pointers are not used
« All the complexity of pointers, pointer arithmetiereferencing, and the address
operator is not found in normal C# programs
« In specially marked unsafe sections: Pointers eansed almost as in C.
« Do not use them in your C# programs!
» References
« Objects (instance of classes) are always accesseefgrences in C#
» References are automatically dereferenced in C#
« There are no particular operators in C# that deg¢a@ to references

Program 6.11 shows some basic uses of referen€s ifihe variablesRef andanotherCRef are declared

of typec. ¢ happens to be an almost trivial class that we kafieed in line 3-5. Classes are reference types
in C (see Chapter 13ref declared ininline 11 is assignedhtdl (a reference to nothing) in line 12. Next,
in line 15,cref is assigned to a new instancecoVia the reference itref we can access the members
andy in thec object, see line 18. We can also pass a refe@nagarameter to a functieras in line 19.

This does not copy the referenced object when iegter

using System;

public class C {
public double x, y;

}

public class ReferenceDemo {
public static void Main(){
C cRef, anotherCRef;
cRef = null;

Console.WriteLine("ls cRef null: {0}", cRef == null);

cRef = new C();
Console.WriteLine("ls cRef null: {0}", cRef == null);

Console.WriteLine("x and y are ({0},{1})", cRef.x , cRefy);
anotherCRef = F(cRef);
}

public static C F(C p){
Console.WriteLine("x and y are ({0},{1})", p-X, p.y);
return p;

}
}

Program 6.11 Demonstrations of references in (
The output of Program 6.11 is shown in Listing 6(G2ly on web).

There is no particular complexity in normal C# margs due to use of references

39

6.6. Structs

Lecture 2 - slide 12

Structs are well-known by C programmers. It is matehy that arrays and structs are handled in very
different ways in C. In C, arrays are deeply cote@to pointers. Related to the discussion inrasgerial,
we will say that pointers are dealt with laference semanticsee Section 13.1. Structs in C are dealt with
by value semanticsee Section 14.1. Structs are copied by assignmpem@meter passing, and returns.
Arrays are not!

Let us now compare structs in C and C#:

« Similarities
« Structs in C# can be used almost in the same watrads in C
» Structs areralue typesn both C and C#
- Differences
« Structs in C# are almost as powerful as classes
» Structs in C# can have operations (methods) isénge way as classes
« Structs in C# cannot inherit from other structslasses

In Program 6.13 we see a program with a struceédabint . The variablg1 contains a point (3.0, 4.0).
Because structs are value typgisdoes not refer to a point.dontainsthe two coordinates of typ@uble
that represents the poingg. is uninitialized. In line 151 is copied intg2. This is a field-by-field (bit-by-
bit) copy operation. No manipulation of referenisegvolved. Finally we show the activation of athwed
Mirror onp2. Hereby the state of the second point is mutaigeBt-4).

using System;

public struct Point {
public double x, y;
public Point(double x, double y){this.x = x; this y=v}
public void Mirror(){x = -x; y = -y;}

} /I end Point

public class StructDemo{

public static void Main(){
Point p1 = new Point(3.0, 4.0),

p2;
p2=pl ;
p2.Mirror() ;
Console.WriteLine("Point is: ({0},{1})", p2.x, p 2.y);
}}

Program 6.13 Demonstrations of structs in C

40

6.7. Operators

Lecture 2 - slide 13

Expressions in C# have much in common with expoassin C. Non-trivial expressions are built withe us
operators. We summarize the operators in C# ineT@ldl. As it appears, there is a substantial opevith
the well-known operators i C. Below the table wé eémment on the details.

Associativity

Level Category Operators (binary/tertiary)

. X.y f(x) alx] X++ X-- .
L PIEN new typeof checked unchecked default delegate JEAES ()T
13 |Unary + -1~ 44x =X (T)x true false sizeof left to right
12 Multiplicative * / % left to right
11 |Additive + - left to right
10 |Shift < >> left to right
9 _I?elatlona_l g < <= > >= s as left to right
ype testing
8 Equality = [E left to right
7 LoglcallbltW|se;& left to right
and
6 Logical/bitwise , left to right
xor
5 LoglcallbltW|se;| left to right
or
Conditional .
&&
4 and left to right
3 Conditional or || left to right
5 Null 2 left to right
coalescing
1 Conditional 7 right to left
Assignment or|_ P
0 Lambda L e 0_&_ L right to left
expression |~ - - = = F =

Table 6.1 The operator priority table of C#. Operators wittghilevel numbers
have high priorities. In a given expression, operatof high priority are
evaluated before operators with lower priority. Tresaciativity tells if operators
at the same level are evaluated from left to righfrom right to left.

The operators shown in red are new and specif@#tol he operatarew creates an instance (an object) of a
class or it initializes a value of struct. We hakeady encountere@w in some of the simple demo
programs, for instance Program 6.11 and Prograf 6de Section 12.2 for details @nw. The operators
as andtypeof will not be discussed here. Please refer to Se@@012 for details on these. The operations
checked anduncheked relate to the safe and unsafe part of C# respygtiin this material we only deal
with the safe part, and therefore these two C#aipes can be disregarded. Tde@ault operator gives
access to the default value of value types, seeoBel?2.3. Thejelegate operator is used for definition of
anonymous functions, see Section 22.1. The unary andfalse operators tell when a value in a user

41

defined type is regarded fase or falserespectively. See Section 21.2 for more detalt® @xpressionx ??
y is a convenient shortcut of I=null ? x : y . See Section 14.9 for more details?on=> is the
operator which is used to form lambda expressios#43.0, see Section 22.4.

A couple of C operators are not part of C#. Theeskloperatag and the dereference operatare not
found in (the safe part of) C# (but they are adyumbailable in the unsafe part of the languagéeyrare
both related to pointers, and as discussed in@e6tb pointers are not supported in (the safeqgip@#.

All the remaining operators should be familiarte C programmer.

The operators listed above have fixed and predgfimeanings when used together with primitive tyipes
C#. On top of these it is possible to define nevamirags of some of the operators on objects/valtigewr
own types. This is calledperator overloadingand it is discussed in more details in ChapteT2& subset
of overloadable operators is highlighted in Tallel2

6.8. Commands and Control Structures

Lecture 2 - slide 14

Almost all control structures in C can be usedséuime way in C#

Commandgalso known astatements) are able to mutate the program state at run-#ikeesuch, the most
important command is the assignment. The commamustitute the "imperative heart" of the programming
language. The control structures provide meansdquencing the commands.

The commands and control structures of C# forma llrge extent - a superset of the commands amtdoto
structures of C. Thus, the knowledge of commandscantrol structures in C can be used directly when
learning C#.

As usual, we will summarize similarities and diéfeces between C and C#. The similarities are the
following:

- Expression statements, suchhasa + 5

« Blocks, such ag=5;b=a}

e if ,if-else ,switch ,for ,while ,do-while ,return ,break ,continue , andgoto in C# are all
similar to C

As in C, an expression becomes a command if dlisvied by a semicolon. Therefore we have emphdsize
the semicolon above in the assignmesat + 5;

As it will be clear from Program 6.15 below, ttveitch control structures in C and C# differ substantiall

The main differences between C and C# regardingy@asiructures are the following:

» The C#oreach loop provides for easy traversal of all elementa collection
» try-catch-finally andthrow in C# are related to exception handling

42

« Some more specialized statements have been aghdekkd , unchecked , using , lock and
yield

Theforeach control structures is an easy-to-use versionfof foop, intended for start-to-end traversal of
collections. We will not here touch ory-catch-finally andthrow. Please refer to our coverage of
exception handling in Section 36.2 for a discussibtihese.

Let us now look at some concrete program exampitssocontrol structures. In the examples below, prog
fragments shown ined color illustrate erroneous aspects. Program fragsnehown irgreen are all right.

/* Right , Wrong */
using System;

class IfDemo {

public static void Main(){
inti=0;

/*
if (i){

Console.WriteLine("i is regarded as true");

else {
Console.WriteLine("i is regarded as false");

}
%

if (i 1= 0){

Console.WriteLine("i is not 0");

}

else {
Console.WriteLine("i is 0");

}

}
}

Program 6.14 Demonstrations of i

Theif-else control structure has survived from C. Progrand @nlreality illustrates a difference between
handling of boolean values of C and C#. This hesadly been treated in Section 6.1. The point isaha

expression of noneol type (such the intege) cannot be used as the controlling expressiom dfese
control structure i C#.

Let us now look at a program wislvitch control structures. As already mentioned earliered are a number
of noteworthy differences between C and C# regagrsiritch.

/* Right , Wrong */
using System;

class SwitchDemo {
public static void Main(){
intj=1,k=1;

/*
switch (j) {
case 0: Console.WriteLine("j is 0");
case 1: Console.WriteLine("j is 1");

43

case 2: Console.WriteLine("] is 2");
default: Console.WriteLine("j is not 0, 1 or 2");

}
*

switch (k) {
case 0: Console.WriteLine("m is 0"); break;
case 1. Console.WriteLine("m is 1"); break;
case 2: Console.WriteLine("m is 2"); break;

default: Console.WriteLine("m is not O, 1 or 2"); break;
}
switch (k) {
case 0: case 1: Console.WriteLine("n is O or 1"); break;
case 2: case 3: Console.WriteLine("n is 2 or 3"); break;
case 4: case 5: Console.WriteLine("n is 4 or 5"); break;
default: Console.WriteLine("n is not 1, 2, 3, 4, or 5"); break;
}

string str = "two";
switch (str) {

case "zero": Console.WriteLine("str is 0"); break;
case "one": Console.WriteLine("str is 1"); b reak;
case "two": Console.WriteLine("str is 2"); b reak;
default: Console.WriteLine("stris not 0, 1 o r 2"); break;
}
}
}

Program 6.15 Demonstrations of switc

The first switch in Program 6.15 is legal in C, hus illegal i C#. It illustrates thé&all through problemlf j
is 0, case 0, 1, 2, andfault ~ are all executed in a C program. Most likely, phegrammer intended to
write the second switch, starting in line 17, inietheaclcase is broken with use of th@eak command. In
C# the compiler checks that each branch of a swigster encounters the ending of the branch (and, th
never falls through to the succeeding branch).

The third switch in the demo program shows that twmore cases can be programmed together. Thas, li
in C, itis legal to fall trough empty cases.

The final switch shows that it is possible to switm strings in C#. This is very convenient in maoptexts!
In C, the type of the switch expression must begral (which means an integer, char, or an enuroerat

type).

Let us also mention that C# allows special gotcstroigts goto case constantandgoto default) inside a
switch. With use of these it is possible to jungnirone case to another, and it is even possilgeoigram a
loop inside a switch (by jumping from one caseri@bieady executed case). It is recommended onlgeo
these specialized goto constructs in exceptiohaisons, or for programming of particular pattefins
which it is natural to organize a solution aroundltiple branches that can pass the control to ettodr).

Next we will study a program that illustrates fooeeach loop.

/* Right , Wrong */
using System;

class ForeachDemo {
public static void Main(){

44

int[lia=1{1, 2, 3, 4, 5};
int sum = 0;

foreach(intiin ia)
sum +=1i;

Console.WriteLine(sum);
}
}

Program 6.16 Demonstrations of foreac

As mentioned abovegreach is a variant of a for loop that traverses all edats of a collection. (See how
this is provided for in Section 31.6). In the exdenpf Program 6.16 all elements of the array aredrsed.
Thus, the loop variabliewill be 1, 2, 3, 4 and 5 in succession. Many affim C# have been directed
towards supporting foreach on the collection tyjp@s$ you program yourself. Also notice that loomtrol
variable,i , is declared inside the foreach construct. Thisioabe done in a conventional for loop in C
(although it can be done in C99 and in C++).

Finally, we will see an example tfy-catch.

[* Right , Wrong */
using System;

class TryCatchDemo {
public static void Main(){
inti=5,r=0,j=0;

/*

r=ilo;
Console.WriteLine("r is {0}", r);
*

try {
r=ilj
Console.WriteLine("r is {0}", r);
} catch(DivideByZeroException e){
Console.WriteLine("r could not be computed");
}
}
}

Program 6.17 Demonstrations of try catc

Division by 0 is a well-known cause of a run-tinteoe. Some compilers are, in some situations, eveart
enough to identify the error at compile-time. llogham 6.17 the erroneous program fragment nevehesa
the activation ofvriteLine in line 10, because the division by zero haltspitogram.

The expressionvj , wherej is 0, is embedded intay-catch control structure. The division by zero raises
an exception in the running program, which may éedted in the catch part. TigiteLine in line 17 is
encountered in this part of the example. Thuspthgram survives the division by zero. Later in the
material, starting in Chapter 33, we discuss +@agdetails - errors and error handling and tleeaiitry-

catch.

Before we leave the assignments and control streiegte want to mention thaefinite assignmentle in C#.
The rule states that every declared variable mustsBigned to a value before the variable is Udweal.
compiler enforces the rule. Take a look at the pogbelow.

45

using System;
class DefiniteAssignmentDemo{

public static void Main(){
int a, b;
bool c;

if (ReadFromConsole("Some Number") < 10){
a=1b=2;

}else {
a=2,

}

Console.WriteLine(a);
Console.WriteLine(b); /I Use of unassigned local variable 'b’

while (a < b){
c=(a>h)
a = Math.Max(a, b);
}

Console.WriteLine(c); /I Use of unassigned local variable 'c'

}

public static int ReadFromConsole(string prompt){
Console.WriteLine(prompt);
return int.Parse(Console.ReadLine());

}
}

Program 6.18 Demonstrations of definite assignme

The program declares three variakdes, andc in line 6-7, without initializing them. Variableis used in
line 16, but it cannot be guarantied thatithése control structure in line 9-13 assigns a valuthto
variableb. Therefore, using eonservative approaclthe compiler complains about line 16. The error
message is emphasized in the comment at the dime df6.

Similarly, the variable declared in line 7 is not necessarily assignethbwhile control structure in line
18-21. Recall that i >=b when we enter the while loop, the line 19 and r20reever executed. This
explains the error message associated to line 24.

The definite assignment rule, enforced by the ctangimplies that we never get run-time errors ttue
uninitialized variables. On the other hand, the mlko prevents some program from executing octeele
input. If the number read in line 9 of Program Gid &ss than 10 bothandc will be assigned when used in
thewriteLine calls.

6.9. Functions

Lecture 2 - slide 15
Functions are the primary abstractions in C. In'fQ#iction" (or "function member") is the common nauof

a variety of different kinds of abstractions. Thestwell-known of these is known as methods. Therst
are properties, events, indexers, operators, anstrewtors.

46

Functions in C# belong to types: classes or strittss, functions in C# cannot be freestandingilke.
Functions are always found inside a type.

The conceptual similarities between functions iard methods in C# are many and fundamental. In our
context it is, however, most interesting to conaeton the differences:

- Several different parameter passing techniquestin C
« Call by value. For input. No modifier.
« Call by reference. Fanput and outpubr output only
« Input and output: Modifiefef
» Output: Modifierout
« Modifiers used both with formal and actual paramsete
» Functions with a variable number of input paranseieiC# (cleaner than in C)
« Overloaded function members in C#
» First class functions (delegates) in C#

In C all parameters are passed by value. Howewassipg a pointer by value in C is often proclairasdall
by referenceln C# there are several parameter passing modkdy valueand two variants cfall by
reference(ref andout parameters). The default parameter passing mazdl isy value Call by reference
parameter passing in C (via pointers) is not tieesasef parameters in C#ef parameters in C# are
much more like Pascadr (variable) parameters.

In C it is possible, but messy, to deal with fuons of a variable (or an arbitrary) number of argata. In
C# this is easier and cleaner. It is supportechbydrams keyword in a formal parameter list. An example is
provided in Program 6.20.

A function in C is identified by its name. A methdC# is identified by its name together with thipes of
the formal parameters (the so-calledthod signature This allows several methods with the same names
coexist, provided that their formal parameter tygiéfer. A set of equally named methods (with diéfiet
formal parameter types) is known@gerloadedmethods.

A function in C# can be handled without namingtidh Such functions are known as delegates. Rddmy
come from the functional programming language pgradwhere functions most often dnest class objects
Something ofirst classcan be passed as parameters, returned as resoitfuhctions, and organized in
data structures independent of naming. Delegaten s& be more and more important in the developmient
C#. In C# 3.0 the nearby conceptdadhbda expressiorsndexpression treelsave emerged. We have much
more to say about delegates later in this matesgs ,Chapter 22.

[* Right , Wrong */

using System;

/*
public int Increment(int i){
returni+ 1;

}

public void Main (){
inti=>5,
j = Increment(i);
Console.WriteLine("i and j: {0}, {1}", i, j);
} /I end Main

a7

*/
public class FunctionDemo {

public static void Main (){
SimpleFunction();

}

public static void SimpleFunction(){
inti=>5,
j = Increment(i);
Console.WriteLine("i and j: {0}, {1}", i, J);
}

public static int Increment(int i)}{
returni + 1;

}
}

Program 6.19 Demonstration of simple functions in ¢

Program 6.19 shows elementary examples of funcfimeshods) in a C# program. The program text
decorated witlied color shows two functionsjain andincrement , outside of any type. This is illegal in C#.

Shown ingreen we again see the functioitrement , now located in a legal context, namely insidetjipe
(class)FunctionDemo . The functionsimpleFunction callsincrement in a straightforward way. The
functionMain serves amain programin C#. It is here the program starts. We seenthat calls
SimpleFunction

using System;
public class FunctionDemo {

public static void Main (){
ParameterPassing();

}

public static void ValueFunction (double d) {
d++;}

public static void RefFunction (ref double d) {
d++;}

public static void OutFunction (out double d) {
d=28.0;}

public static void ParamsFunction(out double res,
params double[] input)i
res =0;
foreach(double d in input) res +=d;

}

public static void ParameterPassing(){
double myVarl = 5.0;
ValueFunction(myVarl);
Console.WriteLine("myVarl: {0:f}", myVarl); //'5.00

double myVar2 = 6.0;
RefFunction(ref myVar2);
Console.WriteLine("myVar2: {0:f}", myVar2); /1 7.00

double myVars3;
OutFunction(out myVar3);

48

Console.WriteLine("myVar3: {0:f}", myVar3); /1 8.00

double myVar4;
ParamsFunction(out myVar4, 1.1, 2.2, 3.3, 4.4, 5.5) . 1116.50
Console.WriteLine("Sum in myVar4: {0:f}", myVar 4);

}
}

Program 6.20 Demonstration of parameter passing in
CH#.

The four functions in Program 6.2@3lueFunction , RefFunction , OutFunction , andParamsFunction
demonstrate the different parameter passing teabaigf C#.

The call-by-value parameterin valueFunction has the same status as a local variablelieFunction
Therefore, the call ofalueFunction with myvarl as actual parameter does not affect the valug\edr1 . It
does, however, affect the valuedoh valueFunction , but this has no lasting effect outsid@ueFunction

In a nutshell, this is the idea of call by valuegraeters.

In RefFunction , the formal parametel;, is aref parameter. The corresponding actual parameter Ipeust
variable. And indeed it is a variable in our sanmgdévation ofRefFunction , namely the variable named
myVar2. InsideRefFunction , the formal parameteris analias of the actual parametanyvar2). Thus, the
incrementing oti actually incrementsiyvar2. Pascal programmers will be familiar with this macism (via
var parameters) but C programmers have not ena@ahtieis before - at least not while programmin@in

OutFunction ~demonstrates the use of @it parameterout parameters are similar tef parameters, but
only intended for data output from the function.ieldetails of ef andout parameters appears in Section
20.6 and Section 20.7.

Notice that in C#, the keywordsf andout must be used both in the formal parameter listiarke actual
parameter list. This is nice, because you will bgrepot the parameter passing mode in calls. Irt otbgr
programming language it is necessary to consulfuthetion definition to find out about the paramete
passing modes of the parameters involved.

The first parameter ¢faramsFunction , res , is anout parameter, intended for passing the sum ofnfhe
parameter back to the caller. The formpatam parameteripput , must be an array. The similar actual
parameters (occurring at the end of the actuahpatex list) are inserted as elements into a neayaand
bound to the formal parameteput . With this mechanism, an arbitrary number of "fEstameters” (of the
same or comparable types) can be handled, anddulimdb an array in the C# function, which is being
called.

Program 6.21 (only on web) shows a class with foethods, all of which are namedThese functions are
distinguished by different formal parameters, apdlifferent parameter passing modes. Passing agent
value parameter activates the figsPassing a double value parameter activates tomde. Passing a
double and a bool (both as values) activates fha khFinally, passing an integeef parameter activates
the fourthr.

49

6.10. Input and output

Lecture 2 - slide 16

In C, the functiongrintf andscanf are important for handling output to the screeput from the
keyboard, and file 1O as well. It is therefore matgting for C programmers to find out how the samil
facilities work in C#.

In C#, theCconsole class encapsulates the streams knovstaxlard inputandstandard outpytwhich per
default are connected to the keyboard and the scidee various write functions in tlzensole class are
quite similar to therintt function in C. Theconsole class' read functions are not as advancedaas in
C. There is not direct counterpart of thedanf function in C#.

First, in Program 6.22 we will study uses of iiéte andwriteLine functions.

/* Right , Wrong */

using System;
public class OutputDemo {

/I Placeholder syntax: {<argument#>[,<width>][:<format>[<precision>]][}

public static void Main(){

Console.Write("Argument number only: {0} {1} \n", 1,1.2);

/I Console.WriteLine("Formatting code d: {0:d} {1.d} " 2,2.2);
Console.WriteLine("Formatting codes d and f: {0:d} {1:f} " 3,3.3);
Console.WriteLine("Field width: {0,10:d} {1,10:f} " 4,4.4);
Console.WriteLine("Left aligned: {0,-10:d} {1,-10:f} " 5,5.5);
Console.WriteLine("Precision: {0,10:d5} {1,10:5} ", 6, 6.6);
Console.WriteLine("Exponential: {0,10:e5} {1,10:e5} ", 7,7.7);
Console.WriteLine("Currency: {0,10:c2} {1,10:c2} ", 8, 8.887);
Console.WriteLine("General: {0:g} {L.g} ", 9, 9.9);
Console.WriteLine("Hexadecimal: {0:x5} ", 12);

Console.WriteLine("DateTime formatting with F: {0:F} ", DateTime.Now);
Console.WriteLine("DateTime formatting with G: {0:G} ", DateTime.Now);
Console.WriteLine("DateTime formatting with T: {0:T} ", DateTime.Now);
}
}

Program 6.22 Demonstrations of Console output in (

Like printf in C, the method@rite andwriteLine accept a control string and a number of additional
parameters which are formatted and inserted iga@timtrol stringwrite andwriteLine — actually rely on an
underlyingrormat method in classtring . Notice that a there exists many overloadeiec and

WriteLine methods in the clag®nsole . Here we concentrate of those that take a strihg eontrol string -
as the first parameter.

The following call ofprintt in C
printf("x: %d, y: %5.2f, z: %Le\n", x, y, z);
is roughly equivalent to the following call of wfiteLine in C#

Console.WriteLine("x: {0:d}, y: {1,5:F2}, z: {2:E}" VXY, 2);

50

The equivalence assumes thas of type inty is a float, and that is a long double.

The general syntax off@aceholder(the stuff in between pairs of curly braces) i@#formatting string is
{<argument#>[,<width>][:<format>[<precision>]]}

where[...] denotes optionality (zero or one occurrence).

C programmers do often experience strange andesusrformatting of output if the conversion chasesct
(such ag, f, ande in the example above) are inconsistent with theadtype of the corresponding variables
or expressions(y, andz in the example). In C#, such problems are cauglihd compiler, and as such
they do not lead to wrong results. This is a musbded improvement.

Let us briefly explain the examples in line 9-2Fobgram 6.22. In line 9 the default formattingised. This
corresponds to the letter cogleln line 10 an error occurs because the ebdely accepts integers. The
number 2.2 is not an integer. In line 13 we illastruse of width 10 for an integer and a floatiogip
number. Line 14 is similar, but it uses left jus@ttion (because the width is negative). Line liistrates use
of the precision 5 for an integer and a floatingagpaumber. In line 16 we format two numbers in
exponential (scientific) notation. In line 17 whudtrate formatting of currencies (kroner or daleor
instance, dependent on the culture setting). L&edtresponds to line 9. Line 19 calls for hexaaeti
formatting of a number.

One way to learn more about output formatting isdonsult the documentation of the static methaehat
in classsystem.String . From there, goto Formatting Overview. Later iis thnaterial, in Section 31.7, we
will see how we can program custom formatting af @un types.

The last three example lines in Program 6.22 ilfustformatting of objects of tymmteTime in C#. Such
objects represent at point in time. In the exantple expressiobateTime.Now denotes the current point in
time.

The output of Program 6.22 is shown in Listing 6(@3ly on web).
We now switch from output to input.

/* Right , Wrong */

using System;
public class InputDemo {

public static void Main(){
Console.Write("Input a single character: ");
char ch = (char) Console.Read()
Console.WriteLine("Character read: {0}", ch);
Console.ReadLing()

Console.Write("Input an integer: ");
inti = int.Parse(Console.ReadLine())
Console.WriteLine("Integer read: {0}", i);

Console.Write("Input a double: ");

doubled = double.Parse(Console.ReadLine())
Console.WriteLine("Double read: {0:f}", d);

51

Program 6.24 Demonstrations of Console input in ¢

In Program 6.24€onsole.Read() reads a single character. The result returnegcstive integer, or -1 if

no character can be read (typically because wweaged at the end of an input fil®ead blocks untilenter

is typed. Non-blocking input is also available tha methodconsole.ReadKey . The expression
Console.ReadLine() reads a line of text into a string. The last thighlighted examples show how to read
a text string and, via threarse method in typent anddouble , to convert the strings read to values of type
int anddouble respectively. Notice thatanf in C can take hand of such cases.

The output of Program 6.24 is shown in Listing 6(@5ly on web).

Later in this material we have much more to sayuaibgout and output in C#. See Chapter 37 - Chegfer
The most important concept, which we will deal witlthese chapters, is the various kinds of strean®st.

6.11. Comments

Lecture 2 - slide 17

We finalize our comparison of C and C# with an oi@w of the different kinds of C# comments. Redadit
C only supports delimited comments (although C mogners also often use single-line comments, which
actually is used in C++ and in newer versions ¢€89)).

C# supports two different kinds of comments and XWitiants of these:

» Single-line commentslikein C++
/I This is a single-line comment

« Delimited commentslikein C
/* This is a delimited comment */

« XML single-line comments:

/Il <summary> This is a single-line XML comment </s ummary>
« XML delimited comments:
[** <summary> This is a delimited XML comment </sum mary> */

XML comments can only be given before declaratios inside other fragments. XML comments are used
for documentation of types. We have much more yoas@ut XML comments in our discussion of
documentation of C# programs. Delimited C# commeatsiot be nested.

6.12. References

[Decimal-floating- Decimal Floating Point in .NET
point] http://www.yoda.arachsys.com/csharp/decimal.html

52

7. C# In relation to Java

C# is heavily inspired by Java. In this sectionwil at an overall level, compare Java and C#. Gbal of
this relatively short chapter is to inform Javagreammers about similarities and differences intiateto C#.
It is recommended that you already have familiarigeurself with C# in relation to C, as coveredimapter
6.

In this chapter 'Java'’ refers to version to 5.0'@#drefers to C# version 2.0.

7.1. Types

Lecture 2 - slide 20

In Java, types can be defined by classes andactsf This is also possible in C#. In additionn@@kes it
possible to define structs and delegates to wiiiefetare no counterparts in Java. Java supports
sophisticated, class based enumeration types. Eatioretypes in C# are simpler, and relative close
enumeration types in C. - This is the short stéfier the itemized summary, we will compare the two
languages more carefully.

The similarities and differences with respect foety can be summarized in this way:

« Similarities.
« Classes in both C# and Java
« Interfaces in both C# and Java
« Differences.
« Structs in C#, not in Java
» Delegates in C#, not in Java
« Nullable types in C#, not in Java
« Class-like Enumeration types in Java; Simpler agp@nan C#

If you have written a Java program with classesiataifaces, it is in most cases relatively easyanslate
the program to C#. In this material we discusssdasn C# in Chapter 11 an interfaces in Chapter 31

There are no structs in Java. Structs in C# atbeabutset, similar to structs in C. (See Sediiénfor a
discussion of C structs versus C# structs). Yoomkadge of C structs is a good starting point forking
with structs in C#. However, structs in C# are lilgaxtended compared with C. As an important
observation, C# structs have a lot in common wiisses. Most important, there are operations (ndsjho
and constructors in both C# classes and C# stitic$salso possible to control the visibility ohth and
operations in both classes and structs. Strud@stiare value types, in the meaning that instantssurts
are contained in variables, and copied by assigtsvard in parameter passings. In contrast, classes
reference types, in the meaning that instancekas$es are accessed by references. Instancessé<iare
not copied in assignments and in parameter pasgtogsnore details on structs see Chapter 14, ncpéar
Section 14.3.

Delegates in C# represents a type of methods. égdét object can contain a method. More correatly,
delegate can contain a reference to a methodn lactually contain several such references. Withais
delegates it becomes possible to treat methodatasin the same way as instance of classes reprdatnt
We can store a method in a variable of delegate. Wy can also pass a method as a parameter teeanot

53

method. In Java it is not possible pass a methasla parameter to another method. If we needssvpave
have to pass an object of clasis whichmis a method. Needless to say, this is a compticaiel contrived
way of using function parameters. - In C#, delegare the foundation of events (see Chapter 23yhwim
turn, are instrumental to programming of graphicsr interfaces in C# and certain design pattetdeast
the Observer (see Section 24.1). For more details on delegatstsee Chapter 22.

Nullable types relate to value types, such as tstrécvariable of a struct typgecannot contain the value
null . In contrast, a variable of class typean contain the valueill . The nullables type, denoted?, is a
variant ofs which includes theull value. For more details, see Section 14.9.

Enumeration types in both C# and Java allow usso@ate symbolic constants to values in an intgger.
We demonstrated enumeration types in C# in Seét@wf the previous chapter. In Java, an enumeratio
type is a special form of a class. Each enumenahab is an instance of this special class. Coresgttyy an
enumeration type in Java is a reference type. larCénumeration type is a value type. - As a Jastaic
remark, enumeration types did not exist in earlgioms Java. Enumeration types were simulateddsy af
final static variables (ondnal static variable for each value in the enumeration typag support of
enumeration types shifted dramatically in Java ftddn almost no support in previous versions tovilea
support via special classes. It is remarkablettiafiava designers have chosen to use so maniseffor
enumeration types!

7.2. Operations

Lecture 2 - slide 21

Operations in Java programs are defined by mettiadselong to classes. This is our only possjbdit
defining operations in Java. In C# there existesgadditional possibilities. In this material Wwave
devoted an entire lecture 'Data Access and Opesatffstom Chapter 17 to Chapter 24) to these issues

The similarities and differences with respect teragions can be summarized in this way:

- Similarities: Operations in both Java and C#
« Methods
- Differences: Operations only in C#
» Properties
« Indexers
« Overloaded operators
« Anonymous methods

As already mentioned above, C# methods can beatkfimboth classes and structs. It is not possible
define local methods in methods - neither in Cdaxra. The closest possibility in C# is use of anumys
methods, see below.

Properties provide for getters and setters of di€ldstance variables as well as class varialdesic
variables) in C#. In Java it is necessary to defire¢hods for getting and setting of instance véggmbA
single property in C# can either be a getter, @®sair both. From an application point of viewpjperties
are used as though we access of the variableslass/object directly (as it would be possibléng t
variables were public). For more details on prapsrsee Chapter 18.

54

Indexers can be understood as a special kind pepties that define array-like access to objects\atues

in C#. The notatiomi] anda]i] = x is well-know when the namedenotes an array andiifis an integer.
In C# we generalize this notation to arbitrary amstes of classes and structs denoteal byith an indexer

we program the meaning of accessing the i'th eleofen(alii) and the meaning of setting the i'th element
of a (afi] = ...). Indexers are discussed in Chapter 19.

In most languages, the operators like, <, and& have fixed meanings, and they only work with timepge
types (such ast , bool , char , etc). We reviewed the C# operators in Sectiondhd as it appears,
operators in C, Java, and C# have much in commmalava, the operators only work for certain presfi
types, and you cannot change the meaning of thEm@tors. In C# it is possible to use the existipgrator
symbols for operations in your own types. (You agrninvent new operator symbols, and you cannot@han
the precedence nor the associativity of the symbdle say that the operators in C# caroberloaded For
instance, in C# it would be possible to definerti@aning ofiBankAccount + aTriangle , Where

aBankAccout refers to an instance of cla&skAccount andaTriangle refers to an instance of class
GeometricShape . When the existing operator symbols are natureglismtion to our own classes, the idea of
overloaded operators is great. In other situatiomsrloaded operators do not add much value.

We are used to a situation where procedures, fumgtand methods have names. In both Java and C# we
can define named methods in classes. In C#, walsardefine named methods in structs. In C# it is
possible to define non-named methods as well. Asgbarbitrary expressions, we can create a fonabir
method. Such a function or method is called a @géedds indicated by the name, delegates are glosel
related to delegate types, as discussed abovectim®&.1. For more details on this topic see Céap? and

in particular the program examples of Section 22.1.

7.3. Other substantial differences

Lecture 2 - slide 22

In addition to the overall differences in the aoé#ypes and operations, as discussed in the texiqus
sections, there are a number of other substaritiatehces between Java and C#. The most impoofant
these differences are summarized below.

« Program organization
« No requirements to source file organization in C#
« Exceptions
« No catch or specifyequirement in C#
» Nested and local classes
« Classes inside classes are static in C#inNer classes$ike in Java
e Arrays
« Rectangular arrays in C#
» Virtual methods
« Virtual as well as non-virtual methods in C#

In Java there is a close connection between clasgksources files. It is usually recommendedttiexe is
only one class per file, but the rule is actudiigttthere can be one public and several non-pualagses per
Java source file. The proper name of the souressfibuld be identical to the name of the publissla
Likewise, there is a close connection between pggekand directories. A package consists of theetas
whose source files belong to a given directoryhe drganization of C# programs is different. IntGére is
no connection between the names of classes améithe of a C# source files. A source file can contai

55

several classes. Instead of packages, C# orgagzesin namespaces and assemblies. Namespaces are
tangible, as they are represented syntacticalllggrsource files. A namespace contains types and/or
recursively other (nested) namespaces. Assembbgzraduced by the C# compiler. Assemblies reptesen
‘packaging' mechanism, and assemblies are almtbsigonal to both the file/directory organizatiordahe
namespace organization. As it appears, C# usexla more complex - and presumably more powerful -
program organization than Java. We discuss orgamizaf C# programs in Chapter 15 at the end of the
lecture about Classes.

Java supports botthecked exceptiorsdunchecked exceptionsut it is clearly the ideal of Java to work
with checked exceptions. (Unchecked exceptionsis hown as RuntimeExceptions). It is natural to as
about the difference. A checked exception museeitie handled in the methedn which is occurs, or the
methodvmust declare that an activationnofan cause an exception (of a given type) whiclersabfm

need to care about. This is sometimes calle@dleh or specify principleThe most visible consequence of
this principle is that Java methods, which do rastdie exceptions, must declare that ttieyws specific
types of exceptions. Thus, the signature of Javads include information about the kind errorgythey
cause. - C# does not adhere todhtch or specify principldn C# all exceptions correspond to the so-called
RuntimeExceptions in Java. Exceptions in C# areudised in Chapter 36.

Java is stronger than C# with respect to classnged®doth Java and C# suppetttic nested classéssing
Java terminology). In this setup, the innermossizan only refer to static members of the outesclin
contrast to C#, Java also supports ircl@assesAn instance of an inner class has a referencastance of
the outer class. Inner classes have implicatiotise@bject structure. Static nested classes hageich
implications. In addition, Java suppoldsal classeshat are local to a method, aadonymous classes
which are instantiated on the fly. C# does not.

In both Java and C# it is possible to work withagsrin which the elements themselves are arragssaon
recursively. Using C# terminology, this is caliadged arraysbecause it facilitates multi-dimensional
arrays of irregular shapes. In contrast to Javan@dition supporteectangular arraysin which all rows
are of equal lengths. We have already discusseg¢hgnd rectangular arrays in our comparison witt C
Section 6.4.

Virtual methods relate to redefinition of method<lass hierarchies (inheritance). In Java all washare
virtual. What this means (for C#) is explained @tals in Section 28.14. In C# it is possible todhhoth
virtual and non-virtual methods. This complicates tinderstanding of inheritance quite a bit. Tlaeee
however, good reasons to support both. In Sec2zod ®e will review a prominent example where the
uniform use of virtual methods in Java runs intuble.

56

8. C# In relation to Visual Basic

This chapter is intended for students who havechdraund in imperative Visual Basic programmingeTh
goal of this chapter is to make the transfer froisudl Basic to C# as easy as possible. We do that b
showing and discussing a number of equivalent ViBaaic and C# programs. In this chapter Visuali®as
programs are shown on a blue background, and Gfftgn are shown on a green background. The
discussion of equivalent Visual Basic and C# progigtextually organized in between the two program

In this chapter 'Visual Basic' refers to the vansib Visual Basic supported by the .Net Framewazision
2.0.

In this edition the comparison of Visual Basic &@¥lis only available in the web version of the mate

57

58

9. C# Tools and IDEs

Many potential C# programmers will be curious alioots and environments (IDEs) for C# programming.
Therefore we will, briefly, enumerate the most awg possibilities. We will mention possibilitieshoth
Windows and Unix.

9.1. C# Tools on Windows

Lecture 2 - slide 41
Windows is the primary platform of C#. This is doghe fact that C# is a Microsoft language.

Microsoft supplies several different set of todlattsupport the C# programmer:

« .NET Framework SDK 3.5
« "Software Development Kit"
« Command line tools, such as the C# compier
« Visual C# Express
» IDE - An Integrated Development Environment
« A C# specializediree version of Microsoft Visual Studio 2008
« Visual Studio
» IDE - An Integrated Development Environment
» The professionabommercialdevelopment environment for C# and other programmi
languages

The .Net Standard Development Kit (SDK) supporésrtw tools, including a traditional C# compiler.
Although many programmers today use contemporaBsl8uch as Visual Studio or Eclipse, | find it
important that all programmers understand the kasicunderlying activation of the compiler.

The Visual C# Express edition is a free (gratigjara of Visual Studio, explicitly targeted at studs and
other newcomers to C#. There are video resoursegifeo-resources] available for getting startetth @i#
2008 Express. The experience you get with VisuaE&#ress can immediately be transferred to Visual
studio. The two IDEs are very similar.

Visual Studio is the commercial flagship environtmeiC# programming. You will have to buy Visual

Studio if you want to use it. Notice, however, thany universities have an academic alliance with
Microsoft that provides access to Visual Studio atieer Microsoft software.

9.2. C# Tools on Unix

Lecture 2 - slide 42

The MONO project provides tools for C# developmemiLinux, Solaris, Mac OS X, Unix in general, and
interesting enough also on Windows. MONO is thei@dd you swear to the Linux platform.

Let us summarize the MONO resources, availablbed tnux people:

59

« MONO
« An open sourcgroject (sponsored by Novell)
» Corresponds the the Microsoft SDK
- Based on ECMA specifications of C# and the Commanguage Infrastructure (CLI)
Virtual Machine
« Command line tools
« Compilersimes (C# 1.5) andmcs (C# 2.0)
¢ MONO on cs.aau.dk
« Mono is already installed on the application ses\arcs.aau.dk
« MONO on your own Linux machine
« You can install MONO yourself if you wish
« MonoDevelop
« A GNOME IDE for C#

For good reasons, the MONO CLI is not as updatedeadNET solutions. MONO will most probably
always be at least one step behind Microsoft.

9.3. References

[Cs-video-resourcesC# Express Video Lectures
http://msdn.microsoft.com/en-us/beginner/bb9646gixa

60

10. Classes: An Initial Example

This is the first chapter about classes. It is #iedfirst chapter in the first lecture about céssOur basic
coverage of classes runs until Chapter 13.

10.1. The Die Class

Lecture 3 - slide 2

In this section we encounter a number of impor@@P ideas, observations, and principles. We wily ve
briefly preview many of these in a concrete waghie context of a simple initial class. Later welwiscuss
the ideas in depth.

We use the example ofdée, which is the singular form of "dice", see Progradnl. One of the teaching
assistants in 2006 argued that the ctassis a sad beginning of the story about classesl, W& maybe
right. | think, however, that the concept of aidi@a good initial example. So we will go for it!

On purpose, we are concerned with use of eithesitigailar or the plural forms of class names. Tihgudar
form is used when we wish to describe and prograimgle phenomenon/thing/object. The plural form is
most often used for collections, to which we cad addelete (singular) objects. Notice that we wetke
multiple instances of a class, such astiaeclass. In this way we can create a number of dice.

The clas®ie in Program 10.1 is programmed in C#. We prograireauch that each given die has a fixed
maximum number of eyes, determined by the constatNumberOfEyes . The clasencapsulatethe

instance variablesnumberOfEyes , randomNumberSupplier , and the constamtaxNumberOfEyes . They are
shown in line 4-6. The instance variable are ingehith describe th&tateof abie object, which is an
instanceof theDie class. The instance variablenberofEyes is the most important variable. The variable
randomNumberSupplier ~ makes it possible for@ie to request a random number frorRandonobject.

After the instance variables comes a constructais iE line 8-11. The purpose of the constructaois
initialize a newly createie object. The constructor makes the random numbgligu, which is an instance
of thesystem.Random class. The constructor happens to initialize anabsix-eyed die. The expression
DateTime.Now.Ticks ~ returns aong integer, which we type cast to an . The use of annchecked context
implies that we get ant out of the cast, even if theng value does not fit the rangeiof . (The use of
unchecked eliminates overflow checking). The value assigimetimberOfEyes is achieved by tossing the
die once via activation of the methmewTossHowManyEyes. The call ofNewTossHowManyEyes on line 10
delivers a number between 1 and 6. In this wayiriial state - the number of eyes - of a newidieandom.

Then follows three operations. In most object-dedrprogramming languages the operations are called
methodsTheToss operation modifies the value of themberOfEyes variable, hereby simulating the tossing
of a die. Theross operation makes use of a private method caled ossHowManyEyes, which interacts

with the random number supplier. TRemberOfEyes method just accesses the value of the instandcablar
numberOfEyes . TheToString method delivers a string, which for instance camiged if we decide "to print
a Die object". Thaostring method in clasbie overrides a more general method of the same name.

We notice that the instance variables are privatkthat the constructors and methods are publicater
instance variables cannot be used/seen from oldses. This turns out to be important for us Sesion
11.4.

61

using System;

public class Die {
private int numberOfEyes ;
private Random randomNumberSupplier
private const int maxNumberOfEyes = 6;

public Die(){
randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
numberOfEyes = NewTossHowManyEyes();

}

public void Toss (){
numberOfEyes = NewTossHowManyEyes();

}
private int NewTossHowManyEyes (){
return randomNumberSupplier.Next(1,maxNumberOfE yes + 1);
}
public int NumberOfEyes () {
return numberOfEyes;
}
public override String ToString (){
return String.Format("[{0}]", numberOfEyes);
}
}

Program 10.1 The class Die

Below, in Program 10.2 we see a client of claiss which creates and repeatedly tosses three dickerit
of aDie uses a die via a numbermé references. In Program 1Qi2, d2, andd3 are references w@ie
objects. Section 10.2 is about clients and servers.

When we run the program we get the output showluisiting 10.3

using System;
class diceApp {

public static void Main(){

Die dl = new Die() ,
d2 = new Die()
d3 = new Die() ;
for(inti=1;i<10; i++){
Console.WriteLine("Die 1: {0}", d1); /[l Inplicitly
Console.WriteLine("Die 2: {0}", d2); /Il calls
Console.WriteLine("Die 3: {0}", d3); /1l ToString in Die
dl.Toss() ; d2.Toss() ; d3.Toss() ;
}
}
}
Program 10.2 A program that tosses three di
Die 1: [1]
Die 2: [1]
Die 3: [1]
Die 1: [2]

62

Die 2: [2]
Die 3: [2]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [4]
Die 2: [4]
Die 3: [4]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [2]
Die 2: [2]
Die 3: [2]
Die 1: [3]
Die 2: [3]
Die 3: [3]
Die 1: [2]
Die 2: [2]
Die 3: [2]
Die 1: [1]
Die 2: [1]
Die 3: [1]

Listing 10.3 Sample program outpt

The output shown in Program 10.1 seems suspect?\Wake a close look. We will come back to this
problem in Exercise 3.7, which we encounter ini®act1.10. (At that location in the material we bav
learned enough to come up with a good solutiohégtroblem).

The Die class is ®emplateor blueprintfrom which we can create an arbitrary number of di
objects

The term blueprint is often used as a metaphoratdiss (seen in relation to objects). The wordeplint' is,
for instance, used for an architect's drawing bbase. In general, a blueprint refers to a detailad for
something that, eventually, is going to be consgicThe blueprint can be used as a prescriptam fr
which craftsmen can actually built a house.

The clas®ie from Program 10.1 is only useful if we apply itsome context where dice are actually needed.
We use dice in various games. In Exercise 3.1 wpqse that you make a simple Yahtzee game, witlofuse
five dice (five instances of thme class).

Exercise 3.1. Yahtzee

Write a very simple Yahtzee program based orptheclass. Yahtzee is played by use of five dice énat
tossed simultaneously. The players are suppositidot a table of results. The table should allow
registration of ones, ..., sixes, three-of-a-kifiodir-of-a-kind, full-house, small-straight, largeesght,
yahtzee, and chance. See wikipedia for more detadsnspiration.

Be sure to use the version of thie class that shares tRandom class with the other dice. This version of
theDie class is produced in another exercise in thisitect

This program is for a single player, who tosseditieedice repeatedly. Each time the five dicetassed a
table cell is filled. No re-tossing is done witlsdethan five dice. The first category that fits\aeg toss is

63

filled. (Try yahtzee first, Chance last). Keepiihple!

You may consider to write ahtzeeTable class which represents the single user table tasextjister the
state of the game. Consider the interface and tipasaof this class.

10.2. Clients and Servers

Lecture 3 - slide 3

The nameslientandserveris often used when we are concerned with compuAessrver denominate a
computer that provides services to its surroundingpuld be a file server or a web server.

In the context of object-oriented programming therds client and server will be usedaigect rolesin a

given situation an object plays a given role. Ajeotx is called a client of if x makes use of the services
(operations) provided by. An objecty is called a server &fif it provides services (operations)x®o

In a dice game the objects act, in turn¢léent andservers

+ Die object = Random object|

Die object || Random object]
4 Die object = Random object|

Figure 10.1 Interacting Game, Die, and Random objects. The Galojext is a
client of the Die objects, which in turn are clismtf the Random objects.

Figure 10.1 shows a single game object, threelgexts, and three random objects. The client-senles
of these objects can be summarized as follows:

» TheGameobject is a client of a number bk objects
« AgivenDie objectis a client of aandom object
« Inturn, aDie object act as a server for themeobject, andRandom objects act as servers foie

objects

In the figure, the arrows are oriented from cligntservers.

10.3. Message Passing

Lecture 3 - slide 4

A client interacts with its connected servers vessage passing.

As a metaphor, we pretend that objects communimataeans ofmessage passing

64

Message passing actually covers a procedure catteBure calling is a technical matter. Messagsipgss
an everyday term that covers some communicationdmst one person and another, for instance vialposta
mail. In some setups, message passing also invtileagceiving of a reply. As already stressedararise

of metaphors is very important for getting new &lesnd for raising the level of abstraction.

In Figure 10.2 we illustrate message passing iwéen a game object, three dice, and three randgeutsb

>

Die object ——= Random object|

Die object ——»|Random object|

[Die object |—»[Random object]

Figure 10.2 InteractingGane, Di e, andRandomobjects

In some versions of this teaching material you balable to animate the figure, such that you ctuadly
see the acts of passing a message and receiviapdyaBefore sending a message, the sending dbject
emphasized. When emphasized, we say that the ébjiaacurrent object In a single threaded program
execution, there is always a single current objEuis is the object, which most recently receivedessage.
In football, message passing corresponds to patsenigall from player to player. At some level of
abstraction, there is always a single player -biddekeeper' - who posses the ball. He or sheesponds to
the current object.

Here follows some general remarks about messagipas

« We often prefer to think of the interaction betwedfects as message passing.
« The receiver of an object locates a procedurefonetion which can answer the message -

method lookup
« Aresult may be sent back from the receiver toséreder of the message.

In the next chapter we will dive into the detaifgtee class concept.

65

66

11. Classes

The most important programming concept in obje@ried programming is the class. The programmer
writes the classes in his or her source progranmuitime, classes are used as blueprints/temgdiates
instantiation of classes (creation of objects}this chapter we will explore the concept of clas3éss will
be a relatively long journey through visibility isss, representation independence, instance argl clas
variables, instance and class methods, and théarot the current object. At the end of the cleapin
Section 11.14 we will discuss the important differes between classes and objects.

11.1. Classes

Lecture 3 - slide 6

The single most important aspect of classenapsulationAs a matter of fact, | believe that the most
important achievement of object-oriented prograngmsnthe idea oystematic encapsulation of variables
and operations that belong together

A class is a construct that surrounds a numbeefafitions, which belong together. Some of these
definitions can be seen from the outside, wherdar® are only relevant seen from the inside. ltataws
a short 'definition’ of a class:

A classencapsulatedata and operations that belong together, armhirals the visibilityof

both data and operations. A class can be usedyas en the programming language

The parts of a class which are visible from othasses forms thelient interfaceof the class. In the figure,
the interface of a class is drawn on the bordéh@box that surrounds the variables and operatidnss, in
the figure, only a subset of the operations - @yi2, Op3, and Op4 - form the client interface @f thass.
All data parts are kept inside the class, and tdaeyot be directly used from other classes.

Opl

Hi

2]

3

Figure 11.1 A class and its interface to other classes. Therfate is often
called the client interface. In this illustratiohe operations Op1, Op2, Op3, and
Op4 form the client interface of the class.

The notion of interfaces between program part®giam building blocks - is important in generalthis
section we talk about the interfaces between ciadstirns out that a class may have severalréifite
interfaces. The interface we care most about nglat is called thelient interfaceof a class C. There is
another interface between C and classes that extargpecializes C. We have more to say about this
interface in Section 27.2.

67

Exercise 3.2. Time Classes

This is not a programming exercise, but an exemwtsieh asks you to consider data and operations of
classes related to time.

Time is very important in our everyday life. Thenef, many of the programs we write somehow dedd wit
time.

Design a clasBointinTime , which represents a single point in time. How dorepresent a point in time?
Which variables (data) should be encapsulateddrtldss? Design the variables in terms of theirazam
and types.

Which operations should constitute the client iiatee of the class? Design the operations in tefrtteedr
names, formal parameters (and their types), anty/fes of their return values.

Can you imagine other time-related classes HuaninTime ?

Avoid looking at the time-related types in the @#dry before you solve this exercise. During tharse
we will come back the time related types in C#.

11.2. Perspectives on classes

Lecture 3 - slide 7

In this section we discuss different ways to unteid classes relative to already established utasheliggs.
You may safely skip this section if such discussloes not appeal to you.

Depending on background and preferences, diffgnergrammers may have different understandings of
classes. Here follows some of these.

- Different perspectives on classes:
- An abstract datatype
« A generalization of a record (struct)
« A definition procedure
« A module

Typesandabstract datatypeare topics of general importance in computer egeBut it is probably fair to
state that the topic of types is of particular imigonce in the theoretical camp. Abstract datatyza® been
studied extensively by mathematically inclined comep scientists, not least from an interest of Bjpation.
Boiled down to essence, a type can be seen ahwsdties that possess a number of common preperti
An abstract datatype is a set of such values aad af operations on these values. The operati@ke ine
values useful. When we talk about abstract datestyiine data details of the values in the typgardehind
the scene.

In most imperative programming language, includfagcal and C, a record (a struct in C) is a datatate

that groups data together. We often say that data preaggregatedn a record. Records are called structs
in C. It is a natural and nice idea to organizedperations of the grouped data together with #te d

68

themselves; In other words, to 'invite' the operation records/structs into the record itself. # €ructs
are used as a "value variant” of a class. Thisdgdpic in Section 14.1.

Abstractions can be formed on top of expressiohs [Eads to the functions. In the same way, proeed
are abstractions of commands/statements. A callfofiction is itself an expression, and a call of a
procedure is a command/statement. From a thedrpbaat of view it is possible to abstract othentgctic
categories as well, including a set of definitidBach abstractions have been catlefinition procedures
[Tennent81]. Classes can therefore be seen astibefiprocedures. Following the pattern from abdhe,
activation of a definition procedure leads to défans. It is not obvious, however, if multiple a@tions of
a definition procedure is useful.

Finally, a module is an encapsulation, which da®sact as a type. A module may, on the other hand,
contain a type (typically a struct) that we tremba abstract datatype. See Section 2.3 for olierear
discussion of modules.

11.3. Visibility - the Iceberg Analogy

Lecture 3 - slide 8

As stated in Section 11.1 visibility-control is mmportant aspect of classes. Inspired by Bertraegdvis
seminal boolObject-oriented software constructidieyer88], we will compare a class with an iceper

A class can be seen asieaberg Only a minor part of it should be visible fronetbutside. The
majority of the class details should be hidden.

Figure 11.2 An Iceberg. Only a minor fraction of the icebergisible above
water. In the same way, only a small part of theitledf a class should be visible
from other classes.

Clients of a class C cannot directly depend ondmdoarts of C.

Thus, the invisible parts in C can more easily i@nged than the parts which constitute the
interface of the class.

69

Visibility-control is important because it protethke invisible parts of a class from being direeitressed
from other classes. No other parts of the programrely directly on details, which they cannot ascéf
some detail (typically a variable) of a class cdrb®seen outside the class, it is much easieotifynthis
detail (e.g. replace the variable by a set of otlaeiables) at a later point in time.

You may ask why we would like to modify detailsanfr class. We can, of course, hope that we doemd n
to. But if the program is successful, and if ilive many years ahead, it is most likely that wedto

change it eventually. Typically, we will have taemd it somehow. It is also typical that we havetliange
the representation of some of our data. It is westly if these changes cause a ripple effectdhidg for
manymodifications throughout the whole program. lvésy attractive if we can limit the area of the
program that needs attention due to the modifinca#foprogrammer who use a programming language that
guaranties a given visibility control policy is@ngood position to deal with the consequenceseof th
mentioned program modifications.

11.4. Visible and Hidden aspects

Lecture 3 - slide 9

Let us now be more concrete about class visibilityhis section we will describe which aspect ¢ef as
class secrets, and which aspect to spread outsdgdss.

- Visible aspects

« The name of the class

« The signatures of selected operations: The interfdithe class
« Hidden aspects

« The representation of data

» The bodies of operations

« Operations that solely serve as helpers of otheradjons

The visible aspects should be kept at minimum IéMeé class name must be visible. The major intertz
the class is formed by the signatures of selegbedadions. Asignature of a methoid the name of the
method together with the types of the method patarmeand the type of the value returned by thénaukt

It is always recommended to keep the representafidata secret. It is almost always wrong to ekpor

knowledge about the instance variables of a clalgsnts of the class should not care about - andlsimot
know - data details. If we reveal data details wery hard to change the data presentation &radaint in
time. Let us stress again that it is a very typioalification of a program to alter the represeatadf data.

The bodies of the operations (the operation deba@j®nd the operation signature) are hidden because

operations are themselves abstractions (of eitkppessions or command). Finally, some operationgesas
helper operations in order to encourage internaeevithin the class, and in order to prevent herations
of the class to become too large. Such helper tipesashould also be invisible to the clients @ thass.

In Program 11.1 we show and emphasize the vistnis pf thedie class from Program 10.1. We have
dimmed the aspects of th& class which are invisible to client classes (thgeats 'below the surface'
relative to Figure 11.2).

70

using System;

class Die

Die()

void Toss()

int NumberOfEyes()

String ToString()

Program 11.1 The class Die - aspects visible to clients
emphasized.

Some programming language enforce that all instaagables of a class are hidden. Smalltalk [Golg83]
is one such language. C# is not in this categarywe will typically strive for such discipline the way we
program in C#.

11.5. Program modification - the Fire Analogy

Lecture 3 - slide 10

In continuation of the iceberg analogy, which itrased visibility issues, we will here illustrateogram
modification issues by an analogy to the spreditaf

A minor modification of a program may spread aseathroughout the program.

Such a fire may ruin most of the program in theseghat major parts of the program may need
to be reprogrammed.

71

Figure 11.3 A house - with firewalls - on fire. The fire is nigely to spread to
other apartments because of the solid firewalls.

The use of firewalls prevents the spread of a fire.

Similarly, encapsulation and visibility control pent program modifications from having
global consequences.

In large buildings, firewalls prevent a fire to tteg more than a single part of a building. Simitafire
roads in forest areas are intended to keep firksctdized regions of the forest.

11.6. Representation Independence

Lecture 3 - slide 11

Let us now coin an important OOP programming pgleciThe principle of representation independence.

Representation independen€#ients of the class C should not be affectedhmnges of C's
data representation

In essence, this is the idea we have already disdus Section 11.4 and Section 11.5. Now we haween
for it!

Below, in Program 11.2 we will show a class thatukerable in relation to the principle of repnasdion
independence. The class is written in C#. The ¢leias in Program 11.2 reveals its data representation to
clients. This is becauseandy are public. In Program 11x2andy are parts of the client interface of class
Point .

/I A very simple point with public data representat ion.
/I NOT RECOMMENDED because of public data represent ation.

using System;

public class Point {
public double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public void Move(double dx, double dy){
X +=dx; y +=dy;
}

public override string ToString(){

72

return "("+ X +""Hy + ")
}
}

Program 11.2 A Point class with public instance variables -
NOT Recommended .

The class shown below in Program 11.3 is a cliépbit . It prompts the user for three points that we will
assume form the shape of a triangle. In line 24+8Xalculate the circumference of this trianglethiese
calculations we use theandy coordinates of points directly, and quite heavily!

Il A client of Point that instantiates three points and calculates
/I the circumference of the implied triangle.

using System;
public class Application{

public static Point PromptPoint(string prompt){
double x, y;
Console.WriteLine(prompt);
x = double.Parse(Console.ReadLine());
y = double.Parse(Console.ReadLine());
return new Poaint(x,y);

}

public static void Main(){
Point p1, p2, p3;
double p1p2Dist, p2p3Dist, p3pl1Dist, circumfer ence;

pl = PromptPoint("Enter first point");
p2 = PromptPoint("Enter second point");
p3 = PromptPoint("Enter third point");

plp2Dist = Math.Sqrt((plx - p2x)*(plx - p2x)+
ply - p2y)*(ply - p2y));
p2p3Dist = Math.Sqrt((p2.x - p3.x)*(p2x - p3x)+
(p2y - p3y)*(p2y - p3y));
p3plDist = Math.Sqrt((p3.x - plx)*(p3x - plx)+
(p3y - ply)*(p3y - ply));
circumference = p1p2Dist + p2p3Dist + p3plDist;
Console.WriteLine("Circumference: {0} {1} {2}: {3},

pl, p2, p3, circumference);

Console.ReadLine();

}

}
Program 11.3 A Client of Point

Now assume that the programmer of ckasist changes his or her mind with respect to the reptesion
of points. Instead of using rectangular x and yrdmates the programmer shifts to polar coordindibss is
a representation of points that uses an angle bet@&nd 2 pi, and a radius. The motivation bettiedshift
of representation may easily be that some othgraromers request a rotation operation of the ¢laiss .
It is easy to rotate a "polar point". This leadsiteew version of clag®int , as sketched in Program 11.4.
We are, of course, interested in the survival aigPam 11.3 and other similar program. Imagineeféh
exists thousands of similar code lines in othess#a!.

73

Il A very simple class point with public data repre sentation.
/I An incomplete sketch.

/I This version uses polar representation.

/I NOT RECOMMENDED because of public data represent ation.

using System;

public class Point {
public double radius, angle;

public Point(double x, double y){
radius = ...
angle = ...

}

public void Move(double dx, double dy){
radius = ...
angle = ...

}

public void Rotate(double angle){
this.angle += angle;

}

public override string ToString(){

.
}

Program 11.4 A version of class Point modified to use polar
coordinates - NOT Recommended.

We will not solve the rest of the problem at thisr in time. We leave the solution as challenggdoin
Exercise 3.3. In the lecture, which | give basedh@se notes, | am likely discuss additional eléseha
good solution in C#.

Encapsulated data should alwayshimdenandprivate within the clas

Exercise 3.3. Public data representation

It is recommended that you use the web editiomefnaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In the accompanyingoint andPoint client classes the data representatiopobift is available to the
client class. This may be tempting for the progranrbecause we most likely wish to make the x and y
coordinates of points available to clients.

Why is it a bad solution? It is very important tlyati can express and explain the problem to fellow
programmers. Give it a try!

Now assume that we are forced (by the boss) togehtdre data representationrafnt . As a realistic
scenario, we may introduce polar coordinates idstéahe rectangular x and y coordinates. Recall th
polar coordinates consist of a radius and an ginmgl@dians or degrees).

What will happen to client classes, such as théntlwhen this change is introduced? Is it an easy
difficult modification to the given client classagine that in a real-life situation we can havaigands

74

of similar lines of code in client programs thdergo x and y coordinates.

Rewrite selected parts of clamsnt such that the client "survives" the change of depaesentation. In
your solution, the instance variables should begpei in theroint class. Are you able to make a solution
such that the client class should not be changati?at

In the web edition we link to special version asgroint , which contains method for conversions
between rectangular and polar coordinates. Weipat&that these methods are useful for you when yo
solve this exercise.

The client class aboint calculates the distances between pairs of paiiiis.is not a good idea because
far too many details occur repeatedly in the cliSuiggest a reorganization and implement it.

11.7. Classes in C#

Lecture 3 - slide 12

In this and the following sections we will studasses in C#, instance variables, instance methlags,
variables (static variables), and class methodsi¢shethods).

The syntactic composition of classes is as follows.

cl ass-nodi fiersclass class-name{
vari abl e- decl arati ons
construct or-decl arati ons
net hod- decl ar ati ons

}

Syntax 11.1 The syntactic composition of a C# Class. This igmetvhole story. There are other members
than variables, constructors and methods. Notice #iat it is NOT required that variables come before
constructors and that constructors come before ousth

Notice, however, that the full story is somewhatencomplicated. Inheritance is not taken into aotoand
only a few class members are listed. In additibe,drder of the class members is not constrained as
suggested by Syntax 11.1.

The default visibility of members in a class isvpte. It means that if you do not provide a vigipinodifier
of a variable or a method, the variable or methddbe private. This is unfortunate, because a mgss
visibility modifier typically signals that the progmmer forgot to decide the visibility of the membe
would have been better design of C# to get a catmpi error or - at least - a warning.

The following gives an overview of different kindEmembers - variables and methods - in a class:

e Instancevariable
» Defines state that is related to each individugab

« Classvariable
- Defines state that is shared between all objects

e Instance method
- Activated on an object. Can access both instandelass variables

« Classmethod

75

« Accessed via the class. Can only access clasdbleria

In the following four sections - from Section 11d8Section 11.11 - we will study instance variaples
instance methods, class variables, and class nethadiditional details. This is long journey! Yaill be
back on track in Section 11.12.

11.8. Instance Variables

Lecture 3 - slide 14

All objects of a particular class have the samefteariables. Each object allocates enough merspage
to hold its own set of variables. Thus, the valoethese variables may vary from one instance (pje
another. Therefore the variables are knowmsisnce variables

An instance variablelefines a piece of data in the class. Each oljesated as an instance o

the class, holds a separate copy of the instantbles.

Unfortunately, the terminology varies a lot. Instarvariables are officially known &eldsin C#. Instance
variables are, together with constants, knowdada membersThe termmembeiis often used for all
declarations contained in a class; This covers mat@bers and function members (constructors, method
properties, indexers, overloaded operators, anef®thSome object-oriented programming languagiieE
for instance) talk abouwtttributesinstead of instance variables. (In C#, attribuédsr to an entirely different
concept, see Section 39.6).

Below, in Program 11.5, we show an outline @aakAccount class programmed in C#. The methods are
not shown in this version of the class. The classthree instance variables, nametytestRate (of type
double), owner (Of typestring), andbalance (Of typedecimal , a type often used to hold monetary data).
In addition the class has three constructors amehaber methods, which are not shown here.

using System;
public class BankAccount {

private double interestRate;
private string owner;
private decimal balance;

public BankAccount(string owner) {
this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate) {
this.interestRate = interestRate;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate,
decimal balance) {

76

this.interestRate = interestRate;
this.owner = owner;
this.balance = balance;

}

/I Remaining methods are not shown here

}

Program 11.5 Instance variables in a sketch of the class
BankAccount.

In theBankAccountClient class in Program 11.6 we create three diffeBanitAccount objects. The
variablesa1, a2, anda3 hold references to these objects.

using System;

public class BankAccountClient {

public static void Main(){

BankAccount al = new BankAccount("Kurt", 0.02) ,
a2 = new BankAccount("Bent", 0.03) ,
a3 = new BankAccount("Thomas", 0.02) ;

al.Deposit(100.0M);
a2.Deposit(1000.0M); a2.AddInterests();
a3.Deposit(3000.0M); a3.AddInterests();

Console.WriteLine(al); // 100 kr.
Console.WriteLine(a2); // 1030 kr.
Console.WriteLine(a3); // 3060 kr.

Program 11.6 Creation of three bank accoun

Following the calls of theeposit andAddinterests operations the three objects can be depictedagsh
in Figure 11.4. Please make sure that understatessbf the object (the values of the individuatamce
variables of each of the objects). The output efgtogram is shown in Figure 11.4. Listing 11.7\famn
web).

Figure 11.4 Three objects of class BankAccount, each holdirggtmstance
variablesi nt er est Rat e, owner, andbal ance. The values of variables are
determined by the bank account transactions thginegrammed in the class
BankAccount C i ent . The state of the variables is shown relative totthree

Wit eLi ne calls.

Exercise 3.4. How private are private instance variables?

The purpose of this exercise is to find out howaeprivate instance variableare in C#.

77

Given theBankAccount class. Now modify this class such that each backwnt has a backup account.
For the backup account you will need a new (privetgtance variable of typ@ankAccount . Modify the
withdraw method, such that if there is not enough monejlahla in the current account, then withdraw
the money from the backup accoufst an experiment, accessthe balance of the backup account
directly, in thefollowing way:

backupAccount.balance -= ...

Is it possible to modify the private state of @a@kAccount from anotheBankAccount ? Discuss and
explain your findings. Are you surprised?

11.9. Instance Methods

Lecture 3 - slide 15

Instance methods are intended to work on (do coamtipats on) the instance variables of an objectalass.
An instance methosi must always be activated on an instance (an Qlgétte class to whickibelongs.

Activating or calling an instance method is ofteaught of as message passing (see Section 2.1pbjéet,
on which the method is activated, is called theirssr of the message. The callee (the object frémehvthe
message is sent) is - quite naturally - calledsdreder.

An instance metho@ an operation in a class that can read and/difgnone or more instance

variables.

« Aninstance methoslin a clas<
« must be activated on an object which is an instafice
- is activated bybject.m(...) from outsidec
» is activated bynis.M(...) or justm(...) insidec
« can access all membersmf

Notice that an instance method can access allnostaariables of a class, including the privatesoAa
instance method can also access class variableSétion 11.10).

The formobject.M(...) must be used if a methods activated on an object different from the catre
object. The short formi(...) can be used in casgs activated on the current object. It is, howewoéten
more clear to writehis.M(...) With this notation we are explicit about the reeeiof the message; Also,
with the notationhis.M(...) , we use dot notation consistently whenever wevaigtian instance method.
The choice betweem(...) andthis.M(...) depends on the choseonding style For more details otis
see Section 11.15.

Conceptually you may imagine that each individugeot has its own instance methods, in the sameasay
we in Section 11.8 argued that each individual aij@s its own instance variables. In reality, hosveall
instances of a given class can share the instaati®ous.

Program 11.8 shows a version of BakAccount class in which the instance methods are highlgjhteée

methodLogTransaction relies on the enumeration typecountTransaction defined just before the class
itself.

78

In the web-version of the material we show a versibclasBankAccount with a new instance method
LogTransaction . This method is used as the starting point of &ger3.5.

Exercise 3.5. The method LogTransaction in class BankAccount

In the accompanyingankAccount class we have sketched and used a private metirodch
LogTransaction . Implement this private method and test it with BankAccount client class.

Exercise 3.6. Course and Project classes

In this exercise you are asked to program threglsiciasses which keep track of the grading ofnapday
student. The classes are calledieanCourse , GradedCourse , andProject

A BooleanCourse encapsulates a course name and a registraticasség/not passed for our sample
student.

A GradedCourse encapsulates a course name and the grade otittenstFor grading we use the Danish
7-step, numerical grades 12, 10, 7, 4, 2, 0 ande8.are also welcome use the enumeration type
ECTSGrade from an earlier exercise. The grade 2 is the lowassing grade.

In bothBooleanCourse andGradedCourse you should write a method calledssed . The method is
supposed to return whether our sample student p#sseourse.

The clas$roject aggregates two boolean courses and two gradedesoufou can assume that a project
Is passed if at least three out of the four couasepassed. Write a metheaksed in classProject which
implements this passing policy.

Make a project with four courses, and try out ysalution.

In this exercise you are supposed to make a siemgdeaather primitive solution. We will come backliis
exercise when we have learned about inheritancealfettion classes.

11.10. Class Variables

Lecture 3 - slide 16

A class variable in a class C is shared betwednsiinces (objects) of C. In addition, a classhmunsed
even in the case where there does not exist atgnices of C at all. Some classes are not intendbd to
instantiated. Such classes act as modules, cliscussion of modules in Section 2.3.

A class variablebelongs to the class, and it is shared amongstthinces of the cla

« Class variables
- are declared by use of theatic modifier in C#
« may be used agobal variables associated with a given class
« do typically holdmeta informatiorabout the class, such as the number of instances

79

In Program 11.10 we show a new version ofgheAccount class, in which there is a private, static

variablenextAccountNumber

of typelong . When we make BankAccount object, we give it a unique

account number. The output, which is shown in hgptl1.12, is produced by a client similar to Pragra
11.6. The program output reveals the effect ofsthéc variablaextAccountNumber

using System;

public class BankAccount {

private double interestRate;

private string owner;
private decimal balance;

private long accountNumber;

private static long nextAccountNumber = 0;

public BankAccount(string owner) {
nextAccountNumber++;
this.accountNumber = nextAccountNumber;

this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

}

public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;

this.owner = owner;
this.balance = 0.0M;

}

/I Some methods not shown in this version

public override string ToString() {
return owner + "'s account, no. " + accountNumber + "holds " +

Program 11.10 The sketch of class BankAccount with a clas
variable.

holds 100 kroner
holds 1030 kroner

+ balance + " kroner";
}
}
Kurt's account, no. 1
Bent's account, no. 2
Thomas's account, no. 3

holds 3060 kroner
Listing 11.12 Output of the BankAccount client progre

Exercise 3.7. Sharing the Random Generator

In theDbie class shown in the start of this lecture, e@iehobject creates its owkandom object. (If you
access this exercise from the web edition theréiaeet links to the relevant versions of clags and

classRandom).

We observed that tosses of two or more instancessfDie will be identical. Explain the reason of this

behavior.

Modify the Die class such that all of them share a simgl@lom object. Consider different ways to
implement this sharing. Rerun tbee program and find out if "the parallel tossing patt' observed

80

above has been alleviated.

11.11. Class Methods

Lecture 3 - slide 17

Class methods are not connected to any instangelass. Thus, class methods can be activatedwitho
providing any instance of the class. A class methinda class is activated by.m(...) . The tree dots
stand for possible actual parameters.

The static methodhain plays a particular role in a C# program, becalbsetogram execution startsnmin .
(Notice thatMain starts with a capital M). It is crucial thatin is static, because there are objects around at
the timeMain is called. Thus, it is not possible to activatg astance method at that point in time! We have
seerMain used many times already. There can bria method in more than one claswin is either
parameter less, or it may take an array of strfpfs/pestringl]).

A class methods associated with the class itself, as opposeah tabject of the cla

» Aclass methotin a class<
« is declared by use of teatic modifier in C#
- can only access static members of the class
« must be activated on the class as such
« is activated as.M(...) from outsidec
« can also be activated &1$..) from inside C

In order to illustrate the use of static method€#hwe extend Program 11.10 with a couple of stagthods,
see line 32-41 of Program 11.13. The static methwakccount is the most interesting one. It searches the
staticaccounts variable (of typeirrayList) for an account with a given number. It returres litcated bank
account if it is found. If not, it returnsill . Notice the way theetAccount method is used in Program
11.14.

using System;
using System.Collections;

public class BankAccount {

private double interestRate;
private string owner;

private decimal balance;
private long accountNumber;

private static long nextAccountNumber = 0;
private static ArrayList accounts = new ArrayList() ;

public BankAccount(string owner) {
nextAccountNumber++;
accounts.Add(this);
this.accountNumber = nextAccountNumber;
this.interestRate = 0.0;
this.owner = owner;
this.balance = 0.0M;

81

public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
accounts.Add(this);
this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;
this.owner = owner;
this.balance = 0.0M;

public static long NumberOfAccounts (){
return nextAccountNumber;

}

public static BankAccount GetAccount (long accountN umber){
foreach(BankAccount ba in accounts)
if (ba.accountNumber == accountNumber)
return ba;
return null;

}

/I Some BankAccount methods are not shown in thi S version

Program 11.13 A sketch of a BankAccount class with static
methods.

using System;
public class BankAccountClient {

public static void Main(){
BankAccount al = new BankAccount("Kurt", 0.02),
a2 = new BankAccount("Bent", 0.03),
a3 = new BankAccount("Thomas", 0.02);

al.Deposit(100.0M);
a2.Deposit(1000.0M); a2.AddInterests();
a3.Deposit(3000.0M); a3.AddInterests();

BankAccount a = BankAccount.GetAccount(2) ;
if (@ != null)
Console.WriteLine(a);

else
Console.WriteLine("Cannot find account 2");

}

Program 11.14 A client BankAccoun

When we run Program 11.14 we get the output shaviusting 11.15 (only on web).

In Program 11.16 we show an example of a typicalret bet that you will experience this error maimes
yourself. Can you see the problem? If not, readakebelow Program 11.16.

using System;

public class BankAccountClient {

BankAccount
al = new BankAccount("Kurt", 0.02), /I Error:
a2 = new BankAccount("Bent", 0.03), /I An object reference is
a3 = new BankAccount("Thomas", 0.02); / required for the

82

[/l nonstatic field
public static void Main(){

al.deposit(100.0);
a2.deposit(1000.0); a2.addInterests();
a3.deposit(3000.0); a3.addInterests();

Console.WriteLine(al);
Console.WriteLine(a2);
Console.WriteLine(a3);

Program 11.16 A typical problem: A class method that
accesses instance variables.

The variablea1, a2, anda3 in Program 11.16 are instance variable of ckasgAccountClient . Thus,
these variables are used to hold the state of ishpé¢ypeBankAccountClient . The problem is that there
does not exist any object of typenkAccountClient . We only have the clagankAccountClient

Therefore we need to declarg a2, anda3 as static. Alternatively, we can rearrange thgom such that
al, a2, anda3 become local variables of thain method. As yet another alternative, we can ingt@nthe
classBankAccountClient , and move the body &fain to an instance method. The latter alternative is
illustrated in Program 11.17.

11.12. Static Classes and Partial Classes in C#

Lecture 3 - slide 18

A staticclass C can only have static members

A partial class is defined in two or more source files

- Staticclass
« Serves as modulerather than alass
« Prevents instantiation, subclassing, instance mesnhad use as a type.
« Examplessystem.Math , System.lO.File , andSystem.lO.Directory
- Partial class
« Usage: To combine manually authored and autombtigaherated class parts.

It is possible to use the modifier 'static' onassl A class marked aatic can only have static members,
and it cannot be instantiated. A static classnslar to a sealed class (see Section 30.4) whictaveot (or
cannot) instantiate. However, a static class isemestrictive, because it also disallows instaneebers,
and it cannot be used as a type in field declaratamd in method parameter lists.

There are some pre-existing C# classes that exelysiontain static methods. The clagstem.Math is
such a class. It contains mathematical constants &se andpi. It also contains commonly used
mathematical functions such aiss, Cos, Sin , Log, andexp. It would be strange (and therefore illegal) to
attempt an instantiation of such a class.

The static classagle andbDirectory in the namespa®stem.l0 are discussed in Chapter 38.

83

A partial class, marked with thpartial modifier, can be used if it is practical to aggrega class from
more than one source file. This is, in particuteandy when a class is built from automatically gete=l
parts and manually authored parts (such as a @GdsxlUse of partial classes may also turn oué teamdy
when a group of programmers participate in the raogning of a single, large class.

11.13. Constant and readonly variables

Lecture 3 - slide 19

The variables we have seen until now can be agsigneew values at any time during the program
execution. In this section we will study variableéghano or limited assignment possibilities. Of odws
reasons, it is confusing to call these "variablésierefore we use the term "constant" instead.

C# supports two different kinds of constants. Soomstants, denoted with thenst modifier, are bound at
compile time. Others, denoted with tleedonly modifier, are bound at object creation time.

Constants and readonly variables cannot be chahgéty program execution

« Constantdeclared with use of thenst keyword
« Computed at compile-time
« Must be initialized by an initializer
« The initializer is evaluated at compile time
« No memory is allocated to constants
« Must be of a simple type, a string, or a referdgype
» Readonly variabledeclared with use of theadonly modifier
« Computed at object-creation time
« Must either be initialized by an initializer or @nconstructor
« Cannot be modified in other parts of the program

It can be noticed that compile-time bound constaeatsonly be of simple typesying , or a reference type.
In addition, for non-string reference types, thé/qossible value isull .

Program 11.17 demonstrate some legal uses of cdr@sid readonly variables. The elements emphasized
with green are all legal and noteworthy. Notice first that Wwelain instantiates theonstbemo class, such
that we can work on instance variables, as opptsésdatic) class variables.

In line 4 we bind the constasd to 5.0 and the constattt to 6.0. This is done by the compiler, before the
program starts executing. Notice that the comider carry out simple computations, as in line Sina 7
and 8 we bind the readonly variables androb to 7.0 and to the value of the expressiagie) . Itis
possible to assign tea androb in the constructor, but after the execution of¢bestructoroa androb

are non-assignable. In line 11 we assigya to a newBankAccount . Notice that it - in addition - is legal to
assign to read-only variables in constructors (lideand 15). This is - on the other hand - thepassible,
legal assignments toa androba . In line 24 we see that we can mutate a bank adamspite that the
account is referred by a readonly variable. We fiydtie object, not the variable that referencesothject.

using System;

class ConstDemo {
const double ca=5.0

84

cb=ca+1

private readonly double roa=7.0 ,
rob = Math.Log(Math.E) ;

private readonly BankAccount
roba = new BankAccount("Anders")

public ConstDemo(){ // CONSTRUCTOR
roa=8.0 ;
roba = new BankAccount("Tim") ;

}

public static void Main(){
ConstDemo self = new ConstDemao();
self.Go();

}

public void Go(){
roba.Deposit(100.0M)
}

}

Program 11.17 Legal use of constants and readonly
variables.

Program 11.18 domonstrates a number of illegal asesnstants and readonly variables. The elements
emphasized withed are all illegal. The compiler catches all of thémline 12 and 21 we attempt an
assignment to the (compile-time) constantThis is illegal - even in a constructor. In liB2 and 23 we see
that it is illegal to assign to readonly variablesch agoa androba , once they have been initialized.

using System;

class ConstDemo {
const double ca=5.0;

private readonly double roa = 7.0;

private readonly BankAccount
roba = new BankAccount("Anders");

public ConstDemo(){ // CONSTRUCTOR
ca=6.0 ;
}

public static void Main(){
ConstDemo self = new ConstDemao();
self.Go();

public void Go(){
ca=6.0 ;
roa =8.0
roba = new BankAccount("Peter") ;

Program 11.18 lllegal use of constant and readonly
variables.

85

11.14. Objects and Classes

Lecture 3 - slide 20

At an overall level (as for instance in OOA and OQ@jects are often characterized in termglehtity,
state andbehavior Let us briefly address each of these, and réhate to programming concepts.

An object has ardentitywhich makes it different and distinct from anyetlobject. Two objects which are
created by two activations of thew operator never share identity (they are not idaijti In the practical
world, the identity of an object is associatedt$dacation in the memory: its address. Two objacts
identical if their addresses are the same. Butlbeful here. The address of an object is not nacgsfixed
and constant through the life time of the objebie Dbject may be moved around in the memory of the
computer, without losing its identify.

Thestateof the object corresponds to the data, as presthly the class to which the object belongs. As
such, the state pertains to the instance varialflgee class, see Section 11.8.

Thebehaviorof the object is prescribed by the operationdefdlass, to which the object belongs. We have
already discussed instance methods in Section lChapter 18 through Chapter 23 we will discuss
operations, and hereby object behavior, in gretilde

We practiceobject-oriented programmindput we write classes in our programs. This mag bele
confusing. Shouldn't we rather talk abolass-oriented programmirg

When we write an object-oriented program, we ate bprogram all (forthcoming) objects of a given
type/class together. This is done by writing thessl Thus, we write the classes in our source anagrbut
we often imagine a (forthcoming) situation where ¢hass "is an object" which interacts with a nunidfe
other objects - of the same type or of differepety.

At run time, the class that we wrote, prescribeskibhavior of all the objects which are instandab@class.

In our source program we deal with classes. Thesekexist for a long time - typically years. la tonning
program we have objects. The objects exist whitepfogram is running. A typical program runs a few

seconds, minutes, or perhaps hours. Often, we twgreserve our objects in between program exataitio
This turns out to be a challenge! We discuss hopréserve objects with use of serialization in Bec89.1.

All objects cease to exist when the program exeaugrminates.

This is in conflict with the behavior of correspamgi real-life phenomena, and it causes a lot of
problems and challenges in many programs

There are no objects in the source programs! Cabkses. You may ask if there are classes in th@angn
program. It makes sense to represent the clas$les imanning program, such that we can accesddkseas
as data. Most object-oriented systems today repréise classes as particular objects calediaobjects
This is connected to an area in computer scientedaeaflection

Classes are written and described in source pragram

Objects are created and exist while programs ameimg

86

11.15. The current object - this

Lecture 3 - slide 21

We have earlier discussed the role of the currkject, see Section 10.3.
The current object in a C# program execution ioteshby the variablais
this is used for several different purposes in C#:

+ Reference to shadowed instance variables
« Activation of another constructor

« Definition of indexers

« In definition of extension methods

This use ofhis for access of shadowed instance variables hasussehin many of the classes we have
seen until now. For an example see line 10 of Rrogt1.2.

Use ofthis for activation of another constructor is, for arste, illustrated in line 10 and 14 of Program
12.4.

Use ofthis in relation to definition of indexers is discussedection 19.1, illustrated for instance in line
10 of Program 19.1.

11.16. Visibility Issues

Lecture 3 - slide 22

In this section we will clarify some issues that eglated to visibility. We will, in particular, sy a type of
error which is difficult to deal with.

Let us first summarize some facts about visibityypes and members:

« Types in namespaces
« Either public or internal
» Default visibility: internal
« Members in classes
- Either private, public, internal, protected or i@ protected
» Default visibility: private
« Visibility inconsistencies
« Atype T can be less accessible than a methodehans a value of type T

Below we will rather carefully explain the mentiahieconsistency problem.

87

In Program 11.19 we have shown an internal atdesa namespaae As given in Program 11.1®is only
supposed to be used inside the namespalcereality we have forgotten to state toas public inN. | every
now and then forget the modifigsublic " in front of "class ¢ " (line 3). | guess that you will run into this
problem too - sooner og later.

Based on the internal clas$n the namespaacewe will now describe a scenario that leads toreor ¢hat
can be difficult to understand. The class also located in, and therefor® can usec. ClassD is public inN.
(If o had been located in another namespace, it wodlldawe access to class A methodvin classd
makes and returnscaobject.

We cannot compile the program just described. Wegdnconsistent accessibility errarThe compiler
tells you that the return type of methagwhich isc) is less accessible than the methotself. In other
words,Mreturns an object of a type, which cannot be asks

The cure is to make the claspublic in its namespace. Thus, just addiic modifier in front of "class
C"in line 3 of Program 11.19.

namespace N{
class C{

}

public class D{

public C M({ /I Compiler-time error message:
return new C();
/I Inconsistent accessibility:
[l return type 'N.C' is less
/I accessible than method 'N.D.M()'

Program 11.19 An illustration of the 'Inconsistent Accessibili
problem.

Please notice this kind of compiler error, andwiag to proceed when you get it. | have witnessed a
prospective student programmer who used severaltdaigure out what the compiler meant with the
"inconsistent accessibility errarNow you are warned!

11.17. References

[Goldberg83] Adele Goldberg and David Robs8malltalk-80 The Language and its
ImplementationAddison-Wesley Publishing Company, 1983.

[Meyer88] Bertrand MeyelQbject-oriented software constructiddrentice Hall, 1988.

[Tennent81] Tennent, R.CPrinciples of Programming Languagdrentice Hall, 1981.

88

12. Creating and Deleting Objects

In this chapter we will explore the creation ofexdijfrom classes, and how to get rid of the objent® they
are not longer needed. Creation of objects - ittistiion of classes - is tightly connected withiadization of
new objects. Object initialization is thereforecads important theme in this chapter.

12.1. Creating and Deleting Objects

Lecture 3 - slide 24

Our goal in this section is to obtain everall understanding of object creation and deletiomparticular in
relation to the dimension of explicit/implicit ctg@n and deletion. If you dislike such overall dission,
please proceed to Section 12.2. We identify theviehg approaches to creation and deletion of dbjec

» Creating Objects
« By instantiating classes
« Implicitly: via variable declarations
« Explicitly: on demand, by command
» By copying existing objectcloning
« Deleting Objects
« Explicitly: on demand, by command
- Implicitly: deleted when not used any longer - uge ofgarbage collection

The most important way to create objects is taamsite a class. Instantiation takes place whenseehe
class as a template for creating a new object. \Afemve an explicit way to express this (such as th
operatomew), or it may be implicitly done via declarationaf/ariable of the type of the class. Relative to
this understanding, C# uses explicit creation ¢géctls from classes, and implicit creation of olggetlues)
from structs.

Instantiationis the process of allocating memory to a new dljésome clag

Instantiation comes in two flavors:

- Staticinstantiation:
« The object is automatically created (and destroyd®n the surrounding object or block
is created.
« Dynamic instantiation:
« The object is created on demand, by calling a@adr operatorrew).

Static instantiationis implicit. The object is automatically createcshd destroyed) when the surrounding
object or block is create@ynamic instantiations explicit. The object is created on demand,)»ceting a
command. In C# and similar language we callndveoperator for the purpose of dynamic class insasioti.

We should also be aware of the possibility of obfapying. If we already have a nice object, sgy, we
can create a new object (of the same typsvjasby copyingobj . Some object-oriented programming

89

languages (most notably Self) use this as the walyof creating objects. The original objects itf Se
calledprototypesand they are created directly by the programinstgad of classes).

Older object-oriented programming languages, sgdb-a+, use explicit deleting of objects. Most newer
object-oriented programming languages use impiigjiect deleting, by means of garbage collectiore tise
of garbage collection turns out to be a major dquali an object-oriented programming language. €iés
on garbage collection.

Modern object-oriented languages support expligiect creation and implicit object deletion
(by means of garbage collection)

12.2. Instantiation of classes in C#

Lecture 3 - slide 26

We illustrate instantiation of classes in C# usangient of aPoint class, such as Program 11.2, or even
better a similar class with non-public instancdalaes. The accompanying slide shows such a class.

Classes must be instantiated dynamically with diskenew operator

Thenew operator returns a reference to the new object

The clas®pplication in Program 12.1 uses clagsnt . Recall that classpplication IS said to be a client
of classpoint . We have threeoint variableso, p1, andp2. The two latter variables are local variables in
Main . pO is static, because it is used from a static method

We see a single instantiation of clessit at thepurple place.po is automatically initialized teul and

p1 is uninitialized before the assignmepts-p1=p2 . After the assignments all three variables rafer t
the samePoint object , and therefore you should be able to wgtdied the program output shown in Listing
12.2. Notice themove message in line 12 and the implementatiom®# in line 13-15 of Program 11.2.

using System;
public class Application{
private static Point pO; /I Initialized to null
public static void Main(){
Point pl, /I NOT initialized
p2 = new Point(1.1, 2.2)
PO = pl = p2;
p2.Move(3.3, 0);
Console.WriteLine("{0} {1} {2}", pO, p1, p2);
}

}

Program 12.1 Use of the class Point in a client class called
Application.

90

Move in line 12 moves the object referred by the tivagableso, p1, andp2. If you have problems with
this, you are encouraged to review this examplenwloel have read Section 13.2.

Point: (4,4, 2,2). Point: (4,4, 2,2). Point: (4,4 , 2,2).
Listing 12.2 Output from the Point client prograr

12.3. Initialization of objects

Lecture 3 - slide 27

Initialization should always follow class instatitian.

Initialization is the process of ascribing initial values toitistance variables of an obj

There are several ways to do initialization. Weoramend that you amexplicit about initializationin your
programs. With use of explicit initialization yoigsal that you have actually thought about theah#ation.
If you rely on default values, it may equally wiedl the case that you have not considered thelimtin at
all!

Initialization of an object of type T can be done

« Via use ofdefault values of T

« zerofor numeric typesfalsefor bool , \x0000' for char , andnull for reference types
« Via use of annitializer
« Via special methods callembnstructors

In C# you can denote the default value of a typg use of the expressianfault(T) . For a reference type
RT, default(RT) isisnull . For a value typ®T, default(vT) is the default value ofT. Thedefault valueof
numeric types igerq the default value afool isfalse the defaulthar value is the null character, and the
default value of reference types is null. The ditfeaiue of a struct type is aggregated by the ulefalues
of the fields of the struct.

In Program 12.1 we have seen that local variabiesat initialized to the default value of theipgs.
Instance variables (fields) in classes are, howéugs is confusing, and it may easily lead to eibyou
forget the exact rules of the language.

An initializer is, for instance, the expressiondaling ='in a declaration such asi=5+j;

It is not recommended to initialize instance variables ritdlizers. Initializers are static code, and from
static code you cannot refer to the current obpaad, you cannot refer to other instance variables.

You should write one or more constructors of evdags, and you should explicitly initialize all taace
variables in your constructors. By following thide you do not have to care about default values.

91

It is very important that a newly born object igiadized to a healthy citizen in the population of
objects

Explicit initialization is always preferred over jiicit initialization

Always initialize instance variables in construstor

12.4. Constructors in C#

Lecture 3 - slide 28

As recommended in Section 12.3, initializationredftance variables takes place in constructors.

A constructoris a special method which is called automaticallgrder to initialize a new

instance of a class

« Constructors in C#
« Have the same name as the surrounding class
« Do not specify any return value type
- Are often overloaded - several different constrigtmn appear in a class
« May - in a special way - delegate the initializatjob to another constructor
« In case no constructors are defined, there isanpeterlesslefault constructor
« As its only action, it calls the parameterless tamsor in the superclass
« In case a constructor is defined there will be aameterless default constructor

There is noconstructor ' keyword in C#. By the way, there is n@thod ' keyword either. So how do we
recognize constructors? The answer is given intiivs bullet points above: A constructor has theesa
name as the surrounding class, and it specifiestuon type.

Overloading takes place if we have two construdforsnethods) of the same name. Overloaded
constructors are distinguished by different typlggamameters. In Program 11.5 there are three aaseld
constructors. Overload resolution takes place atpdle time. It means that a constructor usegkincy...)
is determined and bound at compile time - not attime.

The special delegation mentioned in bullet pointr fis illustrated by the difference between Progizh3
and Program 12.4. In the latter, the two first ¢targors activate the third constructor. The thiothstructor
in Program 12.4 is the most general one, becawsaihandle the jobs of the two first mentioned
constructors as special cases. Noticattike..) syntax in between the constructor head and body.

As already stressed, | recommend that you alwayglgat least one constructor in the classes yogram.
In that case, there will be no parameterless diefanistructor available to you. You can always, éoev,
program a parameterless constructor yourself. Tilegophy is that if you have started to program
constructors in your class, you should finish i jit is not sound to mix your own, "custom" couastors
(which are based on a deep knowledge about ths)alaih the system's default initialization (basedvery
little knowledge of the class).

In Program 11.5 we have seeBaakAccount class with three constructors. In Program 12.4hav
another version of thBankAccount class, also with three constructors. In both waisiof the class, the three

92

constructors reflect different ways to initializ&xew bank account. They provide convenience taotsief
theBankAccount class. Program 12.4 is better than Program 1k&use there is less overlap between the
constructors. Thus, Program 12.4 is easier to maitihan Program 11.5. (Just count the lines angpaoe).

Make sure to program your constructors like in lPaiogl12.4.

using System;

public class BankAccount {
private double interestRate;
private string owner;

private decimal balance;

public BankAccount(string owner):

this(owner, 0.0, 0.0M) {
}
public BankAccount(string owner, double interest
this(owner, interestRate, 0.0M) {
}

public BankAccount(string owner, double interest
decimal balance) {
this.interestRate = interestRate;
this.owner = owner;
this.balance = balance;

}

/Il BankAccount methods here

Rate):

Rate,

Program 12.4 Improved constructors in class

BankAccount.

We also show and emphasize the constructors ini¢helass, which we meet in Program 10.1 of Section
10.1. Below, in Program 12.5, the fitsé constructor call the second one, hereby making eygd die.
Notice that the secormle constructor creates a n&®andom object. It is typical that a constructor in a slas
instantiates a number of other classes, which againinstantiate other classes, etc.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;
public Die (): this(6) {}
public Die (int maxNumberOfEyes){
randomNumberSupplier =
new Random(unchecked((int)DateTime.Now.Ticks)
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = NewTossHowManyEyes();
}

/I Die methods here

Program 12.5 Constructors in the class Di

93

12.5. Copy constructors

Lecture 3 - slide 29

Copy constructors can be used for making copiexisting objects. A copy constructor can be recoggphi
by the fact that it takes a parameter of the sgme as the class to which it belongs. Object capigran
intricate matter, because we will have to decidbéfreferred object should be copied too (shatopying,
deep copying, or something in between, see moeelsiaét Section 13.4 and Section 32.6).

It is sometimes useful to have a constructor thedtes an identical copy of an existing ohject

In Program 12.6 we show timé&e class with an emphasized copy constructor. NotiaetheRandom object
is shared between the origimaé and the copy of theie . This is shallow copying.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;

public Die (Die d){

numberOfEyes = d.numberOfEyes;
randomNumberSupplier = d.randomNumberSupplier;
maxNumberOfEyes = d.maxNumberOfEyes;

}
public Die (): this(6){}

public Die (int maxNumberOfEyes){

randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = randomNumberSupplier.Next(1,maxN umberOfEyes + 1);

}

/I Die methods here

Program 12.6 The class Die with a copy construct

The use of copy constructors is particularly useflaén we deal with mutable objects

Objects are mutable if their state can be chanf@iedthe constructor has been called. It is oftecassary to
copy a mutable object. Why? Because of aliasingbgect may be referred from several different gtadf
the object is mutable, all these places will obserchange, and this is not always what we wardrefbre,
we can protect against this by copying certain abje

The observation from above is illustrated by meafresn example - privacy leak - in Section 16.5.

94

12.6. Initialization of class variables

Lecture 3 - slide 30
It is too late - and not natural - to initializeast variables in ordinary constructors

Constructors initialize new instances of classéass<instances are objects. Class variables (§igltis) do
not belong to any object. They belong to the ctassuch, but they can be used from instances aldbe as
well. Class variables can be useful even in the ed®ere no instances of the class will ever be made

Therefore we will need other means than constradtomitialize class variables in C#. Initializai of a
class variable of type T takes place at class tioael

e Viathedefault value of type T
» Via thestatic field initializers
« Via astatic constructor

Initialization of class variable (static fields)f typeT takes place implicitly. The variableis, at load time,
bound the distinguished default value of type

A static initializer is the expression at the rigiaind side of2" in a static field declaration. In Program 12.7
we have emphasized four examples of static iregas from line 13 to 16. The static initializers axecuted
in the order of appearance at class load time.

In Program 12.7 we show a simple playing card ataiedcard in which we organize all spade cards, all
heart cards, all club cards, and all diamond cardsatic arrays. The arrays are created in statializers
from line 13 to 16. It is convenient to initialitee elements of the arrays in a for loops. Thetnigce of
these for loops is in a static constructor. We shatatic constructor in line 18-25 of Program 12.7

Notice in line 19 of Program 12.7 how we get actesdl enumeration values in a given enumeratype t
ET by the expressioBnum.GetValues(typeof(ET))

using System;

public class Card{

public enum CardSuite { Spade, Heart, Club, Diamo nd};
public enum CardValue { Ace =1, Two = 2, Three = 3, Four = 4, Five = 5,
Six = 6, Seven = 7, Eight =8, Nine=9,
Ten =10, Jack = 11, Quee n =12, King = 13,
7

private CardSuite suite;
private CardValue value;

public static Card[] allSpades = new Card[14];
public static Card[] allHearts = new Card[14];
public static Card[] allClubs = new Card[14];
public static Card[] allDiamonds = new Card[14];

static Card(){

foreach(CardValue cv in Enum.GetValues(typeof(C ardValue))){
allSpades|(int)cv] = new Card(CardSuite.Spade , CV);
allHearts[(int)cv] = new Card(CardSuite.Heart , CV);
allClubs](int)cv] = new Card(CardSuite.Club, cv);

95

allDiamonds](int)cv] = new Card(CardSuite.Dia mond, cv);

}

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

public CardValue Value{
get { return this.value; }

}

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}
}

Program 12.7 The class PlayingCard with a static
constructor.

We also show how the static arrays can be use®reggam 12.8 and the output of the program, sstinbi
12.9 (only on web).

using System;
class Client{

public static void Main(){
foreach (Card cin Card.allSpades)
Console.WriteLine(c);

}

}
Program 12.8 A client of class PlayingCari

We recommend explicit initialization of all vari@slin a class, including static variables. It oramended
to initialize all instance variables in (instancepstructors. Most static variables can and shbeld
initialized via use of initializers, directly assated with their declaration. In some special catsiss
convenient to do a systematic initialization ofsslaariables, for instance in a for loop. This bardone in a
static initializer.

96

13. Reference Types

Objects are accessed via references. When we ereaflgject - by class instantiation - we obtaiefanence
to the new object. If we send a message to thecbibjis done via the reference. If the objectasged as
parameter it is done via the reference. And wherothject is returned from a method it is the refeesto
the object which is returned. We sometimes usevtire reference semantics for all of this. Reference
semantics should be seen as a contrast to valueniem Value semantics is discussed in Chapter 14.

13.1. Reference Types

Lecture 4 - slide 2

A class is aeference type
Objects instantiated from classes are accesseefdngnces
The objects are allocated tre heap

Instances of classes are dealt with by use of bedaaference semantics

Although we state that references (in C# and simalaguages) correspond to pointers in C, we shioald
little careful to equivalize these. In the ordingsgfe part) of C# there is no such thing as refare
arithmetic, along the lines of pointer arithmeticd. There is no address operator, and there is no
dereferencing. (In an unsafe part of C# it is gaedio work with pointers like in C, but we will hoare
about this part of the C#). References are autcalbtidereferenced, when it is appropriate to ddfsois a
reference, the expressiop is used to access the property the object referenced by But the
expressions andr->p are both illegal.

+ Reference semantics:
« Assignment, parameter passing, aatdur n manipulateseferences to objects
« The heap:
« The memory area where instances of classes aoatdtb
« Allocation takes place when a class is instantiated
« Deallocation takes place when the object no loadfects the program
» In practice, when there are no references letiéaobject
« By a separate thread of control called the garlafiector

13.2. lllustration of variables of reference types

Lecture 4 - slide 3

Let us now illustrate how assignments work on egfees. The situation shown in Figure 13.1 depis t
variablesp1 andp2 just before we execute the assignment p2 . The situation in the figure is established
by line 1 and 2 of Program 13.1. Notice that thealdes each contain a reference tiat object. The
variables do not contain the object themselvesinstad references to the points.

97

0,2

=

(
p2 —AD@U. 4@

Figure 13.1 Variables of reference types. The situation before the assignment pl
= p2.

Point p1 = new Point(1.0, 2.0),
p2 = new Point(3.0, 4.0);

pl=p2;

Program 13.1 The variables pl and p2 refer to two
points.

Following the assignmeiptL =p2 in line 3 of Program 13.1 bogl1 andp2 reference the sanmint object.
Thus, the situation is as depicted in Figure 1Bt#2Point (1.0, 2.0) is now inaccessible (unless referenced
from other variables) and the point will disappaatomatically upon the next turn of the garbagéectir.

p1 [@0. z@
i
p2 —Ab-@ﬂ. 4.0)

Figure 13.2 Variables of reference types. The situation after the assignment pl =
p2.

With the knowledge from this section you are enagad to review the discussion of Program 12.1 in
Section 12.2.

13.3. Overview of reference types in C#

Lecture 4 - slide 4
Classes are reference types in C#, but there haeesoas well

It is reasonable to ask which types in C# act Bseace types, and which do not. Below we list the
reference types in C#:

98

« Classes

« Strings

« Arrays
e Interfaces

- Similar to classes. Contain no data. Have onlyaignes of methods
« Delegates

« Delegate objects can contain one or more methods

« Used when we deal with methods as data

We encounter interfaces in Chapter 31. Interfapedycontain references, and variables of intetfgues
behave in the same way as in the example showaedtios 13.2.

A delegate is a new type, the values of which acessed as references. We introduce delegatesajpteth
22.

Both strings and arrays are well-known, and weuasgl to accessing these via pointers in C. In &#well
- arrays and strings are accessed via references.

13.4. Comparing and copying objects via references

Lecture 4 - slide 5

There are several questions that can be asked etsmiaring and copying objects that are accessed by
references. We list some below, and we will atteto@inswer the questions in the remaining parthisf
section.

Do we compare references or the referenced objects?
Do we copy the reference or the referenced object?

How deep do we copy objects that reference other objects?

Let us assume, like in Program 13.1, thiatindp2 are references ®oint s, where the typeoint is defined
by a class. Then the expresspn== p2 returns ifp1 andp2 reference the same point. Thatandp2
reference the same point means that the two indadgects are created by the same activatiorw(f..)

In many context, we say thgt andp2 areidentical. (Identical objects and object identity is disadsm
Section 11.14). Relative to Figure 13.1 the valugie=p2 is false. Relative to Figure 13.2 the valuenf
==p2 istrue. The expressign ==p2 compares the locations (addresses) to which ppb2amdfer. The
expression does nobmpare the instance variables of the pointsnedeto byp1 andp2.

In the same way, the assignment p2 manipulates only the references. We have alreaely that in
Section 13.2. The assignment=p2 does not, in any way, copy the object referengegkb

Above, we have explainedference comparison and assignment. It makes sense to hasteallow anddeep
variations of these. This can be summarized agvisst!

99

« Comparing
» Reference comparison

- Compares if two references refers to objects ciodayehe same execution of
new

« Shallow and deep comparison
« Pair-wise comparison of fields - at varying levels
« Copying:
- Reference copying
« Shallow or deep copying
« Is also known asloning
« Somehow supported by the methagdber wi sed one in Syst em oj ect

Even in the case whepe == p2 is false (i.e.p1 andp2 are not identical) it makes sense to claim phat
andp2 are equal in some sense. It may, for instancthdease that all instance variables are pair-adgsgl.
But what does it mean for the instance variabldsetpair-wise equal? In case the instance variakes
references we are back to the original questioth vacan therefore apply recursion in our reasoabaut
equality. We talk abowghallow equality if we apply (fall back to) reference equality la¢ tsecond level. If
we do not apply reference equality at any levetalle aboutdeep equality. If p1 andp2 are deep equal the
graph structures they reference are structuraticir{isomorphic).

If p1 and p2 are reference equal they are alsdoshaljual. And if p1 and p2 are shallow equal tasyalso
deep equal. The inverse propositions are not naclssue, of course.

If you got the idea of the different kinds of comipan, you can immediately use this insight foryiog as
well. Let us describe this very briefly. The assigmtpl =p2 just copies one reference. We may ask for a
shallow copy op2 by copying value fields and by assigning corresiiumreference fields to each other.
And we may ask for a deep copy by not using referempying at any level. (This is not exactly tiudbere

is more than one reference to a given object spleansider!)

In case you need shallow or deep copying you shangigram such operations yourself. In general puesri
kinds of copying depend deeply on the type of thiea. C# supports a shallow clone operation, but y
must explicitly ‘enable it'. How this is done isclissed in Section 32.7.

An assignment of the forrar = obj 1 copies a reference

A comparison of the formabj 1 == obj 2 compares references (unless overloaded)

13.5. Equality in C#

Lecture 4 - slide 6

In this section we review the different equalityecgitions in C#. All methods mentioned in this secti
belong the classbject , see Section 28.3. We only care about referernmstin this section, because the
enclosing chapter is about reference types. Egualitong 'objects’ that belong to value types iditiarent
story.

100

e o0l Equals(02) -equality
- By default, true i1 ando2 are created by execution of the samme
« Can be redefined in a particular class
* (bject.ReferenceEqual s(01, 02) -identity
« True if botho1 ando2 arenull , or if they are created by execution of the same
- Static - cannot be redefined.
j ect. Equal s(0l, 02)
e True if j ect . Ref er enceEqual s(o0l1, 02), or if ol. Equal s(02)
e 01 == 02
« True if botho1l ando2 are null, or if they are created by executionhef sameew
« An overloadable operator

g

Notice that in case we need a type-dependent casopare redefine thequals (in the first item above).
Equals is typically redefined if we wish to implement alwe-like comparison of two objects, as opposed to
the default reference comparison. (In a valuedidmparison we compare pairs of fields from the two
objects). It is not easy to redefigguals correctly. We discuss how it should be done iniSe@8.16.

ReferenceEquals IS a static method. It must therefore be activatethe form

Object.ReferenceEquals(ol, 02) . If you, for some reason, redefine theoperator as well as theguals
instance method - both of which per default areregfce equality operations - the sta&tierenceEquals
comes in handy if you need to compare referencebjexts. Alternatively, you will have to cast asfe
operands to typebject before you use-=.

The staticequals method is primarily justified because it allowsar both of the parameters or o2 to be
null. In the non-stati€quals methods, it will cause an exceptiornifis null. Notice that redefinition of the
Equals instance method affects the statwals method.

In C# it is allowed to overload the operator. Typicallyz= is overloaded to obtain some kind of shallow
comparison, see Section 13.4. If tkeoperator is overloaded you should also redefie&dbals method,
such thabl ==02 andol.Equals(c2) have the same value (whenewelis notnull).

It is worth pointing out that the meaningaaf==02 is resolved staticially, because operator oveitaad
(see Chapter 21) is a static issue in C#. In cefiraEquals(o2) is resolved dynamically, because the
instance methodquals is a virtual method (see Section 28.14) in ctagect . This affects both flexibility
(whereequals is the winner) and efficiency (whete is the winner). Exercise 4.1 is related to theses
observations.

It is worthwhile and recommended to read about gua the C# documentation &quals in theSystem
namespace. Let us also point out that there existaiple of interfaces that involve equality, ndistctly
IEquality (See Section 42.9), but indirectly alsanparable (See Section 42.8).

Redefinition of equality operators and methods: Recommendations. FOCUS BOX 13.1

As above, we assume that we deal with referenestypyou do not redefine tieguals instance method
nor the== operator, both of them denote reference equality.

If it is natural and important that equality between objects of your class shaelidon the data contents

101

(instance variables) of your class, rather tharrefierenced locations of the involved objects, gbauld
redefine theequals instance method. Follow the guidelines in Sec#B8ri6. As part of this, remember th
equality should beeflexive (x.Equals(x)), Symmetric (x.Equals(y) implies that.Equals(x)), and
transitive (x.Equals(y) ~ andy.Equals(z) implies thaik.Equals(z)).

In general, you are not recommended to overloatkfiee) the== operator. Most programmers with a C
background will be surprisedyf==y (for references or pointers) does not comparedfezences im and
y. If you overload th&quals instance method, you most likely do madnt to touch the= operator. Thus,
== will remain as the reference equality operator.

If - against these recommendations - you overlbad-{ operator, you should make sure that the meani
(semantics) of= andequals are the same. This can, for instance, be obtdipéchplementingequals by
means of=.

It would betremendously confusing to have two different meaningsef andequals , both of which differ
from the meaning OReferenceEquals

at

g

Exercise 4.1. Equality of value types and reference types
Take a close look at the following program whicksithe== operator on integers.

using System;
class WorderingAboutEquality{
public static void Main(){
inti=>5,
i=5

objectm =5,
n=>5;

Console.WriteLine(i == j);
Console.WriteLine(m == n);
}
}

Predict the result of the program. Compile andthaenprogram, and explain the results. Were your
predictions correct?

102

14. Value Types

Values - in value types - are not accessed viagrnfes. In the safe part of C# it is not possibladcess
such values via references. Variables of valuestgatain their values (and not references to tlaires).
This implies that values are allocated onritethod stack, and the creation and deletion of such values are
easier for the programmer to deal with than objenttheheap.

The numeric types, char, boolean and enumeratjpestgire value types in C#. In addition, structssahee
types in C#. (The numeric typesar , andboolean are - in fact - defined as structs in C#).

We will normally use the wordobject” with the meaningitfhstance of a class'. With this meaning, objects
are accessed by references. But in some sensesvalvalue types) are also objects in C#. Botheva
types and reference types inherit from the ofagsct . Thus, clas®bject is the common superclass of both
reference types and value types. See Section @atlitional clarification of this issue.

In order to avoid unnecessary confusion, we wilhless stated explicitly - devote the word "objeot"
instances of classes.

14.1. Value types

Lecture 4 - slide 8

In this section we introduce the tewual ue semantics.

A variable of value type contains its value
The values are allocated the method stack or within objects on the heap
Variables of value types are dealt with by useoetalledval ue semantics

Use of value types simplifies the management oftdh@d data

« Value semantics
« Assignment, call-by-value parameter passing,raadr n copy entire values
e The method stack
« The memory area where short-lived data is allocated
« Parameters and local variables
« Allocation takes place when an operation, suchrasthod, is called
- Deallocation takes place when the operation returns

Data on the method stack corresponds to variabble®image class auto in C programming.

14.2. lllustration of variables of value types

Lecture 4 - slide 9

103

Assume that the type Point is a value type

We will now demonstrate how value semantics wonkslation to assignments.

We will assume that the typint is a value type. In C# it will be programmed asract. We shovroint
defined as a struct in Section 14.3.

In Figure 14.1 we show two variables, andp2, that contairpoint values. The situation in Figure 14.1 can,
for instance, be established by the initializeoamted with the declarationsmf andp2 in Program 14.1 .
The assignmentL = p2 , also shown in Program 14.1, establishes thettuan Figure 14.2.

pl @o. z@
p2 @o. 4@

Figure 14.1 Variables of value types. The situation before the assignment pl =
p2.
Point p1 = new Point(1.0, 2.0),
p2 = new Point(3.0, 4.0);

pl=p2;

Program 14.1 Thevariables pl and p2 refer to two
points.

pl @o. 4@
p2 @o. 4@

Figure 14.2 Variables of value types. The situation after the assignment pl = p2.

The thing to notice is that the assignment p2 copies the value containedga into the variable1. The
coping process can be implemented as a bitwise, eoylytherefore it is relatively efficient.

The equality operatagrl ==p2 compares the valuespm andp2 (bitwise comparison). Let us also observe
thatpl.Equals(p2) has the same boolean valueas=p2 when the type of1 andp2 is a value type.

The observations about assignments from abovelsarba used directly on call-by-value parametesipas
Call-by-value parameter passing is - in realitgsignment of the actual parameter value to the
corresponding formal parameter.

104

As a contrast to the description of value assigrimease see Section 13.2 where we showed whpehap
if p1 andp2 are declared as classes (of reference typesceNibiaipl = p2 , in casel andp2 contain
references, is likely to be even more efficiennttize value assignment discussed above.

14.3. Structs in C#

Lecture 4 - slide 10

In this section we will study two C# types, whicle wrogram as structs. The two types become vapesty
The first,Point , is already well-known. See Program 11.2. Therpthwed , is also one of our recurring
examples. In Program 12.7 we programroed as a class.

In Program 14.2 we show a simplent struct. In this version the data representatiqriigate. Notice also
the constructor. The constructor is used to inmigah new point. In addition there are three mesisaax
GetY, andMove. When we learn more about C# we will most likefggramGetX andGety as properties, see
Section 18.1. We may also chose to progkane in a functional style, such that the straeiht becomes
immutable. Immutable types are discussed in Sedton.

Like in classes, it is always recommended thatgrmgram one or more constructors in a struct.nhcabe
a parameterless constructor, however. See Sedtidrfdr details on structure initialization.

The usage of struebint has already been illustrated above, see Programri&ection 14.2.

using System;

public struct Point{
private double X, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (){
return x;

}

public double Gety (){
return y;

}

public void Move(double dx, double dy){
X +=dx; y +=dy;
}

public override string ToString(){
return "Point: "+ "("+ X+ "y +)+
}
}

Program 14.2 Struct Point.

In Program 14.3 we show the straetd . StructCard represents a playing card. It uses enumeratiastyp
for card suites and card values. The playing casddmivate fields in line 11 and 12, as we will @sip The
struct is well-equipped with constructors for flehe initialization of new playing cards. The methmgbr
calculates a card color from its suite and vallee fnethod returns a value of the pre-existing type

105

System.Drawing.Color . Interesting enough in this contegystem.Drawing.Color is also a struct. We use
the fully qualified name of clas®lor in the namespac®stem.Drawing in order not to get a conflict with
theColor member in struatard .

Finally, the usuatostring (overridden from classbject) allows us to print playing cards. This is, of
course, very convenient when we write small progrémat uses structard .

using System;

public enum CardSuite:byte
{Spades, Hearts, Clubs, Diamonds };

public enum CardValue: byte
{Ace=1, Two =2, Three =3, Four=4, F ive =5,
Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten =10,
Jack = 11, Queen = 12, King = 13};

public struct Card{
private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public Card(CardSuite suite, int value){
this.suite = suite;
this.value = (CardValue)value;

}

public CardSuite Suite(){
return this.suite;

}

public CardValue Value (){
return this.value;

}

public System.Drawing.Color Color (){
System.Drawing.Color result;

if (suite == CardSuite.Spades || suite == CardSu ite.Clubs)
result = System.Drawing.Color.Black;
else

result = System.Drawing.Color.Red;
return result;

}
public override String ToString(){
return String.Format("Suite:{0}, Value:{1}, Col or:{2}",
suite, value, Color(). ToSt ring());
}

Program 14.3 Struct Card.

A simple client ofcard , which declares and constructs three playing ¢éasddown in Program 14.4. The
card inc1 is copied ta4. Finally, all cards are printed withriteLine , which internally uses the
programmedosString method in structard .

106

using System;
public class PlayingCardClient{

public static void Main(){
Card cl1 = new Card(CardSuite.Spades, CardValue. King),
c2 = new Card(CardSuite.Hearts, 1),
¢3 = new Card(CardSuite.Diamonds, 13),
c4;

c4 =cl; // Copies cl into c4

Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c4);

Program 14.4 A client of struct Card.

Structs are typically used for aggregation and pswation ofa few values, which we want to
treat as a value itself, and for which we wishpplg value semantics

In thesystem namespace, the typbst eTi me andTi neSpan are programmed as structs

Very large structs, which encapsulates many datalbmes, are not often seen. It is most attractivess®
structs for small bundles of data, because staretgopied back and forth when we operate on them.

It is instructive to study the interfacessyktem.DateTime andSystem.TimeSpan , which both are
programmed as structs in the C# standard library.

14.4. Structs and Initialization

Lecture 4 - slide 11

There are some peculiar rules about initializatibstruct values, at least if compared to initiafian of
class instances. We will review these peculiaritiethis section.

Program 14.5 shows that initializers, such=a&s''and = 6.6 ' cannot be used with structs. The designers of
C# insist that the default value of a struct iddp®ble, as formed by the default values of tipesyof the
instance variables andb.

/* Right, Wong?*
using System;

/1l Error:
/1l Cannot have instance field initializers in structs.
public struct StructOne{
int a = 5;
double b = 6. 6;
}

/] OK:
/'l Fields in structs are initialized to default val ues.
public struct Struct Two{

107

int a;
doubl e b;
}

Program 14.5 Fieldsin structs cannot have initializers.

Program 14.6 shows that we cannot program paral@steronstructors in a struct. This would overwttit
preexisting default constructor, which initializafields to their default values. The designdr€# wish to
control the default constructor of structs. Theadéifconstructor of a struct therefore always afites

instance variables to their default values. Our gtimct constructors should all have at least @marpeter.

/* Right, Wong?*
using System;

/'l Error:
/1 Structs cannot contain explicit paraneterless constructors.
public struct Struct Three{

int a;

doubl e b;

public StructThree(){
a = 1;
b = 2.
}

2,

}

I oK
/1 We can program a constructor with paraneters.
/1 The inplicit paraneterless constructor is still avail able.
public struct StructFour{
int a;
doubl e b;

public StructFour(int a, double b){
this.a = a;
this.b b;

}

}

Program 14.6 An explicit parameterless constructor is not
allowed.

14.5. Structs versus classes

Lecture 4 - slide 12

In order to summarize structs in relation to classe provide the following comparison:

Classes Structs

Reference type Value type

Used with dynamic instantiation Used with static instantiation

Ancestors of classbject Ancestors of classbject

Can be extended by inheritance Cannot be extended by inheritance

Can implement one or more interfa Can implement one or more interfaces
Can initialize fields with initializers Cannot initialize fields with initializers
Can have a parameterless construc Cannot have a parameterless constructor

108

14.6. Examples of mutable structs in C#

Lecture 4 - slide 13

Structs are often used for immutable objects. (Mexeise 'object’ in a loose sense, covering batletst
values and class instances). An object is immutliestate cannot be changed once the objecbéas
initialized. Recall that strings in C# are immubl

We start by studying mutable structs, and herebgeek motivation for dealing with immutable structs

Please take a new look at streeint in Program 14.2 from Section 14.3. In particulacus your attention
on theMove method. A call such gsMove(7.0, 8.0) will change the state of poipt We say that the point
p has been mutated.

In Program 14.7, which is a client of streeint from Program 14.2, the poipt is moved twice. The
program output in Listing 14.8 (only on web) iseagpected.

using System;

public class Application{

public static void Main(){
Point p1 = new Point(1.0, 2.0);

pl.Move(3.0, 4.0); // p1 has moved to (4.0, 6.0)
pl.Move(5.0, 6.0); // p1 has moved to (9.0, 12.0)

Console.WriteLine("{0}", p1);
}

}

Program 14.7 Moving a point by mutation.

The struct in Program 14.9 is similar to Progran?1Zhe difference is thatove in Program 14.9 returns a
point, namely the current point, denoted bys. But - as shown in Program 14.10 this causes kesub
some situations. Following the program we will eplthe reason.

using System;

public struct Point {
private double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (){
return x;

}

public double Gety (){
return y;

}

public Poi nt Move(double dx, double dy){
X +=dx; y += dy;

109

return this; /lreturns a copy of the current object

}

public override string ToString(){
return "Point: "+ "("+ x +"," +y +")" + "

}
}
Program 14.9 The struct Point - mutable, where move returns a
Point.
In Program 14.10 the expressignMove(3.0, 4.0).Move(5.0, 6.0) is parsed ag1.Move(3.0,
4.0)).Move(5.0, 6.0) due the left associativity of the dot operatorp$ds first moved by 3.0 and 4.0 to

(4, 6).move returnsa new copy of the point (4, 6). (This observation is importaif)is new copy of the
point is an anonymous point, because it it is ot&ned in any variable. The anonymous pointésth
moved to (9.0, 12.0). In line 9 of Program 14.10p#iat p1, which - as argued - is located at (4, 6). The
program output shown in Listing 14.11 confirms observations.

using System;
public class Application{

public static void Main(){
Point p1 = new Point(1.0, 2.0);

pl. Move(3.0, 4.0).Mve(5.0, 6.0);
Console.WriteLine("{0}", p1); // Where is pl located?

}
}

Program 14.10 Application the struct Point - Cascaded
moving.
Point: (4,6).

Listing 14.11 Output from the application.

The state of affairs in Program 14.10 is not satisfry. We have mixed imperative and functional
programming in an unfortunate way. In the followsegtion we will make another versionnaive that
works as expected when used in the cascading masudr as in the expressignMove(3.0,

4.0).Move(5.0, 6.0) . The new version will be programmed in a functiomay, and it will illustrate use of
immutable structs.

14.7. Examples of immutable structs in C#

Lecture 4 - slide 14

As an alternative tolove in Program 14.9 we can programve in such a way that an expression like
p.Move(7.0, 8.0) returns a new point, different from the poinpirThe new point is displaced 7.0 in the x
direction and 8.0 in the y direction relative te toint inp. The state of is not changed biylove. We
typically want to get hold on the new point in asignment, such as in

g = p-Move(7.0, 8.0);

110

Program 14.12 shows yet another version of streigt , in whichMove constructs and returns a new point.
In this versiorpoint is immutable. Once constructed we never changedbrdinates of a point. This is
signalled by making the instance variablendy readonly, see line 4.

Notice the difference betweefve in Program 14.12 andove in Program 14.9.

using System;

public struct Point {
private readonl y double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (}{
return x;

}

public double Gety (¥
return y;

}

public Point Myve(double dx, double dy){
return new Point (x+dx, y+dy);

}
public override string ToString(){
return "Point: " +"(" +x + """ +y +")" + "
}
}

Program 14.12 The struct Point - immutable.

In Program 14.13 we show the counterpart to Prodrért0 and Program 14.7.
The expressiopl.Move(3.0, 4.0).Move(5.0, 6.0) now does the following:

1. pl.Move(3.0, 4.0) returns a copy of the point jn. The copy is located in (4,6).
2. The pointin (4,6) is moved to (9,12) by the secoallitoMove. This creates yet another point.

The 'yet another point' is finally copied into treriablep2.

using System;
public class Application{
public static void Main(){
Point p1 = new Point(1.0, 2.0),
p2;
p2 = pl. Move(3.0, 4.0).Mve(5.0, 6.0);

Console.WriteLine("{0} {1}", p1, p2);
}

Program 14.13 Application the struct Point - immutable.

111

As shown in Listing 14.14 the original pointgn is not altered. The point, which finally is copiedb p2, is
located as expected.

Point: (1,2). Point: (9,12).
Listing 14.14 Output from the application.

There is a misfit between mutable datatypes anaigalue semantics

It is recommended to use structs in C# togethdr avilunctional programming style

The deep insight of all this is that we shouldvstifior a functional programming style when we deisth
structs. Structs are born to obey value semarithis.does not fit with the 'imperative point mutetiidea,
as exemplified in Program 14.9 and Program 14.5e. the style in Program 14.12 and Program 14.13
instead.

In this and the previous section | have benefitethfSestoft's and Hansen's explanations and exarfipla
the bookC# Precisely.

Exercise 4.2. Are playing cards and dice immutable?

Evaluate and discuss the classesandcard with respect to mutability. (If you access thigeise from
the web edition there are direct links to the ratéwersions of clagsie and clasgard).

Make sure that you understand what mutability mealadive to the concrete code. Explain it to your
fellow programmers!

More specific, can you argue for or against theéxckhat aDie instance/value should be mutable?
And similarly, can you argue for or against theroléhat acard instance/value should be mutable?

Why is it natural to use structs for immutable abjeand classes for mutable objects? Please coypare
findings with the remarks in ‘the solution' whersiteleased.

14.8. Boxing and Unboxing

Lecture 4 - slide 15

C# has a uniform type system in the sense that\@ties types and reference types are compatible.
Conceptually, the compatibility is ensured by thet that both value types and reference typeseaieed
from the clas®bject . See Section 28.2. Operationally, the compatjbiditensured by the boxing of value
types. This will be the theme in this section.

Boxing involves a wrapping of a value in an object of ¢thessobj ect

Unboxing involves an unwrapping of a value from an object

112

- Boxing

» Done as ammplicit type conversion

« Involves allocation of a new object on the heap @aling of the value into that object
« Unboxing

« Doneexplicitly via a type cast

« Involves extraction of the value of a box

Boxing takes place when a simple value or a stsusbund to a variable or a parameter of refer¢yppe.
This is, for instance, the case if an integer vaduygassed to a parameter of typgect in a method.

When a value is boxed it is embedded in an objet¢he heap, together with information about thetgp
the value. If the boxed value (an object) is unloxean therefore be checked if the unboxing malesse.

In Program 14.15 we first illustrate boxing of ateigeri and a boolean in line 8 and 9. The boxing is
done implicitly. Next follows unboxing of the aledyaboxed values in line 11 and 12. Unboxing must be
done explicitly. Unboxing is accomplished by cabtsth in the assignmentsjtandc, respectively, and in
the context of the arithmetic and logical expressid.ine 14 and 15 illustrate attempts to do unfgxi
without casts. This is illegal, and the compilerdf out.

We are able to print both objects and values irfitted writeLine of Program 14.15. This is because the
methodTosString uses the type information of a boxed value to jgi®¥or natural generation of a printable
string.

using System;
public class BoxingTest{
public static void Main(){
inti=15, |, k;

bool b = false, c, d;

bject obj1 =1, /1l boxing of the value of i
obj2 = b; /1 boxing of the value of b
j (int) obj1; /| unboxi ng obj 1

C (bool) obj 2; /'l unboxi ng obj 2

/I k =i+ objl; // Compilation error
/I d =b && obj2; /I Compilation error

k=i+ (int)obj1;
d=b&& (bool) obj 2;
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5} , {6}, {7},
i, obj1, b, obj2, j, c, k, d) :
}
}

Program 14.15 A programthat illustrates boxing and
unboxing.

The output of the program is shown in Listing 14.16

113

15, 15, False, False, 15, False, 30, False

Listing 14.16 Output of the boxing and unboxing
program.

14.9. Nullable types

Lecture 4 - slide 16

A variable of reference typan be null
A variable of value typeannot be null

A variable ofnullable value type can be null

Nullable types provide a solution to the followidgsire:

All values of a value type (such asnt) 'are in use'. In some programs we wish to have a
distinguished value in which stands for 'no value'.

When we use reference types we use the distingliisite value for such purposes. However, when we
program with value types this is not possible. Efme the concept afullable types has been invented. It
allows a variable of a value type to have the iftigtishedyull value.

Before we see how nullable types are expressed weCwill take a look at a motivating example,
programmed without use of nullable types. Thedelails of the example are available in the welsieerof
the material. In Program 14.17 (only on web) wegpaim a simple integer sequence class, which reqiese
an ordered sequence of integer values. We prokideyipe withmin andmax operations. The problem is
which value to return fromiin andmax in case the sequence is empty. In Program 14.Ifétwen -1, but
this is a bad solution because -1 may very wethkeeninimum or the maximum number in the sequence.
Please make sure that you understand the probl&mogram 14.17 before you proceed.

In Program 14.18 we show another version of alassquence . In this solution, the methodsn andmax
return a value of typent 2. i nt ? means a nullable integer type. Thus, the valtle is a legal value innt 2.
This is exactly what we need becawse andMax are now able to signal that there is no minimunyimam
value in an empty sequence.

public class IntSequence {
private int[] sequence;

public IntSequence(par ans int[] elements){
sequence = new int[elements.Length];
for(inti = 0; i < elements.Length; i++){
sequence[i] = elementsi];

}

public int? Mn({
int theMinimum;
if (sequence.Length == 0)
return nul | ;
else {

114

theMinimum = sequence[0];
foreach(int e in sequence)
if (e < theMinimum)
theMinimum = e;

return theMinimum;

}

public i nt? Max({
int theMaximum;
if (sequence.Length == 0)
return nul | ;
else {
theMaximum = sequence[0];
foreach(int e in sequence)
if (e > theMaximum)
theMaximum = e;

return theMaximum;

}

/I Other useful sequence methods

}

Program 14.18 An integer sequence with Min and Max
operations - with int?.

In Program 14.19 we show an application of clasgquence , where we illustrate both empty and non-
empty sequences. Notice the use of the propreyalue in line 14. The propertyasvalue can be applied
on a value of a nullable type. The output of thegpam is shown in Listing 14.20 (only on web).

using System;
class IntSequenceClient{
public static void Main(){

IntSequence isl
i s2

new | nt Sequence(-5, -1, 7, -8, 13),
new | nt Sequence();

ReportMinMax(is1);
ReportMinMax(is2);
}

public static void ReportMinMax(IntSequence iseq)
if (i seq. M n().HasVal ue && iseq. Max() . HasVal ue)
Console.WriteLine("Min: {0}. Max: {1}",
iseg.Min(), iseq.Max());
else
Console.WriteLine("Int sequence is empty");

}

Program 14.19 A client of IntSequence.

Let us now summarize the important properties dable types in C#:

115

« Many operators arkfted such that they also are applicable on nullablegsyp
- An implicit conversion can take place frantot ?
« An explicit conversion (a cast) is needed frontot

The observations about implicit conversion fronoa-mullable type to its nullable type? is as expected.
A value in a narrow type can be converted to ae/aiua broader type. The other way around reqaines
explicit cast.

Only value types can be nullable. It is therefapegible to have nullable struct types. It is ordggible to
built a nullable type on a non-nullable type. There, the types 22, t 22?2, etc. are undefined in C#.

A nullable type 2 is itself a value type. It might be tempting tonsmler a value of t ? as a boxing o¥ (see
Section 14.8). This is, however, not a correctrpritation. A boxed value belongs to a referenpe.t
value int ? belongs to a value type.

The nullable type 2 is syntactic sugar for the typel | abl e<t > for some given value type Nul | abl e<t >
is a generic struct, which we discuss briefly ictitm 42.7.

The typepool ? has three valuetrue, false, andnull. The operator& and| have been lifted to deal with the
null value. In addition, conditional and iterative aohstructures allow control expressions of typel 2.
In these control structuresi| counts adalse.

Thenull-coalescing C# operator 22 is convenient when we work with nullable typese Bxpressior 22y
is a shortcut ofx I=null 2 x : y . The?? operator can be used to provide default valuesehbles of
nullable types. In the context of

int? i = null,
i=7

the expression?? 5 returns 5, but?? 5 returns 7. The? operator can also be used on reference types!

116

15. Organization of C# Programs

This chapter is of a different nature than the jmes chapters.

At this point you are supposed to be able to progsenple classes, like tlme class in Program 10.1, the
Point class in Program 11.2, and tekAccount class in Program 11.5. Eventually, it will be nesary to

care about how classes are organized in relatiea¢h other. We chose to cover C# program organizat

now. In case you are not motivated for these issumscan skip the chapter at this point in timet You are
advised to come back to it before you start writamge C# programs.

If you want to read more about the organizatio@#fprograms, you are recommended to study chater 1
of C# Language Specification [ECMA-334].

We show a lot of examples in this chapter. In tledwdition, all examples are present. In the paggion,
only the most fundamental examples appear. Thexefioyou want to understand all the details of thi
chapter, read the web edition.

15.1. Program Organization

Lecture 4 - slide 18

The structure and organization of a C# programadécally different from the structure and organizatof
both C programs and Java programs. Below we eng#hasime important observations about the
organization of C# programs.

e C# programs are organized in namespaces
« Namespace can contain types and - recursivelyer oilimespaces
« Namespaces (and classes) in relation to files:
« One of more namespaces in a single file
« A single namespace in several files
« Asingle class in several files - partial classes
« The mutual order of declarations is not significianC#.
» No declaration before use.
« When compiled, C# programs are organized in assesnbl
e .exeand. dl files

As noticed above, a single namespace can be sputa several source files. In Section 11.12 we=ha
also seen that a single class - callgrdial class - can be defined in two or more source files.

117

15.2. Examples of Program Organization

Lecture 4 - slide 19

In the majority of the small programs, which wegenet in this material, namespaces do not appe#ciéyp
Most of the programs we have shown until now is thaterial follow the pattern of Program 15.1.

/I The most simple organization
Il A class located directly in the gl obal nanespace
/I In source file ex.cs

using System;
public class C {

public static void Main(){
Console.WriteLine("The start of the program");

}
}

Program 15.1 A single class in the anonymous default
namespace.

In Program 15.1 the clasds a member of the (implicitly statedlobal name space. The compilation of the
program in Program 15.1 can be done as shown tmgi&5.2 (only on web).

Below, in Program 15.3 the namespagesndN2 are members of the global name spaeeontains a
nested namespace called N3.

You should use namespaces to group classes thahsenbelong together, either conceptually or adogrd
the architecture of the software you are creatifamespaces are also useful if you have identicaliyed
types (such as two classes with the same nameglibatd coexist. In that case, place the conflictypes in
different namespaces, and be sure to use the Edolamespaces with qualified access - "namespace
dotting". Use of several namespaces, suatias2, andNs in Program 15.3 is, in general, relevant only in
large programs with many types.

/I Several namespaces, including nested namespaces.
/I In source file ex.cs

namespace N1 {
public class C1{};

namespace N2 {
internal class C2{};
public class C3{};

namespace N3 {
public class C4{
C2v;
}
}
}

Program 15.3 Two namespaces and a nested namespace with
classes.

118

In Program 15.4 we show how to use the classges?, c3, andc4 from Program 15.3. Thasing directives
import the types of a namespace. Importing a naatespimplies that types in N can be used without
gualification. Thus, we can writeinstead of\.T. The threausing directives in line 15-17 of Program 15.4
open up the namespaces N2 andN2.N3. If the namespaces in Program 15.3 and the alass shown in
Program 15.4 are compiled to two different assesslll files) therc2 cannot be used in tiaient class.
The reason is that is internal in its assembly.

Il A client program
/I In source file client.cs

/*
Nanmespace N1
public class Cl
Nanmespace N2
internal class C2
public class C3
Nanmespace N3
public class C4
*/

using N1;

using N2;
using N2.N3;

public class Client{
Clv=new C1();

I/l The type or namespace name 'C2' could not be fou nd.
Il C2 w = new C2();
C3 x = new C3();
C4 'y = new C4();
}

Program 15.4 A client of classes in different namespaces.

If you avoid theusing directives, you are punished with the need toaue® of "namespace dotting". If you
wish to see the effect of this, please consult Rmgl5.5 (only on web)

The compilation of Program 15.3 together with Paogrl5.5 and Program 15.4 (only on web) is shown in
Listing 15.6 (only on web).

Nested namespaces can be given by textual neasrgfiown in Program 15.3 or in Program 15.7 (only o
web). Alternatively, it can be given as shown indg?am 15.8. In Program 15.8 the namespaieesdNs

are both member of the namespaceThus, the situation in Program 15.8 is identioghe situation shown
in Program 15.7 (only on web).

119

/I Equivalent to the previous program
/I No physical namespace nesting
/I In source file ex-equiv.cs

namespace N1.N2 {
public class C1{};
public class C2{};

}

namespace N1.N3 {
public class C3{}

Program 15.8 Equivalent program with nested namespaces -
no physical nesting.

The classes1, c2, andc3 of either Program 15.8 or Program 15.7 (only obWe&an be used inGlient

class, as shown in Program 15.9 (only on web).comepilation can be done as shown in Listing 15dk0y(
on web).

A namespace, such mso in Program 15.11 is open ended in the sensetilfitan be added tatro

from another source file. Both Program 15.11 arajfam 15.12 contribute to thharo namespace. Thus,
when the two source files are taken togetihen, contains the types B, andc. The use of the namespace
Intro is shown irClient class in Program 15.13 (only on web). In Listirtlgl¥ (only on web) we show
how to compile the two source fileiscs andf2.cs behind the namespac@o together.

/I f1.cs: First part of the namespace Intro
using System;
namespace Intro{

internal class A {

public void MethA (){
Console.WriteLine("This is MethA in class Int ro.A");
}
}

public class B {
private A var = new A();
public void MethB (){
Console.WriteLine("This is MethB in class Int ro.B");
Console.WriteLine("{0}", var);

}
}

}

Program 15.11 Part one of namespace Intro with the classes A
and B.

I/ f2.cs: Second part of the namespace Intro
using System;

namespace Intro{

120

public class C {
private A varl = new A();
private B var = new B();

public void MethC (){
Console.WriteLine("This is MethC in class Int ro.C");
Console.WriteLine("{0}", var);
Console.WriteLine("{0}", varl);

}
}
}

Program 15.12 Part two of namespace Intro with the
classC.

The problem reported in line 18 of Program 15.1i&@seon the compilation of the program to two diéfiet
assemblies, as shown in Listing 15.14. If bothithe namespace and tlagent class are compiled to a
single assembly there will be no error in line 18.

The compilations shown in Listing 15.14 illustr&i@v to compile the filetl.cs andf2.cs together. In
general, it is possible to compile a number of Gdree files together as though these source filre w
contained in a single large source file. This whgampilation is often an easy way to compile a benof
C# source files that depend on each other in @roulys. Alternatively, each file must be compiled
isolation and in a particular order, with use af idierence compiler option.

Notice also, from Listing 15.14, that you can cohthe name of the assembly via use ofdiite compiler
option.

15.3. Namespaces and Visibility

Lecture 4 - slide 20

In this section we summarize the visibility ruldgypes and namespaces, both of which can ocdatlirer)
namespaces.

« Types declared in a namespace
« Can either have public or internal access
« The default visibility is internal
« Internal visibility is relative to an assembly tr@onamespace
« Namespaces in namespaces
« There is no visibility attached to namespaces
« A namespace is implicitly public within its contaig namespace

You should pay attention to the default visibilititypes in namespaces. If you do not give a Jigjbi
modifier of a typer (a class, for instance) in a namesp@ceis internal inN. This may lead to surprises if
you in reality forgot to state thatshould have been public. We have already discusseth Section 11.16.

121

15.4. Namespaces and Assemblies

Lecture 4 - slide 21

« Namespaces
« The top-level construct in a compilation unit
« May contain types (such as classes) and nestedspaces
« ldentically named members of different namespaaasco-exist
« There is no coupling between classes/namespacesoantk files/directories
« Assemblies
« A packaging construct produced by the compiler
« Not a syntactic construct in C#
« A collection of compiled types - together with rasmes on which the types depend

« Versioning and security settings apply to asserablie

Thefile/directory organization, theamespace/class organization and thassembly
organization are relatively independent of eacleioth

15.5. References

[Ecma-334] "The C# Language Specification”, Jun@2ECMA-334.

122

16. Patterns and Techniques

Throughout this material we there will be chaptétsd "Patterns and Techniques". A number of such
chapters are oriented towards object-oriented dgsatterns. In Section 16.1 we therefore introdbee
general idea of design patterns, and in Sectio W6.specialize this to a discussion of objectriad
design patterns. In Section 16.3 we encounteritsieobject-oriented design pattern, the one called
Singleton. In Section 16.5 we discuss how to avoid leakingape information from a class.

16.1. Design Patterns

Lecture 4 - slide 23

Design patterns originate from the area of archite¢ and they were pioneered by the architectsBipher
Alexander.

The following is an attempt to give a very denseé eoncentrated definition of design patterns.

A pattern is a named nugggtinstructive information that captures the etis¢éstructure and

insight of a successful family of proven solutidasa recurring problerthat arises within a
certain_contexéind system of forcg8rad Appleton]

Each of the important, underlined words - and arfgave - are addressed below:

« Named: Eases communication about problems and solutions

« Nugget: Emphasizes the value of the pattern

« Recurring problem: A pattern is intended to solve a problem that $eiodeappear.
« Proven solution: The solution must be proven in a number of exjsirograms

« Nontrivial solution: We are not interested in collecting trivial andriolois solutions
« Context: The necessary conditions and situation for apglyve pattern

« Forces: Considerations and circumstances, often in muniadlict with each other

A set of design patterns serve as a catalogue lbpvoen solutions to (more or less) frequentlgaeing
problems. A design pattern has a name that ease&sthmunication among programmers. A design pattern
typically reflects a solution to a problem, whisnion-trivial and distanced from naive and obvisaisitions.

16.2. Object-oriented Design Patterns

Lecture 4 - slide 24

Object-oriented design patterns were introducetierbook Design Patterns - Elements of
Reusable Object-Oriented Software" by Gamma, Helm, Johnson and Vlissides.

Numerous books have been written about designrpattand other kinds of patterns as well). The book
mentioned above, [Gamma96], was the first and maigine, and it still has a particular status mdhrea. It

123

is often referred to as the GOF (Gang of Four) bdble patterns and pattern categories mentionexvbel
stem from the original book.

« Twenty three patterns categorized as
» Creational Patterns
« Abstract factory, Factory method, Singleton, ...
« Structural Patterns
» Adapter, Composite, Proxy, ...
- Behavioral Patterns
« Command, Iterator, Observer, ...

There are patterns in a variety of different araasl, at various levels of abstractions

16.3. The Singleton pattern

Lecture 4 - slide 25

The concrete contribution of this chapter is $gleton design pattern. As stated below, us&iofleton is
intended to ensure that a given class can be tinetizh at most once.

Problem: For some classes we wish to guaranteathabst one instance of the class can be
made.

Solution: The singleton design pattern

The idea ofSingleton is to remove the constructor from the client ifgee. This is done by making it private.
Instead of the constructor the class provides éigstatic method, callethstance in Program 16.1, which
controls the instantiation of the class. Insideltlhiance method the private constructor is available, of
course. The private, static variallequelnstance ~ keeps track of an existing instance (if it exislis)here
already exists an instance, the.ance method returns it. If notpstance creates an instance and assigns it
to the variableniquelnstance for future use. All this appears in Program 16.1.

public class Singleton{
/I Instance variables
private static Singleton uniquelnstance = null;
private Singleton(){

/I Initialization of instance variables

public static Singleton Instance(){
if (uniquelnstance == null)
uniquelnstance = new Singleton();

return uniquelnstance;

}
/I Methods

124

Program 16.1 Atemplate of a singleton class.

Let us program a singletane class. It is shown below in Program 16.2. We hakeady seen theie class
in Section 10.1 (Program 10.1) and Section 12.ddiam 12.5).

It should be easy to recognize the pattern frongiara 16.1 in Program 16.2.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private int maxNumberOfEyes;

private static Di e uniquelnstance = null;

private Die (){

randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
this.maxNumberOfEyes = 6;

Toss();

public static Die Instance(){
if (uniquelnstance == null)
uniquelnstance = new Die();

return uniguelnstance;

}

/I Die methods: Toss and others

Program 16.2 A singleton Die class.

Let us know bring the singletare class into action. It is done in Program 16.3stHiiotice that we cannot
just instantiate the singletane class. The compiler will complain. In Program 1%& attempt to make two
dice with use of thenstance method. In reality, the second callieftance returns the same die as
returned by the first call ofistance . Thus,d2 andd3 refer to the same object. The program first totses
die referred byi2 four times, and next it tosses the die referred3bfpve times. In realitythe same die is
tossed nine times. The output of the die tossiognam is shown in Listing 16.4 (only on web).

Recall our very first class example in Section 1hIProgram 10.2 the three differai¢ objects tossed in
identical ways. The reason is that they use theparsite - but identically seedeRandom objects. The
solution is to use a singlet&andom class, which ensures that at most a sirghelom object can exist. The
threeDie objects will share thrandom object. With this organization we solve the "plaiaiossing problem”.
Please consult Exercise 3.7 and its solution.

using System;

class diceApp {

public static void Main(){

/I Die dl = new Die(); // Compile-time error:
/I The type 'Die' has no constructors defined

125

Die d2
d3

Di e. I nstance(),
Di e. I nstance();

for(inti=1;i<5; i++){
Console.WriteLine(d2);
d2.Toss();

for(inti=5; i< 10; i++){
Console.WriteLine(d2);
d3.Toss();

/I Test for singleton:
if d2 == d3)

Console.WriteLine("d2 and d3 refer to same di e instance");
else
Console.WriteLine("d2 and d3 do NOT refer to same die instance");

}

}
Program 16.3 Application of the singleton Die class.

You may ask ifSingleton is important in everyday programming. How ofterma@mhave a class that only
can give rise to one object? The singleb@an shown above is not a very realistic usé&iofgleton.

Singleton is probably not the most frequently used pattBui.every now and then we encounter classes,
which it does not make sense to instantiate meltiphes. In these situations is it nice to know hlow
proceed. Us&ingleton instead of a homegrown ad hoc solution! Thereaddbtional details which can be
brought up in the context of Singleton, see [sitaylensdn].

16.4. Factory methods

Lecture 4 - slide 27

As we have seen in Chapter 12, instantiation afsela by use of programmed constructors is the prima
means for creation of new objects. In some sitnatibowever, direct use of constructors is notitflex
enough. In this section we will see how we can ng@d use of static methods as a supplementarysnean
for object creation. Such methods are cafléatbry methods.

We have already studied classnt several times, see Section 11.6 and Section itbe version of class
Point shown in Program 16.5 below we need constructarbdth polar and rectangular initialization of
points. Recall that rectangular represented pbiat® ordinary(x,y) coordinates and that polar represented
points haver,a) - radius and angle - coordinates. If we use twestractors for the initialization, both will
take two double parameters. In Program 16.5 welg@pextra enumeration parameter to the last
constructor, shown in line 16. This is an ugly solu

126

using System;
public class Point {

publ i ¢ enum Poi nt Representation {Pol ar, Rectangul ar}
private double r, a; /I polar data repr: radius, angle

/I Construct a point with polar coordinates
publ i c Point (double r, double a){

this.r =r;
this.a = a;
}
/I Construct a point, the representation of which d epends

/I on the third parameter.
public Point (doubl e parl, double par2, PointRepresentation pr){

if (pr == PointRepresentation. Pol ar) {
r = parl; a = par2;

el se {
r
a

}
}

private static double RadiusGivenXy(double x, dou ble y)}{
return Math.Sqrt(x * x +y *y);
}

private static double AngleGivenXy(double x, doub le y){
return Math.Atan2(y,x);

}

/I Remaining Point operations not shown

}

Radi usG venXy(par 1, par 2) ;
Angl eG venXy(par 1, par 2);

Program 16.5 A clumsy attempt with two overloaded
constructors.

In Program 16.6 we show another version, in whithdonstructor is private. From the outside, the tw
static factory methodgakePolarPoint andMakeRectangularPoint are used for construction of points.
Internally, these methods delegate their work éoptfivate constructor. This is a much more symmetri
solution than Program 16.5, and it allows us toehgeod names for the "constructors"” - or more ctigre

thefactory methods.

using System;
public class Point {
public enum PointRepresentation {Polar, Rectangul ar}

private double r, a; I/ polar data repr: radius, angle

/I Construct a point with polar coordinates
private Point(double r, double a){

this.r=r;

this.a = a;

}
public static Point MakePol ar Poi nt (doubl e r, double a){

127

return new Point(r,a);

}

public static Point MakeRect angul ar Poi nt (doubl e x, double y){
return new Poi nt (Radi usG venXy(x,Yy), Angl eG venXy(Xx,Y));

}

private static double RadiusGivenXy(double x, dou ble y)}{
return Math.Sqrt(x * x +y *y);

}

private static double AngleGivenXy(double x, doub le y){
return Math.Atan2(y,x);

}

/I Remaining Point operations not shown
}

Program 16.6 A better solution with static factory
methods.

In the web-edition of this material we present Aroexample of factory methods. This example isigiv
the context of thenterval struct, which we will encounter in Section 21.8eTconstructor problem of this
type is that structs do not allow parameterlessttoators. It is, however, natural for us to have a
parameterless constructor for an empty intervalgiam 16.7 (only on web) shows a clumsy solution, a
Program 16.8 (only on web) shows a more satistacolution that uses a factory method.

In Section 32.10 we come back to factory methond,ia particular to an object-oriented design patte
calledFactory Method, which relies on inheritance.

Chose a coding style in whidactory methods are consistently nameskke. . . (.. .)

128

16.5. Privacy Leaks

Lecture 4 - slide 29

The discussion in this section is inspired by tbekAbsolute Java by Walter Savitch. Privacy leaks is
normally not thought of as a design pattern.

Problem: A method can return part of its privatestwhich can be mutated outside the olject

To be concrete, let us look at the problem in cdreéProgram 16.9 and Program 16.10. We use ptieger
in this example. Properties will be introduced tma@ter 18. On the slide belonging to this exammestow
a version with methods instead. The cle@son represents the birth date asa@ object. In order to make
our points clear we provide a simple implementatibtheDate class in Program 16.9. In real-life
programming we would, of course, use C#'s exighungTime struct. You should notice that the property
DateOfBirth in line 17-19 of Program 16.10 returns a referdnce privateDate object, which represents
the person's birthday.

The client of clasgerson , shown in Program 16.11 mutates tha object referred by. The mutation of
theDate objects takes place in line 10. This object caromfthe birthday of person p. Is this at all

reasonable to do so, you may ask. | would answes™\if you have access to a mutatée object chances
are that you will forget were it came from, andrgvwelly you may be tempted to modify (mutate) it.

As shown in the output of the client program, istlrig 16.12, Hanne is now 180 years old. We have
managed to modify her age despite the fact thiadast is private in clag®erson .

As of now we leave it as an exercise to find gaaldt®ns to this problem, see Exercise 4.3.

public class Date{
private ushort year;
private byte month, day;

public Date(ushort year, byte month, byte day){
this.year = year; this.month = month; this.day = day;

public ushort Year{
get{return year;}
set {year = value;}
}

public byte Month{
get{return month;}
set {month = value;}
}

public byte Day{
get{return day;}
set {day = value;}
}

public override string ToString(){
return string.Format("{0}.{1}.{2}",day, month, year);
}
}

Program 16.9 A Mutable Date class.

129

public class Person{

private string name;
private Date dateCf Birth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;

}

public string Name{
get {return name;}
set {name = value;}

}

public Date DateOfBirth{
get{ return dateOfBirth;}

}

public ushort AgeAsOf(Date d){
return (ushort)(d.Year - dateOfBirth.Year);

}

public bool Alive(){
return dateOfDeath == null;

}

public override string ToString(){
return "Person: " + name + " " + dateOfBirth;

}
}
Program 16.10 A Person class that can return its private birth
Date.
using System;
class Client{
public static void Main(){
Person p = new Person("Hanne", new Date(1926, 1 2, 24));

Date d = p.DateO Birth;
d. Year -= 100;
Console.WriteLine("{0}", p):

Date today = new Date(2006,8,31);
Console.WriteLine("Age of Hanne as of {0}: {1}.
today, p.AgeAsOf(today));

Program 16.11 A client of the Person which modifies the
returned birth Date.

Person: Hanne 24.12. 1826
Age of Hanne as of 31.8.2006: 180.

Listing 16.12 The output of the Person client program.

130

Exercise 4.3. Privacy Leaks
The starting point of this exercise is the obseovetabouprivacy leaks on the accompanying slide.

Make sure that you understand the problem. Tesedhe program (together with its dependaston
class andbate class) on your own computer.

If you have not already done so, read the sectionitgprivacy leaks in the textbook!
Find a good solution to the problem, program it] &est your solution.

Discuss to which degre@mu will expect that this problem to occur in everygaggramming situations.

We return to th®ate andPerson classes in Section 20.4 and Section 20.5. In thes#ons we also
comment on the privacy leak problem.

16.6. References

[Gamma96] E. Gamma, R. Helm, R. Johnson and Jsidés Design Patterns. Elements of
Reusable Object-oriented Software. Addison Wesley, 1996.

[Singleton-msdn] MSDN: Implementing Singleton in C#
http://msdn.microsoft.com/en-us/library/ms99855@xas

131

132

17. Accessing Data in Objects

This is the start of the lectures about data acaedperations.

In this and the following sections we will discile various operations in classes, in particulav tw
access data which is encapsulated in objects. Byat@ess we mean both reading (getting) and gritin
(setting).

In this material we use the woogeration as a conceptual term. There is nothing callecbaerations” in
C#. Rather, there are methods, properties, inde@pesators etc. Thus, when we in this teachingeriadt
use the word operation it covers - in a broad sensethods, properties, indexers, operators, eyvents
delegates, and lambda expressions.

17.1. Indirect data access

Lecture 5 - slide 2

It is not a good idea to access the instance asalf a class directly from client classes. Weehalveady
discussed this issue in relatively great detailSection 11.3 and Section 11.5.

Data encapsulated in a class is not accedised|y from other classes

Rather, data is accessedlirectly via operations

So the issue is indirect data access instead eftdilata access, when we work on a class fromutsee
(from other classes, the client classes). Whenseendirect data access, the data are accessedlthsome
procedure or function. This procedure or functierves as thindirection in between the client, which
makes use of the data, and the actual data indks. @ his "place of indirection" allows us to gaout
checks and other actions in the slipstream of datass. In addition, the procedures and functicaisserve
as indirection, makes it possible to program certampensations if the data representation is neoblit a
later point in time. With this, the client classds class C are more likely to survive future nficdtions of
the data, which C encapsulates. It is possiblalcuate the data instead of accessing it fromawdes in the
memory.

The following summarizes why indirect data accedsetter than direct data access.

« Protects and shields the data
« Possible to check certain conditions each timedttie is accessed
« Possible to carry out certain actions each timedtia is accessed
« Makes it easier - in the future - to change the depresentation
« Via "compensations" programmed in the accessingabp@as
« Makes it possible to avoid the allocation of sterémy some data
« Calculating instead of storing

Protection and shielding may cause the data tetesaed in a conditional data structure. One pdaitic
shielding is provided by the precondition of anmien. If the condition does not hold, we may ckmaot
to access the data. In this material, we discussomditions in the context of contracts in Chapter

133

In some circumstances it may be convenient to cautysome action whenever the data of a classcessaed.
This is probably most relevant when the data incthes is mutated (assigned to new values). Dateya
for which we activate a procedure upon data aceesessometimes callezttive values.

Accessor compensation as a remedy of changinggregentation of data is undoubtedly the most
important issue. We illustrated this issue in thagifications of Program 11.2, as suggested in Eser8.3.
In a nutshell, we can often fix the consequencesdfift in data representation by modifying thtelinals of
the operations. By keeping the class interface aimgéd all the direct and indirect clients of theeted
class will survive. No changes are needed in tleaictlasses. This is the effect of firewalls, leady
discussed in Section 11.5.

17.2. Overview of data access in C#

Lecture 5 - slide 3

Below we summarize the various kinds of data ac@sssupported by operations in C#:

« Directly via public instance variables
* Never dothat!
« Indirectly via properties
« Clients cannot tell the difference between accespnoperties and direct access of
instance variables
« Indirectly via methods
« Should be reserved for "calculations on objects"
« Indirectly via indexers
» Provides access by means of the notation known fraditional array indexing
« Indirectly via overloaded operators
« Provides access by means of the language-defirmdtop symbols

In the next chapter we will discuss properties #h Chapter 19 is about indexers. Methods will Ised$sed
next in Chapter 20. Overloaded operators are tidat€hapter 21.

134

18. Properties

When a client of a class C accesses data in Crof@epies, the client of C may have the illusioatti
accesses data directly. From a notational pointeaf, the client of C cannot tell the differencavibeen
access to a variable in C and access via a property

Properties have not been invented in the processeating C#. Properties have, in some forms, lised in
Visual Basic and Delphi (which is a language inBascal family). Properties, in the sense disculsstxlv,
are not present in Java or C++. Java only allows tbabe accessed directly or via methods. Thesefor
Java, it is always possible for clients of a clads tell if data is accessed directly from a vialean C or
indirectly via a method i C. In C#, it is not.

In this material we classify properties as operegjside by side with methods and similar abstasti
Underneath - in the Common Intermediate Languaayeperties are in fact treated as (getter andrette
methods.

18.1. Properties in C#

Lecture 5 - slide 7

When we use a property it looks like direct aca#ssvariable. But it is not. A variable referentes
stored location. A property activates a calculatigrich is encapsulated in abstraction. The calculations
that access data in a class C via properties steuédficient. If not, the clients of C are easilisled.
Complicated, time consuming operations should l@émented in methods, see Chapter 20.

Let us first present a very simple, but at the siime a very typical example of properties. In Rerg 18.1
theBalance property accesses the private instance varigilece . Notice that the name of the property is
capitalized, and that the name of the instancelbiis not. This is a widespread convention inyr@ding
styles.

using System;
public class BankAccount {

private string owner;
private decimal bal ance;

public BankAccount(string owner, decimal balance) {
this.owner = owner;
this.balance = balance;

}

publ i c deci mal Bal ance {
get {return bal ance;}

}

public void Deposit(decimal amount){
balance += amount;

}

public void Withdraw(decimal amount){
balance -= amount;

}

135

public override string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 18.1 A BankAccount classwith a trivial Balance
property together with Deposit and Withdraw methods.

In classBankAccount it is natural to read the balance via a propdaty,is problematic to write the balance
via a property. Therefore, there is no setter @Bthiance property. Insteadjeposit andwithdraw
operations (methods) are used. In general we stauédully consider the need for readability andadality
of individual instance variables.

The publicBalance property as programmed in Program 18.1 providesefad-access to the private
instancevalance Vvariable. You may complain that this is a comgkcbway of making the instance variable
public. What is important, however, is that attadgoint in the program evolution process we ntagnge
the private data representation. We may, for irtgaaliminate the instance variabkgance entirely, but
keep the interface to clients - teglance property - intact. This is illustrated in Progrd@2 below.

using System;
public class BankAccount {

private string owner;
private decimal[] contributions;
private int nextContribution;

public BankAccount(string owner, decimal balance) {
this.owner = owner;
contributions = new decimal[100];
contributions[0] = balance;
nextContribution = 1;

}

publ i c deci mal Bal ance {
get {decimal result = O;
foreach(decimal ctr in contributions)
result += ctr;
return result;
}
}

public void Deposit(Decimal amount){
contributions[nextContribution] = amount;
nextContribution++;

}

public void Withdraw(Decimal amount){
contributions[nextContribution] = -amount;
nextContribution++;

}

public override string ToString() {
return owner + "'s account holds " +
+ Balance + " kroner";

Program 18.2 A BankAccount class with a Balance property -
without a balance instance variable.

136

The interesting thing to notice is that the balaoicthe bank account now is represented by themigdarray
calledcontributions in line 6 of Program 18.2. TiBalance property in line 16-22 accumulates the
contributions in order to calculate the balancthefaccount.

From a client point of view we can still read trednce of the bank account via twance property.
Underneath, however, the implementation ofglience getter in line 16-22 of Program 18.2 has changed a
lot compared to line 14 of Program 18.1. We shaingple client program in Program 18.3, and its ouip
Listing 18.4 (only on web).

The client program in Program 18.3 can both be tsgekther wittBankAccount in Program 18.1 and
Program 18.2. Thus, the client program has no awarseof the different representation of the balamtiee
two versions of clasBankAccount . The only thing that matters in the relation betwelas®ankAccount
and its client class is the client interface ofskBankAccount .

using System;
class C{
public static void Main(){
BankAccount ba = new BankAccount("Peter", 1000)

Console.WriteLine(ba);

ba.Deposit(100);

Console.WriteLine("Balance: {0}", ba. Bal ance);
ba.Withdraw(300);
Console.WriteLine("Balance: {0}", ba. Bal ance);

ba.Deposit(100);
Console.WriteLine("Balance: {0}", ba. Bal ance);

Program 18.3 A client program.

Above we have discussedtting of instance variables in objects. In th@ankAccount class we have seen
how to access to thelance instance variable via a getter in the propetynce . Technically, it is also
possible to change the value of the balance instaagable by @etter. Conceptually, we would rather
prefer to update the bank accounts by use of thbhadsDeposit andwithbraw . Nevertheless, here is the
Balance property with both a getter and a setter.

public decimal Balance {
get {return balance;}
set {balance = value;}

}

The setter is activated in an assignmentiiBalance = expression; The important thing to notice is that
the propertyBalance is located at the left-hand side of the assignrmpetator. The value @kpression is
bound to the pseudo variablgue in the property, and as it appears in the sdtteryalue ofialue is
assigned to the instance variabdénce .

Properties can also be used for getting and sdigtusg of struct values. In addition, propertiesde used
to get and set static variables in both classestaudts.

137

This ends the essential examples ofghience property of clas8ankAccount . In the web version of the
material we provide yet another variation of Bagnce property in classankAccount . In this example, we
enforce astrict alternation between getting and setting the balance of a bank account. Please consultébe
edition for details.

This ends our discussion of the exotic variatioslagsBankAccount .

Exercise 5.1. A funny BankAccount

In this exercises we provide a version of cBsskAccount with a "funny version" of thealance
property. You should access the exercise via theweesion, in order to get access to the sourcgranas
involved.

Study theBalance property of the funny version of claBsnkAccount .
Explain the behaviour of the given client of thariy BankAccount.
Next test-run the program and confirm your undeditag of the two classes.

Please notice how difficult it is to follow the déds when properties - likBalance in the given version of
classBankAccount - do not pass data directly to and from the insarariables.

18.2. Properties: Class Point with polar coordinat

Lecture 5 - slide 8

We will now look at another very realistic exampfeproperties in C#.

The example in Program 18.8 is a continuation efPtint examples in Program 11.2. Originally, and for
illustrative purposes, in Program 11.2 we prograchasimple point with public access to its x and y
coordinates. We never do that again. The x andydirwates used in Program 18.8 are calkstbingular
coordinates because they delineate a rectangle between thegra (0,0).

In the clas®oint in Program 18.8 we have changed the data repegsentopolar coordinates. In the
paper version of the material we show only seleptats of the class. (We have, in particular, elmted a
set of static methods that convert between rectangud polar coordinates). In the web versiorfiifie
class definition is included. Using polar coordesta point is represented as a radius and an. amgle
addition, and as emphasized withr ple in Program 18.8 we have programmed four propenvegch
access the polar and the rectangular coordinat@point. The propertiesngle andRadius are, of course,
trivial, because they just access the underlyingape instance variables. The propertieandy require
some coordinate transformations. We have progranath¢ide necessary coordinate transformationsaiicst
private methods of clagsint . In the web edition of the material these methergsshown at the bottom of
classpPoint .

/I A versatile version of class Point with Rotation and internal methods
/I for rectangular and polar coordinates.

using System;

138

public class Point {
public enum PointRepresentation {Polar, Rectangul ar}
private double r, a; // Polar data representation

public Point(double x, double y){
r = RadiusGivenXy(x,y);
a = AngleGivenXy(x,y);

}

public double X {
get {return X4 venRadi usAngle(r,a);}

}

public double Y {
get {return YG venRadi usAngle(r,a);}

}

publ i c doubl e Radi us {
get {return r;}

}

publ i c doubl e Angl e{
get {return a;}

/I Some constructors and methods are not shown

Program 18.8 Class Point with polar data
representation.

Exercise 5.2. Point setters

In thePoint class on the accompanying slide we have showntb@rogram getter properties in the class
Point . Extend the four properties with setters as Widle new version of this class will support mutable
points.

Write a small client program that demonstratesubeof the setter properties.

Hint: Please be aware that the revised class should afido get and set the rectangular and polar
coordinates (x, y, angle, radius) of a point indef@nt of each other. You should first consider what
means to do so.

18.3. Automatic Properties

Lecture 5 - slide 9

Many of the properties that we write are triviatlire sense that they just get or set a singlerinstaariable.
It is tedious to write such trivial propertiesmay be possible to ask the programming environrehelp
with creation of trivial properties. Alternativelly C# 3.0, it is possible for the compiler to geaterthe
trivial properties automatically from short destiops.

139

Let us study an example, which extends the irzaik account example from Program 18.1. The exaisple
shown in Program 18.9 and the translation dondéaéyxompiler is shown in Program 18.10.

using System;
public class BankAccount{
/] automatic generation of private instance vari abl es

public BankAccount(string owner, decimal balance) {
t hi s. Omer = owner;
t hi s. Bal ance = balance;

public string Omer {get; set;}
public deci mal Bal ance {get; set;}

public override string ToString(){
return Omner +"s account holds " + Bal ance + " kroner";

}
}

Program 18.9 Class BankAccount with two automatic
properties.

Based on the formulations in line 12 and 14, thepiter generates the "real properties" shown bafolne
13-21 of Program 18.10.

As an additional and important observation, itadeanger necessary to define the private instaacelies.
The compiler generates the private "backing" instarariables automatically. In terms of the examihle
lines 5-6 in Program 18.10 are generated autonfigtica

As a consequence of automatically generated instegugables, the instance variables cannot be sedeés
the class. The names of the instance variablegrdagown, and therefore they cannot be used alnsliéad,
the programmer of the class accesses the hiddemaesvariables through the properties. As an el@mp
the owner and balance are accessed via the peg@siier andBalance in line 17 of therostring method
in Program 18.9.

using System;

public class BankAccount{

private string _owner;
private deci mal _bal ance;

public BankAccount(string owner, decimal balance) {
_owner = owner;
_balance = balance;

}
public string Owner {
get {return _owner;}
set {_owner = val ue;}
}
public decimal Balance {
get {return _bal ance;}
set {_bal ance = val ue;}
}

140

public override string ToString(){
return Owner + ™s account holds " + Balance + " kroner";

}
}

Program 18.10 An equivalent BankAccount class without
automatic properties.

Because properties, internally in a class, playdheof instance variables, it is hardly meanihgfuhave an
automatic property with a getter and no setter. fElason is that the underlying instance variablmotbe
initialized - simple because its name is not abd@aSimilarly, an automatic property with a settart not
getter, would not make sense, because we wouldenable to access the underlying instance variable.
Therefore the compiler enforces that an automaitipgrty has both a getter and a setter. It is plessi
however, to limit the visibility of either the gettor setter (but not both). As an example, thiefdhg
definition of theBalance property

public string Balance {get; private set;}

provides for public reading, but only writing fromithin the class. In clasgankAccount , this is probably
what we want. It is OK to access the balance froiside, but we the account to be updated by usétudr
theDeposit method or th&vithdraw method.

Finally, let us observe that the syntax of automatoperties is similar to the syntax used for rzust
properties, see Section 30.3.

Automatic properties: Reflections and recommendations. FOCUS BOX 18.1

| recommend that you use automatic properties sathe care! It is worth emphasizing that a clas®sim
always encapsulates some state - instance variabbese of which can be accessed by propertiéselk
strange that we can program in a way - with autanmabperties - without ever declaring the instance
variables explicitly. And it feels strange that mever, from within the class, refers to the instavariables.

Automatic properties are useful in the early lifeaalass, where we allows for direct (one-to-cexess to
the instance variables via methods or propertreanlearly version of the classint of Section 11.6, this
was the case. (We actually started with publicainse variables, but this mistake is taken cara &Xercise
3.3).

Later on, we may internally invent a more sophéed data representation - or we may change out mir
with respect to the data representation. IrPhie class we went from a rectangular representati@n to
polar representation. The data representationlsistaould always be a private and internal conoéthe
class. When this change happens we have to inteddstance variables, exactly as described in &ecti
11.8. When doing so we have to get rid of the aatanproperties. The introduction of instance Malga
and the substitution of the automatic propertieth weal properties' represent internal changdiseboint
class. The clients afoint will not be affected by these chang@sisisthe point! In the rest of the lifetime
of classpoint , it is unlikely that automatic properties will hgart of the story'.

Automatic properties contribute to a C# 8dbivenience layer on top of already existing mearis
of expressions.

141

18.4. Object Initialization via Properties

Lecture 5 - slide 10

In this section we will see that property setter€#3.0 can be used for initialization purposethen
slipstream of constructors. The properties thatiseefor such purposes can be automatic propesises,
discussed in Section 18.3.

Let us again look at a simpbankAccount class, see Program 18.11. The class has two atitgmaperties,
backed by two instance variables, which we canocgss. In addition, the class has two construotfrs,
Section 12.4.

using System;
public class BankAccount{
/| automatic generation of private instance variables

public BankAccount(): this("NN") {
}

public BankAccount(string owner){
this.Balance = 0;
this.Owner = owner;

}
public string Owner {get; set;}
public decimal Balance {get; set;}

public override string ToString(){
return Owner + "'s account holds " + Balance + " kroner";

}
}

Program 18.11 Class BankAccount - with two
constructors.

Below, in Program 18.12 we make an instance ob&8askAccount in line 6. As emphasized fpurple the
owner and balance is initialized by a so-cat¥epect initializer, in curly brackets, right afteew

BankAccount . The initializer refers the setter of the automatiopertie®wner andBalance . All together we
have made a new bank account by use of the pandessteonstructor. The initialization is done bg th
setters of th@wner and theBalance properties.

In line 7 of Program 18.12 we make another instarficgassBankAccount , whereowner is initialized via

the actual parameter "Bill" passed to the consbiyeind the balance is initialized via an objedtatizer in
curly brackets.

142

using System;
public class Client {

public static void Main(){

BankAccount bal = new BankAccount {Owner = "Janes", Bal ance = 250},
ba2 = new BankAccount("Bill") {Bal ance = 1200};
Console.WriteLine(bal);
Console.WriteLine(ba2);
}
}

Program 18.12 A client of class BankAccount with an object
initializer.

The compiler translates line 6 of Program 18.1n®6-8 in Program 18.13. Similarly, line 7 of Bram
18.12 is translated to line 10-11 in Program 18.13.

using System;
public class Client {

public static void Main(){
BankAccount bal = new BankAccount();
bal. Omer = "Janes";
bal. Bal ance = 250;

BankAccount ba2 = new BankAccount("Bill");
ba2. Bal ance = 1200;

Console.WriteLine(bal);
Console.WriteLine(ba2);

}
}

Program 18.13 An equivalent client of class BankAccount
without object initializers.

Let us, finally, elaborate the example with thepmse of demonstratingested object initializers. In
Program 18.14 we show the clasBeaskAccount andpPerson . As can be seen, an instance of class
BankAccount refers to an owner which is an instance of ckasson . It turns out to be crucial for the
example that thewner of aBankAccount refers to @erson object (more specifically, that it is noball
reference).

using System;
public class BankAccount{
public BankAccount(){

this.Balance = 0;
this.Owner = new Person();

}

public Person Owner {get; set;}
public decimal Balance {get; set;}

143

public override string ToString(){
return Owner + ™'s account holds " + Balance + " kroner";

}
}

public class Person {
public string FirstName {get; set;}
public string LastName {get; set;}

public override string ToString(){
return FirstName + " " + LastName;

}
}

Program 18.14 Class BankAccount and class Person.

In theclient class, see Program 18.15 we make BarixAccount S ,bal andba2. The initializers,
emphasized in line 7-9 and 12-14, initialize dwer of aBankAccount Wwith nested object initializers.
Notice that there is no new operator in fron{raktName = ..., LastName = ...} . ThePerson object
already exists. In this example, it is instantiatetine 7 of Program 18.14 together with #kAccount .

using System;
public class Client {

public static void Main(){

BankAccount bal = new BankAccount {
Owner = {FirstName = "Janes",
Last Namre = "Madsen"},

Bal ance = 250},

ba2 = new BankAccount
Ower = {FirstNane = "Bill",
Last Nane = "Jensen"},
Bal ance = 500};

Console.WriteLine(bal);
Console.WriteLine(ba2);

}
}

Program 18.15 A client of class BankAccount with nested
object initializers.

The use of property names (setters) in objectiiitrs gives the effect &kyword parameters. Keyword
parameters refer to a formal parameter name ia¢heal parameter list. Keyword parameters can vengi
in any order, as a contrastygositional parameters, which must given in the order dictated by therfar
parameter list. In addition, the caller of an adxion that accepts keyword parameters can chamge n
pass certain keyword parameters. In that caseultefaill apply. In case of C#, such default valeas be
defined within the body of the constructors.

144

18.5. Summary of properties in C#

Lecture 5 - slide 11

The syntax of property declarations is shown int&y118.1. Both the get part and the set part atierogd.
Syntactically, the signature a property declaraibdike a method declaration without formal partane As
can be seen, the syntax of a property body is diffigrent from the syntax of a method body.

nmodi fi ers return-type property-name{
get {body- of - get}
set {body- of -set}
}

Syntax 18.1 The syntax of a C# property. Here we show both the getter and setter. At least one of them must
be present.

The following summarizes the characteristics opprties in C#:

« Provides for either read-only, write-only, or readte access

- Both instance and class (static) properties maksese

» Property setting appears on the left of an assighra@d in++ and- -
« Trivial properties can be defined "automatically"

» Properties should be fast and without unnecessadeyeffects

The following observations about property namirfted a given coding style. A coding style is not
enforced by the compiler.

A C# property will often have the same name as\afw data member

The name of the property is capitalized - the nafrtbe data member is not

145

146

19. Indexers

From a notational point of view it is often attii@etto access the data, encapsulated in a cladsuat, via
conventional array notation. Indexers are targaiqatovide array notation on class instances angtst
values.

Indexers can be understood as a specialized kiptopkrties, see Chapter 18. Both indexers andeptiep
are classified asperations in this material, together with methods and o#herilar abstractions.

19.1. Indexers in C#

Lecture 5 - slide 13
Indexers allow access to data in an object withafisgray notation

The important benefit of indexers is the notatioeytmake available to their clients.

Let us assume thatis a variable that holds a reference to an olglictWith use of methods we can access
data inobj with v. met hod(par amet er s) . In Chapter 18 we introduced properties and topgnty access
notationv. property. We will now introduce the notationi], wherei typically (but not necessarily) is
some integer (index) value.

We will start with an artificial ABC example in Ryram 19.1 which tells how to define an indexer tlass
that encapsulates three instance variabhlesandf . The indexer is used in a client class in Progt.
The example introduces the indexer abstractionitlgihot a typical use of an indexer.

As it can be seen in Program 19.1 an indexer nmeisaimed "this". Like a property, it has a gettat an
setter part.

The getter is activated when we encounter an egjores]i] , wherea is a variable of typa. The body of
the getter determines the valueapif .

The setter is activated when we encounter an assighlikea[i] =expression. The value oexpression is
bound to the implicit parameter nametle . The body of the setter determines the effecheriristance
variables inobj upon execution of[ij = expression.

In Program 19.4[1] accesses the instance variahle[2] accesses the instance variahland a[3]
accesses the instance variahl@his is not a typical arrangement, however. Mdin, indexers are used to
access members of a data collection.

using System;

public class A {
private double d, e, f;

public A(double v){

d=e=f=v;

}
public double this [int i]{

147

get {
switch (i){
case 1. {return d;}
case 2: {return e;}
case 3. {return f;}
default: throw new Exception("Error");

}
set {
switch (i){
case 1. {d = val ue; break;}
case 2: {e = value; break;}
case 3: {f = value; break;}
default: throw new Exception("Error");
}
}

}

public override string ToString(){
return "A: " + d + "1 "+e+ ", "y f'

}
}

Program 19.1 A Class A with an indexer.

Program 19.2 shows the indexer from Program 19atiion. First, in line 9, we illustrate the thissdters,
wherea[i] occurs at the left-hand side of the assignmenbsynfrollowing that, in line 11, we illustrate
two getters. The output of Program 19.2 is showldsting 19.3 (only on web).
using System;
class B {
public static void Main(){
A a=new A(5);
double d;
a[l] =6; a[2] = 7.0; a[3] = 8.0;

d= a[1] + a[2];

Console.WriteLine("a: {0}, d: {1}", a, d);
}
}

Program 19.2 A client of A which usestheindexer of A.

As an additional example of indexers we will staldy clas®itArray . This example is only present in the
web-version of the material.

19.2. Associative Arrays

Lecture 5 - slide 14
In Section 19.1 we showed how to index an objeth wisingle integer index. In this section we will

demonstrate that the indexing value can have atraasbtype. Thus, the type obj inafobj] can be an
arbitrary type in C#, for instance a type we progurselves.

148

An associative array is an array which allows indexing by means oftaaby objects, not just

integers

An associative arrays maps a set of objects (ithexing objects, keys) to another set of objects
(the element objects).

In Program 19.6 we illustrate how to index instanekclass A with strings instead of integers.dily
understood Program 19.1 and Program 19.2 it vath &le easy to understand Program 19.6 and Program
19.7. Notice in this context that C#, very convetlie allows switch control structures to switch inngs.
The program output is shown in Listing 19.8 (ontyveeb).

1 using System;

2

3 public class A {

4 private double d, €, f;

5

6 public A(double v){

7 d=e=f=v;

8 }

9

10 public double this [string str]{
11 get {

12 switch (str){

i3 case "d": {return d;}

14 case "e": {return e;}

15 case "f": {return f;}

16 defaul t: throw new Exception("Error");
17 }

18 }

19 set {

20 switch (str){

21 case "d": {d = val ue; break;}
22 case "e": {e = value; break;}
23 case "f": {f = value; break;}
24 defaul t: throw new Exception("Error");
25 }

26 }

27 '}

28

29 public override string ToString(){
30 return"A:"+d+","+e+" "+f;
31 }

32

33}

Program 19.6 Theclass A indexed by a string.
using System;
class B {

1
2
S
4
5 public static void Main(){
6
7
8
9

A a =new A(5);
double d;
a["d"] =6; a["e"] =7.0; a["f"] = 8.0;

10
11 d= a["e"] + a["f"]; [/l correspondstod=a.d+a.e
12 /l'in case d and e had b een public
13
14 Console.WriteLine("a: {0}, d: {1}", a, d);
15 }

149

Program 19.7 A client of A which usesthe string indexing of A.

We have seen that it makes sense to index witthgstrand more generally with an arbitrary instaofca
class. In fact, it is possible to base the indexingwo or more objects. This is, of course, imaorif we
index multi-dimensional data structures.

Associative arrays are in C# implemented by meéhsshtables in dictionaries

In the lecture about collections, see Chapter 46yl see how to make use so-called dictionarigsi¢ally
implemented as hash tables) for efficient datacttres that map a set of objects to another sajetts.
Indexers, as discussed in this section chaptevjgg@ convenient surface notation to deal witthsuc
dictionaries. In Section 46.2 the indexer presdibg the generic interfagei cti onar y<K, V> accesses
objects of typer via an index of type&.

19.3. Summary of indexers in C#

Lecture 5 - slide 15

Here follows a syntax diagram of indexers:

nmodi fiers return-type this[formal-parameter-list]
get {body- of -get}
set {body- of -set}
}

Syntax 19.1 The syntax of a C# indexer

It is similar to the syntax diagram of propertias,shown in Syntax 18.1

The main characteristics of indexers are as follows

« Provide for indexed read-only, write-only, or readte access to data in objects
« Indexers can only be instance members - not static

« The indexing can be based on one, two or more fgparameters

« Indexers can be overloaded

« Indexers should be without unnecessary side-effects

« Indexers should be fast

150

20. Methods

Methods are the most important kind of operationG#. Methods are more fundamental than propeatiels
indexers. We would be able to do object-orientedy@mming without properties and indexers (by
implementing all properties and indexers as methdulg not without methods. In Java, for instartbhere
are methods but no properties and no indexers.

A method is a procedure or a function, which ig p&a class. Methods (are supposed to) accessatepen)
the data, which are encapsulated by the class.ddstbhould be devoted to nontrivial operationsviati
operations that just read or write individual imsta variables should in C# be programmed as piiepert

We have already in Section 11.9 and Section 11udiex] the fundamentals of methods in an object-
oriented programming language. In these sectionsagde the distinction between instance methods and
class methods. Stated briefly, instance methodsatgen instance variables (and perhaps classblesias
well). Class methods (called static methods in &) only operate on class variables (static vagfainl C#).

When we do object-oriented programming we orgamiaet data in instances of classes (objects) and in
values of struct types. We only use class relaédd @in static variables) to a lesser degree. Toere
instance methods are more important to us thas aheshods. In the rest of this chapter we will ¢fere
focus on instance methods.

This chapter is long because we have to cover deuof different parameter passing modes. If ydy on
need a basic understanding of methods and thefregsiently used parameter passing mode - call-tyeva
parameters - you should read until (and includBegtion 20.4 and afterwards proceed to Chapter 21.

20.1. Local variables in methods

Lecture 5 - slide 18

Local variables of a method are declared in tsiatements part of the block relative to Syntax 20.1. Local
variables are short lived; They only exists duting activation of the method.

nmodi fiers return-type nethod-nane(formal -paraneter-1list){
stat enent s

}
Syntax 20.1 The syntax of a method in C#

You should notice the difference betwdecal variables andparameters, which we discuss below in
Section 20.2. Parameters are passed and initialhed the method is activated. The initial valumes

from an actual parameter. Local variables are dhiced in thestatements part (the body) of the method, and
as explained below they may - or may not - bedlhiéd explicitly.

You should also notice the difference betwhkmmal variables andinstance variables of a class. A local
variable only exists in a single call of the methAd instance variable exists during the lifetinien object.

Local variables

151

« May be declared anywhere in the block
» Not necessarily in the initial part of the block
« Can be initialized by an initializer
« Can alternatively be declared without an initialize
» No default value is assigned to a local variable
- Different from instance and class variables whighgiven default values
« The compiler will complain if a local variable isferred without prior assignment

In the program below we contrast instance variabléke clasitbemo with local variables in the method
Operation Of InitDemo . Thepur ple instance variables are implicitly initialized teeir default values. The
blue local variables irbperations ~ are not. The program does not compile. In lin@d8 19 the compiler
will complain about use of unassigned local vaeabl

using System;
class InitDemo{

private int intlnstanceVar;
private bool bool | nst anceVar;

public void Operation(){
int intLocal Var;
bool bool Local Var;

Console.WriteLine("intinstanceVar: {0}. boollns tanceVar: {1},
intinstanceVar,
boollnstanceVar);

/I Compile time errors:
Consol e. WiteLine("intLocal Var: {0}. bool Local Var: {1}"
i nt Local Var,
bool Local Var) ;

}

public static void Main(){
new InitDemo().Operation();

}
}

Program 20.1 Local variables and instance variables -
initialization and default values.

In C#, Java and similar languages there is no thing as ajlobal variable. This is often a problem for
programmers who are used to pass data aroundobalglariables. If you really, really need a global

variable in C#, the best option is to use a clatgi€) variable in one of your top-level clasdageneral,
however, it is a better alternative to pass datarad via parameters (such as parameters to cotmsB)ic

20.2. Parameters

Lecture 5 - slide 19

As a natural counterpart to Syntax 18.1 (of progs)ytand Syntax 19.1 (of indexers) we have shown th
syntactical form of a method in Syntax 20.1. Thetagtical characteristic of methods, in contrast to

152

properties and indexers, is the formal parameteosdinary, soft parenthesgs) . Even a method with
no parameters must have an empty pair of parergtigsein both the method definition and in thetinosl
activation. Properties have no formal parameterd iadexers have formal parameters in brackets: .

We will now discuss parameter passing in geneta. following introduce$ormal parameters andactual
parameters.

Actual parameters occur in a callFormal parameters occur in the method declaration. In
general, actual parameters are expressions whicevatuated targuments. Depending on the:
kind of parameters, the arguments are somehowiasswaevith the formal parameters.

C# offers several different parameter passing modes

« Value parameters
« The default parameter passing mode, without usenabdifier
« Reference parameters
» Specified with the ef modifier
e Output parameters
« Specified with theut modifier
» Parameter arrays
» Value parameters specified with the ans modifier

Far the majority of the parameters in a C# progasenpassed by value. Thus, the use of value pagesrist
the most important parameter passing techniqugdorto understand. Value parameters are discussed i
Section 20.3 - Section 20.5.

Reference and output parameters are closely retateach other, and they are only rarely used jecbb
oriented C# programs. Output parameter can beaseanestricted version of reference parameters.
Reference parameters stem fraaniable parameters (var parameters) in Pascal. Reference parameters are
discussed in Section 20.6 and out parameters seastied in Section 20.7.

Parameter arrays cover the idea that a numbertadlaalue parameters (of the same type) are ¢etlaato
an array. In this way, parameter arrays provideaforore sophisticated correspondence between the
arguments and the formal parameters. C# parametgisare discussed in Section 20.9.

It is, in general, an issue how a given actualpatar (or argument) is related to a formal paramétas is
calledparameter correspondence. With valueref andout parameter we ug@sitional parameter
correspondence. This is simple. The first formal parameter isated to the first actual parameter, the second
to the second, etc. With parameter arrays, a nuofteetual parameters - all remaining actual patarse
correspond to a single formal parameter.

In general, there are other parameter correspoadenwst notablieyword parameters, where the name of
the formal parameter is used together with thezhqgtarameter. Keyword parameters are not usedtigiiac

C#. But as we have seen in Section 18.4 a kinewpivkrd parameters is used when properties arefased
object initialization in the context of thew operator.

In Section 6.9 - Program 6.20 - we have shown grara example that illustrate multiple parametesjvap

modes in C#. If you wish the ultra short descriptad parameter passing in C# you can read Sectibn 6
instead of Section 20.3 - Section 20.9.

153

20.3. Value Parameters

Lecture 5 - slide 20
Value parameters are used for input to methods

When the story should told brieflgall-by-value parameters (or justvalue parameters) are used for input to
methods. The output from a method is handled wavttiue returned from the method - via useeoiur n.
This simple version of the story is true for thegjoniéy of the methods we write in our classes. Bsitve will
see already in Section 20.4 it is also possibleattdle some kinds of output via references to ¢bjeassed
as value parameters.

Value parameter passing works in the following way:

- A formal parameter corresponds to a local variable
« A formal parameter is initialized by the correspioigdargument (the value of the actual
parameter expression)
« A copy of the argument is bound to the formal parameter
- Implicit conversions may take place
- A formal parameter is assignable, but with no éftedside the method

We have already seen many examples of value pagesnét case you want to review typical examples,
please consult th@ove method of clasBoint in Program 11.2, thevithdraw andDeposit methods of class
BankAccount in Program 11.8, and thgeAsOf method in clasBerson in Program 16.10.

20.4. Passing references as value parameters

Lecture 5 - slide 21
Care must be taken if we pass references as vataepters

Most of the data we deal with in object-orientedZ#grams are represented as instances of claases -
objects. This implies that such data are accesgeefrences. Again and again we pass such refesaasc
value parameters to methods. Therefore we mustrsiaahel - in details - what happens.

Here is the short version of the story. Let us amsthat send the messamgDifference to aDate oObject
with anothemate object as parameter:

someDate.DayDifference(otherDate)

Date is a class, and therefore batlmeDate andotherDate hold references tbate objects. It is possible

for theDayDifference method to mutate theate object referred bytherDate , despite the fact that the

parameter obayDifference IS a value parameter. It is not, however, posgstn@ayDifference to modify
value of the variable (actual parametahgrDate as such.

154

In the web-version we present the source progrdnmtehe example is great details.

The insight obtained in this section is summariasdollows.

In case a reference is passed as an argumenataeaparameter, the referenced object can be
modified through the formal parameter

Exercise 5.3. Passing references as ref parameters

It is recommended that you use the web editiom@fmaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In theDpate andpPerson classes of the corresponding slide we pass aereferas value parameter to
methodDayDifference in classDate . Be sure to understand this. Read albeluparameters later in this
lecture.

Assume in this exercise that the formal parameber in Date.DayDifference is passed by reference
(as a C#ef parameter). Similarly, the actual parametesOfBirth ~ to DayDifference should (of
course) be passed by reference (using the keyworih front of the actual parameter).

What will be the difference caused by this prograodification.

Test-drive the program with a suitable client tofyeyour answer.

20.5. Passing structs as value parameters

Lecture 5 - slide 22

This section is parallel to Section 20.4. In thest®n we pass a struct value (as opposed to tanesof a
class) as a value parameter. Our finding is tisatwet value (the birthday value of typete) cannot be
mutated from th®ayDifference method of strucbate .

If we assume thatate is a struct instead of a class, the expression

someDate.DayDifference(otherDate)
passes a copy ofherDate to DayDifference . The copy is discarded when we return frosgDifference
If DayDifference mutates the value of its parameter, only the loogl is affected. The value of
otherDate IS not!

In the web-version we will discuss the same exaraplm the web-version of Section 20.4.

Notice the following observation.

There is a good fit between use of value typescalieby-value parameter passing

155

If you wish the best possible fit (and no surprisesi should use value parameters with value types.use
of structDate instead of clasbate also alleviates the privacy leak problem, as gairdut in Section 16.5.
See also Exercise 4.3.

Exercise 5.4. Passing struct values as ref parameters
This exercise corresponds to the similar exeraisthe previous slide.

In theDate struct and theerson class of this slide we pass a struct value \&ue parameter to the
methodbDayDifference

Assume in this exercise that the formal paramgber in Date.DayDifference is passed by reference (a
C#ref parameter). Similarly, the actual parametesOfBirth to DayDifference should (of course) be
passed by reference (using the keywerdin front of the actual parameter).

What will be the difference caused by this prograodification. You should compare with the versian o
on the slide.

Test-drive the program with a suitable client toifyeyour answer.

20.6. Reference Parameters

Lecture 5 - slide 23

In C, call-by-reference parameters are obtainepasging pointers as value parameters. Reference
parameters in C# aret the same as call-by-reference parameters in C.

Reference parameters in C# are modeled afieparameters in Pascal. Stated briefly, a forma&reszfce
parameter in C# is an alias of the corresponditgghparameter. Therefore, the actual parametet baua
variable.

Reference parameters can be used for both in@ntd@utput from methous

Reference parameters can be used to establishaditer names (aliases) of already existing varmabliée
alternative names are used as formal parametece &mablished, such parameters can be used for bot
input and output purposes relative to a method Tak established aliases exist until the methadms to
its caller.

If we - in C# - only are interested in using refere parameters for output purposes we shoulduise
parameters, see Section 20.7.

Reference parameters work in the following way:

« The corresponding argument must be a variableitandst have a value
« The types of the formal parameter and the argumeist be identical
« The formal parameter becomes another name (an afitse argument

156

« The actual parameter must be prefixed with the kegwef

In the first item it is stated that an actual refere parameter (which is a variable) must havduwe\zefore it
is passed. In C#, this is callddinite assignment.

As described in the fourth item, and as a novetrdmution of C#, it is necessary to mark both folauad
actual parameter with thref keyword. In most other languages, only the forpsahmeter is marked. This
may seem to be a little detail, but it implies tihas easy to spot reference parameters in a rdataling
form. This is very useful.

We show an example of reference parameters in &mg80.10: Swapping the values of two variabless Thi
is the example used over and over, when referemeaeters are explained.

using System;

public class A{
private int a, b, c;

public A(){
a=1b=2,c=3;
}

public void Swap(ref int vl, ref int v2){
int tenp;
tenp = vl; vl = v2;, v2 = tenp;

}

public override string ToString(){
return String.Format("{0} {1} {2}", a, b, c);
}

public void Go(){
Console.WriteLine("{0}", this);
Swap(ref a, ref b);Swap(ref b, ref c);
Console.WriteLine("{0}", this);

}

public static void Main(){
new A().Go();

Program 20.10 The class A with a Swap method.

In Program 20.10 we instantiate the class itsédfs@®) in themain method. We send the parameterless
message&o to this object. Hereby we take the transition frafistatic situation” to an "object situation”.
Without this transition it would not have been pbigsto use the instance variable®, andc in classa.
(They should instead have been static variablds)Gé method pattern illustrated here is inspired from
[Bishop04].

123
231
Listing 20.11 Output of class A with Svap.

157

It seems natural to support more than just valuarpaters in an ambitious, real-world programming
language. But it is worth a consideration how muahd in which situations - to use it. We will diss this
in some details in Section 20.8.

20.7. Output Parameters

Lecture 5 - slide 24

Output parameters in C# are reference parametedsamy for output purposes.

Output parameters are used for output from methblds method is supposed to assign values to
output parameters.

Here follows the detailed rules of output paramp#essing:

» The corresponding argument must be a variable

« The corresponding argument needs not to have a ealieforehand

« The formal parameter should/must be assigned bynttbod

« The formal parameter becomes another name (an afittse argument
« The types of the formal parameter and the argumeist be identical

« The actual parameter must be prefixed with the keghwut

Notice the second item: It is not necessary thagttiual parameter has a value before the cdticinthe
purpose of theut parameter is exactly to (re)initialize the actuatl parameters. The method must ensure
that the output parameter has a value (is definéisigned) when it returns.

In Program 20.1PoAdd returns the sum of the parametersv2, andv3 in the last parameter The
corresponding actual parameteis initialized by the call t@oAdd in line 21 of Program 20.12. | wrote
DoAdd to demonstrate output parameters. Had it not farethis purpose, | would have returned the sum
from DoAdd. In that wayboAdd should be called assult = DoAdd(v1, v2, v3) . In this case | would de-
emphasize the imperative nature by calling it pjast These changes describe a transition from an
imperative to a more functional programming style.

using System;

public class A{
private int a, b, c;
private int r;

public A(){
a=1,b=2;c=3;
}

public void DoAdd(int v1, int v2, int v3, out int v){
v = vl + v2 + Vv3;

}

public override string ToString(){
return String.Format("{0} {1} {2}. {3}", a, b, c,r);
}

158

public void Go(){
Console.WriteLine("{0}", this);
DoAdd(a, b, c, out r);
Console.WriteLine("{0}", this);

}

public static void Main(){
new A().Go();

Program 20.12 The class A with a DoAdd method.

123.0
123. 6

Listing 20.13 Output of class A with DoAdd.

In Program 20.14 of Section 20.9 we show a vanaRrogram 20.12, which allows for an arbitrary rtoem
of actual parameters. This variant of the prograimtroduced with the purpose of illustrating paesen
arrays.

20.8. Use of ref and out parameters in OOP

Lecture 5 - slide 25

It is interesting to wonder about the fit betwedreot-oriented programming and the use of reference
parameters. Therefore the following question isvaht.

How useful are reference and output parameters in object-oriented programming?

Output parameters are useful in case we program@taan which need to produce two or more pieces of
output. In such a situation, we face the followpassibilities:

« Use a number afut parameters

« Mutate objects passed by value parameters

« Aggregate the pieces of output in an object andmet

« Assign the output to instance variables which sgbeetly can be accessed by the caller

Let us first face the first item. If a (public) rhed needs to pass back (to its caller) more tharpeete of
output, which are only loosely related to each gtlieénay be the best solution to use one or mate o
parameters for these. It should be consideredgs @ae of the results back véaurn

In a language withef andout parameters it is confusing to pass results oataihod via references passed
by value (call-by-value). Useraf or anout parameter!

If the pieces of output are related - if they tbgetform a concept - it may be reasonable to agdedtye
pieces of output in a new struct or a new classin&tance of the new type can then be returnedetiar n.

159

Assignment of multiple pieces of output to instamagables in the enclosing class, and subsequerta of
these via properties, may compromise the origifed iof the class to which the method belongs. }t afso
pollute the class. Therefore, it should be avoided.

ref andout parameters are relatively rare in the C# stantlanaties

In summary, we see that there are several alteasito the use of reference and output parametens |
object-oriented context.

Referencer(ef) and outputdut) parameters are only used in very few methodseénNET framework
libraries. In general, it seems to be the caserétiatence parameters and output parameters acemnioal to
object-oriented programming.

20.9. Parameter Arrays

Lecture 5 - slide 26

In the previous sections we have discussed vagatameter passing techniques. They were all retatdue
meaning of the formal parameter relative to theesponding actual parameter (and the argumenteteriv
from the actual parameter).

In this section we will concentrate on ther ameter correspondence mechanism. In the parameter passing
discussed until now there has been a one-to-omespmmdence between formal parameters and actual
parameters. In this section we will study a par@mpgassing technique where zero, one, or morelactua
parameters correspond to a single formal parameter.

A parameter array is a formal parameter of arrgg tyhich can absorb zero, one or more actual
parameters

A formal parameter list in C# starts with a numbkvalue/reference/output parameters for whichehmust
exist corresponding actual parameters in a methtiebtion. Following these parameters there caa be
single parameter array, which collects all remajranguments in an array.

With parameter arrays, there can be arbitrary naatyal parameters following the 'ordinary paransstéut
not arbitrary few. There must always be so manyagiarameters that all the 'required’ formal patans
(before a possible parameter arrays) are associated

The following rules pertain to use of parameteaysrn C#:

- Elements of a parameter array are passed by value

- A parameter array must be the last parameter ifotineal parameter list

« The formal parameter must be a single dimensiamay a

« Arguments that follow ordinary value, ref and oatgmeters are put into a newly allocated array
object

« Arguments are implicitly converted to the elemgpiet of the array

160

It is easiest to understand parameter arrays froaxample, such as Program 20.14. This is a vasfant
Program 20.12, which we have already discusseeédtiédh 20.7. Th®oAdd method takes one required
parameter (which is an output parameter). As thgahout parameter in line 24, 27, and 30 we use th
instance variable. Following this parameter comes the parametey aa#ediv (for input values). All
actual parameters after the first one must bep#ity , and they are collected and inserted into an érteg
array, and made availableoAdd as thant arrayiv .

In Program 20.14 theoAdd messages to the current object add various comntriiseof the instance
variablesa, b, andc together. The result is assigned to the out paemeéDoAdd.
using System;

public class A{
private int a, b, c;

private intr;
public A({
a=1b=2,c=3;
}
public void DoAdd(out int v, paranms int[] ivVv){
v = 0;
foreach(int i in iv)
Vo += 0
}
public override string ToString(){
return String.Format("{0} {1} {2}. {3}", a, b, c, 1);
}

public void Go(){
Console.WriteLine("{0}", this);

DoAdd(out r, a, b, c);
Console.WriteLine("{0}", this);

DoAdd(out r, a, b, c, a, b, c);
Console.WriteLine("{0}", this);

DoAdd(out r);
Console.WriteLine("{0}", this);
}

public static void Main(){
new A().Go();

Program 20.14 The class A with a DoAdd method - both out
and params.

The output of Program 20.14 is shown in Listingl30We have emphasized the value after eaciboAdd
message. Be sure that you are able to understanmhthmeter passing details.

123. O
123. 6
123. 1
123. 0

2

Listing 20.15 Output of class A with DoAdd - both out and
params.

161

The type constraint on the actual parameters camim®ved' by having a formal parameter array péty
Object[]

When we studied nullable types in Section 14.9 m@entered theitSequence class. In line 5 of Program
14.17 you can see a parameter array of the cotstritdease notice the flexibility it gives in the
construction of nevntSequence objects. See also Program 14.19 wheBequence is instantiated with
use of the mentioned constructor.

20.10. Extension Methods

Lecture 5 - slide 27

In C#3.0 an extension method defines an instan¢baden an existing class without altering the dition
of the class. The use of extension methods is coentif you do not have access to the source obtiee
class, in which we want to have a new instance ogeth

Let us look at an example in order to illustrate thechanisms behind the class extension. We ugeadrno
11.3 as the starting point. In line 26-31 of ProgrkL.3 it can be observed that we have inlinedutation
of distances between pairs of points. It would diigbethe program if we had callebistanceTo(q)

instead of

Math.Sqrt((p.x - q.X) * (p.X - q.X) +
(Py-ay)* (p.y - a.y));

to find the distance between to poiptandg. We will now assume that the instance methstinceTo can
be used on an instance of classt . Program 20.16 below shows the embellishment ofgfam 11.3.

/I A client of Point that instantiates three points and calculates
/l the circumference of the implied triangle.

using System;
public class Application{
public static void Main(){
Point p1 = PromptPoint("Enter first point"),

p2 = PromptPoint("Enter second point"),
p3 = PromptPoint("Enter third point");

double p1p2Dist = pl. Di stanceTo(p2),

p2p3Dist = p2. Di st anceTo(p3),

p3plDist = p3. Di stanceTo(pl);
double circumference = p1p2Dist + p2p3Dist + p3 plDist;
Console.WriteLine("Circumference: {0} {1} {2}: {3},

pl, p2, p3, circumference);

}

public static Point PromptPoint(string prompt){
Console.WriteLine(prompt);
double x = double.Parse(Console.ReadLine()),
y = double.Parse(Console.ReadLine());
return new Point(x,y, Point.PointRepresentation .Rectangular);

162

Program 20.16 A Client of class Point which uses an extension
method DistanceTo.

It is possible to extend classint with the instance methanistanceTo without altering the source code of
classpoint . In a static class, such as in clasitExtensions ~ shown below in Program 20.17, we define
theDistanceTo method. It is defined as a static method withrst fiarameter prefixed with the keyword

t hi s. The C#3.0 compiler is able to translate an exgiwedikeq.DistanceTo(q) to
PointExtensions.DistanceTo(p,q) . This is the noteworthy "trick" behind extensioethods.

using System;
public static class PointExtensions{
public static double Di st anceTo(thi s Point pl, Point p2){

return Math.Sqrt((p1.X - p2.X) * (p1.X - p2.X) +
(PL.Y - p2.Y) * (p1.Y - p2.Y)) ;

Program 20.17 The static class PointExtensions.

In summary, an extension method

» extends the type of the first parameter

- is defined as a static method witkha maodifier on the first parameter
- must be defined in a static class

< cannot access private instance variables in trendgd class

« is called by - behind the scene - translating ¢albof the static method

Exercise 5.5. Extending struct Double

At the accompanying page we have seen how elass can be extended externally with the method
DistanceTo . This is arextension method.

If you study the methodistanceTo you will see that we use the squareroot funatiath.Sqrt , defined
statically in classath . And we could/should have used a simfiauare function had it been available.

It is remarkable that C# 3.0 allows us to exteraddfnucts behind the primitive types, suclbasle and
Int32 .

Write a static class that extends stiaible with the two extension methodsrt andsquare .

Afterwards, rewrite the methamstanceTo such that it makes use of the new instance metinastsuct
Double .

163

20.11. Methods versus Properties versus Indexers

Lecture 5 - slide 28

Here at the end of the chapter about methods weswitmarize some rule of thumbs for choosing betwee
properties, indexers and methods in a class:

« Properties

« Forreading and extracting of individual instantads variables

« For writing and assigning individual instance/claasables

« For other kinds of data access that does not ievinfire consuming computations
« Indexers

» Like properties

« Used when it is natural to access data by indeaesay notation - instead of simple

names
» Used as surface notation for associative arrays
e Methods

« For all other operations that encapsulate calaraton the data of the class

20.12. References

[Bishop04] Judith Bishop and Nigel HorspoG¥ Concisely. Pearson. Addison Wesley, 20I

164

21. Overloaded Operators

In this section we will see how we can use the aipes of the C# language on instances of our oassels,
or on values of our own structs.

21.1. Why operator overloading?

Lecture 6 - slide 2

In this section we will describe how to program i@tiens that can be called in expressions that makeof
the conventional operators (such+ag, >>, and!) of C#. Thus, in a client of a class C, we wilbyide for
notation such asc1 + ac2 * ac3 instead OkCl. Pl us(aC2. Ml t (aC3)) or (with use of class methods)
C. Plus(aCl, C Milt(aC2,aC3)).

Use of operators provides for substantial notatiooavenience in certain classes

When operator notation is natural for objects dues of type C, clients of C can often be prograchmuih
a more dense and readable notation. The exampliegram 21.1 (only on web) provides additional
motivation. The classper at or sOr Not , (see Program 21.1 on the web) together withsssla nt (see
Program 21.2 on the web) motivate the use of opey@t the context of a complete class.

21.2. Overloadable operators in C#

Lecture 6 - slide 3
We have already once studied the operator tallz#tpfee Section 6.7. In Table 21.1 below we show a

version of the operator table of C# (with operggority and associativity) in which we have emphed all
the operators that can be overloaded in C#.

165

Level |Category Operators
14 |Primary

13 |Unary + - ! ~ HX --X true false
12 |Multiplicative * / %

11 Additive +

10 Shift < >
Relational ancl

9 . < <= > >=
Type testing

8 Equality == I=
Logical/bitwise

&

K And
Logical/bitwise,

6
Xor

5 Logical/bitwise |
Or

4 Conditional
And

3 Conditional Or
2 Conditional

1 Assignment

Table 21.1 The operator priority table of C#. The operatorattban be
overloaded directly are emphasized.

Associativity
left to right

left to right
left to right
left to right
left to right

left to right
left to right

left to right
left to right
left to right

left to right

left to right
right to left

right to left

All the gray operators in Table 21.1 cannot be lmasted directly. Many of them can, however, be
overloaded indirectly, or defined by other means. WMl now discuss how this can be done.

A notation similar ta[x] (array indexing) can be obtained by use of indexaze Chapter 19.

The conditional (short circuited) operatagsand| | can be overloaded indirectly by overloading the
operators and| . In addition, the operators calledue andf al se must also be providedr ue(x) tells if x

counts as boolean trueal se(x) tells if x counts as boolean false. (Notice thdelongs to the type - class

or struct - in which we have defined the operatdrkg operator&s and| | are defined by the following

equivalences:

e x & y lisequivalenttofalse(x) ? x : (x &y)
e x || y isequivalenttotrue(x) ? x : (x|)

Thus, wherx && y is encountered we first evaluate the expressiore(x) . If the value idrue, x is
returned. If it isfalse y is also evaluated, and the valuexofs y becomes & y. A similar explanation

applies forx || .

166

You can define the unary ue andf al se operators in your own classes, and hereby coiftitod object is
considered to biue or falsein some boolean contexts. If you define one ofithgou will also have to
define the other. Recall that an expression ofdgh@ a ? b : ¢ uses the conditional operatorwith
the meaning if a then b el se c.

All the assignment operators, apart from the basgignment operater are implicitly overloadable. As an
example, the assignment operatselis implicitly overloaded when we explicitly ovedd the multiplication
operator:.

The type cast operatom) x can in reality also be overloaded. In a givenlag/ou can define explicit
and/or implicit conversion operators that convestand from C. We will see an example of an exptige
conversion in Program 21.3.

21.3. An example of overloaded operators: Interval

Lecture 6 - slide 4

We will now study the typent erval . This type allows us to represent and operatei@mials of integers.
Thelnterval type makes a good case for illustration of ovetbmhoperators. We program all interval
operations in a functional style. We want interval®e non-mutable, and the type is therefore jprogned
as a struct.

An interval is characterized by two integer endhpelirom andto. The interval from - to] denotes the

interval that starts ifrom and goes t¢o. The notationffom - to] is an informal notation which we use to
explain the the idea of intervals. In a C# progrtm,interval from - to] is denoted by the expressioew
Interval (fromto). Notice thafromis not necessarily less tham The following are concrete examples:
[1 - 5] represents the sequence 1, 2, 3, 4, apd 5. 1] represents the sequence 5, 4, 3, 2, and 1. These
two sequences are different.

In Program 21.3 we see the strueter val . The private instance variabliesomandt o represent the
interval in a simple and straightforward way, ane tonstructor is also simple. Just after the cootir
there are two properties;omandTo, that access the end points of the interval. i;arsion of the type it
is not possible to construct an empty interval. Wdee already dealt with this weakness in Sectiod ($ee
Program 16.7 versus Program 16.8) in the contefetadbry methods.

After the two properties we have highlighted a nemtif overloaded operators. These are our maireisite
in this section. Notice the syntax for definitiohtioe operators. There are two definitions of theperator.
One of the formani nterval + i and one of the form + anl nterval . Both have the same meaning,
namely addition of to both end-points. Thus - 5] + 3and3 + [1 - 5] are both equal to the interval
[4 - 8].

In similar ways we define multiplication of intefgaand integers. We also define subtraction oh¢egier
from an interval (but not the other way around)eBhift operators< and>> provide nice notations for
moving one of the end-points of an interval. Thus; 5] >> 3 is equal to the intervgh - 8].

Finally, the unary prefix operatorreverses an interval (internally, by making aeinal with swapped end-
points). Thusi[1 - 5] is equal to the intervab - 1].

The private clasent er val Enuner at or (Shown only in the web version) and the metbedenunrer at or
make it possible to traverse an interval in a carer way with use ofor each. Interval traversal is what

167

makes intervals useful. This is illustrated in Rerg 21.4. We will, in great details, discuss
I nt erval Enurrer at or later in this material, see Section 31.6 - inipakar Program 31.9.

1 wusing System
2 using System Col | ecti ons;

public struct Interval{

public Interval (int from int to){

8
4
5
6 private readonly int from to;
7
8
9 this.from= from

10 this.to = to;

1}

12

13 public int Fron{

14 get {return from}

15 }

16

17 public int To{

18 get {return to;}

19

20

21 public int Length{

22 get {return Math. Abs(to - from + 1;}

23 }

24

25 public static Interval operator +(Interval i, int j){
26 return new Interval (i.From+ j, i.To + j);

27 '}

28

29 public static Interval operator +(int j, Interval i){
30 return new Interval (i.From+ j, i.To + j);

Sl)

32

33 public static Interval operator >>(Interval i, int j){
34 return new Interval (i.From i.To + j);

35 }

36

37 public static Interval operator <<(Interval i, int j){
38 return new Interval (i.From+ j, i.To);

39 }

40

41 public static Interval operator *(Interval i, int j){
42 return new Interval (i.From* j, i.To * j);

43 }

44

45 public static Interval operator *(int j, Interval i){
46 return new Interval (i.From* j, i.To * j);

47 1}

48

49 public static Interval operator -(Interval i, int j){
50 return new Interval (i.From- j, i.To - j);

Si 1}

52

53 public static Interval operator !(Interval i){

54 return new Interval (i.To, i.From;

88 |}

56

57 public static explicit operator int[] (Interval i){
58 int[] res = new int[i.Length];

59 for (int j =0; j <i.Length; j++) res[j] =i[j];
60 return res;

61 }

168

private class Interval Enunerator: | Enunerator{
[/ Details not shown in this version

}

publ i c | Enumerat or Get Enunmerator (){
return new | nterval Enunerator (this);

}

Program 21.3 The struct Interval

Take a look at Program 21.4 in which we use inlenBased on the constructed intervals andi v2 we
write expressions that involve intervals. Theseadireighlighted in Program 21.4. Let me explaia th
expression (3 + liv2 * 2). When we evaluate this expression we adhere toal@recedence rules and
normal association rules of the operators. We dacimange these rules. Therefore, we first evaluate,
which is[5 - 2]. Next we evaluatei v2 * 2, which is[10 - 4]. To this interval we add 3. This gives the
interval[13 - 7]. Finally we reverse this interval. The final vala¢7 - 13].

Also emphasized in Program 21.3 we sh@®&{ 0] andi v3[i v3. Lengt h-1] . These expressions use interval
indexers. In Exercise 6.1 it is an exercise to @oythis indexer.Emphasized wiihue in Program 21.3 and
Program 21.4 we show how to program and use arncéxgpe cast fromnterval toint[].You should
follow the evaluations of all highlighted expressan Program 21.4 and compare your results wih th
program output in Listing 21.5.

usi ng System
public class app {
public static void Min(){

Interval ivl = new Interval (17, 14),
iv2 = new Interval (2,5),
iv3;

foreach(int k in (3 + ivl - 2)){
Console. Wite("{0,4}", k);

}
Consol e. Wi teLine();

foreach(int k in (3 + liv2 * 2)){
Console. Wite("{0,4}", k);

}
Consol e. Wi teLine();

ivd =1(3 +liv2 * 3) >> 2 ;
Console. WiteLine("First and last in iv3: {0}, {1}",
iv3[0], iv3[iv3.Length-1]);

int[] arr = (int[])ivVS3;
foreach(int j in arr){

Consol e. Wite("{0,4}", j);
}

Program 21.4 A client program of struct Interve

169

15 16 17 18
7 8 9 10 11 12 13
First and last in iv3: 9, 20
9 10 11 12 13 14 15 16 17 18 19 20

Listing 21.5 Output from the interval applicatio

In Program 21.6 we show yet another example ofraragiing overloaded operators. We overlead =, <,
and>. This example brings us back to the playing cédscwhich we have discussed already in Program
12.7 of Section 12.6 and Program 14.3 of Sectio.14

Emphasized with colors in Program 21.6 we showattpes that compare two cards. Notice, as above, tha
the operator definitions always are static. Alstagothat if we define= we also have to define- . The==
operator is defined via thegual s methods, which is redefined in class d such that it provides value
comparison otar d instances. If we redefirejual s we must also redefinet HashCode. All together, a lot
of work! Similarly, if we define<= we have also have to define .

Please notice that our redefinitiongafual s in Program 21.6 is too simple for a real-life manm. In Section
28.16 we will see the general pattern for redeéiniof theeEqual s instance method.

usi ng System

public enum CardSuite { Spades, Hearts, C ubs, D anponds };

public enum Cardvalue { Ace = 1, Two = 2, Three = 3, Four = 4, Fi
Six =6, Seven =7, Eight =8, Nine =9,
Jack = 11, Queen = 12, King = 13};

public class Card{

private CardSuite suite;
private CardVal ue val ue;

/1 Sonme nethods are not shown in this version

public override bool Equal s(Object other){
return (this.suite == ((Card)other).suite) &%
(this.value == ((Card)other).val ue);

}

public override int GetHashCode(){
return (int)suite ~ (int)val ue;
}

public static bool operator ==(Card cl, Card c2){
return cl. Equal s(c2);

}

public static bool operator !=(Card cl1, Card c2){
return !(cl. Equal s(c2));
}

public static bool operator <(Card cl, Card c2){
bool res;
if (cl.suite < c2.suite)
res = true;
else if (cl.suite == c2.suite)
res = (cl.value < c2.val ue);
el se res = fal se;
return res;

170

}

public static bool operator >(Card cl1l, Card c2){
return !'(cl < c2) & !(cl == c2);
}
}

Program 21.6 The class PlayingCard with relational
operators.

The details left out in line 14 of Program 21.6 tanseen in the web-version of the paper.

Exercise 6.1. Interval indexer

It is recommended that you use the web editiom@®iaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

Thel nterval type represents an oriented intervalojm- t o] of integers. We use theit erval example
to illustrate the overloading of operators. If yoave not already done so, read about the idea dnen
structi nt erval in the course teaching material.

In the client of structnt erval we use an indexer to access elements of the alté&ror some interval,
the expression[0] should access the omvalue ofi , andi [i . Lengt h- 1] should access the-value of
i

Where, precisely, is the indexer used in the goleEmt class?

Add the indexer to the strucht er val (getter only) which accesses element numifer<=j <=
i . Lengt h) of an interval .

Hint: Be careful to take the orientation of the intenm&b account.

Does it make sense to program a setter of thisxar@e

Exercise 6.2. An interval overlap operation

It is recommended that you use the web editiom®iaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In this exercise we continue our work on stnugater val , which we have used to illustrate overloaded
operators in C#.

Add ani nt eral operation that finds the overlap between two wreks: Your starting point should be the
struct Interval. In the version of structt er val , provided as starting point for this exercisegmaéls may
be empty.

Please analyze the possible overlappings betwesimtervals. There are several cases that need
consideration. The fact thatit er val is oriented may turn out to be a complicatingdaat the solution.
Feel free to ignore the orientation of intervaly@ur solution to this exercise.

Which kind of operation will you chose for the olegaping operation in C# (method, property, indexer,

171

operator)?
Before you program the operation in C# you shoelsigh thesignatureof the operation.

Program the operation in C#, and test your solutiamni nt erval client program. You may chose to
revise the Interval client program from the teaghimaterial.

21.4. Some details of operator overloading

Lecture 6 - slide 5

Below we summarize the syntax of operator definitwhich overloads a predefined operators symbol.

public static return-type operator symnbol (formal-par-1ist)({
body- of - oper at or

}

Syntax 21.1 The C# syntax for definition of an overloaded
operator.

There are many detailed rules that must be obsaeviied we overload the predefined operator symbols.
Some of them were mentioned in Section 21.3. Othr$rought up below.

» Operators must be public and static
« One or two formal parameters must occur, correspgrtd unary and binary operators
« At least one of the parameters must be of the typehich the operator belongs
« Only value parameters apply
« Some operators must be defined in pairs (eithee moroth):
e == and = < and > <= and >=
« The special unary boolean operatarge andf al se define when an object is playing the role as
true or falsein relation to the conditional logical operators
« Overloading the binary operatop causes automatic overloading of the assignmematpep=

This concludes our coverage of operator overloadilogice that we have not discussed all detaikhigf
subject. You should consult a C# reference marasdUufl coverage.

172

22. Delegates

In this chapter we will discuss the concept of gates. Seen in relation to similar, previous objented
programming languages (such as Java and C++)sthiséw topic. The inspiration comes from functiona
programming where functions diest class valueslf x is a first class value can be passed as parameter,
can be returned from functions, axdan be part of data structures. With the introdncof delegates,
methods become first class values in C#. We wlane this "exciting world be new opportunities'tire
next few sections.

22.1. Delegates in C#

Lecture 6 - slide 7

The idea of a delegate in a nutshell is as follows:

A delegate is a type the values of which consishethods

Delegates allow us to work with variables and paans that contain methods

Thus, a delegate in C# defines a type, in the seayeas a class defines a type. A delegate reflbets
signature of a set of methods, not including théhod names, however. A delegate is a referenceityQe.
It means that values of a delegate type are aatesseeferences, in the same way as an objectlaiss
always is accessed via a reference. In particular, is a possible delegate value.

In Program 22.hummeri cFuncti on is the name of a new type. This is the type otfioms that accept a
doubl e and returns aoubl e. The static methogr i nt Tabl eCOf Funct i on takes aunmeri cFunction f as

first parametereri nt Tabl eOf Funct i on prints a table of values within a given rangeérom t o] and with a
given granularityst ep. In themai n method we show a number of activation®afnt Tabl eOf Funct i on.

The first three activations generate tables oftak-known functions log, sinus, and abs. Noticat tthese
functions belong to theumrer i cFuncti on delegate, because they are all are functions fikami e to

doubl e. The last activation generates a table of the oglthbi ¢, as we have defined it in Program 22.1. It
is again crucial thatubi ¢ is a function frontoubl e todoubl e. If Cubic had another signature, such @s

-> int Ordoubl e x double -> doubl e, it would not fit with theNuner i cFuncti on delegate.

usi ng System
public class Application {
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static void PrintTabl e Functi on(Nuneri cFunction f,
string fnane,
doubl e from double to,
doubl e step){
doubl e d;
for(d = from d <=to; d += step){
Consol e. WiteLine("{0,10}({1,-4:F3}) = {2}", fnane, d, f(d));
}

Consol e. Wi teLine();

173

public static doubl e Cubic(double d){
return d*d*d,

}

public static void Min(){
Pri nt Tabl eOf Functi on(Mat h. Log, "log", O
Pri nt Tabl eOf Functi on(Math. Sin, "sin", 0.0,
Pri nt Tabl eOf Functi on(Vat h. Abs, "abs", -1.0, 1.0, 0.1);

Pri nt Tabl eOf Functi on(Cubic, "cubic", 1.0, 5.0, 0.5);

/1 Equivalent to previous:
Pri nt Tabl e Functi on(del egate (double d){return d*d*d;},
"cubic", 1.0, 5.0, 0.5);

Program 22.1 A Delegate of simple numeric functio

In line 31 of Program 22.1 notice theonymous function

del egate (double d){return d*d*d;}

The function has no name - it is anonymous. Thetfan is equivalent with the methadbi c in line 20-22,
apart from the fact that it has no name. It is wotghy that weon the flyare able to write an expression the
value of which is a method that belongs to thegheke typenuner i cFuncti on. In C#3.0 the notation for
anonymous functions has been streamlined to tHandfda expressions. We will touch on this topic in
Section 22.4. We outline the output of Program 22 listing 22.2 (only on web). We do not showtak
output lines, however.

Things get even more interesting in Program 22h@. flinction to watch isonpose. It accepts, as input
parameters two numeric functionsndg, and it returns (another) numeric function. Thesids to return the
functionf o g. This is the function that returns f(g(x)) whemsigiven x as input.

Notice the expressiotorpose(Cubi c, M nus3) in Mai n. This is a function that we pass as input to the

Pri nt Tabl eCf Funct i on, which we already have discussed. In order to @@ihe functiorconpose(Cubi c,
M nus3) we watch the program output in Listing 22.4. Péeaerify for yourself thatonpose(Cubi c,

M nus3) is the function which subtracts 3 from its inpand thereafter calculates the cubic function oh tha
(reduced) number.

using System
public class Application {
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static NunericFuncti on Conpose
(Nureri cFunction f, NumericFunction g){

return del egate(double d){return f(g(d));};
}

public static void PrintTabl eXf Functi on
(Nureri cFunction f, string fnane,
doubl e from double to, double step){
doubl e d;

for(d = from d <=to; d += step){

174

Consol e. WiteLine("{0,35}({1,-4:F3}) = {2}", fnane, d, f(d));

}
Consol e. Wi teLine();

}

public static doubl e Square(double d){
return d*d;

}

public static doubl e Cubic(double d){
return d*d*d,

}

public static double M nus3(double d){
return d-3;

}

public static void Min(){
Pri nt Tabl eOf Functi on(Conpose(Cubi c, M nus3),
"Cubic of Mnus3", 0.0, 5.0, 1.0);

Pri nt Tabl eCf Functi on(
Conmpose(Squar e, del egate(doubl e d){
returnd >2? -d: 0;}),
"Square of if d>2 then -d else 0", 0.0, 5.0, 1.0);

Program 22.3 The static method Compose in class
Application.

of M nus3(0, 000)
of M nus3(1, 000)
of M nus3(2, 000)
of M nus3(3, 000)
of M nus3(4, 000)
of M nus3(5, 000)

Cubi
Cubi
Cubi
Cubi
Cubi
Cubi

O0O000O0
OO

Square of if d>2 then -d el se 0(0, 000)
Square of if d>2 then -d el se 0(1, 000)
Square of if d>2 then -d el se 0(2,000)

if

f

f

© O oo

Squar e of d>2 then -d el se 0(3,000)
Squar e of d>2 then -d el se 0(4,000)
Squar e of d>2 then -d el se 0(5,000)

16
25

Listing 22.4 Output from the Compose delegate
program.

What we have shown above gives you the flavor né€fional programming. In functional programming we
often generate new functions based on existingtioms, like we did with use afonpose.

Delegates make it possible to approach the furatiprogramming style

Methods can be passed as parameters to, and basmesults from other methods

Exercise 6.3. Finding and sorting elements in an array

In this exercise we will work with searching andtsw in arrays. To be concrete, we work on anyaofa
typePoi nt , whereroi nt is the type we have been programming in earliereses.

175

Via this exercise you are supposed to ldaw to pass a delegate to a metisodh asi nd andsort . The
purpose of passing a delegateitad is to specifywhich point we are looking for

Make an array ofoi nt objects. You can, for instance, use this versiariass Point. You can also use a
version that you wrote as solution to one of the/mus exercises.

Use the static metha® st em Array. Fi nd to locate the first point in the array that sadisfthe condition:
The sum of the x and y coordinates is (very closedro

The solution involves the programming of an appedprdelegate in C#. The delegate must be at
predicate a method that takesrai nt as parameter and returns a boolean value.

Next, in this exercise, sort the list of pointsuse of one of the statBort methods irsyst em Arr ay.

Take a look at theort methods irsyst em Array. There is an overwhelming amount of these! We will
use the one that takesamar i son delegateconpari son<T>, as the second parameter. Please find this
method in your documentation browser. Why do weldrniegass @onpari son predicate to theor t
method?

Conpar i son<Poi nt > is a delegate that compares two points psagndp2. Pass an actual delegate
parameter t&ort in which

pl <= p2 if and only if pl.X + pl.Y <= p2. X + p2.Y

Please notice that a comparsion between pl andup2return an integer. A negative integer mearis tha
plis less than p2. Zero means that pl is equ#l.té positive integer means that pl is greaten {ia

Test run you program. Is yomei nt array sorted in the way you excepts?

Exercise 6.4. How local are local variables and formal parameters
When we run the following program

usi ng System
public class Application {

publ i ¢ del egate doubl e Numeri cFunction(doubl e d);
static double factor = 4.0;

public static NumericFunction MakeMul tiplier(double factor){
return del egate(doubl e input){return input * factor;};
}

public static void Min(){
Nuneri cFunction f = MakeMultiplier(3.0);
doubl e input = 5.0;

Consol e. WiteLine("factor = {0}", factor);
Consol e. WiteLine("input = {0}", input);
Consol e. WiteLine("f is a generated function which multiplies its input with
factor");
Console. WiteLine("f(input) = input * factor = {0}", f(input));
}

}

176

we get this output

factor = 4

input =5
f is a generated function which multiplies its input with factor
f(input) = input * factor = 15

Explain!

22.2. Delegates that contain instance methods

Lecture 6 - slide 8

The delegates in Section 22.1 contained static adstiStatic methods are activated without a regivi
object. When we put an instance methoohto a delegate object, we need to find a wayrtwide the
receiver object om. We can, in principle, provide this object as pdithe activation of the delegate, or we
can aggregate it together with the method itselC# the latter solution has been chosen.

In Section 22.1 we show a relatively trivial classsenger . A messenger object stores a message of type
Message. Message IS a delegate, shown frurple. Thebosend method calls the method in the delegate.

using System
public del egate void Message(string txt);
public class Messenger{

private string sender;
private Message nmessage;

public Messenger(string sender) {
thi s. sender = sender;
message = nul | ;

}

public Messenger(string sender, Message alMessage)
thi s. sender = sender;
nessage = aMessage;

}

public void DoSend() {
nmessage(" Message from" + sender);

}
}

Program 22.5 A Messenger class and a Message
delegate.

The class is even more trivial. It just holds some state andnstance method callest hodA.

using System
public class A{

private int state;

177

public A(int i){
state = i;

}

public void MethodA(string s){
Consol e. WiteLine("A: {0}, {1}", state, s);
}
}

Program 22.6 A very simple class A with an instance metho
MethodA.

In the clasgppl i cati on we create some instances of clasghe clas®yppl i cati on is shown in Program
22.7. For now we only use one of the instances Wfe pass2. Met hodA to themessage (delegate)

parameter of theessenger constructor. With this we package both the ohjefdrred to bya2 and the
methodmet hodA together, and it now forms part of the state efibwwvessage object. When the message
object receives theoSend message it activates its delegate. From the oinuisting 22.8 we see that it is

in fact the instance methadet hod in the object2 (with st at e equal to 2), which is called via the delegate.

usi ng System
public class Application{

public static void Min(){

A al = new A(1),
a2 = new A(2),
a3 = new A(3);

Messenger m = new Messenger ("CS at AAU', a2. Met hodA);

m DoSend() ;

Program 22.7 An Application class which accesses an insta
method in class A.

A: 2, Message from CS at AAU
Listing 22.8 Output from Main of class Applicatio

So now we have seen that a delegate may contaibjaat, which consists of a receiver together &ith
method to be activated on the receiver.

In Section 22.3 below we will see that this is tihat whole story. A delegate may in fact contalisteof
such receiver/method pairs.

22.3. Multivalued delegates

Lecture 6 - slide 9
The classessenger in Program 22.9 is an extension of clesssenger in Program 22.5. The body of the

methodi nst al | Message shows that it is possible to add a method to egddé. Behind the scene, a delegate
is a list of methods (and, if necessary, receigeas). The- operator has been overloaded to work on

178

delegates. It adds a method to a delegate. Sigithe- operator has been overloaded to remove a method
from a delegate.

using System
public del egate void Message(string txt);
public class Messenger{

private string sender;
private Message nessage;

public Messenger(string sender) {
this.sender = sender;
message = nul | ;

}

public Messenger(string sender, Message aMessage)
this.sender = sender;
nessage = aMessage;

}

public void Install Message(Message nes){
thi s. nessage += nes;

}

public void Unlnstall Message(Message nes){
thi s. nessage -= nes;

}

public void DoSend() {
nmessage(" Message from" + sender);

Program 22.9 Install and Unlinstall message methods in the
Messenger class.

The class, which is used in Program 22.10, can be seendgrBm 22.6.

In the clasgppl i cati on in Program 22.10 instantiates a numbek objects and a singhessenger object.
The idea is to add and remove instance methodeteésenger object, and to activate the methods in the
Messenger object via thedoSend method in line 28-31 of Program 22.9.

In line 11 of Program 22.10 we install. Met hodA in m which already (from theessenger construction)
containsa2. AMet hod. In the program output in Listing 22.11 this igealed in the first two output lines.

Next we instalk3. AVet hod twice inm At this point in time the delegate ancontains four methods. This is
seen in the middle section of Listing 22.11.

Finally, we uninstalh3. AMet hod andal. Anet hod, leaving two methods in the delegate. This is shiowthe
last section of output in Listing 22.11.

179

usi ng System
public class Application{

public static void Min(){

A al = new A(1),
a2 = new A(2),
a3 = new A(3);

Messenger m = new Messenger ("CS at AAU', a2. Met hodA);
m | nst al | Message(al. Met hodA) ;

m DoSend() ;

Consol e. Wi teLine();

m | nst al | Message(a3. Met hodA) ;
m | nst al | Message(a3. Met hodA) ;
m DoSend() ;

Consol e. Wi teLine();

m Unl nst al | Message(a3. Met hodA) ;
m Unl nst al | Message(al. Met hodA) ;
m DoSend() ;

Program 22.10 An Application class

Message from CS at AAU
Message from CS at AAU

=N

Message from CS at AAU
Message from CS at AAU
Message from CS at AAU
Message from CS at AAU

CORCON g1

Message from CS at AAU
, Message from CS at AAU

>x> 2222 22X

w N

Listing 22.11 Output from Main of class Applicatio

22.4. Lambda Expressions

Lecture 6 - slide 10

A lambda expression is a value in a delegate Ypéegates were introduced in Section 22.1. Thetioota
of lambda expression adds some extra conveniertbe taotation of delegates. Instead of the syntax
delegate(formal-parameters){bodi@mbda expressions use the syrftaral-parameters> body => is an
operator in the language, see Section 6.7. Iti;acessary to give the types of the formal pararaéh a
lambda expression. In addition, the body of a laanéxpression may be an expression. In a delegate, t
body must be a statement block (a command).

By the way, why is it called lambda expressionsfhhdal is a Greek letter, like alphaand betar. The
notion of lambda expressions come from a branchathematics calle@mbda calculusin lambda

calculus lambda expressions, suclhas+1, is used as a notation for functions. The parictunctionix.
x+1 adds one to its argument x. Lambda expression lrexgght into early functional programming
language, most notably Lisp. Since then, "lambgaession” has been the name of those expressidol wh
evaluate to function values.

180

In Program 22.12 below we make list of five equevdlifunctions. The first one - line 12 - uses Clegate
notation, as already introduced in Section 22.E @t one - line 16 - is a lambda expression evritts
concise as possible. The three in between - lind4,3and 15 - illustrate the notational transiticmm
delegate notation to lambda notation.

using System
usi ng System Col | ecti ons. Generi c;

cl ass Progran{
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static void Min(){

Nurrer i cFunction[] equival ent Functions =
new Nuneri cFunction[]{
del egate (double d){return d*d*d;},
(double d) => {return d*d*d;},
(doubl e d) => d*d*d,
(d) => d*d*d,
d => d*d*d
b
f oreach(Numeri cFunction nf in equival ent Functi ons)
Consol e. WiteLi ne("NunericFunction({0}) = {1}", 5, nf(5));

Program 22.12 Five equivalent functions - from anonymous
method expressions to lambda expressions.

In Program 22.12 notice that we are able to orgafive functions in a data structure, here an airbge
19-12 we traverse the list of functions inaeach control structure. Each function is bound to teal
namenf , andnf (5) calls a given function on the number 5.

In Listing 22.13 (only on web) we show the outpliListing 22.13. As expected, all five calis(5) return
the number 125.

The items below summarize lambda expressions @tioel to delegates in C#:

« The body can be a statement block or an expression

« Uses the operater which has low priority and is right associative

« May involve implicit inference of parameter types

« Lambda expressions serve as syntactic sugar felegate expression

181

182

23. Events

The event concept is central in event-driven pnognang. Programs with graphical user interfaces are
event-driven. With the purpose of discussing evemtsvill see a simple example of a graphical user
interface at the end of this chapter.

23.1. Events

Lecture 6 - slide 12

In a program, aeventcontains some actions that must be carried ouhwleevent is triggers

In command-driven programming, the computer prortipgsuser for input. When the user is prompted the
program stops and waits a given program locationeia command is issued by the user, the program is
continued at the mentioned location. The progralhamalyze the command and carry out an appropriate
action.

In event-driven programming the program reactsvbat happens on the elements of the user intertace
more generallywhat happens on some selected state of the progkéran a given event is triggered the
actions that are associated with this particul@néeare carried out.

Inversion of control

Don't call us - we call you

The "Don't call us - we call you" idea is due te tibservation that the operations called by thateve
mechanism is not activated explicitly by our owogmam. The operations triggered by events areccalfe
the system, such as the graphical user interfaceework. This is sometimes referred toragrsion of
control.

Below, we compare operations (such as methodsgearts.

+ Event
» Belongsto aclass
- Contains one or more operations, which are calleelhvthe event igiggered
» The operations in the event aaled implicitly
« Operation
« Belongs to a class
« Iscalled explicitly- directly or indirectly - by other operations

In the following sections we will describe the everechanism in C#. Fortunately, we have alreadyemad
the preparations for this in Chapter 22, becausevant can be modelled as a variable of a delaégage

183

23.2. Events in C#

Lecture 6 - slide 13

In C# an event in some class C is a variable aflegate type in C. Like classes, delegates areerefe
types. This implies that an event holds a referéo@m instance of a delegate. The delegate isaéd on
the heap.

From inside some class, an event is a variabledelegate type.
From outside a class, it is only possible to addrteemove from an event.

Events are intended to providetifications typically in relation to graphical user interface
The following restrictions apply to events, comphi@ variables of delegate types:

« An event can only be activated from within the slaswhich the event belongs
« From outside the class it is only possible to awith(+=) or subtract (with =) operations to an
event.
« Itis not possible to 'reset' the event with anrad, assignment

In thesyst emnamespace there exists a generic delegate GabedHandl er <TEVent Ar gs>, which is
recommended for event handling in the .NET framéw®hus, instead of programming your own delegate
types of your events, it is recommended to usdegdee constructed froBvent Handl er <TEVent Ar gs>.
TheEvent Handl er delegate takes two arguments: The object whiclergéed the event and an object which
describes the event as such. The latter is asstormra subclass of the pre-existing classt Ar gs. For
more information abowvent Handl er <TEVent Ar gs> consult the documentation of the generic

Event Handl er delegate. For details on generic delegates (tgpenpeterized delegates) see Section 43.2.

23.3. Examples of events

Lecture 6 - slide 14

In this section we will see examples of progranag thake use of events.

First, in Program 23.1 we elaborate the class, which we have met several times beforeSsegon 10.1
Section 12.5, and Section 16.3.

In Program 23.1 theoss operation of thei e class triggers a particular event in case it t$se sixes in a
row, see line 30-31.

usi ng System
usi ng System Col | ecti ons. Generi c;

public del egate void Notifier(string nessage);
public class Die {

private int nunber O Eyes;
private Random r andomNumber Suppl i er;

184

private int maxNunber O Eyes;
private List<int> history;
public event Notifier twoSi xesl nARow;,

public int Nunber O Eyes{
get {return nunmber Of Eyes;}

public Die (): this(6){}

public Die (int maxNunber O Eyes) {
randomNunber Suppl i er = new Randon{unchecked((i nt) Dat eTi ne. Now. Ti cks));
thi s. maxNurmber Of Eyes = maxNumber Of Eyes;
nunber O Eyes = randonmNunber Suppl i er. Next (1, maxNunber Of Eyes + 1);
hi story = new List<int>();
hi st ory. Add(nunber O Eyes) ;
}

public void Toss (){
nunber O Eyes = randonmNunber Suppl i er. Next (1, maxNunber Of Eyes + 1);
hi st ory. Add(nunber O Eyes) ;
i f (DoWeHaveTwoSi xesl nARow(hi story))
t woSi xesl nARow(" Two sixes in a row');
}

private bool DoWeHaveTwoSi xesl nARow(Li st <i nt> hi story){
int histLength = history. Count;
return histlLength >= 2 &&
hi story[histLength-1] == 6 &&
hi story[hi st Lengt h-2] == 6;
}

public override String ToString(){
return String. Format ("Die[{0}]: {1}", maxNumber Of Eyes, Nunber O Eyes);

}
}

Program 23.1 The die class with history and dieNotifi

In Program 23. Mot i fi er is a delegate. Thuspti fier is a type.

t woSi xesl nARow IS an event - analogous to an instance variableypeNoti fi er . Alternatively, we could
have used the predefinedent Handl er delegate (see Section 23.2) insteatoof fi er . The event

t woSi xesl nARow iS public, and therefore we can add operationBigoevent from clients afi e objects. In
line 9-11 of the classi ceApp, shown in Program 23.2, we add an anonymous deléga

d1. t woSi xesl nARow, which reports the two sixes on the console.

Notice the keywordévent ", used in declaration of variables of delegate$yfor event purposes. It is
tempting to think of évent " as a modifier, which gives a slightly special senics to aNot i fi er delegate.
Technically in C#, howeveeyent is not a modifier. The keyworglent signals that we usesdrictly
controlledvariable of delegate type. From outside the clab#h contains the event, only addition and
removal of methods/delegates are possible. Theiaddind removal can, inside the class, be coetldly
so-calledevent accessoesid andr enove, which in several respect resembée andset of properties. We
will, however, not dwell on these features of C#his material.

The predicate (boolean methaw)\HaveTwoSi xesl nARow in line 35-40 of Program 23.1 in clagis:
determines if the die has shown two sixes in a iidvis is based on the exftiast ory instance variable.

185

Finally, theToss operation may trigger thewSi xesl nARow in line 31-32 of Program 23.1. The event is
triggered in case the history tells that we hawnge/o sixes in a row.

using System
class diceApp {
public static void Main(){
Die d1 = new Die();
d1. twoSi xesl nARow +=

del egate (string nes){
Consol e. Wi t eLi ne(nes);

b
for(int i =1; i < 100; i++){
dl. Toss();
Consol e. WiteLine("{0}: {1}", i, d1. Nunber O Eyes);
}
}
}

Program 23.2 A client of die that reports 'two sixes in a row'
via an event.

In Program 23.3 we show the (abbreviated) outpfrofjram 23.2. The "two sixes in a row" reportiams
out to be reported in between the two sixes. Thiicause the event is triggeredrbys, beforeToss
returns the last 6 value.

Two sixes in a row

Two sixes in a row

Two sixes in a row

Two sixes in a row

Program 23.3 Possible program output of the die applicatior
(abbreviated).

We will now turn to a another example in an enyiidifferent domain, see Program 23.4. This program
constructs a graphical user interface with twodngdtand a textbox, see Figure 23.1. If the usdrgaithe
Click Mebutton, this is reported in the textbox. If thewupushes thErasebutton, the text in the textbox is
deleted.

186

OCO~NOOOUTA~ WN P

Figure 23.1 A graphical user interface with two buttons and xttex.

usi ng System
usi ng System W ndows. For ns;
usi ng System Dr awi ng;

Il

In System

/1 public del egate void EventHandl er (Chject sender, EventArgs e)

public class Wndow Forn{

private Button bl, b2;
private TextBox tb;

/1 Constructor
public W ndow (){

}

t hi

bl

bl.
bl.
bl.
bl.
bl.

tb

tb.
tb.
tb.
tb.
tb.

t hi
t hi
t hi

s. Si ze=new Si ze(150, 200) ;

= new Button();
Text="Cick M";
Si ze=new Si ze(100, 25);
Locati on = new Poi nt (25, 25);
BackCol or = Col or. Yel | ow,
dick += dickHandl er;
/1 Alternatively:
/1 bl.dick+=new Event Handl er (Cl i ckHandl er);
= new Button();

. Text ="Er ase";

. Si ze=new Si ze(100, 25);

. Location = new Poi nt (25, 55);
. BackCol or =Col or. Gr een;
.Qdick += EraseHandl er;

I/ Alternatively:
/1 b2.dick+=new Event Handl er (Er aseHandl er) ;
= new Text Box();
Locati on = new Poi nt (25, 100);
Si ze=new Si ze(100, 25);
BackCol or =Col or. Wi t e;
ReadOnl y=t r ue;
Ri ght ToLef t =Ri ght ToLeft . Yes;

s. Control s. Add(b1l);
s. Control s. Add(b2);
s. Control s. Add(tb);

/1 Event handl er:
private void dickHandl er (object obj, EventArgs ea) {

}

tb.

Text = "You clicked ne";

187

/] Event handl er:
private void EraseHandl er (obj ect obj, EventArgs ea) {
th. Text = ""

}
}

cl ass ButtonTest{

public static void Min(){
W ndow wi n = new W ndow() ;
Appl i cation. Run(w n);

Program 23.4 A Window with two buttons and a textb

The program makes use of the already existing dedagpesyst em Event Handl er . Operations in this
delegate accept amj ect and arevent Ar g parameter, and they return nothing (void).

The constructor of the clagsndow (which inherits fronFor m- a built-in class) dominates the program. In
this constructor the window, aggregated by twodngtand a textbox, is built.

As emphasized in Program 23.4 we add handlerstewbnt®1. d i ck andb2. d i ck. We could have
instantiatecEvent Handl er explicitly, as shown in the comments, but theamobi1. C i ck +=
C i ckHandl er andb2. dick += EraseHandl er is shorter and more elegant.

The two private instance methods ckHandl er andEr aseHandl er serve as event handlers. Notice that
they conform to the signature of theent Handl er . (The signature is characterized by the parantgpess
and the return type).

Exercise 6.5. Additional Die events

In this exercise we add yet another method to tisieg event i classi e, and we add another event to
Di e.

In theDi e event example, we have a public event callei xesl nARow which is triggered if a die shows
two sixes in a row. In the sample client programaald an anonymous method to this event which report
the string parameter of the event on standard tutpu

Add yet another method to theosi xesl nARow event whichcounts the number of times ‘two sixes in a
row' appear. For this purpose we need - quite abyuran integer variable for counting. Where ddou
this variable be located relative to the ‘countimgthod": Will you place the variable inside the new
method, inside thei e class, or inside the client class of the Die?

Add a similar event calledul | House, of the same typeoti fi er, which is triggered if thei e tosses a
full house. A full house means (inspired from thkes of Yahtzee) two tosses of one kind and thossets
of another kind - in a rowFor instance, the toss sequence 5 6 5 6 5 leaafull house. Similarly, the 1 4
4 4 1 leads to a full house. The toss sequencé 6 @ 6 5 does not contain a full house sequemoktiee
toss sequence 6 6 6 6 6 is not a full house.

Be sure to test-drive the program and watch fgg#ring of both events.

188

24. Patterns and Techniques

In this section we will discuss ti@hserver design pattern. We have already introduced the ddielesign
patterns in Chapter 16 and we have studied oneattdrn Singleton, in Section 16.3

24.1. The observer design pattern

Lecture 6 - slide 17

TheObserver is often used to ensurdanse couplindbetween an application and its user
interface

In generalObserver can be used whenever a set of observer objeatistodx informed about
state changes in a subject object

Imagine that aveather service objecbllects information about temperature, rainfatld air pressure.
When the weather conditions change significantiyuaber ofiwveather watcher objectsemperature
watchers, rain watchers, general news watcherssfpegyers and television stations) will have to beatgd.
See Figure 24.1.

_{Raln Watcher Object |

\Weather Service Object F——{Temperature Watcher Object

T it 3 [T b

Figure 24.1 The subject (weather service object) to the leftitmthree
observers (weather watcher objects) to the righe Weather Service Object get
its information various sensors.

The following questions are relevant:

1. Do the weather service object know about the dmtaibeds of the weather watcher objects?
2. How do we associate weather watcher objects wéwiather service object?

In most naive solutions, the weather service olffgutards relevant sensor observations to the weeath
watcher objects. The weather service object semdigidual and customized messages to each weather
watcher object with weather update information whgrelevant for the receiver. Thus, the weatbevise
object knows a lot about the individual needs efulatcher objects. This may work for the first tafoee,
or four watchers, but this approach becomes verglpmatic if there are many watchers: Every tinmew
watcher shows up we must change the weather sebjeet.

Now let us face the second issue. In the naiveisalithe weather service object will often hardenthe

knowledge about watchers in the program. Thisabably OK for one, two or three watchers, but it if
course - tedious in case there are hundreds ohesstc

189

There is a noteworthy a solution to the problentimed above. It is described as a design pattercalse it
addresses a non-trivial solution to a frequentiyunéng problem. The design pattern is knowaserver.
The key ideas are:

1. Watcher objectsubscribeto updates from the service object.
2. The service objediroadcastaotifications about changes to watchers.
3. The watcher object may request details from theiseiobject if they need to.

Below, in Program 24.1 and Program 24.2, we shewgdneral idea/template of tbserver pattern.

usi ng System Col | ecti ons;
namespace Tenpl at es. Cbserver {

public class Subject {
/1 Subject instance vari abl es

private ArraylList observers = new ArraylList();

public void Attach(Qobserver 0){
observers. Add(0);

}

public void Detach(Qbserver 0){
observers. Renove(0);

}

public void Notify(){
foreach(Observer o in observers) o.Update();

}

public SubjectState GetState(){
return new SubjectState();

}
}

public class SubjectState {
/1 Selected state of the subject

}
}

Program 24.1 Template of the Subject cla

The weather service object corresponds to an iostahclassubj ect in Program 24.1 and the watcher
objects correspond to observers, as shown in Rrogda2. In Program 24.3 we illustrate how theer ver
andsubj ect classes can be used in a client program. The gmgyare compilable C# programs, without
any substance, however. In an appendix - Sectidh-58e show the weather service program and how it
uses thébserver pattern.

usi ng System Col | ecti ons;
nanespace Tenpl ates. Cbserver {

public class Observer {
private Subject nySubject;
public Observer (Subject s){
nySubj ect = s;

public void Update(){

190

Il

Subj ect State state = nmySubject. GetState();

I if (the state is interesting){
I react on state change
/11 }
}
}
}

Program 24.2 A templates of the Observer cla

In Program 24.3 we see that two observersgndo2, are attached to the subject object (line 10 djdThe
third observen3s is not yet attache@d1 ando2 hereby subscribe to updates from the subject blijetus
now assume that a mutation of the state in theestibpject triggers a need for updating the observée
following happens:

1. The subject sendsnat i fy message to itself. (In Program 24.3 the cliersuef ect andcbser ver
sends thebt i fy message. This is an artificial and non-typicalagion).

2. Notify updates each of the attached observers, by setidiqgarameterlesspdat e message. This
happens in line 18 of Program 24.1 .

3. Theupdat e method in th@bser ver class asks (if necessary) what really happenétkigubj ect
This is done by sending the messagest at e back to the subject , see line 13 of Program 24.2
Individual observers may request different inforimatfrom thesubj ect . Some observers may not
need to get additional information from the suhjacid these observers will therefore not send a
Get St at e message.

4. et St at e returns the relevant information to the obserVee observer does whatever it finds
necessary to update itself based on its new kngeled

usi ng Tenpl at es. Cbserver;
class Cient {

public static void Min(){
Subj ect subj = new Subject();
Cbserver ol new Observer (subj),
02 new Observer (subj),
03 new Observer (subj);

subj . Attach(ol); // ol subscribes to updates from subj.
subj . Attach(o2); // 02 subscribes to updates from subj.

subj . Notify(); /] Followi ng some state changes in subj
/1 notify observers.

Program 24.3 Application of the Subject and Observei
classes.

You should consult the appendix - Section 58.1yoml web) - for a more realistic scenario in teohthe
weather service and watchers.

191

24.2. Observer with Delegates and Events

Lecture 6 - slide 19

The Observer idea, as described in Section 24. beamplemented conveniently by use of events. We
introduced events in Chapter 23.

According toObserver, the subject has a list of observers which willdhgo notified when the state of the
subject is updated. We can can represent thefligtservers as an event. Recall from Section 2@&Ran
event can contain a number of methods (all of wkltére a common signature described by a delegs} t
Each observer adds a method to the event of thedwdbject. The subject notifies the observers by
triggering the event.

In Program 24.4 we show a template of $bij ect class, corresponding to Program 24.1 in Sectioh. 24
The event is declared in line 9. The delegate bffibe event is shown in line 4. Notice that thbsguiption
methodsAddNot i fi er andRemoveNoti fi er simply adds or subtracts a method to the everanUp
notification - see line 20 in thet i fy method - the subject triggers the event. Fortilhisre purposes - and
in order to stay compatible with the setup in Pang24.4, we pass an instance of the subject stébet
observer, see line 20 of Program 24.4. In this thaye is no need for the observer to ask for @rafrds.

usi ng System Col | ecti ons;
nanespace Tenpl at es. Gbserver {

public del egate void Notification(SubjectState ss);

public class Subject {
/1 Subject instance variable

private event Notification observerNotifier;

public void AddNotifier(Notification n){
observerNotifier += n;

}

public void RenpveNotifier(Notification n){
observerNotifier -= n;

}

public void Notify(){
observerNotifier(new SubjectState());

}
}

public class SubjectState {
/1 Selected state of the subject

}
}

Program 24.4 Template of the Subject cla

usi ng System Col | ecti ons;
nanespace Tenpl at es. Cbserver {

public class Observer {

public Observer (){
1.

}

public void Updat e(SubjectState ss){
/1 if (the state ss is interesting){

192

I react on state change

!

Program 24.5 Template of the Observer cla

In line 10-11 of Program 24.6 we see that the th&eovers1 ando2 add theitupdat e (instance) methods
to the subject. This will add these methods toethent. Theupdat e method of thébserver class is seen in

line 10-14 of Program 24.5.

usi ng Tenpl at es. Cbserver;
class Cient {

public static void Min(){
Subj ect subj = new Subject();

Cbserver ol = new (bserver(),
02 = new Cbserver(),
03 = new Cbserver();

subj . AddNot i fi er (ol. Update);
subj . AddNot i fi er (02. Updat e) ;

subj . Notify();

Program 24.6 Application of the Subject and Observei

classes.

In an appendix - Section 58.2 - we show a versiadheweather center and weather watcher program

programmed with events.

193

194

25. Specialization of Classes

In this section the topic isheritance. Inheritance represents an organization of classesich one class,
say B, is defined on top of another class, saylAs€B inherits the members of class A, and intextdB
can define its own members.

Use of inheritance makes it possible ¢ase the data and operations of a class A in severahlied
subclasses, such as B, C, and D, without coping these datieogerations in the source code. Thus, if we
modify class A we have also implicitly modified 8,and D.

There are several different views and understaisdifignheritance, most dominantly specializatiod an
extension. But also words such as subtyping andasging are used. We start our coverage by stgdie
idea of specialization.

25.1. Specialization of Classes

Lecture 7 - slide 2

The idea of specialization was introduced in Sec8e when we studied concepts and phenomena. In
Section 3.4 we defined a specialization as a marm®w concept than its generalization. We willthis
chapter, use the inspiration from specializatiooarfcepts to introduce specialization of classes.

Classes are regardedtggses, and specializations aabtypes

Specialization facilitates definition of new clas$sem existing classes on a sound conceptual
basis

With specialization we nominate a subset of theatsjin a type as a subtype. The objects in theetave
chosen such that they have "something in commaoypically, the objects in the subset are constrained
certain way that set them apart from the surroumdet of objects.

We often illustrate the generalization/specialatielationship between classes or types in agiraet
structure. See Figure 25.1. The arrow from B to&ans thaB is a specialization of A . Later we will use
the same notation for the extended understandatd@timherits from A.

A

|

Figure 25.1 Theclass B isa specialization of class A

Below - in the dark blue definition box - we givelaghtly more realistic and concrete definition of
specialization. The idea of subsetting is refleatethe first element of the definition. The secabeiment is,
in reality a consequence of the subsetting. Theelasnent stresses that some operations in théafipation
can be redefined to take advantage of the propaha unite the objects/values in the speciabizati

195

If a class B is apecialization of a class A then

« The instances of B is a subset of the instanceés

» Operations and variables in A are also presen
» Some operations from A may be redefined in §

25.2. The extension of class specialization

Lecture 7 - slide 3

In Section 3.1 we defined the extension of a conasphe collection of phenomena that is coverethby
concept. In this section we will also define #xénsion of a class, namely as the set of objects which are
instances of the class or type.

We will now take a look at the extension of a spled class/type. The subsetting idea from Se@tnt
can now be formulated with reference to the extenef the class.

Theextension of a specialized class B is a subset ofettiension of the generalized class|A

The relationships between the extension of A amadiBbe illustrated as follows, using the well-known
notation ofwenn diagrams.

!/"'"__ -_""'--\\ Extfe Fﬁﬁ_ﬂﬁ-u\
F. N e Y
| Baensionof A | — ((Exl;enslun of B) f'l
" d N———

-. e — o

Figure 25.2 The extension of a class A is narrowed when the classis specialized
toB

Let us now introduce the-a relation between the two classes A and B:

- A B-object isan A-object
« There is das-arelation between class A and B

Theis-arelation characterizes specialization. We may dgenulate an "is-a test" that tests if B is a
specialization of A. Thés-a relation can be seen as contrast tohdmea relation, which is connected to
aggregation, see Section 3.3.

Theis-a relation forms a contrast to thas-a relatior
Theis-arelation characterizespecialization

Thehas-a relation characterizesygregation

196

We will be more concrete with the-a relation and thés-a test when we encounter examples in the
forthcoming sections.

25.3. Example: Bank Accounts

Lecture 7 - slide 4

In Figure 25.3 we give three classes that speei#iiie clas§ankAccount .

BankAccount

L
CheckAccount SavingsAccount LotteryAccount

Figure 25.3 A specialization hierarchy of bank accounts

Theis-a test confirms that there is a generalization-spieition relationship betwe@ankAccount and
CheckAccount: The statementCheckAccount IS aBankAccount " captures - very satisfactory - the
relationships between the two classes. The statelBatkAccount iS aCheckAccount " is not correct,
because we can imagine bank accounts which arelatéd to checks at all.

As a contrast, thhas-a test fails: It is against our intuition that aeckAccount has aBankAccount .
Similarly, it is not the case thabankAccount has acheckAccount ". Thus, the relationship between the
classe®ankAccount andCheckAccount iS not connected to aggregation/decomposition.

In Figure 25.4 we show a possible constellatioax@énsions of the bank account classes. As hintduki
illustration, the specialized bank accounts oveiteguch a way that there can exist a bank acoshith is
both acheckAccount , aSavingsAccount , and al.otteryAccount . An overlapping like in Figure 25.4 is the
prerequisite for (conceptually sound) multiple sakzation, see Section 27.5.

___—BankAcoount —__
" 5 : T
SavingsAccount
I
Chukﬁmuhtomwﬁnmunt I
\\ //

Figure 25.4 Possible extensions of the bank account classes

25.4. Example: Bank Accounts in C#

Lecture 7 - slide 5

In this section we show some concrete C# bank atadasses, corresponding to the classes introduaced
Figure 25.3.

197

TheBankAccount class in Program 25.1 is similar to the clasohticed earlier in Program 11.5. We need,
however, to prepare for specialization/inheritaimca couple of ways. We briefly mention these prapans
here. The detailed treatment will be done in thi®fing sections.

First, we use protected instance variables insdéadvate instance variables. This allows theanse
variables to be seen in the specialized bank atatasses. See Section 27.3 for details.

Next, we use the virtual modifier for the metholgttare introduced in claBankAccount . This allows these
methods to be redefined in the specialized ban&atdalasses. See Section 28.9.

using System;
public class BankAccount {

pr ot ect ed double interestRate;
pr ot ect ed string owner;
pr ot ect ed decimal balance;

public BankAccount(string o, decimal b, double i r {
this.interestRate = ir;
this.owner = o;
this.balance = b;

}

public BankAccount(string o, double ir):
this(o, 0.0M, ir) {

public vi rtual decimal Balance {
get {return balance;}

}

public vi rtual void Withdraw (decimal amount) {
balance -= amount;

}

public vi rtual void Deposit (decimal amount) {
balance += amount;

}

public vi rtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public over ri de string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 25.1 The base class BankAccount.

ThecCheckAccount class shown in Program 25.2 redefines (overrittesyithdraw method. This gives a
special meaning to money withdrawal frorar&ckAccount object. The methotosString is is also
redefined (overridden) in classeckAccount , in the same way as it was overridden in ckagg&Account
relative to its superclasefject), see Program 25.1. Notice also the two constrsi@bclasscheckAccount .
They both delegate the construction worlB&ekAccount constructors via thiease keyword. See Section
28.4 for details on constructors. This is similathte delegation from one constructor to anothénénsame
class, by use afhi s, as discussed in Section 12.4.

198

using System;
public class CheckAccount : BankAccount {

public CheckAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public CheckAccount(string o, decimal b, double ir):
base(o, b, ir) {
}

public over ri de void Withdraw (decimal amount) {
balance -= amount;
if (@mount < balance)
interestRate = -0.10;
}

public overri de string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 25.2 The class CheckAccount.

The classsavingsAccount follow the same pattern as cla@sckAccount . Notice that we also in class
SavingsAccount redefine (override) theddinterests ~ method.

using System;
public class SavingsAccount : BankAccount {

public SavingsAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public SavingsAccount(string o, decimal b, doubl eir):
base(o, b, ir) {
}

public over ri de void Withdraw (decimal amount) {
if (amount < balance)
balance -= amount;
else
throw new Exception("Cannot withdraw");

}
public over ri de void AddInterests() {
balance = balance + balance * (decimal)intere stRate
- 100.0M;
}

public overri de string ToString() {
return owner + "'s savings account holds " +
+ balance + " kroner";

Program 25.3 The class SavingsAccount.

199

In the classotteryAccount the methodhddinterests is redefined (overridden). The idea behind a igtte
account is that a few lucky accounts get a subatarhount of interests, whereas the majority ef th
accounts get no interests at all. This is providedy the private instance varialbbgery , which refers to
alLottery object. In the web-version of the material we slaoglefinition of theottery class, which we
program as &ingleton.

using System;
public class LotteryAccount : BankAccount {
private static Lottery lottery = Lottery.Instan ce(20);

public LotteryAccount(string o, decimal b):
base(o, b, 0.0) {
}

public overri de void AddInterests() {
int luckyNumber = lottery.DrawLotteryNumber;
balance = balance + lottery. AmountWon(luckyNu mber);

}

public overri de string ToString() {
return owner + "'s lottery account holds " +
+ balance + " kroner";

Program 25.4 The class LotteryAccount.

25.5. Example: Geometric Shapes

Lecture 7 - slide 6

In this section we show another example of speeitiin. The tree in Figure 25.5 illustrates a nundfe
specializations of polygons. In the left branchhaf tree we see the traditional and complete hibyanf
triangle types. In the right branch we show thetmmaportant specializations of quadrangles. Trapkzare
assumed to have exactly one pair of parallel simed,as such trapezoids and parallelograms awardisj

Polygon
-
Triangle Cuadrangle
v Fud
Isoaceles Triangls Right Triangle Farallelogram Trapazeid
o~ L &
Equilareral Trianghs Bosceles Right Triangls Rectangle

Sguare
Figure 25.5 A specialization hierarchy of polygons

The polygon type hierarchy is a typical special@ahierarchy, because it fully complies with trefidition
of specialization from Section 25.1. The subsetti@hship is easy to verify. All operations defirsddhe
polygon level are also available and meaningfulhenspecialized levels. In addition it makes sdase
redefine many of the operations to obtain more tedformula behind the calculations.

200

Overall, the deeper we come in the hierarchy, tbeernonstraints apply. This is a typical charasteriof a
real and pure generalization/specialization classalchy.

25.6. Specialization of classes

Lecture 7 - slide 7

We will now summarize the idea of class specialiratObjects of specialized classes

- fulfill stronger conditions (constraints) than offfe of generalized classes
« obey strongeclassinvariants
- have simpler and more accurate operations thartstpé generalized classes

Specialization of classes in pure form do not ossuy often.

Specialization in combination with extension is tmuaore typical.

As noticed in Section 25.4 the hierarchy of polyg@real and pure example of specialization hidmar

The bank account hierarchy in Figure 25.3 is ngiwae as the polygon hierarchy. The bank account
hierarchy is - in the starting point - a specidlma hierarchy, but the specialized classes amito be
extended with operations, which do not make sem$igeiBankAccount class. Class extension is the topic in
Chapter 26.

25.7. The Principle of Substitution

Lecture 7 - slide 8

The principle of substitution is described by TimpBudd in section 8.3 of in his boék Introduction to
Object-oriented Programming [Budd02]. The principle of substitution descrilasideal, which not always
is in harmony with our practical and everyday pemgming experience. This corresponds to our observat
that pure specialization only rarely is found inlffe programs.

If B is a subclass of A, it is possible to subsétan given instance of B in place of an instarfg

A without observable effect

As an example, consider the class hierarchy ofgmolg in Figure 25.5. Imagine that we have the ¥alhg
scene:

Polygon p = new Polygon(...);
RightTriangle tr = new RightTriangle(...);
/* Rest of program */

It is now possible to substitute the polygon objeith the triangle object in the "rest of the pragr’. This is

possible because the triangle possesses all tleeajgmoperties (area, circumference, etc) of tiggon. At
least, the compiler will not complain, and the axaw program will not halt. Notice, however, thiaé¢

201

substitution is only neutral to the actual mearohthe execution program if the replaced polygaiualty
happens to be the appropriate right triangle!

Notice that the opposite substitution does not gbn@ork. Thus, we cannot substitute a triangle with
general polygon (for instance a square). Most iogrwould break immediately if that was attempidu:
reason is that a square does not, in general, goHse same properties as a triangle.

The ideas behind the principle of substitutionratated to virtual methods (Section 28.14) andytwaghic
binding (Section 28.11).

25.8. References

[Budd02] Timothy BuddAn Introduction to Object-Oriented Programming, third edition.
Pearson. Addison Wesley, 2002.

202

26. Extension of Classes

Extension of classes is a more pragmatic conceptspecialization of classes. Specialization afsda is
directly based on - and inspired from - specialabdf concepts, as discussed in Section 3.4. Eidarof
classes is a much more practical idea.

In the previous chapter (Chapter 25) we discusgedialization of classes. In this section we disalass

extension. In C# both class specialization andsats$ension will be dealt with by class inheritgrese
Chapter 27.

26.1. Extension of Classes

Lecture 7 - slide 10

Classes can both be regarded as types and modules.

Class extension isfogram transport andprogram reusability mechanism.

As the name suggests, class extension is conceitieddding something to a class. We can add both
variables and operations.

We are not constrained in any way (by ideals otsieation or substitution) so we can in principldd
whatever we want. However, we still want to havieerent and cohesive classes. We want classes tbcuse
on a single idea, where all data and operationseteited to this idea. Our classes should be uséypas for
declaration of variables, and it should make sémseake instances of the classes. Thus, we do ot
treat classes are general purposes modules (settse of boxing modularity, see Section 2.3).

These considerations lead us to the following dkédim of class extension.

If class B is arextension of class A then

+ B may add new variables and operations to A

« Operations and variables in A are also present in B
- B-objects are not necessarily conceptually reltdedl-objecty

26.2. An example of simple extension

Lecture 7 - slide 11

In this section we will look at a typical exampliectass extension, which distinguishes itself from
specialization as seen in Chapter 25.

Below, in Program 26.1 we show the clas®t2D . It is a variant of one theoint types we have studied in

Section 11.6, Section 14.3, and Section 18.2. Hniant programmed below implements mutable points.
This is seen in line 19, which assigns to the sifitePoint object.

203

using System;

public class Point2D {
private double x, y;

public Point2D(double x, double y)}{
this.x = x; this.y = y;
}

public double X{
get {return x;}

public double Y{
get {return y;}

public void Vbv e(double dx, double dy){
X +=dx; y +=dy;
}
public override string ToString(X
return "Point2D: "+ "("+x +","+y +")" +
}
}

Program 26.1 Theclass Paint2D.

In Program 26.2 we extend the classit2D with an extra coordinate, and hereby we get the class
Point3D .

using System;
public class Point3D: Point2D {
private double z;
public Point3D(double x, double y, double z):
base(x,y){

this.z = z;

}

public double Z{
get {return z;}

public void Vbve(double dx, double dy, double dz){
base. Move(dx, dy);

z +=dz;
}
public override string ToStri ng(){

return "Point3D: "+ "("+ X + ", "+ Y + " " +Z+""+"
}

}

Program 26.2 The class Point3D which extends class
Point3d.

Notice thatvove in Point3D does not conflict withvove in Point2D . The reason is that the two methods are
separated by the types of their formal parametédrs.twoMove operations irPoint3D andPoint2D are

204

(statically) overloaded. Thus relative to the disian in Section 28.9 it is not necessary to supphy
modifier of Move in Point3D .

We also show how to useint2D andpoint3D in a client class, see Program 26.3. The outpthietlient
program is shown in Listing 26.4.

using System;
public class Application{

public static void Main(){
Point2D pl = new Point2D(1.1, 2.2),
p2 = new Point2D(3.3, 4.4);

Point3D gl = new Point3D(1.1, 2.2, 3.3),
g2 = new Point3D(4.4, 5.5, 6.6);

p2.Move(1.0, 2.0);

g2.Move(1.0, 2.0, 3.0);
Console.WriteLine("{0} {1}", p1, p2);
Console.WriteLine("{0} {1}", q1, g2);

Program 26.3 A client of the classes Point2D and
Point3d.

Point2D: (1,1, 2,2). Point2D: (4,3, 6,4).
Point3D: (1,1, 2,2, 3,3). Point3D: (5,4, 7,5, 9,6).

Listing 26.4 The output from the Client program.
The important observations about the extensw3D of Point2D can be stated as follows:

« A 3D pointisnot a 2D point

e Thus,Point3D is not a specialization ®%int2D

« The principle of substitution does not apply

« The set of 2D point objects is disjoint from thé @e3D points

The is-a test (see Section 25.2) fails on the ¢laigsD in relation to clasgoint2D . The "has-a test" also
fails. It is not true that a 3 dimensional poinsf@2 dimensional point as one its parts. Justébdke class
Point3D! But - in reality - the "has-a test" is closer tmweess than the "is-a test". Exercise 7.1 resesuame
implementation of classoint3D in terms of &oint2dD part.

It is interesting to wonder if the principle of sibution applies, see Section 25.7. Can we suibstit
instances oboint3D in place of instances @bint2D without observable effects? Due to the indepenglenc
and orthogonality of the three dimensions the fplecof substitution is almost applicable. But th&e
operation, as redefined in clamsnt3aD , causes problems. Tivave operation in clasBoint2D does an
incomplete move when applied on a 3D point. Anda@ticed,Move in classPoint3D is hot a redefinition of
Move from classPoint2D . There are two differemtove operations available on an instance of class3D .
This is a mess!

In the last item it is stated that extensions Geetion 3.1) of clagsoint2D and clas®oint3D are disjoint
(non-overlapping). Conceptually, there is no oyetlatween the set of two-dimensional points andétef

205

three-dimensional points! This is probably - inuashell - the best in indication of the differermween
the Point2D/Point3D example and - say -ghekAccount examples from Section 25.3 .

The class Point2D was a convenient starting pdittieclassoint3D

We havereused some data and operations from clesst2D in classPoint3D

Exercise 7.1. Point3D: A client or a subclass of Point2D?

The purpose of this exercise is to sharpen youerstanding of the difference betwedeitg a client of
class C" and 'being af subclass of class C".

The clas®oint3aD extendsoint2D by means of inheritance.

As an alternative, the clasint3b may be implemented as a clientrofnt2D . In more practical terms
this means that the claBsint3D has an instance variable of typ®int2D . Now implemeneoint3D as a
client of Point2D - such that a 3D point has a 2D point as a part.

Be sure that the clagsint3D has the same interface as the version of €leéisgD from the course
material.

Evaluate the difference between "being a clientanf"extending” clasoint2D . Which of the solutions
do you prefer?

26.3. The intension of class extensions

Lecture 7 - slide 12
In Section 25.2 we realized that the essentialadtaristics of specialization is the narrowingla# tlass

extension, see Figure 25.2. Above, in Section 28e2ealized the the class extension of an extenldsd
(such asoint3D) typically is disjoint from the class extensiontbé parent class (suchrsnt2D).

In this section we emphasize the similar, clearetwatracteristics of class extension, namely thargament
of the class intension. This is illustrated in Fig@6.1.

Theintension of a class extension B is a superset ofikansion of the original class A

Please be aware of possible confusion relatedrtteominology. We discuss class "extension" in this
section, and we refer to the "intension" and "esitem' (related to concepts, as discussed in Se8tibn
The two meanings of "extension" should be kepttajéey are used with entirely different meanings.

206

- _Antension of B--
a “‘“\x \
(Intension of A | — Intension of A '

~— o

Figure 26.1 Theintension of a class A is blown up when the classis extended to
B

It is, in general, not possible to characterizeetttension of B in relation to thextension of A

Often, theextension of A does not overlap with thextension of B

207

208

27. Inheritance in General

After we have discussed class specialization inp@r&25 and class extension in Chapter 26 we will n
turn our interest towards inheritance. Inheritaisc@ mechanism in an object-oriented programming
language mechanism that supports both class sgetiah and class extension.

This section is about inheritance in general. lithece in C# is the topic of Chapter 28.

27.1. Inheritance

Lecture 7 - slide 14

When a number of classes inherit from each otlotaisa graph is formed. If, for instance, both class B and
C inherit from class A we get the graph structar€igure 27.1. Later in this section, in Sectiord2we
will discuss which class graphs that make sense.

If a class B inherits the variables and operatfoms another class, A, we say that B isubclass of A. Thus,
in Figure 27.1 both B and C are subclasses of . gaid to be auperclass of B and C.

A

B c
Figure 27.1 Two classes B and C that inherit from class A

In the class graph shown in Figure 27.1 the edgesréented from subclasses to superclasses. én oth
words, the arrows in the figure point at the comreoperclass.

In Figure 27.1 the members (variables and opersitioficlass A are also variables in class B andis€as
though the variables and operations were defined explicitly in both class B and C. In addition, class B and C
can define variables and operations of their ovre ihherited members from class A are not necégsari
visible in class B and C, see Section 27.3. Inressanheritance is a mechanisms that brings a auofb
variables and operations from the superclass tsubelasses.

Alternatively, we could copy the variables and apiens from class A and paste them into class Bctass
C. This would, roughly, give the same result, big aipproach is not attractive, and it should asuag
avoided. If we duplicate parts of our program idiificult to maintain the program, because futpregram
modifications must be carried out two or more pta@mth in class A, and in the duplications in lBsand
C). We always go for solutions that avoid such ahaplon of source program fragments.

When we run a program we make instances of ouse$a&, B and C. B and C have some data and
operations that come from A (via inheritance). didiion, B and C have variables and operation$i@if t
own. Despite of this, an instance of class B isgingle object, without any A part and B part. THasan
instance of class B the variables and operationtast A have been merged with the variables and
operations from class B. In an instance of B tlaeeevery few traces left of the fact that classciially
inherits from class A.

The observations from above are summarized belbe .situation described above, and illustrated gufé
27.1

209

« Organizes the classes in a hierarchy

» Provides for some degree of specialization andftansion of A

- At program development timelata and operations of A cantgesed in B and Cwithout
copying and without any duplication in the source program

- At runtime instances of class B and C aaole objects, without A parts

27.2. Interfaces between clients and subclasses

Lecture 7 - slide 15

Theclient interface of a class (say class A in Figure 27.2) is defibgdhe public members. This has been
discussed in Section 11.1. In Figure 27.2 the tli@erface of class A is shown as number

The client interface of a class B (which is a sabslof class A) is extended in comparison withctiest
interface of class A itself. The client interfadectass B basically includes the client interfatelass A, and
some extra definitions given directly in class BeTclient interface of class B is shown as nungier
Figure 27.2.

When inheritance is introduced, there is an addti&ind of interface to take care of, namely thteifaces
between a class and its subclasses. We call futlotass interface. Interface numbe2 in Figure 27.2
consists of all variables and operations in clasghfch are visible and hereby applicable in class B
Similarly, the interface numbereds the interface between class B and its subdasse

1. 3.
ﬂl:||:|
L] e
O
2.
\\
"mm
m
P

Figure 27.2 Interfaces between A, B, their client classes, and their subclasses

1. Theclientinterface of A

2. Thesubclassinterface between A and its subclass B

3. Theclient interface of B

4. Thesubclass interface between B and potential subclasses of B

210

27.3. Visibility and Inheritance

Lecture 7 - slide 16

Most object-oriented programming languages disistgbetween private, protected and public variabtes
operations. Below we provide a general overviewhete kinds of visibility.

« Private
« Visibility limited to the class itself.
« Instances of a given class can see each otheetgdata and operations

e Protected
» Visibility is limited to the class itself and tsisubclasses
« Public

« No visibility limitations

In Section 28.6 we refine the description of th&hility modifiers relative to C#.

27.4. Class hierarchies and Inheritance

Lecture 7 - slide 17

When a number of classes inherit from each otlodgiss graph is defined. Class graphs were intratiurce
Section 27.1. Below we show different shapes dciraphs, and we indicate (by means of color ext)l t
which of them that make sense.

A - - A
v v A
B C B
bl ¥ « A
D E C =
Alwiays OF . Always lllagal

Figure 27.3 Different graph structures among classes

A tree-structured graph, as shown to the left guFé 27.3 makes sense in all object-oriented progriag
languages. In Java and C# we can only construestrectured class graphs. This is catiedle-
inheritance because a class can at most have a single suggercla

Multiple inheritance is known from several objecteated programming language, such as C++, Edifad]
CLOS. Compared with single inheritance, multipledritance complicates the meaning of an object-
oriented program. The nature of these complicatigiiide discussed in Section 27.5.

Repeated inheritance is allowed more rarely. E#flelws it, however. It can be used to facilitagplication
of superclass variables in subclasses.

211

Cyclic class graphs, as shown to the right in Feqif.3 are never allowed.

27.5. Multiple inheritance

Lecture 7 - slide 18

In this section we dwell a little on multiple iniitance. Both relative to class specialization (Skapter 25)
and class extension (see Chapter 26) it can bedrhat multiple inheritance is useful:

« Specialization of two or more classes
« Example: An isosceles right triangis a isosceles triangle andiga right triangle
« Example: There may exists a bank account whigh checking account andig a
savings account
« Extensions of two or more classes
« "Program transport” from multiple superclasses

In Figure 25.4 the overlapping extensions of tlas®tsheckAccount , SavingsAccount and
LotteryAccount indicate that there may exist a single object,ciwis a CheckAccount , aSavingsAccount
and aLotteryAccount

When we in Section 26.2 discussed the extensiafas$Point2D to classPoint3D it could have been the
case that it was useful to extend clesist3D from an additional superclass as well.

Let us now briefly argue why multiple inheritansedifficult to deal with. In Figure 27.4 we havestthed a
situation where class C inherits from both classné class B. Both A and B have a variable or amatjos
named X. The question is now which x we get whemefer to x in C (for instance via C.x if x is $tat

C

Figure 27.4 ClassBisa subclass of class A

In general, the following problems and challengas loe identified:

« Thename clash problem: Does x in C refer to the x in A or the x in B?

« Thecombination problem: Can x in A and x in B combined to a single x in C?
« Thesdlection problem: Do we have means in C to select either x in A or R?

« Thereplication problem: Is there one or two x pieces in C?

Notice that some of these problems and challengeslightly overlapping.

212

This ends the general discussion of inheritance.ri@xt chapter is also about inheritance, asateslto C#.
The discussions of multiple inheritance is brougihtigain, in Chapter 31, in the context of intezfac

213

214

28. Inheritance in C#

In Chapter 27 we discussed inheritance in genkrhis section we will be more specific about slas
inheritance in C#. The current section is long,least because it covers important details abatuali
methods and polymorphism.

28.1. Class Inheritance in C#

Lecture 7 - slide 21

When we define a class, sayss-name , we can give the name of the superclagssyr-class-name , of the
class. The syntax of this is shown in Chapter 2&80me contexts, a superclass is also called achasse

cl ass-nodi fier class class-nanme: super-cl ass-nane{
decl arati ons

}

Syntax 28.1 A C# class defined as a subclass of given superclass

We see that the superclass name is given afteotba. There is no keyword involved (liketends in

Java). If a class implements interfaces, see Chaftehe names of these interfaces are also laftedthe
colon. The superclass name must be given befoneaimes of interfaces. If we do not give a supesclas
name after the colon, it is equivalent to writingdbject . In other words, a class, which does not specify a
explicit superclass, inherits from clagisect . We discuss classbject in Section 28.2 and Section 28.3.

In Program 28.1 below we show a classhich inherits from class. Notice that Program 28.1 uses C#
syntax, and that the figure shows full class dgéins. Notice also that the set of member is emptyoth
classa andB. As before, we use the graphical notation in FegB.1 for this situation.

class A {}

classB : A{}

Program 28.1 A class A and its subclass B.

A

|

Figure 28.1 TheclassBinheritsfromclass A

B is said to be aubclass of A, and A asuperclass of B. A is also called thbase class of B.

28.2. The top of the class hierarchy

Lecture 7 - slide 22

As discussed in Section 27.4 a set of classesalafiiass hierarchy. The top/root of the classahiby is
the class calledbject . More precisely, the only class which does nothav edge to a superclass in the

215

class graph is calledbject . In C# the clasebject resides in theystem namespace. The typsject is an
alias forsystem.Object . Due to inheritance the methods in clasgcts are available in all types in C#,
including value types. We enumerate these metho8gction 28.3.

Reference types | Class ValueType |

= =

Class String other classes simple types struct types

Figure 28.2 Theoverall type hierarchy in C#

The left branch of Figure 28.2 corresponds to #ference types of C#. Reference types were disguisse
Chapter 13. The right branch of Figure 28.2 cowasg to the value types, which we have discussed in
Chapter 14.

All pre-existing library classes, and the classesdefine in our own programs, are reference ty&shave
also emphasized that strings (as represented bytlag) and arrays (as represented by chass) are
reference types. Notice that the dotted box "Referdypes” is imaginary and non-existing. (We hadded
it for matters of symmetry, and for improved cortcepoverview). The role of clagsray is clarified in
Section 47.1.

The class/alueType is the base type of all value types. Its subatassiis a base type of all enumeration
types. It is a little confusing that these two sksare used as superclasses of structs, in partimcause
structs cannot inherit from other structs or clas3éis can be seen as a special-purpose orgamizatade
by the C# language designers. We cannot, as progeesnreplicate such organizations in our own @og:
The classesbject , ValueType andEnumcontain methods, which are available in the mpexilized value
types (defined by structs) of C#.

28.3. Methods in the claggect In C#

Lecture 7 - slide 23

We will now review the methods in classject . Due to the type organization discussed in Se@®a
these methods can be used uniformly in all clagsdsn all structs.

216

« Public methods in clas®j ect

« Equals:
e obj 1. Equal s(obj2) - Instance method
e (bject.Equal s(obj1, obj2) - Static method
» (nject.ReferenceEqual s(obj 1,0bj2) - Static method

e o0bj. Get HashCode()
e o0bj.GetType()
e o0bj.ToString()
« Protected methods in clags ect
e obj.Finalize()
e obj.Menberw seC one()

There are three equality methods in clasisct . All three of them have been discussed in Sed®Bb. The
instance methodsquals is the one we often redefine in case we needlbbshequality operation in one of
our classes. See Section 28.16 for details. Thie st@thod, also nameghuals , is slightly more applicable
because it can also compare objects/values@ndvalues. The static meth&gferenceEquals is - at least
in the starting point - equivalent to the operator.

The instance methagktHashCode produces an integer value which can be used élaxing purposes in
hashtables. In order to obtain efficient implemeates, GetHashCode often use some of the bit-wise
operators, such as shifting and bit-wise exclusivéSee Program 28.29 for an example). It mustrizeired
that if o1.Equals(02) thenol.GetHashCode() has the same value ésGetHashCode()

The instance methorbstring is well-known. We have seen it in numerous typasinstance in the very
first Die class we wrote in Program 10.1. We implement amdrale this method in most of our classes.
Tostring is implicitly called whenever we need some texhgtrepresentation of an objedij , typically in
the context of an output statement sachsole.WriteLine("{0}", obj) . If the parameterles®string
method of classbject is not sufficient for our formatting purposes, @& implement th&oString

method of the interfacEormattable , see Section 31.7.

The methodrinalize is not used in C#. Instead, destructors are udestructors help release resources just
before garbage collection is carried out. We dodisxtuss destructors in this material.

MemberwiseClone is a protected method which does bit per bit cogyf an object (shallow copying, see
Section 13.4)MemberwiseClone can be used in subclasse®oject (in all classes and structs), but
MemberwiseClone cannot be used from clients because it is notipubl Section 32.7 we will see how to
make cloning available in the client interface; STimvolves implementation of the interfac®neable (see
Section 31.4) and delegationMemberwiseClone from theClone method prescribed bgloneable

28.4. Inheritance and Constructors

Lecture 7 - slide 24

Constructors in C# were introduced in Section B&.4 means for initializing objects, cf. Sectior31% is
recommended to review the basic rules for defininbconstructors in Section 12.4.

217

As the only kind of members, constructors are nbérited. This is because a constructor is onljulige
the class to which it belongs. In terms of HaekAccount class hierarchy shown in Figure 25.3, the
BankAccount constructor is not directly useful as an inheritgeimber of the classheckAccount : It would
not be natural to apply®ankAccount constructor on @heckAccount object.

On the other hand, tiBankAccount constructor typically does part of the work aft@ckAccount
constructor. Therefore it is useful for thieeckAccount constructor to call thBankAccount constructor.
This is indeed possible in C#. So the statement'toastructors are not inherited" should be taken with a
grain of salt. A superclass constructor can be aedractivated in a subclass constructor.

Here follows the overall guidelines for construstor class hierarchy:

« Each class in a class hierarchy should have itsapmstructor(s)

» The constructor of class C cooperates with coniirsién superclasses of C to initialize a new
instance of C

« A constructor in a subclass will always, implicidy explicitly, call a constructor in its superdas

As recommended in Section 12.4 you should alwaggram the necessary constructors in each of your
classes. As explained and motivated in Section it&4ot possible in C# to mix a parameterldafault
constructor and the constructors with parameters that yourprogyourself. You can, however, program
your own parameterless constructor and a numbesredtructors with parameters.

In the same way as two or more constructors ivangelass typically cooperate (delegate work tdedher
using the speciabhis(...) syntax) the constructors of a class C and thetaariers of the base class of C
cooperate. If a constructor in class C does ndiatty call base(...) in its superclass, it implicitly calls
the parameterless constructor in the superclasbatrcase, such a parameterless constructor xigstand
it must be non-private.

We will return to theBankAccount class hierarchy from Section 25.4 and emphasgeahstructors in the
classes that are involved.

In Program 28.2 we see the root bank account @assaccount . It has two constructors, where the second

is defined by means of the first. Notice the usthethis(...) notation outside the body of the constructor
in line 16.

using System;
public class BankAccount {

protected double interestRate;
protected string owner;
protected decimal balance;

publ i ¢ BankAccount (string o, decimal b, double ir) {
this.interestRate = ir;
t his. owmner = o;
t hi s. bal ance = b;

}

publ i ¢ BankAccount (string o, double ir):
this(o, 0.0M ir) {
}

218

public virtual decimal Balance {
get {return balance;}

}

public virtual void Withdraw (decimal amount) {
balance -= amount;

}

public virtual void Deposit (decimal amount) {
balance += amount;

}

public virtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public override string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 28.2 Constructorsin class BankAccount.

The two constructors of the classeckAccount , shown in Program 28.3, both delegate part of the
initialization work to the first constructor in glsBankAccount . Again, this is done via the special notation
base(..) outside the body of the constructor. Notice thatibs of both constructors @heckAccount are
empty.

It is interesting to ask why the designers of Céehdecided on the special way of delegating wotiveen
constructors in C#. Alternatively, one construcould chose to delegate work to another construcside
the bodies. The rationale behind the C# desigroist probably, that the designers insist on a pdatic
initialization order. This will be discussed in 8en 28.5.

using System;
public class CheckAccount: BankAccount {

publ i c CheckAccount (string o, double ir):
base(o, 0.0M ir) {
}

public CheckAccount (string o, decimal b, double ir):
base(o, b, ir) {
}

public override void Withdraw (decimal amount) {
balance -= amount;
if (amount < balance)
interestRate = -0.10;

}

public override string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 28.3 Constructorsin class CheckAccount.

219

In the web-version of the material we also showdlssesavingsAccount andLotteryAccount , See
Program 28.4 and Program 28.5 respectively.

28.5. Constructors and initialization order

Lecture 7 - slide 25

We speculated about the motives behind the spggamihx of constructor delegation in the previougies.
A constructor in a subclass must - either implyodt explicitly - activate a constructor in a supass. In
that way a chain of constructors are executed valmerbject is initialized. The chain of constructail be
called from the most general to the least gené&tad.following initializations take place when a new
object is made withew C(...)

« Instance variables io are initialized (field initializers)

» Instance variables in superclasses are initiaizadst specialized first
« Constructors of the superclasses are executedt-geosral first

« The constructor body afis executed

Notice that initializers are executed first, froroshspecific to most general. Next the construcioescalled
in the opposite direction.

Let us illustrate this by means of concrete exampRrogram 28.6, Program 28.7 and Program 28.8evhe
classc inherits from class, which in turn inherit from class

The slightly artificial classit , shown in Program 28.9 contains a static "traomeghod" which returns a
given init valueyal . More importantly, for our interests, it tells alsout the initialization. In that way we

can see the initialization order on the standatguitstream. The tiny application class, contairhgystatic
Main method, is shown in Program 28.10.

The output in Listing 28.11 reveals - as expectiwht all initializers are executed before the tamtsors.
First in classc, next inB, and finally inA. After execution of the initializers the constrmrst are executed.
First thea constructors, then tteeconstructor, and finally the constructor.

using System;

public class C B{
private int varC1 = Init.InitMe(1, "varC1, initia lizer in class C"),
varC2;
public C (){
varC2 = Init.InitMe(4, "VarC2, constructor body c");
}

}

Program 28.6 Initializers and constructors of class C.

using System;

public class B: A{
private int varB1 = Init.InitMe(1, "varB1, initia lizer in class B"),
varB2;
public B (1

220

varB2 = Init.InitMe(4, "VarB2, constructor body B");
}
}

Program 28.7 Initializers and constructors of class B.

using System;

public class A{
private int varAl = Init.InitMe(1, "varA1l, initia lizer in class A"),
varA2;
public A ({
varA2 = Init.InitMe(4, "VarA2, constructor body A");
}
}

Program 28.8 Initializers and constructors of class A.

using System;
public class Init{

public static int InitMe(int val, string who){
Console.WriteLine(who);
return val;

}

}
Program 28.9 The class Init and the method InitMe.

using System;

class App{
public static void Main(){
Cc= new C();
}
}

Program 28.10 A programthat instantiates and initializes class
C.

varCl1, initializer in class C
varB1, initializer in class B
varAl, initializer in class A
VarA2, constructor body A
VarB2, constructor body B
VarC2, constructor body C

Listing 28.11 The output that reveals the initialization
order.

28.6. Visibility modifiers in C#

Lecture 7 - slide 27

Visibility control is a key issue in object-oriedtprogramming. The general discussion about vigibil
appears in Section 11.3, Section 11.4 and Secfidh The C# specific discussion is briefly toucladn
Section 11.7. We gave overview of visibility in nespaces and types in Section 11.16. In this leetare
have briefly described the issue in general iniBe@?7.3.

221

Basically, we must distinguish between visibilitytgpes in assemblies and visibility of membergyimes:

« Visibility of a type (e.g. a class) in an assembly
» internal: The type is not visible from outside the assembly
» public: The type is visible outside the assembly
» Visibility of members in type (e.g., methods ingdas)
« private: Accessible only in the containing type
» protected: Accessible in the containing type and in subtypes
« internal: Accessible in the assembly
» protected internal: Accessible in the assembly and in the containypg and its
subtypes
« public: Accessible whenever the enclosing type is adolkessi

The issue of inheritance and visibility of privabembers is addressed in Exercise 7.2.

Internal visibility is related to assemblies, natmespaces. Assemblies are produced by the conwiler,
represented as eithetll or-exe files. It is possible to have a type which is sible outside the
assembly, into which it is compiled. It is, of ceer also possible to have types which are visibtside the
assembly. This is the mere purpose of having liesaPer default - if you do not write any modifidop-
level types are internal in their assembly. Thanate visibility of members of a class, quite natiy;
depends on the visibility of the surrounding typetie assembly.

Members of classes (variables, methods, propediescan also have internal visibility. Protecteembers
are visible in direct and indirect subclasses. ¥an think of protected members as members visible f
classes in the inheritance family. We could cdthitily visibility. It is - as noticed above - possible to
combine internal and protected visibility. The defaisibility of members in types is private.

It was a major point in Chapter 11 that data shbelgrivate within its class. With the introductioh
inheritance we may chose to define data as pratestanbers. Protected data is convenient, at leastd
short-term consideration, because superclass lietecan be seen from subclasses. But having pedtect
data in class C implies that knowledge of the depaesentation is spread from class C to all daact
indirect subclasses of C. Thus, a larger part®fpfogram is vulnerable if/when the data represientés
changed. (Recall the discussion ah@pt esentation independence from Section 11.6). Therefore we may
decide to keep data private, and to access supsrmtéda via public or protected operations. Itastiva
serious consideration is you should allow proteclat@ in the classes of your next programming ptoje

Related to inheritance we should also notice thhatlafined member in a subclass should be atésast
visible as the member in the superclass, whickpitaces. It is possible to introdudeibility inconsistencies.
This has been discussed in great details in Setfidt6.

Exercise 7.2. Private Visibility and inheritance

Take a look at the classes shown below:

using System;

public class A{
private inti=7;

222

protected int F(int j){
returni + j;
}

}

public class B : A{
public void G(){
Console.WriteLine("i: {0}", i);
Console.WriteLine("F(5): {0}", F(5));
}
}

public class Client {
public static void Main(){
B b = new B();
b.G();

Answer the following questions before you run thegpam:

1. Does the instance &f created irMain in Client , have an instance varialte
2. Is the first call taconsole.WriteLine in Glegal?

3. Is the second call toonsole.WriteLine in Glegal?

Run the program and confirm your answers.

Exercise 7.3. Internal Vishility

The purpose of this exercise is to get some expagiwvith the visibility modifier callethternal. Take a
look at the slide to which this exercise belongs.

In this exercise, it is recommended to activatecthrapiler from a command prompt.
Make a namespacewith two classeg andi:

« P should be publice should have a static public memlpeaand a static internal membher
« 1 should be internal. should also have a static public membpand a static internal member

Compile the classes in the namespate a single assembly, for instance located irfitae.dll.

Demonstrate that the clasgan be used in clags Also demonstrate thati can be seen and used in
classpP.

After this, program a clags which attempts to use the claseesdi from x.dll. Arrange that classis
compiled separately, to a file y.dll. Answer thédwing questions about clags

1. Can you declare variables of typén classa?
2. Can you declare variables of typén classa?
3. Canyou accessi and andP.p in A?
4. Canyou access andandp inA?

223

Finally, arrange that clagsis compiled together with.p andN.l to a single assembly, say y.dIl. Does
this alternative organization affect the answenth#oquestions asked above?

28.7. Inheritance of methods, properties, andxadse

Lecture 7 - slide 28

All members apart from constructors are inheritagarticular we notice that operations (methods,
properties, and indexers) are inherited.

Methods, properties, and indexers are inherited

Here follows some basic observations about inheréaf operations:

- Methods, properties, and indexers can be redefinedo different senses:
« Same names and signatures in super- and subdizssyaelated meaningsifual
override)
« Same names and signatures in super- and subelassntirely different meaningadw)
« A method M in a subclass B can refer to a methad B superclass A

* base.M(...)
« Cooperation, also known as method combination

The distinctions betweestual /override andnew is detailed in Section 28.9.

The subject of the second item is method combinatitich we will discuss in more details in Chag#er
Operators are inherited. A redefined operatorsnlaclass will be an entirely new opereéltor.

Operators (see Chapter 21) are static. The chbioperator is fully determined at compile time. @qters
can be overloaded. There are rules, which condtnaitypes of formal parameters of operators, setich
21.4. All this implies that two identically namegearators in two classes, one of which inherits fthen
other, can be distinguished from each other alreadpmpile-time.

28.8. Inheritance of methods: Example.

Lecture 7 - slide 29

We will now carefully explore a concrete examplattimvolves class inheritance. We stick to the bank
account classes, as introduced in Section 25.4emberdiscussed class specialization. In Prograd?228.
Program 28.13, and Program 28.14 we emphasizelénant aspects of inheritance with colors.

using System;

public class BankAccount {

pr ot ect ed double interestRate;

224

pr ot ect ed string owner;
pr ot ect ed decimal balance;

public BankAccount(string o, decimal b, double i r {
this.interestRate = ir;
this.owner = o;
this.balance = b;

}

public BankAccount(string o, double ir):
this(o, 0.0M, ir) {

public vi rtual decimal Balance {
get {return balance;}

}

public vi rtual void Withdraw (decimal amount) {
balance -= amount;

}

public vi rtual void Deposit (decimal amount) {
balance += amount;

}

public vi rtual void AddInterests() {
balance += balance * (Decimal)interestRate;

}

public over ri de string ToString() {
return owner + "'s account holds " +
+ balance + " kroner";

Program 28.12 The base class BankAccount.

In Program 28.12 the data a protected, not prividis is an easy solution, but not necessarilybebet
solution, because the program area that usesrie itistance variables of classkAccount now becomes
much larger. This has already been discussed ito8&28.6. In addition the properties and methads a
declared as virtual. As we will see in Section 28His implies that we can redefine the operations
subclasses @ankAccount , such that the run-time types of bank accounts dimamic types) determine the

actual operations carried out.

using System;
public class CheckAccount: BankAccount {
/'l Instance vari abl es of BankAccount are inherited

public CheckAccount(string o, double ir):
base(o, 0.0M, ir) {
}

public CheckAccount(string o, decimal b, double ir):
base(o, b, ir) {

/1 Method Bal ance is inherited
/1l Method Deposit is inherited
/] Method Addlnterests is inherited

225

public over ri de void Withdraw (decimal amount) {
base. Wt hdrawm anount) ;
if (amount < balance)
interestRate = -0.10;

}

public overri de string ToString() {
return owner + "'s check account holds " +
+ balance + " kroner";

Program 28.13 The class CheckAccount.

In classCheckAccount in Program 28.13 the instance variables of akaskAccount and the operations
Balance , Deposit , andAddinterests are inherited. Thus, these operations fgafikAccount can simply

be (re)used ooheckAccount objects. The methodithdraw is redefined. Notice thatithdraw calls
base.Withdraw , thewithdraw method in clasBankAccount . This is (imperative) method combination, see
Section 29.1. As we will see in Section 28.9 thalifier overri de is crucial. The methotoString

overrides the similar method BankAccount , which in turn override the similar method froras$Object .

In the web-version of the material we also showckagsesavingsAccount andLotteryAccount

Exercise 7.4. A subclass of LotteryAccount

On the slide, to which this exercise belongs, weehemphasized inheritance of methods and propémties
the bank account class hierarchy. From the webereof the material there is direct access to the
necessary pieces of program.

ThelLotteryAccount USes an instance ofattery object for adding interests. Under some lucky
circumstances, the owner of ateryAccount ~ will get a substantial amount of interests. In huases,
however, no interests will be added.

There exists a single file which contains the @asankAccount , CheckAccount , SavingsAccount
Lottery , together with a sample client class.

Program a specialization of thetteryAccount , calledLotteyPlusAccount , with the following
redefinitions ofbeposit andwithdraw .

» TheDeposit method doubles the deposited amount in case yaw awinning lottery number
upon deposit. If you are not luckyeposit works as irLottoryAccount , but an administrative
fee of 15 kroner will be withdrawn from youstteryPlusAccount

» Thewithdraw method returns the withdrawn amount without atyu@gducting it from the
LotteryPlusAccount if you draw a winning lottery number upon withdwif you are not
lucky, withdraw works as irLottoryAccount , and an additional administrative fee of 50 kroner
will be withdrawn from the account as well.

Notice that theeposit andwithdraw methods in.otteryPlusAccount should combine with the method

in LotteryAccount (method combination). Thus, use theposit andwithdraw methods from
LotteryAccount as much as possible when you program.titeryPlusAccount

226

Test-drive the classotteryPlusAccount from a sample client class.

28.9. Overriding and Hiding in C#

Lecture 7 - slide 30

Let us now carefully explore the situation whemethodviappears in both clagsand its subclass Thus,
the situation is as outlined in Program 28.16.

class A {
public void M){}
}

classB : A{
public void M){}
}

Program 28.16 Two methods M in classes A and B, where B
inherits from A.

Let us already now reveal that Program 28.16égdl in C#. The compiler will complain (with a warg).
We will need to add some modifiers in front of thethod definitions.

There are basically two different situations thakensense:

« Intended redefinition:
B.M is intended to redefine A.M - such that B.Mused on B instances
« A.M must be declared asrt ual
« B.M must be declared twverri de A.M
« Accidental redefinition:
The programmer of class B is not aware of A.M
« B.M must declare that it is not related to A.M ingsthenew modifier

Intended redefinition is - by far - the most typisduation. We prepare for intended redefinitign b
declaring the method asrt ual in the most general superclass. This causes thiedhé& be virtual in all
subclasses. Each subclass that redefines the meiistdver ri de it. This pattern paves the road for
dynamic binding, see Section 28.10. Intended redigfh appears frequently in almost all object-otes
programs. We have already seen it several timdgeibank account classes in Program 28.12 - Program
28.15.

Accidental redefinition is much more rare. Insteéddeclaringv.B asnew it is better to givevin B another
name. Thaew modifier should only be used in situations whemeaming is not possible nor desirable.

28.10. Polymorphism. Static and dynamic types

Lecture 7 - slide 31

In this section we define the concepts of polymaphand dynamic binding. In order to be preciseuaibo
dynamic binding we also define the meaning of statid dynamic types of variables and parameters.

227

Polymor phism stands for the idea that a variable can refebjeats of several different types
Thestatic type of a variable is the type of variable, as declared

Thedynamic type of a variable is type of object to which the vhlearefers

Dynamic binding is in effect if the dynamic type of a variableletermines the operation
activated by.op(...)

'Poly’ means 'many' anthorph' means ‘form'. Thus, polymorphism is related wittea of 'having many
forms' or 'having many types'. In the literaturelymorphism is often associated with procedures or
functions that can accept parameters of severabtyphis is callegarametric polymorphism. More
basically (and as advocated by, for instance, BediMeyer [Meyer88]), polymorphism can be reldted
variables. A polymorphic variable or parameter @rrun-time) take values of more than one typés &h
calleddata polymor phism.

A concrete and detailed discussion of dynamic aaticdypes, based on an example, is found in @ecti
28.11, which is the next section of this material.

Use of the modifiersirtual andoverride , as discussed in Section 28.9 is synonymous witlahic
binding. We have much more to say about dynamidibinlater in this material, more specifically in
Section 28.14 and Section 28.15. Polymorphism aod gise of dynamic binding is one of ti@OP crown
jewels" in relation to inheritance. It means that you $ti@itempt to design your programs such that they
take advantage of polymorphism and dynamic bindtag.a practical illustration, please compare Paoyr
28.26 and Program 28.27 in Section 28.15.

28.11. Static and dynamic types in C#

Lecture 7 - slide 32

Before we can continue our discussion of virtuathds (dynamic binding) we will give examples aftit
and dynamic types of variables.

We now apply the definitions from Section 28.1@He scene in Program 28.17 shown below. As it agpea
the class inherits from clasa. In the client ofa andB the variablex is declared of type, and the variable
is declared of type. In other words, the static type»ofs A and the static type gfisB.

Next, in line 10 and 11, we instantiate clasndBs. Thus, at the position of line 12, the variablefers to
an object of type, and the variable refers to an object of tyme Therefore, at the position of line 12, the
dynamic type ok is A and the dynamic type ¢fis B.

The assignment=y in line 13 implies that (as well ag) now refer to @ object. This is possible due
polymorphism. Recall thatmobjectisan A object. You can read about tisea relation in Section 25.2.

Line 15 causes a compile-time error. The varigblef static types, cannot refer an object of typeAn
instance of clasaisnot aB object.

Finally, in line 17, we assigntoy. Recall, that just before line k7andy refer to the same object. Thus,
the assignment=x is harmless in the given situation. Neverthelgss,illegal! From a general and

228

conservative point of view, the danger is thatwhgable y of static type can be assigned to refer to an
object of typea. This would be illegal, because awbject is (still) not @ object.

class A {}
class B: A{}
class Client{
public static void Main (){
I 1l Static type Dynami c type
AX; I A -
By; /I B -
x=newA(); /I A A TRIVIAL
y=newB();/ B B TRIVIAL
X=Y; I A B K - TYPI CAL
y=newA();// B A Conpi l e ti me ERROR
1l Cannot imp licitly convert type 'A' to 'B'.
y=X; /I B B Conpile tine ERROR !
1l Cannot imp licitly convert type 'A' to 'B'.
}
}

Program 28.17 Illustration of static and dynamic types.

We will now, in Program 28.18 remedy one of thelyes that we encountered above in Program 2&117. |
line 16 the assignmept x succeed if we cast the object, referred ta Jip aB-object. You should think
of the cast as a way to assure the compilerxthaitthe given point in time, actually refers tB-abject.

In line 15 we attempt a similar cast of the objettirned by the expressiaaw A() . (This is an attempted
downcast, see Section 28.17). As indicated, thise&sa run-time error. It is not possible to conaarA
object to a B object.

class A {}
class B: A{}
class Client{
public static void Main (){
1l 1 Static type Dynami c type
AX; I A -
By; /I B -
x=newA(); /I A A TRIVIAL
y=newB(); / B B TRIVIAL
X=Y; A B OK-TYP ICAL
y= (B)new A();// B A RUNTI ME ERROR
y= (B) x; /I B B NOW OK
}
}

Program 28.18 Corrections of the errorsin the illustration of
static and dynamic types.

With a good understanding of static and dynamiesypf variables you can jump directly to Sectiorl28
If you read linearly you will in Section 28.12 amdSection 28.13 encounter the means of expressicog
for doing type testing and type conversion.

229

28.12. Type test and type conversion in C#

Lecture 7 - slide 33

It is possible to test if the dynamic type of aighlev is of typec, and there are two ways to convert (cast)
one class type to another

The following gives an overview of the possibilgie

e VvisC
« True if the variable is of dynamic type C
« Also true if the variable is of dynamic type®, whereD is a subtype of

As it appears from level 9 of Table 6.4 an operator in C#. - The explanation of tkeoperator above is
not fully accurate. The expression in the item &devrue ifv successfully can be converted to the tgy
a reference conversion, a boxing conversion, amdooxing conversion.

It is - every now and then - useful to test theadyit type of a variable (or expression) by usénef &
operator. Notice however, that in many contexis itnnecessary to do so explicitly. Use of a virtnathod
(dynamic binding) encompasses an implicit teshefdynamic type of an expression. Such a testigtbre
an implicit branching point in a program. In otlesrds, passing a message to an object selects an
appropriate method on basis of the type of theivecebject. You should always consider twice isit
really necessary to discriminate with use ofith@perator. If your program contains a lot of ins&tests
(using tha s operator) you may not have understood the ide@tial methods!

The following to forms of type conversion (castimgysupported in C#:

e (Qv
« Convert thestatic type of v to C in the given expression
« Only possible if the dynamic type ofisCc, or a subtype of
« If not, aninvalidCastException is thrown
e vasC
« Non-fatal variant of o) v
« Thus, convert the static type wto cin the given expression
« Returnswll if the dynamic type of is notc, or a subtype of

The first,(C)v , is know agasting. If Cis a class, casting is a way to adjust the stgpie of a variable or
expression. The latter alternativess C , is equivalent tgC)v provided that no exceptions are thrown. If
(C)v throws an exception, the expressiais C returnsnull .

Above we have assumed tlta a reference type (a class for instance). & alakes sense to uggv
whereT is value type (such as a struct). In this casalaevof the type is converted to another type. \Ateeh
touched on explicitly programmed type conversionSéction 21.2. See an example in Program 21.3.
Casting of a value of value type may change theshtits behind the value. The casting of a refezeas
discussed above, does not change the "bits betmgngterence"”.

230

as is an operator in the same way assee level 9 of Table 6.1. Notice also, at le&bf the table, that
casting is an operator in C#.

Thet ypeof operator can be applied on a typename to obtaiediresponding object of class
Type

Thej ect . Get Type instance method returns an object of ctags that represents the run-
time type of the receiver.

Examples of casting, and examples ofdhe@ndi s operators, are given next in Section 28.13.

28.13. Examples of type test and type conversion

Lecture 7 - slide 34

In the web-version of the material, this sectiontams concrete examples that show how to usesthes,
and typecasting operators. The examples are relafarge, and the explanations quite detailedrd&foee
they have been left out of the paper edition.

Exercise 7.5. Satic and dynamic types

Type conversion with as T was illustrated with a program on the accompangiiag. The output of the
program was confusing and misleading. We wantpgontehe static types of the expressioasas
BankAccount , bal as CheckAccount , etc. If you access this exercise from the welsigarthere will be
direct links to the appropriate pieces of program.

Explain the output of the program. You can exantitgeclasseBankAccount , CheckAccount ,
SavingsAccount andLotteryAccount , if you need it.

Modify the program such that the static type oféRkpressionsai as BanktypeAccount IS reported.
Instead of

baRes1 = bal as BankAccount;
Report(baRes1);

you should activate some method on the expresaibas BankAccount which reveals its static type. In
order to do so, it is allowed to add extra methodse bank account classes.

28.14. Virtual methods in C#

Lecture 7 - slide 35

This section continues our discussion of dynammclinig and virtual methods from Section 28.10. Wk wi
make good use of the notion of static type and ahyoaype, as introduced in Section 28.11.

231

First of all notice that virtual methods that akewidden in subclasses rely on dynamic bindingleised
in Section 28.10. Also notice that everything wedbout virtual methods also holds for virtual pesties
and virtual indexers.

The ABC example in Program 28.24 shows two clagsasdB, together with &lient classB is a subclass
of A. The clasa holds the methodg N, 0, andp which are redefined somehow in the subckass

The compiler issues a warning in line 11 becausbave a methostin both clasa and class. Similarly, a
warning is issued in line 13 because we have aadetin classs as well as a virtual methamin classa.
The warnings tells you that you should either ligenhodifieroverride or new when you redefine methods
in classs.

Min classB is said tchide Min classa. Similarly, 0in classs hides 0in classa.

The overriding oNin line 12 (in class) of the virtual methodiin line 5 (from clasg) is very typical.
Below, in the client program, we explain the consagces of this setup. Please notice this pattdrjecd
oriented programmers use it again and again sl isommon that it is the default setup in Javal!

The method in line 14 of class is declared asew. P in classB hidespP in classa. The use ofiew
suppresses the warnings we get for methadd for method. The use ofiew has nothing to do with class
instantiation. Declaring asnew in B states an accidental name clash between methols atass hierarchy.
P in A andP in B can co-exist, but they are not intended to bdedla the same way asn A andN in B.

using System;

class A {
public void M(){Console.WriteLine("M in A");}
public virtual void N(){Console.WriteLine("N in A"}
public virtual void O(){Console.WriteLine("O in A");}
public void P(){Console.WriteLine("P in A"}
}
class B: A{
public void M(){Console.WriteLine("M in B");} // war ni ng
public override void N(){Console.WriteLine("N in B");}
public void O(){Console.WriteLine("O in B");} // war ni ng
public new void P(){Console.WriteLine("P in B");}
}
class Client {
public static void Main(){
Aaa=newA(), //aahas statictype A, a nd dynamic type A
ab=new B(); //ab has static type A, a nd dynamic type B
B b =new B(); /I b has static type B, a nd dynamic type B
aa.N(); ab. N(); b.N(); // The dynamic type controls
Console.WriteLine();
aa.P(); ab. P(); b.P(); /I The static type controls
}
}

Program 28.24 Anillustration of virtual and new methodsin
class A and B.

Theclient class in Program 28.24 brings objects of ckaardB in play. The variablaa refers am object.
The variableab refers a object. And finally, the variable refers & object as well.

232

The most noteworthy cases are emphasizédlia When we call a virtual method the dynamic type of

the receiving object controls which method to cBfius in line 23aa.N() calls then method in class, and
ab.N() calls theN method in class. In both cases wdispatch on an object referred from variables of static
typeA. The dynamic type of the variable controls theadishing.

In line 25, the expressiaa.P() calls ther method in class, and (most important in this exampi®)pP()
also class the method in class. In both cases the static type of the variabiéeandab control the
dispatching. Please consult the program outputdting 28.25 to confirm these results.

Nin A

Nin B

NinB

PinA

Pin A

PinB
Listing 28.25 Output fromthe programthat illustrates virtual
and new methods.

Virtual methods use dynamic binding

Properties and indexers can be virtual in the saayeas methods

Let us finally draw the attention to the case wheexértual methodhis overridden along a long chain of
classes, say, B, C, D, E, F, G, andH that inherit from each othes (nherits froma, c from B, etc). In the
middle of this chain, let us say in clasgshe methoduis defined asew vi rtual instead of being
overridden. This changes almost everything! Itasyeto miss theew vi rt ual method among all the
overridden methods. If a variableof static typen, B, C, orDrefers to an object of typg thenv.m() refers
tomin D (the level just below theew vi rt ual method). Ifv is of static type, F, orGthenv.m() refers tav
in classH.

28.15. Practical use of virtual methods in C#

Lecture 7 - slide 36

Having survived the ABC example from the previoest®n, we will now look at a real-life example of
virtual methods. We will program a client clasddferent types of bank account classes, and wesesd
how theAddinterests ~ method benefits from being virtual.

The bank account classes, used below, were inteatdimcSection 25.4 in the context of our discussibn
specialization. Please take a look at the waydaenterests ~ methods are defined in Program 25.1,
Program 25.3, and Program 25.4. The ctasskAccount inherits theaddinterests ~ method of class
BankAccount . SavingsAccount andLotteryAccount overrideAddinterests

Notice that the definition of theddinterests ~ methods follow the pattern of the methods namad
Program 28.24.

233

using System;
public class AccountClient{

public static void Main(){

BankAccount[] accounts =

new BankAccount[5K
new CheckAccount("Per",1000.0M, 0.03),
new SavingsAccount("Poul",1000.0M, 0.03),
new CheckAccount("Kurt",1000.0M, 0.03),
new LotteryAccount("Bent",1000.0M),
new LotteryAccount("Lone",1000.0M)

h

foreach(BankAccount ba in accounts){
ba. AddI nterests();
}

foreach(BankAccount ba in accounts){
Console.WriteLine("{0}", ba);

}
}

}

Program 28.26 Use of virtual bank account methods.

TheMain method of theccountClient class in Program 28.27 declares an array of BgpAccount , see
line 6. Due to polymorphism (see Section 28.1(jtossible to initialize the array with differappes of
BankAccount Objects, see line 7-13.

We add interests to all accounts in the arraynia i5-17. This is done infar each loop. The expression
ba.AddInterests() calls the most specialized interest adding methdle BankAccount class hierarchy
onba. The dynamic type afa determines whiclAddinterests ~ method to call. If, for instancea refers to a
LotteryAccount , theAddinterests ~ method of classotteryAccount is used. Please notice that this is
indeed the expected result:

The type of the receiver objeathj controls the interpretation of messagestjo
And further, the most specialized method relatovéhe type of the receiver is called.

Let us - for a moment - assume that we do not haeess to virtual methods and dynamic binding. In
Program 28.27 we have rewritten Program 28.26 ¢h suway that we explicitly control the type
dispatching. This is the part of Program 28.27 easp#ed inpur ple. Thus, thepur ple parts of Program
28.26 and Program 28.27 are equivalent. Which @ermdo you prefer? Imagine that many more bank
account types were involved, and find out how Vialleiairtual methods can be for your future programs

using System;
public class AccountClient{

public static void Main(){

BankAccount[] accounts =

new BankAccount[5){
new CheckAccount("Per",1000.0M, 0.03),
new SavingsAccount("Poul",1000.0M, 0.03),
new CheckAccount("Kurt*,2000.0M, 0.03),
new LotteryAccount("Bent",1000.0M),
new LotteryAccount("Lone",1000.0M)

234

h

foreach(BankAccount ba in accounts){
if (ba is CheckAccount)
((CheckAccount) ba). Addl nterests();
else if (ba is SavingsAccount)
((Savi ngsAccount) ba) . Addl nterests();
else if (ba is LotteryAccount)
((LotteryAccount)ba). Addl nterests();
else if (ba is BankAccount)
((BankAccount) ba) . Addl nterests();

}

foreach(BankAccount ba in accounts){
Console.WriteLine("{0}", ba);

}

Program 28.27 Adding interests without use of dynamic
binding - AddInterest is not virtual.

Notice that for the purpose of Program 28.27 weelhrawdified the bank account classes such that
Addinterests IS not virtual any more. Notice also, in line #2at the last check of is against
BankAccount . The check againsankAccount must be the last branch of the if-else chain beeall the
bank accounts in the example satisfy the predicate BankAccount

The outputs of Program 28.26 and Program 28.21tlargical, and they are shown in Listing 28.28.itAs
turns out, we were not lucky enough to get intarest of our lottery accounts.

Per's check account holds 1030,000 kroner
Poul's savings account holds 930,000 kroner
Kurt's check account holds 1030,000 kroner
Bent's lottery account holds 1000,0 kroner
Lone's lottery account holds 1000,0 kroner

Listing 28.28 Output from the bank account programs.

The use of virtual methods - and dynamic bindiogvers a lot of type dispatching which in
naive programs are expressed withel se chains

28.16. Overriding the Equals method in a class

Lecture 7 - slide 37

TheEquals instance method in clas®ject is a virtual method, see Section 28.3. Ehgals method is
intended to be redefined (overridden) in subclasetassobject . The circumstances for redefiniaguals
have been discussed in Focus box 13.1.

It is tricky to do a correct overriding of the wigl Equal s method in classbj ect

Below we summarize the issues involved when retfgfibquals in one of our own classes.

235

« Cases to deal with when redefining teg@al s method:
« Comparison withhull (false)
« Comparison with an object of a different typa $e)
« Comparison wittref er enceEqual s (true)
« Comparison of fields in two objects of the sameetyp
» Other rules when redefinirggual s:
« Must not lead to errors (no exceptions thrown)
« The implemented equality should e exive, symmetric andtransitive
- Additional work:
* Get HashCode should also be redefined in accordance ifial s
» If 01.Equals(02) then o1.GetHashCode() == 02.GetHashCode()
« If you overload the= operator
« Also overload=
« Make sure thad1 ==02 andoil.Equals(02) return the same result

We illustrate the rules in Program 28.29, whereowerride theEquals method in clasBankAccount .

using System;
using System.Collections;

public class BankAccount {
private double interestRate;
private string owner;
private decimal balance;
private | ong account Nunber;

private static long nextAccountNumber = 0;

private static ArrayList accounts = new ArrayLis t();
public BankAccount(string owner): this(owner, 0. 0){
}
public BankAccount(string owner, double interest Rate) {
nextAccountNumber++;
accounts.Add(this);

this.accountNumber = nextAccountNumber;
this.interestRate = interestRate;

this.owner = owner;

this.balance = 0.0M;

}
public override bool Equal s(Object obj){
if (obj == null)
return fal se;
else if (this.CetType() != obj.GCetType())
return fal se;
else if (ReferenceEqual s(this, obj))
return true;
else if (this.accountNunber == ((BankAccount)obj).account Nunber)
return true;
el se return fal se;
}

public override int GetHashCode(){
return (int)account Nunber ~ (int)(accountNunber >> 32);
/1 XOR of |ow orders and high orders bits of accountNunber
/1l According to Get HashCode APl reconmendati on.

236

}

/* Some methods are not included in this version */

Program 28.29 Equals and GetHashCode Methods in class
BankAccount.

Please follow the pattern in Program 28.29 whenhgote to redefine€quals in your future classes.

28.17. Upcasting and downcasting in C#

Lecture 7 - slide 38

Upcasting anddowncasting are common words in the literature about objerted programming. We
have already used these words earlier in this mbteee for instance Program 28.21.

Upcasting converts an object of a specialized tgmemore general type

Downcasting converts an object from a general tgmemore specialized type
BankAccount

-'"'.
CheckAccount SavingsAccount LotteryAccount

Figure 28.3 A specialization hierarchy of bank accounts

Relative to Figure 28.3 we declare t®&mkAccount and twoLotteryAccount variables in Program 28.30.
After line 4ba2 refers to @ankAccount oObject, anda2 refers to aotteryAccount object.

The assignment in line 6 reflects an upcastiag.is allowed to refer to eotteryAccount , because -
conceptually - aotteryAccount IS a BankAccount .

In line 7, we attempt to assiga2 tolal . This is an attempted downcasting. This is sthyizavalid, and
the compiler will always complain. Notice that ionse cases the assignment=ba2 is legal, namely
whenba2 refers to aotteryAccount object. In order to make the compiler happy, yloousd writelal =
(LotteryAccount)ba2

In line 9 we attempt to do the downcasting discdsd®ve, but it fails at run-time. The reasona$ course
- thatba2 refers to @ankAccount object, and not to kotteryAccount object.

After having executed line 6a1 refers to aotteryAccount object. Thus, in line 11 we can assign to

the reference inal. Again, this is a downcasting. As noticed aboklie,downcasting is necessary to calm
the compiler.

237

BankAccount bal,

ba2 = new BankAccount("John", 250.0M, 0.01);
LotteryAccount lal,
la2 = new LotteryAccount("Bent ", 100.0M);
bal = laz; /[upcasting -
/I lal = ba2; /I downcasting - Il egal
/I discovered a t compile time
/I 1al = (LotteryAccount)ba2; // downcasting - Il egal
/I discovered a t run time
lal = (LotteryAccount)bal; // downcasting - OK
/I bal already refers to a LotteryAccount

Program 28.30 Anillustration of upcasting and
downcasting.

Upcasting and downcasting reflect different viewmsaggiven object

The object is not 'physically changed' due to ucg®r downcasting
The general rules of upcasting and downcastinggisschierarchies in C# can be expresses as follows:

« Upcasting:
« Can occur implicitly during assignment and parampéssing
« A natural consequence of polymorphism andiskeerelation
« Can always take place
« Downcasting:
» Must be done explicitly by use of type casting
« Can not always take place

28.18. Inheritance and Variables

Lecture 7 - slide 40

We have focused a lot on methods in the previocisoses. We will now summarize how variables are
inherited.

Variables (fields) are inherited

Variables cannot be virtual

Variables are inherited. Thus a variabl| a superclass is present in a subclassThis is even the case if
v is private in class, see Exercise 7.2.

What happens if a variableis present in both a superclass and a subclass?able can be redefined in
the following sense:

238

« Same name in super- and subclass: two entirelgrdifit meaningséw)

We illustrate this situation in the ABC exampleRvbgram 28.31. Both clagsands have annt variablev.

This can be calledccidental redefinition, and this is handled in the program by marking classs with the
modifier new.

Now, in the client clasapp, we make some andB objects. In line 17-23 we see that the static tyfpe
variable determines which versionwis accessed. Notice in particular the expressiotherA.v . If
variable access had been virtuabtherA.v would return the value 5. Now we need to adjuststiatic type
explicitly with a type cast (see Section 28.12pldain a reference v . This is illustrated in line 21.

using System;

public class A{
public intv =1;
}

public class B: A{
public newintv =5;

}

public class App{
public static void Main(){ // Static type Dynami c type
AanA= newA(), /I A A
anotherA=newB(); // A B
BaB = newB(); [/ B B

Console.WriteLine(
{0},
anA.v Il
+ anot her A. v Il 1
+ ((B)anotherA).v /I 5
+aB.v II'5

Program 28.31 Anillustration of "non-virtual variable
access'.
We do not normally use public instance variables!

The idea of private instance variables aguf esentation independence was discussed in Section 11.6.

28.19. References

[Meyer88] Bertrand MeyelObject-oriented software construction. Prentice Hall, 198¢

239

240

29. Method Combination

In this section we will primarily studsnethod combination. Secondarily we will touch on a more specialized,
related problem calleparameter variance.

29.1. Method Combination

Lecture 8 - slide 2

If two or more methods, of the same name, locaiféerent places in a class hierarchy, cooperatotoe
some problem we talk abowrethod combination.

A typical (and minimal) scene is outlined in Figa®1. Clas® is a subclass af, and in both classes there
is a method namedp. BothOp methods have the same signature.

A OD(S)
B OD(S){_:]

Figure 29.1 ClassBisa subclassof class A

Overall, and in general, there are several way®foin classa ands to cooperate. We can, for instance,
imagine that whenevermobject receives aBp message, both operations are called automati®&iycan
also imagine thaDp in classa is called explicitly byOp in classs, or the other way around.

Along the lines outlined above, we summarize twitedent method combination ideas. The first is kncag
imper ative method combination, and the second is known @l ar ative method combination.

« Programmatic (imperative) control of the combinatod Op methods
» Superclass controlled: TheOp method in class A controls the activatiorQgf in class B
« Subclass controlled: TheOp method in class B controls the activatiorQOpfin class A
« Imperative method combination
« An overall (declarative) pattern controls the muitt@peration amon@p methods
« A.Opdoesnotcall Op - BOp does not call p.
« A separate abstraction controls h@w methods in different classes are combined
« Declarative method combination

Mainstream object-oriented programming languagesuding C#, support imperative method combination.
Most of them support the variant that we call sagsicontrolled, imperative method combination.

Beta [Kristensen87] is an example of programmimgleage with superclass-controlled, imperative miétho
combination. CLOS [Steele90, Keene89] is one ofi¢heexamples of programming languages with
declarative method combination. (The interestedeeaan consult Chapter 28 of [Steele90] to leannhm
more about declarative method combination in CLOS.

241

C# supports subclass controlled, imperative metiooabination via use of the notation
base. Op(...)

The notionbase. Op(. . .) has been discussed in Section 28.7 and it hasilhestrated in Program 26.2
(line 17), Program 28.13 (line 20), and Prograni2gline 20).

29.2. Parameter Variance

Lecture 8 - slide 3

We will continue the discussion of the scene oatim Figure 29.1, now refined in Figure 29.2 shown
below. The question is how the parameter®pin classa andB vary in relation the variation of typeand

types.

i S
T o]
B Op(T x) T

Figure 29.2 ClassBisasubclassof class A, and T isa subclass of S

In Program 29.1 we create an object of the speeilclass (in line 2), and we assign it to a variable of
static typea (line 5) This is possible due to polymorphismlitre 6 we send thep message to theobject.
We assume thaip is virtual, and therefore we expect tloatin classs is called.

So far so good. The thing to notice is tbatakes a single parameter. If we pass an instandasss to
B.Op we may be in deep trouble. A problem occws.dp applies some operation from classn thes
object.

A aref;
B bref = new B();
S sref = new S();

aref = bref; // aref is of static type A and dynamic type B
aref.Op(sref); // B.Op is called with an S-obje ct as parameter.
/I What if an operation from T i s activated on the S-object?

Program 29.1 Anillustration of the problems with
covariance.

In Program 29.2 (only on web) in the web-editionshew a complete C# program which illustrates the
problem.

The story told about the scene in Program 29.1Pandram 29.2 (only on web) turns out to be flawed i
relation to C#! | could have told you the reasaut, llwill not do so right away. You should ratheké a
look at Exercise 8.1 and learn the lesson the Wagd (When access is granted to the exercise enkjtiyou
will be able to get my explanation).

242

It turns out that parameter variance is not realfglevant topic in C#...

29.3. Covariance and Contravariance

Lecture 8 - slide 4

The situation encountered in Figure 29.2 of Sec@@»x is calleadtovariance, because the typssandT (as
occurring in the parameters ©f in classa andB) vary the same way as clasgeandB. (The parameter type
T of Opin classB is a subclass of the parameter tgg Op in classA; The clas® is a subclass of class
Therefore we say thatands vary the same way asandB.)

« Covariance: The parametersandT vary the same way asands

As a contrast, the situation in Figure 29.3 belswalledcontravariance, because - in this variant of the
scene s andT vary in the opposite way asandB. Please compare carefully Figure 29.2 with Fies3.

« Contravariance: The parameters andT vary the opposite way asandB

T T

B Op(T x) S

Figure 29.3 ClassBisa subclass of class A, and the parameter class Sisa
subclass of T.

As we will see in Exercise 8.1 the distinction be&n covariance and contravariance is less rel@vayt.
However, covariance and contravariance show uphier@ontexts of C#. See Section 42.6.

Exercise 8.1. Parameter variance

First, be sure you understand the co-variance enolskated above. Why is it problematic to execute
aref.Op(sref) in the class Client?

The parameter variance problem, and the distindi&ween covariance and contravariance, is ndiraal

topic in C#. The program with the classes A/B/SiTtlee previous page compiles and runs without
problems. Explain why!

243

29.4. References

[Keene89] Sonya E. Keen@pject-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Steele90] Guy L. Steel€ommon Lisp, the language, 2nd Edition. Digital Press, 1990.

[Kristensen87] Bent Bruun Kristensen, Ole Lehrmdadsen, Birger Mgller-Pedersen and Kristen

Nygaard, "The BETA Programming Language"Resear ch Directions in Object-
Oriented Programming, The MIT Press, 1987. Bruce Shriver and Peter Wegn
(editors)

244

30. Abstract Classes - Sealed Classes

This chapter is abouatbstract classes. At the end of the chapter we also touchsealed classes. Relative to
our interests, sealed classes are less importamtatbstract classes.

30.1. Abstract Classes

Lecture 8 - slide 6

When we program in the object-oriented paradigim iilnportant to work out concepts as general asiblas
Programming at a general level promotes reusaljdagg Section 2.4).

In object-oriented programming languages we orgaciasses in hierarchies. The classes closest toth
are the most general classes. Take, as an exampleank account class hierarchy in Section 25h&rev
the clasBankAccount is more general thatheckAccount , SavingsAccount , etc. It is worth noticing,
however, that we were able to fully implement @émtions in the most general cla&skAccount . In the
rest of this chapter we will study even more gelhaesses, for which we cannot (or will not) implem all
the operations. The non-implemented operationstated asleclarations of intent at the most general level.
These declarations of intent should be realizddgs general subclasses.

Abstract classes are used for concepts that weotanmvill not implement in full details

Here follows our definition of an abstract clasd an abstract operation.

An abstract classis a class with one or more abstract operations

An abstract operation is specially marked operation with a name and Waital parameters,
but without a body

An abstract class

« may announce a humber of abstract operations, whictt be supplied in subclasses
« cannot be instantiated
- isintended to be completed/finished in a subclass

We will sometimes use the temoncrete class for a class which is not abstract.

You should be aware that the definition of an austclass, as given below, is not 100% accuratel&tion
to C#. In C# a class can be abstract without antingrabstract operations. More about that in Se@®.2
below, where we discuss abstract classes in C#.

The fact that an abstract class cannot be instadtia the most tangible, operational consequehce o
working with abstract classes. Many OOP programried to think of thebstract modifier as a mark, to
be associated with those classes, he or she doassmoto instantiate. Surely, this is a conseqeebat it is
not the essential idea behind abstract classes.

245

30.2. Abstract classes and abstract methods in C#

Lecture 8 - slide 7

We will first study an example of an abstract cld¥e pick an abstract stack. (This is indeed a pepular
example class in many contexts. We have tried ¢adat, but here it fits nicely).

The abstract clasgack , shown in Program 30.1, is remarkable of two reaso

1. There is no data representation in the class @tamce variables).

2. There is a fully implemented operation in the claespite the fact that the class has no datdéor t
operation to work on.

Theblue parts of Program 30.1 are the abstract operatidrese operations make up the classical stack
operationsPush, Pop, andTop together withrull , Empty, andsize . (Notice thatrop, Full , Empty andSize
are announced as properties, cf. Section 30.3)abb&act operations have signatures (method hdads)
no body blocks. In a real-life version of the praxgrwe would certainly have supplied documentation
comments with some additional explanations of thesrof the abstract operations in the class.

Thepurple part represents a fully implemented, "normal” rodticalledroggleTop . This method swaps the
order of the two top-most elements of the stack\#ilable). Notice thatoggleTop can be implemented
solely in terms of theush, Pop, Top andsize . In other words, it is not necessary for the impatation of
ToggleTop to know details of the concrete data represemtaticstacks.

246

using System;

public abstract class Stack{
abstract public void Push(Cbject el);
abstract public void Pop();

abstract public Ooject Top{
get;}

abstract public bool Full{
get;}

abstract public bool Enpty{
get;}

abstract public int Size{
get;}

public void Toggl eTop(){
if (Size >= 2){
Ooj ect topEl1 = Top; Pop();
bj ect topEl 2 = Top; Pop();
Push(t opEl 1); Push(topEl 2);

}

public override String ToString()
return String. Format (" St ack[{0}
}

}

{
1", Size);

Program 30.1 An abstract class Stack - without data
representation - with a non-abstract ToggleTop method.

In Program 30.1 the methadstring is also an example of a fully implemented methvakaich relies on an
abstract method, nametyze .

It is left as an exercise to implement a non-abssabclass of the abstract stack, see Exercise 8.3

Let us state some more detailed - a perhaps slightprising - observations about abstract clasads
abstract operations. Each of them will be discussdalv.

« Abstract classes
« can be derived from a non-abstract class
« do not need not to have abstract members
« can have constructors
« Abstract methods
- are implicitly virtual

In relative rare situations an abstract class sharit from a non-abstract class. Notice, howetet, even
abstract classes inherit (at least implicitly) frolassobject , which is a non-abstract class in C#. (In
principle, it would make good sense for the degigjioé C# to implement clagsject as abstract class. But
they did not! We only rarely make instances of €taigect).

247

The next observation is about fully implementedsts, which we mark as being abstract. As discussed
above, the purpose of this marking is to prevestaintiation of the class.

You may ask if it makes sense to have construataasclass which never is instantiated. The angsvges,
because the data encapsulated in an abstraciactassild be initialized when a concrete subclagsisf
instantiated. Due to the rules of constructor coafien, see Section 28.4 and Section 28.5, a aaietrof
classa will be activated. If no constructor is presenajrthis falls back on the parameter-less default
constructor.

Finally, we observe that the abstract methodsrapdigitly virtual. This is natural, because sucmethod
has to be (re)defined in a subclass. In C# it tsalowed explicitly to write Virtual abstract " in front of

an abstract method. Let us also observe, that streabmethod/l cannot be private. This is becaldeeed
to be visible in the classes that override

Exercise 8.2. Course and Project classes

In the earlier exercise about courses and profemisd in the lecture about classes) we programimed
classe®ooleanCourse , GradedCourse , andProject . Revise and reorganize your solution (or the model
solution) such thagooleanCourse andGradedCourse have a common abstract superclass calteese .

Be sure to implement the metheaksed as an abstract method in classrse .

In themain method (of the client class oburse andproject) you should demonstrate that both boolean
courses and graded courses can be referred tailaples of static typeourse .

Exercise 8.3. A specialization of Stack

On the slide to which this exercise belongs, weshehown an abstract classack .

It is noteworthy that the abstragck is programmed without any instance variables (ghawithout any
data representation of the stack). Notice alsowlahave been able to program a single non-abstract
methodToggleTop , which uses the abstract methads, Pop, andpPush.

Make a non-abstract specializatiorsefck , and decide on a reasonable data representattbe efack.
In this exercise it is OK to ignore exception/efnandling. You can, for instance, assume that dipacty
of the stack is unlimited; That popping an empacktan empty stack does nothing; And that the f@mo

empty stack returns the string "Not Possible". latar lecture we will revisit this exercise in erdo
introduce exception handling. Exception handlingelevant when we work on full or empty stacks.

Write a client of your stack class, and demonstitagause of the inherited methoehgleTop . If you want,
you can also adapt my stack client class whiclassyeavailable to you in the web-edition of thiaterial.

248

30.3. Abstract Properties

Lecture 8 - slide 8

Properties were introduced in Chapter 18. Recatlphoperties allow us to get and set data of sscla
through getter and setter abstractions. From alicagipn point of view, properties are used in aegne way
as variables - both on the left and right handssfeassignments. Underneath, a property is rehfizgwo
methods - one "getter" and one "setter".

Properties can be abstract in the same way as dgtlioneans that we can announce a number of
properties which must be fully defined in subclas$®e will in Program 30.2 study an example of st
properties, namely inroint class calledstractPoint , which can be accessed both in a rectangula) (
and a polarr(a) way.r anda means radius and angle respectively. There isateo (@ariables) in class
AbstractPoint . We announcg, Y, R andA as abstract properties. These are emphasizedusipge color.
All of these are announced as both getters anerselotice theet; set; syntax. We could alternatively
announce these as only getters, or as only séftersiotice that the syntax of abstract propersesrilar to
the syntax used for automatic properties, see @et8.3.

Following the abstract properties comes three notiwy methodsiove, Rotate andToString . They are
shown inblue. They all use make heavy use the abstract pregefthe assignmert+=dx in Move, for
instance, expands to= X + dx . It first uses the getter of thproperty on the right hand side of the
assignment. Next, it uses tkeetter on the left hand side. In Program 30.2 mhg know that thex getter
and thex setter exist. The actual implementation detailslva found in a subclass.

In the web-edition of this material, we show a i@rf classabstractPoint ~ with four additional protected,
static methods which are useful for the implemeoreadf the subclasses.

using System;
abstract public class AbstractPoint {
public enum PointRepresentation {Polar, Rectangul ar}
/1 W have not yet decided on the data representation of Point

public abstract double X {
get
set

}

public abstract double Y {
get
set

}

public abstract double R {
get
set

public abstract double A {
get
set

public void Move(doubl e dx, double dy){
X += dx; Y += dy;

249

public void Rotate(doubl e angle){
A += angl e;

}
public override string ToString()({
return "(" + X+", " +Y+")" +" "+ "[r:" +R+", a" + A+ "]
}
}
Program 30.2 The abstract class Point with four abstract
properties.
In Program 30.3 we see a subclasamtractPoint . It is calledpoint . It happens to represent points the

polar way. But this is an internal (private) detdiclassPoint .

Classpoint is a non-abstract class, and therefore we prograomstructor, which is emphasizedlack.
The constructor is a little unconventional, becahsdfirst parameter allows us to specify if pareanévo
and three meangy orradius , angle . It is desirable if this could be done more eldlyaifit can! Use of
static factory methods, see Section 16.4, is Bettiatice thaPointRepresentation is an enumeration type
defined in line 5 of Program 30.2.

Emphasized ipurple we show the actual implementation of thaendy properties. Let us look &t The
getter ofx is called whenevex is used as a right-hand side value. It calculditex-coordinate of a point
from the radius and the angle. The settex igfcalled wherx is used in left-hand side context, suclkxase.
The value of expressiamis bound to the pseudo variablg ue. The setter calculates new radius and angle
values which are assigned to the instance varialblelassPoint .

Emphasized imlue we show the implementation of tRendA properties. These are trivial compared to the
X andy properties, because we happen to represent poitite polar way.

using System;

public class Point: AbstractPoint {

/I Polar representation of points:
private double radius, angle; /l radiu s, angle

// Point constructor:
publ i ¢ Poi nt (Poi nt Representation pr, double nl, double n2){
if (pr == Poi nt Representation. Pol ar) {
radius = nl; angle = n2;

else if (pr == Poi nt Representation. Rectangul ar) {
radi us = Radi usG venXy(nl, n2);

angl e Angl eG venXy(nl, n2);
} else {
t hrow new Excepti on(" Shoul d not happen");
}
}
public override double X {
get {
return XG venRadi usAngl e(radius, angle);}
set {
doubl e yBefore = YG venRadi usAngl e(radi us, angle);
angl e = Angl eG venXy(val ue, yBefore);
radi us = Radi usG venXy(val ue, yBefore);
}

250

}

public override double Y {
get {
return YG venRadi usAngl e(radi us, angle);}
set {
doubl e xBefore = XG venRadi usAngl e(radi us, angle);
angl e = Angl eG venXy(xBefore, val ue);
radi us = Radi usG venXy(xBefore, val ue);

}

}

public override double R {
get {
return radius;}
set {

radi us = val ue;}

}

public override double A {
get {
return angle;}
set {
angl e = val ue;}
}

Program 30.3 A non-abstract specialization of class Point
(with private polar representation).

In the web-edition we show a clientafstractPoint ~ andpPoint , which is similar to Program 11.3 from
Section 11.6. It shows how to manipulate instanéetassPoint via its abstract interface.

Let us summarize what we have learned from the pkesin Program 30.2, Program 30.3, and Program
30.4 (only on web). First and foremost, we havensgeabstract class in which we are able to imptéme
useful functionality flove, Rotate , andToString) at a high level of abstraction. The implementation details
in the mentioned methods rely on abstract proggenidich are implemented in subclasses. We haee als
seen a sample subclass that implements the fotraaebpgroperties.

30.4. Sealed Classes and Sealed Methods

Lecture 8 - slide 9

We will now briefly, as the very last part of tlukapter, describe sealed classes and sealed methods

A sealed class C prevents the use of C as basedflather classes

« Sealed classes
« Cannot be inherited by other classes
« Sealed methods
« Cannot be redefined and overridden in a subclass
« The modifierseal ed must be used together wiiherri de

251

Sealed classes are related to static classesesgerSl1.12, in the sense that none of them can be
subclassed. However, static classes are morectagrbecause a static class cannot have instaao®ars,
a static class cannot be used as a type, andadtes cannot be instantiated. Sealed classesatitbds
correspond to final classes and final methodswa.Ja

In some sense, abstract and sealed classes remppesite concepts. At least this holds in théofaing
sense: A sealed class cannot be subclassed; Amcthsass must be subclassed in order to be useful

If a class is abstract it does not make sensettisasealed. And the other way around, if a clasealed it
does not make sense that it, in addition, is atistkiotice that it does not make sense either ve hatual
methods in a sealed class.

A sealed class is not required to have sealed metidoreover, a class with a sealed method doeissedit
need to be sealed.

Finally, notice, that in C# a method cannot beesalithout also being overridden. Thus, $kel ed
modifier always occurs as an "extra modifier'oeérri de. The intention of sealed methods is to prevent
further overriding of virtual methods.

252

31. Interfaces

Interfaces form a natural continuation of abstd&sses, as discussed in Chapter 30. In this ahaptavill
first introduce the interface concept. Then follaarsexample, which illustrates the power of inteefa
Finally, we review the use of interfaces in theliG#aries.

31.1. Interfaces

Lecture 8 - slide 11

An interface announces a number of operationssmg®f their signatures (names and parameters). An
interface does not implement any of the announpedations. An interface only declares an intentictvh
eventually will be realized by a class or a struct.

A class or struct can implement an arbitrary nundiénterfaces. Inheritance of multiple classes inay
problematic in case the same variable or (fullyraef) operation is inherited from several supesgdassee
Section 27.5. Inheritance of the same intent fromftiple interfaces is less problematic. In a nulishieis
explains one of the reasons behind having intesfac€# and Java, instead of having multiple class-
inheritance, like in for instance C++ and Eiffel.

An interface can inherit an arbitrary number ofestimterfaces. This makes it convenient to orgaaizenall
set of inter-dependent operations in a single fiatess, which then can be combined (per inheritawié)
several other interfaces, classes or structs.

An interface corresponds to a class where all djoeiaare abstract, and where no variables areudet!In
Section 30.1 we argued that abstract classes afel as general, high-level program contributiortsis is
therefore also the case for interfaces.

An interface describes signatures of operations, but it doegmgement any of the

Here follows the most important characteristicintérfaces:

« Classes and structs can implement one or mordangs
« Aninterface can be used as a type, just like ekass

- Variables and parameters can be declared of intetiges
« Interfaces can be organized in multiple inheritaimeearchies

Let us dwell on the observation that an interfaam@es as a type. We already know that classestamdss
can be used as types. It means that we can haedblesrand parameters declared as class or sgpes.t
The observation from above states that interfaaade used the same way. Thus, it is possiblediarde
variables and parameters of an interface typewBitta moment! It is not possible to instantiatdargerface.
So which values can be assigned to variables oftarface type? The answer is that objects or watiie
class of struct types, which implement the intexfazan be assigned to variables of the interfgoe. tThis
gives a considerable flexibility in the type systdmacause arbitrary types in this way can be made
compatible, by letting them implement the samerfate(s). We will see an example of that in Sec8ar8.

253

Exercise 8.4. Theinterface | Taxable

For the purpose of this exercise you are givenupleoof very simple classes calleags andHouse. Class
Bus specializes the clasghicle . ClassHouse specializes the clagsedProperty . The mentioned
classes can easily be accessed from the web-editibie material..

First in this exercise, program an interfaeable with a parameterless operatitaxvalue . The
operation should return a decimal number.

Next, program variations of classuse and classus which implement the interfageaxable . Feel free
to invent the concrete taxation of houses and Isudsgtice that both clas®use andBus have a
superclass, namefyixedProperty andvehicle , respectively. Therefore it is essential that tiaxais
introduced via an interface.

Demonstrate that taxable house objects and takaislebjects can be used together as objects of type
ITaxable

31.2. Interfaces in C#

Lecture 8 - slide 12

Let us now be more specific about interfaces inTt¥ operations, described in a C# interface, ean b
methods, properties, indexers, or events.

Both classes, structs and interfaces can impleorabr more interfaces

Interfaces can contain signatures of methods, ptiepeindexers, and events

The syntax involved in definition of C# interfadessummarized in Syntax 31.1. The first few linesatibe
the structure of an interface as such. The remgupant of Syntax 31.1 outlines the descriptionstdrface
methods, properties, indexers and events respBctive

modifiers i nterface interface-name . base-interfaces {
method-descriptions
property-descriptions
indexer-descriptions
event-descriptions

}

return-type method-name (formal-parameter-list);

return-type property-name {
get;
set;

}

return-type t hi s[formal-parameter-list K
get;
set;

}

254

event delegate-type event-name ;

Syntax 31.1 The syntax of a C# interface, together with the syntaxes of method, property, indexer, and event
descriptionsin an interface

31.3. Examples of Interfaces

Lecture 8 - slide 13

Earlier in this material we have programmed dicg jglaying cards, see Program 10.1 and Program D®.7.
the concepts behind these classes have somethiogiimon? Well - they are both used in a wide vaét
games. This observation causes us to define atfidoggiGameObject , which is intended to capture some
common properties of dice, playing cards, and asimailar types. Both clagsie and clas€ard should
implement the interfaceameObject .

As a matter of C# coding style, all interfaceststath a capital 'I' letter. This convention makesbvious if
a type is defined by an interface. This naming emtion is convenient in C#, because classes aadaot
occur together in the inheritance clause of a cl@sth the superclass and the interfaces occer aftolon,
the class first, cf. Syntax 28.1). In this resp&st,is different from Java. In Java, interfaces eladses are
marked with the keywordsct ends andi npl enent s respectively in the inheritance clause of a class.

Two or more unrelated classes can be used togéthey implement the same interface

public enum GameObjectMedium {Paper, Plastic, Elect ronic}
public interface IGameObject{

int GameValue{
get;
}

GameObjectMedium Medium{
get;
}
}

Program 31.1 Theinterface |GameObject.

ThelGameObject interface in Program 31.1 prescribes two namegepties:Gamevalue andMedium. Thus,
classes that implement tl@meObject must define these two properties. Notice, howetrat, no semantic
constraints omGameValue or Medium are supplied. (It means that meaning is prescribed). Thus, classes that
implement the interfacesameObject are, in principle, free to supply arbitrary bododssameVvalue and

Medium. This can be seen as a weakness. In Chapter %6lveee how to remedy this by specifying the
semantics of operations in terms of preconditiors @ostconditions.

Notice also that there are no visibility modifiefsthe operationsamevalue andMedium in the interface
shown above. All operations are implicitly public.

Below, in Program 31.2, we show a version of class which implements the interfac®meObject . In
line 3 itis stated that clasge implements the interface. The actual implementatiof the two operations
are shown in the bottom part of Program 31.2 (fliom 33 to 44). Most interesting, tlBamevalue of a die
is the current number of eyes.

255

using System;

public class Die . | GanmeObj ect {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;

public Die (): this(6){}

public Die (int maxNumberOfEyes){
randomNumberSupplier =
new Random(unchecked((int)DateTime.Now.Ticks));
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = NewTossHowManyEyes();

}

public void Toss (){
numberOfEyes = NewTossHowManyEyes();

}

private int NewTossHowManyEyes (){
return randomNumberSupplier.Next(1,maxNumberOfE yes + 1);

}

public int NumberOfEyes() {
return numberOfEyes;

}

public override String ToString(){
return String.Format("Die[{0}]: {1}", maxNumber OfEyes, numberOfEyes);

}

public int GaneVal ue{

get {
return nunber O Eyes;

}
}

public GaneObj ect Medi um Medi um{

get {
return
GaneObj ect Medi um Pl asti c;

Program 31.2 The class Die which implements
| GameObject.

In Program 31.3 we show a version of classl , which implements our interface. TBamevalue of a card
is, quite naturally, the card value.

using System;

public class Card : | Gamebj ect {
public enum CardSuite { spades, hearts, clubs, di amonds };
public enum CardValue { two = 2, three = 3, four =4, five =5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n =12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

256

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

public CardValue Value{
get { return this.value; }

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}

public int GaneVal ue{
get { return (int)(this.value); }

publ i c GameObj ect Medi um Medi un{

get{
return GameObj ect Medi um Paper ;

}
}
}

Program 31.3 The class Card which implements
|GameObject.

Below, in Program 31.4 we have written a prograat #iorks on game objects of tyj@gmeObject . In
order to be concrete - and somewhat realistic make anGameObject array with three die objecs and
three card objects. In the bottom part of the pangwe exercise the common operations of dice aadny
cards, as prescribed by the interfag@meObject . The output of the program is shown in Listings31.

using System;
using System.Collections.Generic;
class Client{
public static void Main(){
Die d1 = new Die(),

d2 = new Die(10),
d3 = new Die(18);

Card c1 = new Card(Card.CardSuite.spades, Card .CardValue.queen),
c2 = new Card(Card.CardSuite.clubs, Card. CardValue.four),
¢3 = new Card(Card.CardSuite.diamonds, Ca rd.CardValue.ace);

| GanmeObj ect [] gameObjects = {d1, d2, d3, c1, c2, c3};

foreach(| GanmeObj ect gao in gameObjects){
Console.WriteLine("{0}: {1} {2}",
gao, gao. GaneVal ue, gao. Medi unj;
}
}

Program 31.4 A sample Client program of Die and Card.

Die[6]: 5: 5 Plastic

257

Die[10]: 9: 9 Plastic

Die[18]: 15: 15 Plastic

Suite:spades, Value:queen: 12 Paper
Suite:clubs, Value:four: 4 Paper
Suite:diamonds, Value:ace: 14 Paper

Listing 31.5 Output from the sample Client program of Die and
Card.

Above, bothbie (see Program 31.2) awdrd (see Program 31.3) are classes. We have in Eget@s
noticed that it would be natural to implement tyy@etCard as a struct, because a playing card - in corttvast
a die - is immutable. The client class shown ingPam 31.4 will survive if we progracerd as a struct, and
it will produce the same output as shown in Listdig5. Recall in this context that interfaces inate¢
reference types, see Section 13.3. When a varddlsiatic typaGameObject is assigned to a value of struct
typecard, the card value is boxed. Boxing is describeddati®n 14.8.

In the example above, where both the typiesandcard are implemented as classEmmeObject could as
well have been implemented as an abstract supsrdibs is the theme in Exercise 8.5.

Exercise 8.5. An abstract GameObject class

On the slide, to which this exercise belongs, weeharitten an interfacesameObject which is
implemented by both classe and clasgard .

Restructure this program such that claissand clasgard both inherit an abstract classmeObject . You
should write the classameObject .

The client program should survive this restructyrifyY ou may, however, need to change the nameeof th
typeIGameObject to GameObject). Compile and run the given client program withuyolasses.

31.4. Interfaces from the C# Libraries

Lecture 8 - slide 14

The C# library contains a number of important ifstees which are used frequently in many C#
programs

In this section we will discuss some importantifsees from the C# libraries. First, we give amitaed
overview, and in the sections following this onerendetails will be provided.

* |Comparable
« An interface that prescribescampareTo method
« Used to support general sorting and searching rdetho
* |Enumerable
« An interface that prescribes a method for accessmgnumerator
O IEnumerator
- An interface that prescribes methods for travesdata collections
» Supports the underlying machinery of the each control structure
* IDisposable

258

« An interface that prescribe&pose method
« Used for deletion of resources that cannot be eleley the garbage collector
» Supports the C#si ng control structure
* ICloneable
« An interface that prescribesctne method
* |Formattable
« An interface that prescribes an extenulestring method

IComparable is touched on in Section 31.5, primarily via aereise. In Section 31.6 we focus on the
interfacesEnumerable andiEnumerator and their roles in the realizationfafr each loops. Type
parameterized versions of these interfaces aresisd in Section 45.2. The interfaa@sposable IS
discussed in the context of 10 in Section 3hneable is discussed in a later chapter, see Section 32.7.

All the interfaces mentioned above can be thoughstiavors that can be added to many different classes.

31.5. Sample use of IComparable

Lecture 8 - slide 15

Object of classes that implemermbnpar abl e can be sorted by a method suclasy. Sort

In many contexts it is important to be able toesthat two objects or values, sagndy of a particular type
T, can be compared to each other. Thus, we mayrmusuo know ifx <y, y <x, or if x =y. But what does
X <y,y>X, andx =y mean if, for instance typEis BankAccount Or aDie ?

The way we approach this problem is to arrangettieatypeT (a class or a struct) implements the interface
IComparable . In that way, the implementation ®fmust include the methazbmpareTo, which can be used
in the following way:

x.CompareTo(y)

In the tradition of, for instance, the string compan functionstrcmp in the C standard libraggring.h the
expressiorx.CompareTo (Y) returns a negative integer resulk is considered less thgna positive integer if
x is considered greater thgnand integer zero K andy are considered to be equal.

The interfacaComparable is reproduced in Program 31.6. This shows you siowple it is. Don't use this or
a similar definition. Use the interfaceomparable as predefined in thgystem namespace.

using System;

public interface IComparable{
int CompareTo(o) ect other);

}

Program 31.6 A reproduction of the interface
IComparable.

259

The parameter afompareTo is of typeObject . This is irritating because we will almost certgiwant the
parameter to be of the same type as the classhwhjgementscomparable . When you solve Exercise 8.6
you will experience this.

There is actually two versions of the interfac@nparable in the C# libraries. The one similar to Program
31.6 and a type parameterized version, which cainstthe parameter of tilempareTo method to a given
typeT. We have more say about these two interfacesatidde42.8.

It is also worthwhile to point out the interfa@guatable , which simply prescribes &yuals method. The
interfacelEqualityComparer is a cousin interface which in additionBquals also prescribesetHashCode .
In some sensEquatable andiEqualityComparer are more fundamental th&@bmparable . It turns out
thatlEquatable only exists as a type parameterized (genericjfate.

Exercise 8.6. Comparable Dice

In this exercise we will arrange that two dice barcompared to each other. The result of
diel.CompareTo(die2) is an integer. If the integer is negatiuiel is considered less thar?2 ; If zero,
diel is considered equal tie2 ; And if positive,diel is considered greater thain2 . When two dice
can be compared to each other, it is possibleasoatray of dice with the standaalt method in C#.

Program a version of clapg: which implements the interfaggstem.IComparable

Consult the documentation of the (overloaded)statthodsystem.Array.Sort and locate theort
method which relies oicomparable elements.

Make an array of dice and sort them by use ofthe method.

31.6. Sample use of IEnumerator and IEnumerable

Lecture 8 - slide 16

In this section we will study the interfaces calleeimerator andiEnumerable . The interface
IEnumerator IS central to the design pattern calléstator, which we will discuss in the context of
collections, see Section 48.1. As already menti@ye, the interfade€numerator also prescribes the
operations behind therr each control structure.

using System;
public interface IEnumerator{
Object Current{

get;
}

bool MoveNext();

void Reset();

Program 31.7 A reproduction of the interface
| Enumerator.

260

We have reproducadnumerator from theSystem.Collections namespace in Program 31.7. The
operationgurrent , MoveNext , andReset are used to traverse a collection of data. Hidubdnind the
interface should be some simple bookkeeping whickva us to keep track of the current element, and
which element is next. You can think of this aguesor, which step by step is moved through the collectio
The propertycurrent returns the element pointed out by the cursor.mthodvioveNext advances the
cursor, and it returns true if it has been posdibimove the cursor. The methreset moves the cursor to
the first element, and it resets the bookkeepimphkes.

You are not allowed to modify the collection whilés traversed via a C# enumerator. Notice, irtipalar,
that you are not allowed to delete the elementiobtibycurrent during a traversal. In that respect, C#
enumerators are more limited than tlaeator ~ counterpart in Java which allows for exactly oeéetion
for each movement in the collection. It can als@lgpied that theenumerator interface is too narrow. It
would be nice to have a boolea#sNext property. It could also be worthwhile to have ateaded
enumerator with &lovePrevious operation.

Like it was the case for the interfacemparable , as discussed in Section 31.5, there is alsoe typ
parameterized version @numerator . See Section 45.2 for additional details.

using System.Collections;

public interface IEnumerable{
IEnumerator GetEnumerator();

}

Program 31.8 A reproduction of the interface
|Enumerable.

ThelEnumerable interface, as reproduced in Program 31.8, onlggrilees a single method called
GetEnumerator . This method is intended to return an object (@glthe class (struct) of which implements
thelEnumerator interface. Thus, if a type implements tBeumerable interface, it can deliver an
iterator/enumerator object via use of the operati@Bnumerator

As mentioned above, ther each control structure is implemented by means of ematoes. The or each
form

foreach(ElementType e in collection) statement

is roughly equivalent with

IEnumerator en = collection.GetEnumerator();
while (en.MoveNext()){
ElementType e = (ElementType) en.Current();
statement;

}

The type of the collection is assumed to implentieatinterface Enuner abl e. Additional fine details should
be taken into consideration. Please consult settdi4 of the C# Language Specification [ECMA-384]
[Hejlsberg06] for the full story.

We will now present a realistic example that usesmerator andiEnumerable . We return to the

Interval type, which we first met when we discussed oveléoboperators in Section 21.3. The original
Interval struct appeared in Program 21.3. Recall that &mval, such as [5 - 10] is different from [10 -5].
The former represents the sequence 5, 6, 7, & @hile the latter represents 10, 9, 8, 7, 6, Shénversion
we show in Program 31.9 we have elided the oper&tom Program 21.3.

261

The enumerator functionality is programmed in &at8, local class calladtervalEnumerator , Starting at
line 39. This class implements the interfe@amerator . The classtervalEnumerator has a reference to
the surrounding interval. (The reference to theaurding object is provided via the constructoline 44

and 68). It also has the instance variadle, which represents of the cursor. Per conventlunyalue -1
represents an interval which has been reset. Tdgegycurrent is now able to calculate and return a value
from the interval. Notice that we have to distirsfubetween rising and falling intervals in the dtadal
expression in line 50-52. BotioveNext andreset are easy to understand if you have followed thailde

until this point.

The methodsetEnumerator (line 67-69), which is prescribed by the interfageumerable (see line 4), just
returns an instance of the private clagsvalEnumerator discussed above. Notice that we in line 68 pass
this (the current instance of thaerval) to thelntervalEnumerator object.

We show how to make simple traversals of interiaBrogram 31.10.

using System;
using System.Collections;

public struct Interval: | Enuner abl e{
private readonly int from, to;

public Interval(int from, int to){
this.from = from;
this.to = to;

}

public int From{
get {return from;}

public int To{
get {return to;}

public int Length{
get {return Math.Abs(to - from) + 1;}

}

public int this[int i){
get {if (from <= to){
if (i >= 0 && i <= Math.Abs(from-t0))
return from + i;
else throw new Exception("Error"); }
else if (from > to){
if (i >= 0 && i <= Math.Abs(from-t0))
return from - i;
else throw new Exception("Error"); }
else throw new Exception("Should not happe n"); }

}

/I Overloaded operators have been hidden in this version
private class Interval Enunerator: | Enunerator{

private readonly Interval interval;
private int idx;

public Interval Enunerator (Interval i){

this.interval = i;
idx = -1; /] position enunerator outside range

262

}

public Object Current{
get {return (interval.From< interval.To) ?
interval.From+ idx :
interval . From - idx;}

}

public bool MyveNext (){
if (idx < Math. Abs(interval.To - interval.Fron))
{idx++; return true;}
el se
{return fal se;}
}

public void Reset(){
idx = -1;
}
}

public | Enunerator GetEnunerator (){
return new I nterval Enunmerator (this);
}

Program 31.9 |Enumerator in the type Interval.

While we are here, we will discuss the nested,|lo@ssintervalEnumerator of classnterval a little
more careful. Why is it necessary to pass a referémthe enclosingterval in line 687 Or, in other
words, why can't we access then andto Interval — instance variables in line 6 from the nested &ldagse
reason is that antervalEnumerator object is not a 'subobject’ of amerval object. An
IntervalEnumerator objectis not really part of the enclosimgerval object TheintervalEnumerator

can, however, access (both public and privatesatagables (static variables) of clagsrval

We could as well have placed the clagsvalEnumerator outside the classterval , simply as a sibling
class ofinterval . But classntervalEnumerator would just pollute the enclosing namespace. The
IntervalEnumerator is only relevant inside the interval. Therefore pl&ce it as a member of class
Interval . By making it private we, furthermore, preventalis of classiterval to access it.

Nested classes are, in general, a more advancied itdpas, in part, something to do with scopiotgs in
relation to the outer classes, and in relatiorufzesclasses. Java is more sophisticated than @&#sopport
of nested classes. In java, an inner clagsthe surrounding classis a nested class for which instances of
is connected to (is part of) a particular instaofce. See also our discussion of Java in relation tanC#
Section 7.3.

using System;
using System.Collections;

public class app {
public static void Main(){
Interval ivl = new Interval(14,17);

foreach(int k in ivl){
Console. Wite("{0,4}", k);

Console.WriteLine();

263

| Enunerator e = ivl. Get Enunerator();
whil e (e. MoveNext ()){
Console. Wite("{0,4}", (int)e.Current);

Console.WriteLine();

}

}

Program 31.10 Iteration with and without foreach based on the
enumerator.

31.7. Sample use of IFormattable

Lecture 8 - slide 17

ThelFormattable interface prescribestastring method of two parameters. As such, thstring
method ofiFormattable is different from the well-knowmoString method of clasebject , which is
parameterless, see Section 28.3. Both methods q@adtext string. The nemstring method is used
when we need more control of the textual result.

Here follows a reproduction aformattable from theSystem namespace.

using System;

public interface IFormattable{
string ToString(string format, IFormatProvider fo rmatProvider);

Program 31.11 Areproduction of the interface
|Formattable.

We can characterize thestring method in the following way:

« The first parameter is typically a single lettemfatting string, and the other is an
IFormatProvider

» ThelformatProvider can provide culture sensible information.
e ToString from Object typically callsToString(null, null)

The first parameter dfoString is typically a string with a single character. Bonple types as well as
DateTime , & number of predefined formatting strings arengef. We have seen an example in Section 6.10.
For the types we program we can define our own &tting letters. This is known a&sstom formatting.

Below, in Program 31.12 we will show how to progremstom formatting of a playing card struct.

The second parameterofstring is of typelFormatProvider , which is another interface from tBestem
namespace. An object of typrmatProvider typically provides culture sensible formattingarhation.
For simple types and farateTime , a format provider represents details such asuhency symbol, the
decimal point symbol, or time-related formattingripols. If the second parametenig , the object bound
to Culturelnfo.CurrentCulture should be used as the default format provider.

264

Below we show how to program custom formattingtofict card , which we first met in the context of
structs in Section 14.3. Notice that straatd implementsformattable . The details in the twostring
methods should be easy to understand.

using System;

public enum CardSuite:byte
{Spades, Hearts, Clubs, Diamonds };

public enum CardValue: byte
{Ace =1, Two =2, Three =3, Four =4, F ive =5,
Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten =10,
Jack = 11, Queen = 12, King = 13};

public struct Card: | For mat t abl e{
private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

/I Card methods and properties here...

public System.Drawing.Color Color ()}{
System.Drawing.Color result;

if (suite == CardSuite.Spades || suite == CardSu ite.Clubs)
result = System.Drawing.Color.Black;
else

result = System.Drawing.Color.Red;
return result;

}
public override String ToString()({
return this.ToString(null, null);
}
public String ToString(string format, IFormatProv ider fp){
if (format == null || format == "G" || format == "L")
return String.Format("Card Suite: {0}, Valu e: {1}, Color: {2}",
suite, value, Color() .ToString());
else if (format == "S")
return String.Format("Card {0}: {1}", suite , (int)value);
else if (format == "V")
return String.Format("Card value: {0}", val ue);
else throw new FormatException(
String.Format("Invalid format: {0}", format));
}
}

Program 31.12 The struct Card that implements
|Formattable.

In Program 31.13 we show how to make use of customatting of playing card objects. The resulting
output can be seen in Listing 31.14.

265

using System;
class CardClient{

public static void Main(){

Card cl1 = new Card(CardSuite.Hearts, CardValue. Eight),
c2 = new Card(CardSuite.Diamonds, CardValu e.King);
Console.WriteLine("cl is a {0}", cl1);
Console.WriteLine("cl is a {0: S}", cl); Console.WriteLine();
Console.WriteLine("c2 is a {0: S}", ¢c2);
Console.WriteLine("c2 is a {0:L}", c2);
Console.WriteLine("c2 is a {0: V}", c2);
}
}
Program 31.13 A client of Card which applies formatting of
cards.
clis a Card Suite: Hearts, Value: Eight, Color: Co lor [Red]

clis a Card Hearts: 8

c2 is a Card Diamonds: 13
c2 is a Card Suite: Diamonds, Value: King, Color: C olor [Red]
c2 is a Card value: King

Listing 31.14 Output fromthe client program.

31.8. Explicit Interface Member Implementations

Lecture 8 - slide 18

Interfaces give rise to multiple inheritance, aneréfore we need to be able to deal with the chngdis of
multiple inheritance. These have already been dgsuliin Section 27.5.

The problems, as well as the C# solution, can bevgarized in the following way:

If a member of an interface collides with a memtifest class, the member of the interface can
be implemented as an explicit interface member

Explicit interface members can also be used toempghnt several interfaces with colliding
members

The programs shown below illustrate the problemthedsolution. The claszrd, in Program 31.15 has a
Value property. The interfaceameObject in Program 31.16 also prescribegatue property. (It is similar
to the interface of Program 31.1 which we have entered earlier in this chapter). When classi
implementaGameObject in Program 31.17 the new version of classl will need to distinguish between
its ownvalue property and thealue property it implements because of the interfa@e@eObject . How
can this be done?

266

The solution to the problem is callexplicit interface member implementation. In line 30-32 of Program
31.17, emphasized jpur ple, we use th&gameObject.Value syntax to make it clear that here we
implement thevalue property fromGameObject . This is an explicit interface implementation.

In the client classes of clasard we need access to bothlue operations. In order to access the explicit
interface implementation ofalue from thecard variablecs (declared in line 6) we need to castto the
interfaceiGameObject . This is illustrated in line 14 of Program 31.I8e output of Program 31.18 in
Listing 31.19 reveals that everything works as elgx

using System;

public class Card{

public enum CardSuite { spades, hearts, clubs, di amonds };

public enum CardValue { two = 2, three = 3, four =4, five = 5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n=12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

public CardVal ue Val ue{
get { return this.value; }

}

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);
}
}

Program 31.15 The class Playing card with a property
Value.

public enum GameObjectMedium {Paper, Plastic, Elect ronic}
public interface IGameObject{

i nt Val ue{
get;
}

GameObjectMedium Medium{
get;
}
}

Program 31.16 The Interface | GameObject with a conflicting
Value property.

267

using System;

public class Card: | Ganeoj ect {
public enum CardSuite { spades, hearts, clubs, di amonds };
public enum CardValue { two = 2, three = 3, four =4, five = 5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n=12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

publ i c CardVal ue Val ue{
get { return this.value; }

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}

int | GaneQbj ect . Val ue{
get { return (int)(this.value); }

}
public GameObjectMedium Medium{
get{
return GameObjectMedium.Paper;
}
}
}
Program 31.17 A class Card which implements
| GameObject.
using System;
class Client{
public static void Main(){
Card cs =
new Card(Card.CardSuite.spades, Card.CardVal ue.queen);
/I Use of Value from Card
Console.WriteLine(cs. Val ue);

/I Must cast to use the implementation of
/l Value from IGameObject
Console.WriteLine(((I Ganehj ect) cs) . Val ue);
}
}

Program 31.18 Sample use of class Card in a Client
class.

268

queen
12

Listing 31.19 Output of Card Client.

In some situations, an explicit interface implenagion can also be used to "hide" an operationviesare
forced to implement because the interface requte$tge will meet an example in Section 45.14, wheee
want to make it difficult to use theid operation on a linked list. Another example isspreed in the context
of dictionaries in Section 46.3.

31.9. References

[Hejlsberg06] Anders Hejlsberg, Scott Wiltamuth d&eter GoldeThe C# Programming Language.
Addison-Wesley, 2006.
[Ecma-334] "The C# Language Specification”, Jun@2ECMA-334.

269

270

32. Patterns and Techniques

This chapter is the last one in our second leabrait inheritance. The chapter is about patterds an
programming techniques related to inheritance. I8imchapters appeared in Chapter 16 and Chaptier 24
classes/objects and for operations respectively.

32.1. The Composite design pattern

Lecture 8 - slide 20

The Composite design pattern, which we are about to study,ab@ioly the most frequently occurring GOF
design pattern at all. Most real-life programs tlatwrite benefit from it. Recall from Section 1@t the
GOF design patterns are the ones described irritiieal design pattern book [Gamma96].

A Composite deals with hierarchical structures of objectamiore practical terms, the pattern deals with
tree-tructures whose nodes are objects. The mambéhind the pattern is to providaréforminterface to
both leaves and inner nodes in the tree.

From a client point of view, it is easy to operatethe nodes of @omposite. The reason is that all
participating objects share the interface provibgdhe abstraatomponent class.

Componen

Figure 32.1 Atemplate of the class structure in the Composite design pattern.

In Figure 32.1 we show the three classes thathegprincipled level - make upGomposite: The abstract
classcomponent and its two subclassesaf andComposite . The important things to notice are:

« The diagram in Figure 32.1 is a class diagramanatbject diagram.

» Clients access botleaf nodes ancdtomposite nodes (inner nodes in the tree) via the interface
provided by the abstract classmponent .

« Thecomposite (inner) node aggregates one or moseponents , eitherLeaf nodes or (recursively)
othercomposite nodes. This makes up the tree structure. It iomapt the you are able to grasp the
idea that the aggregation in Figure 32.1 givestaserecursive tree structure of objects.

In the following sections we will study an exampfea composite design pattern which allows us to
represent songs of notes and pauses. In appendinis68.3 we discuss another example, involving a
sequence of numbers and the typeval

The tree structure may be non-mutable and builteisstructors

Alternatively, the tree structure may be mutabiel Built viaAdd andrRemove operations

271

32.2. A Composite Example: Music Elements

Lecture 8 - slide 21

The example in this section stems from the minjgatoprogramming (MIP) exam of January 2008 [mip-
jan-08]. Imagine that we are interested in a reprgion of music in terms of notes and pausesh &uc
representation can - in a natural way - be destdriisesComposite, see Figure 32.2. In this composite
structure, both &lote and aPause areMusicElements . A SequentialMusicElement consists of a number of
MusicElements , such aslote S, Pause S, and othekusicElement S. The immediate constituents of a
SequentialMusicElement are played sequentially, one after the othepasillelMusicElement is
composed similar teequentialMusicElement . The immediate constituents obParalleIMusicElement

are played at the same time, however.

MusicElement
 a j A3 . .
Note| - “._ | Pause

equentialMusicElement | ParallelMusicElement

Figure 32.2 The class diagram of Music Elements

As we will see in Program 32.3\ate is characterized by a duration, value, volume,iaattument. A
Pause is characterized by a duration. As such, it makersense to have a common superclassief and
Pause. In the same way, it may be considered to havaramn superclass skquentialMusicElement
andParallelMusicElement which captures their common aggregatiomadicElements

A number of different operations can be appliedarnily on allMusicElement S:Play , Transpose |,
TimeStretch , Newlnstrument , Fade, etc. Below, in Program 32.3 we program the op@mnatinearize
Duration , andTranspose . TheLinearize operations transforms a music element to a sequafriower-
level objects which represent MIDI events. A seaqaeof MIDI events can be played on most computars.
this way,Linearize becomes the indireetay operation.

32.3. An application of Music Elements

Lecture 8 - slide 22

As we already realized in Section 32.1 the objectsComposite are organized in a tree structure. In Figure
32.3 we show an example oBequentialMusicElement . When we play theequentialMusicElement in
Figure 32.3 we will first hear note N1. After N1mes a pause P followed by the notes N2 and N3.
Following N3 we will hear N4, N5 and N6 which aleayed simultaneously. As such, N4-N6 may form a
musical chord. In the web edition of the material lmk to a MIDI file of a structure similar to Rige 32.3
[midi-sample].

272

SequentialMusicElement

Seq uantlalmﬁgl;ﬂamnt [Parallall«ihs_h:Elamnﬂ

Figure 32.3 A possible tree of objects which represent various music elements.
Nodes named Ni are Note instances, and the node named P isa Pause instance

Below, in Program 32.1 we show a program that eseasequentialMusicElement similar to the tree-
structure drawn in Figure 32.3 The program relieshe auxiliary classong. The classong and another
supporting classimedNote are available to interested readers [song-anddinmie-classes]. Using these two
classes it is easy to generate MIDI files fremsicElement objects.

public class Application{
public static void Main(){

MusicElement someMusic =
SequentialMusicElement.MakeSequentialMusicElem ent(
SequentialMusicElement.MakeSequentialMusicEl ement(
new Note(60, 480),
new Pause(480),
new Note(64, 480),
new Note(60, 480)),
ParallelMusicElement.MakeParallelMusicElemen t(
new Note(60, 960),
new Note(64, 960),
new Note(67, 960)

)

Song aSong = new Song(someMusic.Linearize(0));
aSong.WriteStandardMidiFile("song.mid");

}
}

Program 32.1 An application of some MusicElement
objects.

32.4. Implementation of MusicElement classes

Lecture 8 - slide 23

In this section we show an implementation ofXfueicElement classes of Figure 32.2. The classes give rise
to non-mutable objects, along the lines of theudismn in Section 12.5.

We start by showing the abstract classicElement , see Program 32.2. It announces the projmeittion
the methodranspose , and the methotnearize . Other of the mentioned music-related operatioasat
included here. As you probably expdmiration returns the total length of\dusicElement . Transpose
changes the value (the pitch) ofiasicElement . Linearize transforms aiusicElement to an array of
(lower-level)TimeNote o0bjects [song-and-timednote-classes].

273

public abstract class MusicElement{

public abstract int Duration{

get;
}
public abstract MusicElement Transpose(int levels);
public abstract TimedNote[] Linearize(int startTi me);

Program 32.2 The abstract class MusicElement.

The classvote is shown next, see Program 32i8te encapsulates the note value, duration, volume, and
instrument (see line 5-8). Following two construstave see the propemyration which simply returns
the value of the instance varialleation . The methodinearize carries out the transformation of the
Note to a singular array dfimedNote . TheTranspose method adds to the value of thee . The shown
activation ofByteBetween enforces that the value is between 0 and 127.

using System;
public class Note: MusicElement{

private byte value;

private int duration;

private byte volume;

private Instrument instrument;

public Note(byte value, int duration, byte volume ,
Instrument instrument){
this.value = value;
this.duration = duration;
this.volume = volume;
this.instrument = instrument;

}

public Note(byte value, int duration):
this(value, duration, 64, Instrument.Piano){

}

public override int Duration{
get{
return duration;
}
}

public override TimedNote[] Linearize(int startTi me){
TimedNote[] result = new TimedNote[1];
result[0] = new TimedNote(startTime, value, dur ation, volume,
instrument);
return result;

}

public override MusicElement Transpose(int levels)
return new Note(Util.ByteBetween(value + level s, 0, 127),
duration, volume, instrument);

Program 32.3 Theclass Note.

The classause shown in Program 32.4 is almost trivial.

274

using System;
public class Pause: MusicElement{
private int duration;

public Pause(int duration){
this.duration = duration;

}

public override int Duration{

get{
return duration;

}
}

public override TimedNote[] Linearize(int startTi me){
return new TimedNote[0];

}

public override MusicElement Transpose(int levels)i
return new Pause(this.Duration);

}
}

Program 32.4 The class Pause.

The classsequentialMusicElement represents the sequenceviokicElement s as a list of typeist<T>
Besides the construct®@equentialMusicElement offers afactory method for convenient creation of an
instance. Factory methods have been discusseciin®é&6.4. Program 32.1 shows how the factory oubth
can be applietburation adds the duration of theusicElement parts together. Notice that this may cause
recursive addition. Likewis@ranspose carries out recursive transpositions of thgicElement parts.

using System;
using System.Collections.Generic;

public class SequentialMusicElement: MusicElement{
private List<MusicElement> elements;

public SequentialMusicElement(MusicElement[] elem ents){
this.elements = new List<MusicElement>(elements);

}

Il Factory method:
public static MusicElement

MakeSequentialMusicElement(params MusicElement[] elements){
return new SequentialMusicElement(elements);
}
public override TimedNote[] Linearize(int startTi me){

int time = startTime;
List<TimedNote> result = new List<TimedNote>();

foreach(MusicElement me in elements){
result. AddRange(me.Linearize(time));
time = time + me.Duration;

}

return result. ToArray();

}

public override int Duration{
get{

275

int result = 0;

foreach(MusicElement me in elements){
result += me.Duration;

}
return result;
}
}
public override MusicElement Transpose(int levels)
List<MusicElement> transposedElements = new Lis t<MusicElement>();

foreach(MusicElement me in elements)
transposedElements.Add(me.Transpose(levels));

return new SequentialMusicElement(transposedEle ments.ToArray());
}
}
Program 32.5 The class Sequential MusicElement.
The classrarallelMusicElement resembleSsequentialMusicElement a lot. Notice, however, the different

implementation oburation in line 29-39.

using System;
using System.Collections.Generic;

public class ParalleIMusicElement: MusicElement{
private List<MusicElement> elements;

public ParallelIMusicElement(MusicElement[] elemen ts){
this.elements = new List<MusicElement>(elements);

}

/I Factory method:
public static MusicElement

MakeParalleIMusicElement(params MusicElement[] elements){
return new ParallelIMusicElement(elements);
}
public override TimedNote[] Linearize(int startTi me){

int time = startTime;
List<TimedNote> result = new List<TimedNote>();

foreach(MusicElement me in elements){
result. AddRange(me.Linearize(time));
time = startTime;

}

return result. ToArray();

}

public override int Duration{

get{
int result = 0;

foreach(MusicElement me in elements){
result = Math.Max(result, me.Duration);

}

return result;

}

276

}

public override MusicElement Transpose(int levels)i
List<MusicElement> transposedElements = new Lis t<MusicElement>();

foreach(MusicElement me in elements)
transposedElements.Add(me.Transpose(levels));

return new ParalleIMusicElement(transposedEleme nts.ToArray());
}
}

Program 32.6 The class ParallelMusicElement.

This completes our discussion of heasicElement composite. The important things to pick up from th
example are:

1. The tree structure of objects defined by the ssels oMusicElement

2. The uniform interface of music-related operatioreviled to clients ofusicElement
As stressed in Section 32.1 these are the primaritsrof Composite.

In Section 58.3 of the appendix we present an mahdit and similar example of a composite which inge
aninterval . Interval is the type we encountered in Section 21.3 whedis@issed operator overloading.

32.5. A Composite Example: A GUI

Lecture 8 - slide 27

We will study yet another example ofCamposite design pattern. A graphical user interface (GH) i
composed of a number fafrms, such as buttons and textboxes. The classes b#tgad forms make up a
Composite design pattern.

Ciich Me

d |}

Figure 32.4 A Form (Window) with two buttons, a textbox, and a panel.

We construct the simple GUI depicted in Figure 3ZHe actual hierarchy of objects involved are shaw
Figure 32.5. Thus, the GUI is composed of thre¢obst(yellow, green, and blue) and two textboxesit@v
and grey). The blue button and the grey textboxaggFegated into a so-called panel (which has red
background in Figure 32.4).

277

(aForm|

("Click Me" | [“Erase” | [aTextBox| |[aPanel|
("A" | (aTextBox|

Figure 32.5 Thetree of objects behind the graphical user interface. These
objects represents a composite design pattern in an executing program.

The Form class hierarchy of .NET and C# is vergdaA small extract is shown in Figure 32.6. Agson
classcomponent, all classes are from the namesps@gem.Windows.Forms

There are twa&Composites in Figure 32.6. The first one is (object) rootgdchassForm, which may

aggregate an arbitrary number of Windows form dbjethe classorm represents a window. The class
Control is the superclass of GUI elements that displafggnimation on the screen. There are approximate 25
immediate and direct subclasses of ctassrol . In reality the classe®xtBox , Button , andPanel are all
indirect subclasses abntrol

The other Composite is, symmetrically, (object)teaobyPanel , which likeForm may aggregate an
arbitrary number oform objects. ClasBane is intended for grouping of a collection of coidro

Component

Control

P o O S S

Form Button TextBox Panel

Figure 32.6 An extract of the Windows Form classes for GUI building. We see
two Composites among these classes.

Below, in Figure 32.6 we show how to constructfthren object tree shown in Figure 32.5, which giviee
to the GUI of Figure 32.4. We program a class whvehnamenindow. Ourwindow class inherits from class
Form. Thus, oumwindow isaForm. Shown inblue we highlight instantiation of GUI elements. Shown
purple we highlight the actual construction of the treecture of Figure 32.5. Theontrols property of a
Form, referred in line 60 - 67, give access tolbection of controls, of typ€ontrolCollection

As it appears in line 23 and 31, we also add aleoofpevent handlers, programmed as private metfrods
line 70 - 83. We have discussed event handlerhapter 23. The associated event handlers just
acknowledge when we click on of the three buttdritb® GUI.

using System;
using System.Windows.Forms;
using System.Drawing;

/[In System:
// public delegate void EventHandler (Object sender , EventArgs e)
public class Window : Forn{

Button b1, b2, paBt;
Panel pa;

278

TextBox th, paThb;

/I Constructor
public Window (){
this.Size=new Size(150,300);

bl = new Button();
b1.Text="Click Me";
bl.Size=new Size(100,25);
bl.Location = new Point(25,25);
bl.BackColor = Color.Yellow;
b1.Click += ClickHandler;
/I Alternatively:
/I b1.Click+=new Even
b2 = new Button();
b2.Text="Erase";
b2.Size=new Size(100,25);
b2.Location = new Point(25,55);
b2.BackColor=Color.Green;
b2.Click += EraseHandler;
/I Alternatively:
/I b2.Click+=new Even
tb = new Text Box();
th.Location = new Point(25,100);
th.Size=new Size(100,25);
th.BackColor=Color.White;
tb.ReadOnly=true;
tb.RightToLeft=RightToLeft.Yes;

pa = new Panel ();
pa.Location = new Point(25,150);
pa.Size=new Size(100, 75);
pa.BackColor=Color.Red;

paBt = new Button();
paBt. Text="A",
paBt.Location = new Point(10,10);
paBt.Size=new Size(25,25);
paBt.BackColor=Color.Blue;
paBt.Click += PanelButtonClickHandler;

paTb = new Text Box();
paTh.Location = new Point(10,40);
paTb.Size=new Size(50,25);
paTh.BackColor=Color.Gray;
paTb.ReadOnly=true;
paTh.RightToLeft=RightToLeft.Yes;

this. Controls. Add(bl);
this. Control s. Add(b2);
this. Control s. Add(tb);

pa. Control s. Add(paBt) ;
pa. Control s. Add(paTb) ;

thi s. Control s. Add(pa);
}

/I Eventhandler:
private void ClickHandler(object obj, EventArgs e
th.Text = "You clicked me";

}

/I Eventhandler:
private void PanelButtonClickHandler(object obj,

279

tHandler(ClickHandler);

tHandler(EraseHandler);

a) {

EventArgs ea) {

paTh.Text +="A";
}

/I Eventhandler:
private void EraseHandler(object obj, EventArgs e a){
th.Text=""

}
}

class ButtonTest{

public static void Main(){
Window win = new Window();
Application.Run(win);

}
}

Program 32.7 A program that builds a sample composite
graphical user interface.

32.6. Cloning

Lecture 8 - slide 30

We briefly discussed copying of objects in Secti@M of the lecture about classes and objectidn t
section we will continue this discussion. Firstwi# distinguish between different types of objecipying.
Later, in Section 32.7, we will see how to enahke pire-existingiemberwiseClone operation to client
classes.

Instead of the word "copy" we often use the wolldrie":

Cloning creates a copy of an existing ob

There are different kinds of cloning, distinguishmdthe copying depth:

« Shallow cloning:
« Instance variables of value type: Copied bit-by-bit
« Instance variables of reference types:
« The reference is copied
« The object pointed at by the referenceas copied
« Deep cloning:
» Like shallow cloning
- But objects referred by references are copied saaly

Shallow cloning is the variant supported by tenberwiseClone operation in Section 32.7. Only a single
object is copied.

Deep cloning copies a network of objects, and if,irageneral, involve many objects.

280

Recall that cloning is only relevant for instanoéslasses, for which reference semantics apply Gleapter
13). Values of structs obey value semantics, arsiels struct values are (shallow) copied by assagrsn
and by parameter passing. See Chapter 14 for adalitiletails.

32.7. Cloning in C#

Lecture 8 - slide 31

Shallow cloning is supported "internally" by anyjexti in a C# program execution. The reason isdahgt
object inherit from clasebject in which the protected methatmberwiseClone implements shallow
cloning. (See Section 28.3 for an overview of theghmads in classbject). Recall from Section 27.3 that a
protected method of a class C is visible in C antthé subclasses of ¢, but not in clients of C.

In this section we will see how we can unleashptitgectedviemberwiseClone operation as a public
operation of an arbitrary class.

Below, in Program 32.8 we show how to implemenibaeableroint class. First, notice thabint
implements the interfaaeloneable , which prescribes a single method caltashe . We have already in
Section 31.4 seemloneable in the context of other flavoring interfaces fréme C# libraries. The public
methodclone of classPoint , shown inpur ple, delegates its work to the protected method
MemberwiseClone . In other words, outlone methods send @emberwiseClone message to the current
Point Object.MemberwiseClone makes the bitwise, shallow copy of the point, @mdturns it. Notice that
from a static point of view, the returned objecbigypeobject . As we will see below, this will typically
imply a need to cast the returned object roiat .

Although aclone method typically delegates its workMemberwiseClone , it is not necessary to do so.
Clone may, alternatively, use a constructor and appat@ibbject mutations in order to produce the copy,
which makes sense for the class in question (wikickassPoint in the example shown below).

using System;

public class Point: | Cl oneabl e {
private double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double X {
get {return x;}
set {x = value;}

}

public double Y {
get {return y;}
set {y = value;}

public Point move(double dx, double dy){
Point result = (Poi nt) Menmber wi seCl one(); // cloning from within Point is OK.
result.x = x + dx;
result.y =y + dy;
return result;

}

281

/I public Clone method that delegates the work of
Il the protected method MemberwiseClone();
public Onject Cone()({

return Menberw seC one();
}

public override string ToString(){
return "Point: "+ "(" + X+ " +y + ") + "
}
}

Program 32.8 A cloneable class Paint.

In Program 32.9 we show how a client of clas&t uses the implementetbone operation. Notice the
casting, and notice that the subexpresgiobione() is evaluated before the casting. (A possible
misconception would be thatoint)p1 is evaluated first). The evaluation order is duthe precedence of
the cast operator in relation to the precedent¢kedtiot operator, see Table 6.1.

using System;
public class Application{

public static void Main(){
Point p1 = new Point(1.1, 2.2),
P2, p3;

p2 = (Point)pl.d one(); [/l Firstpl.Clone(), then cast to Point.
p3 = pl.move(3.3, 4.4);
Console.WriteLine("{0} {1} {2}", p1, p2, p3);

}

}

Program 32.9 A sample client of class Point.

It may be tempting to circumvent ti&oneable interface, the implementation of our own cloneragien,
and delegation t®emberwiseClone . This temptation is illustrated in Program 32.TBe compiler will find
out, and it tells that we cannot just aamberwiseClone , because it is not a public operation.

Why make life so difficult? Why not support shalleapying of all objects in an easy way, by making
MemberwiseClone public in clas®bject? The reason is that the designers of the programiaimguage (C#,
and Java as well) have decided that the prograrafreeclass should make an explicit decision abdutiv
objects should be cloneable.

There are almost certainly some classes for whigllevnot want copying of instances, singletons (see
Section 16.3) for instance. There are also soassek in which we do not want the standard bitwise
copying provided bwemberwiseClone . Such classes should behave like Program 32.8rshbave, but
instead of delegating the cloningMemberwiseClone , the copy operation should be programmed in the
Clone method to suit the desired copying semantics.

using System;
public class Application{
public static void Main(){

Point p1 = new Point(1.1, 2.2),
P2, p3;

282

p2 = (Poi nt) pl. Menber wi sed one();
/I Compile-time error.
/I Cannot access protected member 'object. Memberwis eClone()'
[l via a qualifier of type 'Point'

p3 = pl.move(3.3, 4.4);
Console.WriteLine("{0} {1} {2}", p1, p2, p3);
}

}
Program 32.10 lllegal cloning with MemberwiseClone.

32.8. Cloning versus use of copy constructors

Lecture 8 - slide 32

In Section 32.7 we found out that cloning of clstances - on purpose - is rather cumbersome in C#
Therefore we have earlier recommended the usepyfconstructors as an alternative means. See Section
12.5 for details and for an example.

In this section we will evaluate and exemplify gaver of copying by cloning (as in Section 32. Tatige
to copying by use of copy constructors.

In a nutshell, the insight can be summarized is wWay:

Cloning withobj . d one() is more powerful than use of copy constructorsabee
obj . G one() may exploit polymorphism and dynamic binding

In order to illustrate the differences between igr(by use of thelone method) and copying (by use of a
copy constructor) we will again use the clas@st . Below, in Section 32.7 we show a version sinitar
Program 32.8 but now with an additional copy caritor (line 12 - 14).

using System;
using System.Drawing;

public class Point: | Cl oneabl e {
protected double X, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

/I Copy constructor
publi ¢ Point(Point p){
this.x = p.x; this.y = p.y;
}

public virtual double X {
get {return x;}
set {x = value;}

}

public virtual double Y {
get {return y;}
set {y = value;}

283

}

public virtual Point move(double dx, double dy){
Point result = (Point)MemberwiseClone(); // cl oning from within Point is OK.
result.x = x + dx;
result.y =y + dy;
return result;

}

I/ public Clone method that delegates the work of
/I the protected method MemberwiseClone();
public virtual Object Cone(){
return Menberw seC one();
}

public override string ToString(){
return "Point: " + (" + X + "y +)"+ .
}
}

Program 32.11 A cloneable class Point.

We also show a subclassrafint calledcColorPoint , see Program 32.12. It addsor instance variable
to the instance variables inherited from clesst , and it has its own copy constructor in line 1(B-

public class ColorPoint: Poi nt {
protected Color color;

public ColorPoint(double x, double y, Color c):
base(x,y){
this.color = c;

}

/I Copy constructor
publ i ¢ Col or Poi nt (Col or Poi nt cp):

base(cp. x, cp. y){
this.color = cp.color;

}

/I Clone method is inherited

public override string ToString(){
return "ColorPoint: " + "(" + x +"," + y + ")" +":" + color;

}
}

Program 32.12 A cloneable class ColorPoint.

In thecColor andcolorPoint client program, shown below in Program 32.13, sbauld focus on the list
pointList , as declared in line 14. We add tr@nt objects and tw@olorPoint Objects tgointList in
line 17 - 20. Next, in the foreach loop startindirm¢ 23 we clone each of the four points in tisg land we
add the cloned points to the initially empty lighedPointList . The elements itionedPointList are
printed at the end of the program. The output 1ssting 32.14 - reveals that the cloning is susb@dsWe
end up having tweoint instances and twoolorPoint instances imlonedPointList

using System;
using System.Drawing;
using System.Collections.Generic;

public class Application{

284

public static void Main(){

Point p1 = new Point(1.1, 2.2),
p2 = new Point(3.3, 4.4);
ColorPoint cpl = new ColorPoint(5.5, 6.6, Color .Red),
cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

List<Point> pointList = new List<Point>(),
clonedPointList = new List<Point>() ;

pointList.Add(p1);
pointList.Add(cpl);
pointList.Add(p2);
pointList.Add(cp2);

/I Clone the points in pointList and add them to cl onedPointList:
foreach(Point p in pointList){

cl onedPoi nt Li st. Add((Poi nt) (p. Clone()));
}

foreach(Point p in clonedPointList)
Console.WriteLine("{0}", p);

Program 32.13 Polymorphic Cloning of Points.

Point: (1,1,2,2).
ColorPoint: (5,5,6,6):Color [Red]
Point: (3,3,4,4).
ColorPoint: (7,7,8,8):Color [Blue]

Listing 32.14 Output of both polymorphic and non-
polymorphic cloning.

Let us now attempt to replicate the functionalityPoogram 32.13 with use of copy constructors, see
Program 32.15. The attempt, shown in Program 3R.1ie 24 - 26 fails, because the activation &f topy
constructors deliveroint objects, even if @olorPoint object is passed as input. Instead we must perform
explicit type dispatch, as shown in line 29-34.d€lg constructors cannot exhibit virtual behavior.

The solution in Program 32.13 based onAbiet andcColorPoint classes in Program 32.11 and Program
32.12 works because tlowne method in Program 32.11 (line 35 - 37) is inheritg ColorPoint . As
already explained, the inherited method delegétesark toMmemberwiseClone , which always copies its
receiver. Thus, iMemberwiseClone is activated on aolorPoint Object it copies &olorPoint object.

using System;

using System.Drawing;

using System.Collections.Generic;
public class Application{

public static void Main(){

Point p1 = new Point(1.1, 2.2),
p2 = new Point(3.3, 4.4);
ColorPoint cpl = new ColorPoint(5.5, 6.6, Color .Red),
cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

List<Point> pointList = new List<Point>(),
clonedPointList = new List<Point>()

285

pointList.Add(p1);
pointList.Add(cpl);
pointList.Add(p2);
pointList.Add(cp2);

/1 Cannot copy Col or Point objects with copy constructor of Point.
/1 Conpiles and runs, but gives wong result.

/1 foreach(Point p in pointList){

/1 cl onedPoi nt Li st. Add(new Poi nt (p));

I}

/I Explicit type dispatch:
foreach(Point p in pointList){
if (p is ColorPoint)
cl onedPoi nt Li st. Add(new Col or Poi nt ((Col or Poi nt)p));
else if (p is Point)
cl onedPoi nt Li st. Add(new Poi nt (p));
}

foreach(Point p in clonedPointList)
Console.WriteLine("{0}", p);

Program 32.15 Non-polymorphic Cloning of Points - with use
of copy constructors.

32.9. The fragile base class problem

Lecture 8 - slide 33
As the next part of this Pattern and Techniquegtelnave will study the so-called fragile base classblem.

The problem can be summarized in this way:

If all methods are virtual it is possible to intcag erroneous dynamic bindings

This can happen if a new method in a superclagivén the same name as a dangerous method
in a subclass

The program in Program 32.16 is a principled AB@magle.B is a subclass a@f, andB has a dangerous
methodv2 As a dangerous method, clients of classust be fully aware that2is called, because it can
have serious consequences. (A possible seriousgo@sce may be to erase the entire harddisk). As
illustrated in theclient classM2can only be activated onsaobject.

/1 Original program No problens.
using System;
class A {

public void M1(){
Console.WriteLine("Method 1");
}
}

286

class B: A {

public void M2(){
Console.WriteLine(" Danger ous Method 2");

}
}

class Client{

public static void Main(){
A a =new B();
B b = new B();

a.M1(); // Nothing dangerous expected
Il a.M2(); /I Compile-time error
/['A" does not contain a definition f or '‘M2'
b.M2(); // Expects dangerous operation

Program 32.16 Theinitial program.

Let us now assume that we replace clagsth a new version with the following changes:

1. A new virtual methodi2is added to A.

2. The existing metho#1in A now callsm2

This is shown in Program 32.17.

We will, in addition, assume that all involved madls M1 andm2) are virtual, and tha#2in B overridesvi2
in A. In C# this is not a natural assumption, but walhis is the default semantics (and the only iptess
semantics).

It is purely accidental that the new method in€kabas the same name as the dangerous methindclass
B.

In theclient class in Program 32..mv1() will - unexpectedly - call the dangerous metivadn classs,
because the variabéehas dynamic typs. Similarly,a.M2() callsm2in B. The programmer, who wrote class
A, expected that the expressiomi() would call the sibling method2in classal This could come as an
unpleasant surprise.

/I Dangerous program.

/I M2 is virtual in A and overridden in B.
/1 Conpiles and runs

/I Default Java semantics.

using System;

/I New version of A
class A {

public void M1(){

Console.WriteLine("Method 1");
this. M();
}

/I New method in this version.
/I Same name as the dangerous operation in subcla ssB

287

public virtual void M2({
Console.WriteLine("M2 in new version of A");

}
}

class B: A{

public overri de void M2(){
Console.WriteLine("Dangerous Method 2");

}
}

class Client{

public static void Main(){
A a=new B();
B b = new B();

a. ML(); /I Nothing dangerous expected
/I Will, however, call the dangerous o peration
/I because M2 is virtual.

a.M2(); // Makes sense when M2 exists in class A.
/Il Calls the dangerous method

b.M2(); // Calls the dangerous method.
I/l This is expected, however.
}

}
Program 32.17 Therevised version with method A.M2 being
virtual.

Method 1

Danger ous Met hod 2
Dangerous Method 2
Dangerous Method 2

Listing 32.18 Output of revised program.

If we, in C#, just add theizmethod to class, and chang#1 such that it calls2, as shown in Program
32.19 (only on web) it is not possible to compikessB. The problem is that we have a method, nannzid
both classs andB. This is the problem that we have discussed ini@e28.9. The programmer should
decide ifm2in B should be declared asw, or if it shouldover ri de M2from classa. In the latter cases2in
A must be declared as virtual.

If you want additional details about the fragilesba&lass problem, the web-version of the papelagmitwo
additional variants of Program 32.17.

The fragile base class problem illustrates a daofjesing virtual methods (dynamic binding) all oviee
place. In rare situations, as the one construct&tagram 32.17, it may lead to dangerous resuits.
summarize, the problem arises if a method in alasbés unintentionally called instead of a methmd
superclass. In C#, both the superclass and théasshoust specify if dynamic binding should takacpl In
the superclass the involved method mustibe ual , and in the subclass the method must usewte i de
modifier. Alternatively, we may opt for static bind, as in Program 32.20. As illustrated by ProgB19
the C# programmer is likely to get a warning ineche or she approaches the fragile base classpmobl

288

32.10. Factory design patterns

Lecture 8 - slide 34

Instantiation of classes is done by tle@ operator (see Section 6.7) in cooperation witbrastructor (see
Section 12.4). Imagine that we need numerous inetaaf clasg in a large program. This would lead to a
situation where there appears may expressiongdbtimnew C(...) in the program. Why can this be
considered as a problem?

One problem with many occurrencesel C(...) is if we - eventually - would like to instantisaeother
class, say a subclass®fin this situation we would prefer to make ateange at a single place in the
program, instead of a spread of changes througheyirogram.

Another problem may occur if we need two or monestauctors which we cannot easily distinguish gy th
formal parameters of the constructors. We have seamples of such situations in Section 16.4.

As yet another problem, we may wish to introducedgnames for object instantiations, beyond the
possibilities of constructors.

Various uses of factory methods can be seen as@swuo the problems pointed out above. We will
distinguish between the following variations oftfary methods:

» Factory methods implemented with class methodtidsteethods) in C, or in another class
« The design patterRactory Method which handles instantiation in instance methoddieft
subclasses
« Relies on instance methods in class hierarchidswiritual methods
« The design patterAbstract Factory which is good for instantiation of product famdie
* Relies on instance methods in class hierarchidswiritual methods

As already pointed out, we have seen examplesat $actory methods in Section 16.4. We will dissthe
design patterifractory Method below, in Section 32.11. In the current versiothef material we do not
discussAbstract Factory.

32.11. The design pattern Factory Method

Lecture 8 - slide 35

TheFactory Method design pattern relies on virtual instance methiodsclass hierarchy that take care of
class instantiation. Theactory Method scene is shown diagrammatically in Figure 32.7 and
programmatically in Program 32.22.

The probleris how to facilitate instantiation of differentatys ofProduct s (line 3-13 in Program 32.22) in
SomeOperation (line 20) of clasEreator .

The Factory Method solutias to carry out the instantiation in overriddertwal methods in subclasses of
classcreator . The actual instantiations take place in line 26 32 of Program 32.22. BomeOperation
the highlighted cali hi s. Fact or yMet hod() will either cause instantiation abncreteProduct 1 or
ConcreteProduct_2 , depending on the dynamic type of the creator.

289

Subclasses afreator decide whichProduct to instantiate

Lol Creator

FactoryMethod()

SomeCperation()

ConcreteProduct 1 Cuncr!t\ef‘r{:duct 2 ¥
i

ComcreteCreatar 1 Conorete Creator 2
Fasnaryiethad{) FattoryMethadd

Figure 32.7 Atemplate of the class structure in the Factory Method design
pattern.

using System;

public abstract class Product{
public Product(){}

public class ConcreteProduct_1: Product{
public ConcreteProduct_1(){}

}

public class ConcreteProduct_2: Product{
public ConcreteProduct_2(){}

}

public abstract class Creator{
public abstract Product FactoryMethod();

public void SomeOperation(){
Product product = Fact or yMet hod() ;

}
}

public class ConcreteCreator_1: Creator{
public override Product FactoryMethod(){
return new ConcreteProduct_1();

}
}

public class ConcreteCreator_2: Creator{
public override Product FactoryMethod(){
return new ConcreteProduct_2();

}
}

Program 32.22 Illustration of Factory Method in C#.

Factory Method calls for a quite complicated scene of parallasslhierarchies. The key mechanism behind
the pattern is the activation of a virtual methigahf a fully defined, non-abstract method in thes{edxt)
classcreator . In many contextstactory Method will be too complicated to set up. If, howeve thajor
parts of the class hierarchies already have beablishied, the use éfactory Method allows for flexible
variations ofProduct instantiations.

290

32.12. The Visitor design pattern

Lecture 8 - slide 37

TheVisitor design pattern is typically connected to @anposite design pattern, which we have discussed
in Section 32.1. Recall thatGomposite gives rise to a tree of objects, all of which esgpa uniform client
interface. TheVisitor design pattern is about a particular organizatiothe operations that visit each node
in such a tree.

Relative to th&Composite class diagram, shown in Figure 32.1, we will desctwo different organizations
of the tree visiting operations:

« The natural object-oriented solution:
« One method per operation p&mponent class
« TheVisitor solution
« All methods that pertain to a given operation afactored and encapsulated in its own
class

The natural object-oriented solution, mentionest fits the solution that falls out of t@®mposite design
pattern. We will illustrate it in the context ofethhtSequence Composite in Section 32.13.

TheVisitor solution is an alternative - and more complicatethanization which keeps all operations of a
given traversal together. This is the solutionhaf\fisitor design pattern. It will be exemplified in Section
32.15.

32.13. Natural object-oriented IntSequence tralsrs

Lecture 8 - slide 38

We have studied the integer sequence compositgpienaix Section 58.3. The class diagram of this
particularComposite is shown in Figure 58.1. Please recapitulate $sisergce of the integer sequence idea
from there.

We will now discuss three different operations vmeed to visit each object in a integer sequenees t
such as the seven nodes of the tree shown in FiduPe The operations akex, Min, andSum Min andMax
find the smallest/largest number in the tree respey. sumadds all numbers in the tree together.

Below we show th&tin, Max, andsumoperations in four class@sSequence |, IntSingular , Intinterval ,
andintComposite . All of the operation need to traverse the tregcstire. Inner nodes in the composite tree
are represented as instances of the ale&snpSeq , as shown in Program 32.26. The operatiins Max,
andsumare implemented recursively in this classCémposite is a recursive data structure which in a
natural way calls for recursive processing. Altls archetypical for a composite structure.

public abstract class IntSequence {

public abstract int M n {get;}
public abstract int Vax {get;}
public abstract int Sum();

}
Program 32.23 The abstract class IntSequence.

2901

public class Intinterval: IntSequence{

private int from, to;

public Intinterval(int from, int to){

this.from = from;
this.to = to;

}

public int From{
get{return from;}

public int To{
get{return to;}

}

public override int

M n{

get {return Math.Min(from,to);}

public override int

Max{

get {return Math.Max(from,to);}

public override int
int res = 0;

Sum({

int lower = Math.Min(from,to),
upper = Math.Max(from,to);

for (int i = lower; i <= upper; i++)

res +=1i;
return res;
}
}

Program 32.24 Theclass Intinterval.

public class IntSingular: IntSequence{

private int it;

public IntSingular(int it){
this.it = it;
}

public int Thelnt{
get{return it;}

public override int
get {return it;}

public override int
get {return it;}

public override int
return it;
}
}

M n{

Max{

Sum({

Program 32.25 Theclass IntSingular.

292

public class IntCompSeq: IntSequence{

private IntSequence s1, s2; // Binary sequence: Exactly two subsequences.
public IntCompSeq(IntSequence s1, IntSequence s2) {

this.s1 = s1;

this.s2 = s2;
}

public IntSequence First{
get{return s1;}

public IntSequence Second{
get{return s2;}

public override int M n{
get {return Math.Min(s1.Min, s2.Min);}

public override int Max{
get {return Math.Max(s1.Max, s2.Max);}

public override int Sum(){
return s1.Sum() + s2.Sum();

}
}

Program 32.26 The class IntCompSeq.

In the web version of the material we show an iatespquence client which traverses a composite tree
structure of integer sequences with use of theadipeisMin , Max, andsum see Program 32.27 (only on web).
In Listing 32.28 (only on web) we also show thegmean output.

The programming oftin,, Max, andsumin the integer sequence classes, as shown alsavatural object-
oriented programming of the traversals. Each ofdlie involved classes hasvin, Max, and asumoperation.
The operations are located in the immediate neiditdmal of the data on which they rely. Everythingjrig.

But the solution shown in this section is ndfiaitor. In the next section we will discuss and motiag
transition from the natural object-oriented solntto a visitor. After that we will reorganizén, Max and
Sumas visitors.

32.14. Towards a Visitor solution

Lecture 8 - slide 39

Before we study Visitors for integer sequence trsals we will discuss the transition from the natur
object-oriented traversal to thMesitor design pattern.

The main idea of/isitor is to organize all methods that take part in aéi@aar traversal, in a singhgsitor
class. In our example from Section 32.13 it mehaswe will haveminvisitor , MaxVisitor , and
sumvisitor class. All of these classes share a comwmsitar interface.

293

The following steps are involved the transitiomfroatural object-oriented visiting to theésitor design
pattern:

« Avisitor interface and three concrete Visitor classes efieel

« Thelintsequence classes are refactored - the traversal methodwa@ved to the visitor classes
e Accept methods are defined in theSequence classesAccept takes avisitor as parameter
e Accept passeshis to the visitor, which in turn may activatecept on components

From the web-version of the material we providesatG-animation that illustrates the transition.
Try the accompanying SVG animation

In the following section we will study an examplie the slipstream of the example we will explainian
discuss additional details. The pros and conseYiktor solution are summarized in Section 32.16.

32.15. A Visitor example: IntSequence

Lecture 8 - slide 40
Let us now reorganize the integer sequence tradgdrsan Section 32.13 to\disitor.

We provide three different traversals: find minimuimd maximum, and calculate sum. This will givser
to three different visitor objects: a minimum uvigita maximum visitor, and a sum visitor of types
MinVisitor , MaxVisitor , andSumvVisitor ~ respectively. The three classes implement a commsr
interface. Each of the visitors will haveitintinterval , VisitSingular , andvisitCompSeq methods.
As a naming issue, we chose to use the nasne for all of them. This choice relies on method ¢eading.
With these considerations we are able to underdtandsitor interface shown in Program 32.29.

public interface Visitor{
int Visit (Intinterval iv);
int Visit (IntSingular iv);
int Visit (IntCompSeq iv);
}

Program 32.29 The Visitor Interface.

The abstract superclass in the integer sequéaaposite design pattern, which we presented in Program
32.23, can now be reduced to a single method, whias avisitor object as parameter. The method is
usually calledaceept .

public abstract class IntSequence {
public abstract int Accept(Visitor v);

}
Program 32.30 The abstract class IntSequence.

The idea behind theccept method is to delegate the responsibility of aipaldr traversal to a given
Visitor object. In the classtinterval , shown below in Program 32.31, we see Meaépt passes the

294

current object (thentinterval object) to the visitor. This is done in line 1helsame happens Aacept
of IntSingular ~ (line 14 of Program 32.32) andAacept of IntCompSeq (line 19 of Program 32.33).

public class Intinterval: IntSequence{
private int from, to;

public Intinterval(int from, int to){
this.from = from;
this.to = to;

}

public int From{
get{return from;}

}

public int To{
get{return to;}

public override int Accept(Visitor v){
return v.Visit(this);

}
}

Program 32.31 Theclass Intinterval.

public class IntSingular: IntSequence{
private int it;

public IntSingular(int it){
this.it = it;
}

public int Thelnt{
get{return it;}

public override int Accept(Visitor v){
return v.Visit(this);

}
}

Program 32.32 Theclass IntSingular.

295

public class IntCompSeq: IntSequence{
private IntSequence s1, s2; // Binary sequence:

public IntCompSeq(IntSequence s1, IntSequence s2)
this.s1 = s1;
this.s2 = s2;

}

public IntSequence First{
get{return s1;}

public IntSequence Second{
get{return s2;}

public override int Accept(Visitor v){
return v.Visit(this);
}
}

Exactly two subsequences.

{

Program 32.33 The class IntCompSeq.

It is now time to program the visitor classes (thesses that implement thiaitor interface of Program

32.29).

Thevisit methods on intervals and singulars (the leafeéncomposite tree) just extract information from
the passed tree node. Thus, Wi methods extract information from the objects ti@t the essential
information (this is the objects that provide tfiveept methods). Th&isit methods on the inner tree nodes
(of typeintCompSeq) are more interesting. They calicept methods on subtrees of the inner tree node.
This is highlighted with blue color in Program 32,.®rogram 32.35, and Program 32.36.

public class MinVisitor: Visitor{
public int Visit (Intinterval iv){
return Math.Min(iv.From, iv.To);

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){

return Math. M n(iv. First. Accept(this),
i v. Second. Accept (this));

Program 32.34 The class MinVisitor.

296

public class MaxVisitor: Visitor{
public int Visit (Intinterval iv){
return Math.Max(iv.From, iv.To);

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){
return Mat h. Max(iv. First. Accept(this),
i v. Second. Accept (this));
}
}

Program 32.35 The class MaxVisitor.

public class SumVisitor: Visitor{
public int Visit (Intinterval iv){
int res = 0;
int lower = Math.Min(iv.From,iv.To),
upper = Math.Max(iv.From,iv.To);

for (int i = lower; i <= upper; i++)
res +=i;
return res;

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){
return (iv.First.Accept(this) +
i v. Second. Accept (this));
}
}

Program 32.36 The class SumVisitor.

As it appears, eackecept method in the€Composite calls avisit method in avisitor class, which in turn
may call one or moraccept methods on a composite constituents. This leaiglicect recursion in
betweemccept methods andlisit methods. Compared with the natural object-oriestddtion, which
usegdirect recursion, this is more complicated to understand.

The indirect recursion, pointed out above, may alsoanderstood as a simulationdotible dispatching.

First, we dispatch on thésitor ~ object and next we dispatch on an object fronttraposite tree structure.
Most object-oriented programming language onlyvedlaingle dispatching - corresponding to message
passing via a virtual method. This can be generdlismultiple dispatching, where the dynamic type of
several objects determine which method to activete. object-oriented part of Common Lisp - CLOS
[Keene89] - supports multiple dispatching.

In Program 32.37 we show a client program withraedger sequence composite structure (line 7-18eth
visitors (line 16-18), and sample activations etttraversals (highlighted in line 21, 22, and Z8g output
of the program is shown in Listing 32.38 (only oabj.

297

using System;
class SeqApp {
public static void Main(){

IntSequence isq =
new IntCompSeq(
new IntCompSeq(
new Intinterval(3,5), new IntSingular -7)),
new IntCompSeq(
new Intinterval(12,7), new IntCompSeq

new Intl nterval(18,-18),
new Intl nterval(3,5)
N

Visitor min = new MinVisitor();
Visitor max = new Max\Visitor();
Visitor sum = new SumVisitor();

Console.WriteLine("Min: {0} Max: {1}", i sq. Accept (m n),
i sq. Accept (max));

/I Alternative activation of Visit methods:

/I Console.WriteLine("Min: {0} Max: {1}", min.Visi t((IntCompSeq)isq),
I max.Visi t((IntCompSeq)isq));
Console.WriteLine("Sum: {0}", i sg. Accept (sum);
}
}

Program 32.37 A sample application of IntSequences and
visitors.

32.16. Visitors - Pros and Cons

Lecture 8 - slide 41

As it is already clear from our explanation\d&itor in Section 32.15 there are both advantages and
disadvantages of this design pattern.

We summarize the consequence¥isitor in the following items:

« A new kind of traversal can be added without afferthe classes of tHeomposite

- A Visitor encapsulates all methods related to a particrdsetsal

- State related to a traversal can - in a natural \Weeyrepresented in thésitor

« Ifanew class is added to tBemposite all Visitor classes are affected

« The indirect recursion that involvescept and thevisit methods is more complex than the
direct recursion in the natural object-orientedisoh

Visitor is frequently used for processing of abstractayirees in compilation tools

In case you are going to study compilers implengtiie object-oriented way, you will most likely
encounteiisitors for such tasks as type checking and code generatio

298

32.17. References

[Keene89] Sonya E. Keen@pject-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Gamma96] E. Gamma, R. Helm, R. Johnson and Jsidés Design Patterns. Elements of
Reusable Object-oriented Software. Addison Wesley, 1996.

[Midi-sample] The generated MIDI file
http://www.cs.aau.dk/~normark/oop-csharp/midi/samd.

[Mip-jan-08] MIP Exam January 2008 (In Danish)
http://www.cs.aau.dk/~normark/oop-07/html/mip-jadi@pgave.html

[Song-and- The auxiliary classes TimedNote and Song

timednote-classes] http://www.cs.aau.dk/~normark/oop-07/html/mip-jad'@sharp/mip.cs

[Factory-method] Wikipedia: Design pattern: Factbtgthod
http://en.wikipedia.org/wiki/Factory _method

[Abstract-factory] Wikipedia: Design pattern: Alestt Factory
http://en.wikipedia.org/wiki/Abstract factory

299

300

33. Fundamental Questions about Exception
Handling

With this chapter we start the lecture about exception handling. We could as well just use the word "error
handling". Before we approach object-oriented exception handling we will in this chapter discuss error
handling broadly and from several perspectives. In Chapter 34 we will discuss hon-OO, conventional
exception handling. In Chapter 35 we encounter object-oriented exception handling. Finally, in Chapter 36
we discuss exception handling in C#. Chapter 36 isthe main chapter in the lecture about exception handling.

33.1. What isthe motivation?

Lecture 9 - slide 2

The following items summarize why we should care about error handling:

« Understand the nature of errors
e "Anerror isnot just an error"
» Prevent as many errors as possible in the final program
« Automatically - viatools
« Manually - in adistinguished testing effort
» Make programs more robust
» A program should be able to resist and survive unexpected situations

33.2. What isan error?

Lecture9 - dlide 3

Theword "error” is often used in an undifferentiated way. We will now distinguish between errorsin the
devel opment process, errors in the source program, and errors in the executing program.

« Errorsin the design/implementation process

« Duetoawrong decision at an early point in time - a mental flaw
» Errorsinthe source program

« lllegal use of the programming language

« Erroneousimplementation of an algorithm
» Errorsinthe program execution - run time errors

» Exceptions - followed by potential handling of the exceptions

Errorsin the development process nay lead to errors in the source program.

Errorsin the source program may lead to errorsin the running program

301

33.3. What is normal? What is exceptional ?

Lecture 9 - side 4

| propose that we distinguish between "normal aspects’ and "exceptional aspects’ when we write a program.
Without this distinction, many real-world programs will become unwieldy. The separation between normal
aspects and exceptional aspects adds yet another dimension of structure to our programs.

In many applications and libraries, the programming of the normal aspects leads to nice and well-
proportional solution. When exceptional aspects (error handling) are brought in, the normal program aspects
are polluted with error handling code. In some situations the normal program aspects are totally dominated
by exceptiona program aspects. Thisis exemplified in Section 34.2.

Below we characterize the normal program aspects and the exceptional program aspects.

« Normal program aspects
» Situations anticipated and dealt with in the conventiona program flow
« Programmed with use of selective and iterative control structures
« Exceptional program aspects
» Situations anticipated, but not dealt with "in normal ways" by the programmer
« Leadsto an exception
« Recoverable via exception handling. Or non-recoverable
» Situations not anticipated by the programmer
» Leadsto an exception
« Recoverable via exception handling. Or non-recoverable
» Problems beyond the control of the program

Let us assume that we program the following simple factorial function. Recall that "n factorial” =
Factorial (n) =nl=n*(n-1)* .. * 1.

public static |long Factorial (int n){
if (n==0)
return 1;

else return n * Factorial (n - 1);

}

The following problems may appear when we run the Fact ori al function:

1. Negativeinput : If n is negative an infinite recursion will appear. It resultsin a
St ackOver f | owException .

2. Wrong type of input : In principle we could pass a string or a boolean to the function. In redlity, the
compiler will prevent us from running such a program, however.

Wrong type of multiplication : The operator my be redefined or overloaded to non-multiplication.

Numeric overflow of returned numbers: Thetypel ong cannot contain the result of 20! , but not
21! .

Memory problem : We may run out of RAM memory during the computation.
L oss of power : The power may be interrupted during the computation.
Machinefailure: The computer may fail during the computation.

302

8. Sun failure: The Sun may be extinguished during the computation.

Problem 1 should be dealt with as anormal program aspects. As mentioned, the probleminitem 2is
prevented by the analysis of the compiler. Problem 3 is, in asimilar way, prevented by the compiler.
Problem 4 is classified as an anticipated exceptional aspect. Problem 4 could, alternatively, be dealt with by
use of another type than long, such aBi gl nt eger which allows usto work with arbitrary large integers.

(Bi gl nt eger isnot part of the .Net 3.5 libraries, however). Problem 5 could also be foreseen as an
anticipated exception. Problem 5, 7, and 8 are beyond the control of the program. In extremely critical
applicationsit may, however, be considered to dea with (handle) problem 6 and 7.

With use of normal control structures, a different (although a hypothetical) type Bi gl nt eger , and an iterative
instead of arecursive algorithm we may rewrite the program to the following version:

public static Biglnteger Factorial (int n){
if (n>= 0){
Bi gl nteger res = 1;
for(int i =1; i <= n; i++)
res =res * i;
return res;

}

el se throw new Argunent Excepti on("n must be non-negative");

}

With this rewrite we have dealt with problem 1, 4, and 5. As an attractive alternative to thei f - el se,
problem 1 could be dealt with by the preconditionn >= 0 of the Fact ori al method, see Section 50.1.

As it appears, we wish to distinguish between normal program aspects and exceptional program aspectsvia
the programming language mechanisms used to deal with them. In C# and similar object-oriented languages,
we have special means of expressionsto deal with exceptions. The Fact ori al function shown above throws
an exception in case of negative input. See Section 36.2 for details.

Above, we distinguish between different degrees of exceptional aspects. As a programmer, you are probably
aware of something that can go wrong in your program. Other errors come as surprises. Some error situations,
both the expected and the surprising ones, should be dealt with such that the program execution survives.

Otherswill lead to program termination. Controlled program termination, which alows for smooth program
restart, will be an important theme in thislecture.

33.4. When are errors detected?

Lecture9 - slide 6
It is attractiveto find errors as early as possible

Our next question cares about the point in time where you - the program developer - realize the problem. It
should be obvious that we wish to identify troubles as soon as possible.

We identify the following error identification times.

303

« During design and programming - Go for it.
» During compilation - syntax errors or type errors - Attractive.
» During testing - A lot of hard work. But necessary.
« During execution and final use of the program
« Handled errors - OK. But difficult.
« Unhandled errors - A lot of frustration.

If we are clever enough, we will design and program our software such that errors do not occur at all.
However, all experience shows that thisis not an easy endeavor. Still, it is good wisdom to care about errors
and exception handling early in the development process. Problems that can be dealt with effectively at an
early point in time will save alot of time and frustrations in the latter phases of the development process.

Static analysis of the program source files, as done by the front-end of the compiler, isimportant and
effective for relatively early detection of errors. The more errors that can be detected by the compiler before
program execution, the better. Handling of errors caught by the compiler requires very little work from the
programmers. Thisis at least the caseif we compare it with testing efforts, described next.

Systematic test deals with sample execution of carefully prepared program fragments. The purpose of testing
isto identify errors (see also Section 54.1). Testing activities are very time consuming, but all experience
indicatesthat it is necessary. We devote alecture, covered by Chapter 56 in this material, to testing. We will
in particular focus on unit test of object-oriented programs.

Software test is also known as validation in relation to the specification of the software. Alternatively, the
program may be formally verified up against a specification. This goesin the direction of a mathematical
proof, and an area known as model-checking.

Finally, some errors may creep through to the end-use of the program. Some of these errors could and should
perhaps have been dealt with at an earlier point in time. But there will remain some errorsin this category.
Some can be handled and therefore hidden behind the scene. A fair amount cannot be handled. Most of the
discussion in this and the following three chapters are about (handled and unhandled) errors that show up in
the program at execution time.

33.5. How are errors handled?

Lecture 9 - slide 7

Assuming that we now know about the nature of errors and when they appear in the running program, it is
interesting to discuss what to do about them. Here follows some possibilities.

304

e Ignore
+ Falsedarm - Naive
* Report
« Write amessage on the screen or in alog - Helpful for subsequent correction of the
source program
« Terminate
- Stop the program execution in a controlled an gentle way - Save data, close connections
e Repair
» Recover from the error in the running program - Continue normal program execution
when the problem is solved

Thefirst option - false alarm - is of course naive and unacceptable from a professional point of view. It is
naive in the sense that shortly after we have ignored the error another error will most certainly occur. And
what should then be done?

The next option isto tell the end-user about the error. Thisis naive, dmost in the same way as false alarm.
But the reporting option is a very common reaction from the programmer: "If something goes wrong, just
print a message on standard output, and hopefully the problemwill vanish." At least, the user will be aware
that something inappropriate has happened.

The termination option is often the most viable approach, typically in combination with proper reporting.
The philosophy behind this approach is that errors should be corrected when they appear. The sooner the
better. The program termination should be controlled and gentle, such that it is possible to continue work
when the problem has been solved. Data should be saved, and connections should be closed. It is bad enough
that a program fails "today". It is even worseif it isimpossible start the program "tomorrow" because of
corrupted data.

Repair and recovery at run-time is the ultimate approach. We all wish to use robust and stable software.
Unfortunately, there are some problems that are very difficult to deal with by the running program. To
mention afew, just think of broken network connections, full harddisks, and power failures. It isonly in the
most critical applications (medical, atomic energy, etc) that such severe problems are dealt with explicitly in
the software that we construct. Needlessto say, it is very costly to built software that takes such problems
into account.

33.6. Where are errors handled?

Lecture9 - slide 8

The last fundamental question is about the place in the program where to handle errors. Should we go for
local error handling, or for handling at a more remote place in the program.

305

« Handleerrors at the place in the program where they occur
» If possible, thisisthe easiest approach
» Not aways possible nor appropriate
« Handleerrors at another place
» Alongthe calling chain
» Separation of concerns

If many errors are handled in the immediate proximity of the source of the error, chances are that a small and
understandabl e program becomes large, unwieldy, and difficult understand. Separation of concernsis worth
considering. One concern isthe normal program aspects (see Section 33.3). Another concern is exception
handling. The two concerns may be dealt with in different corners or the program. Propagation of errors from
one place in a C# program to another will be discussed in Section 36.7 of this material.

306

34. Conventional Exception Handling

Before we approach exception handling in object-oriented programs we will briefly take alook at some
conventional ways to deal with errors. Y ou can, for instance, think of these as error handling techniquesin C
programming.

34.1. Exception Handling Approaches

Lecture 9 - slide 10

One way to deal with errorsisto bring the error condition to the attention of the user of the program. (See
Section 33.5). Obviously, thisis done in the hope that the user has a chance to react on the information he or
shereceives. Not all users can do so.

If error messages are printed to streams (files) in conventional, text based user interfaces, it istypical to
direct the information to the standard error stream instead of the standard output stream.

» Printing error messages
e Console.Qut.WiteLine(...) Or Console.Error.WiteLine(...)
« Error messages on standard output are - in general - abad idea

We identify the following conventional exception handling approaches:

« Returning error codes

« Likein many C programs

« Inconflict with afunctional programming style, where we need to return data
« Set globa error status variables

« Almost never attractive
» Raise and handle exceptions

« A specia language mechanism to raise an error

« Rulesfor propagation of errors

» Specia language mechanisms for handling of errors

When afunction is used in imperative C programming, the value returned by the function can be used to
signal an error condition to its caller. Many functions from the standard C library signal errorsviathe value
returned from the function. Unfortunately, varying conventions are applied. In some functions, such as mai n,
a non-zero value communicates a problem to the operating environment. In functions that return pointers
(such asmal I oc) aNuULL value typically indicates an error condition. In other functions, such asf get ¢ and

f put ¢, the distinguished ECF (end of file) value is used as an error value. Other functions, such as nkt i ne,
use -1 asan error value.

As an supplementing means, a global variable can be used for signaling more details about an error. In C
programming, the variable er r no from the standard library er r no. h is often used. When a function returns

an error value (as discussed above), the value of er r no is set to avalue that gives more details about the error.
Some systems use er r no as an index to an array of error messages.

307

Use of error return values and global error variablesis not a good solution to the error handling problem.
Therefore, most contemporary languages come with more sophisticated facilities for raising, propagating and
handling exceptions. The C# error handling facilities are covered specifically in Section 36.2, Section 36.3,
and Section 36.7.

34.2. Mixing normal and exceptional cases

Lecture 9 - slide 11

Before we enter the area of object-oriented exception handling, and exception handling in C#, we will
illustrate the danger of mixing "normal program aspects' and "exceptional program aspects'. See also the
discussion in Section 33.3.

In Program 34.1 asmall program, which copies afileinto another file, is organized in the Mai n method in a
C# program. The string array passed to Mai n is supposed to hold the names of the source and target files.
Most readers will probably agree that the program fragment shown in Program 34.1 isrelatively clear and
straightforward.

using System
using System | Q

public class CopyApp {

public static void Main(string[] args) {

Filelnfo inFile = new Filelnfo(args[0]),
outFile = new Filelnfo(args[1]);
FileStreaminStr = inFile. OpenRead(),
outStr = outFile. QpenWite();
int c;
do{
c = inStr. ReadByte();
if(c !=-1) outStr.WiteByte((byte)c);
} while (c I=-1);

inStr.d ose();
out Str.d ose();

Program 34.1 A file copy program.

We will now care about possible issues that can go wrong in our file copy program. The result can be seenin
Program 34.2, where all red aspects are oriented towards error handling. Some of the error handling issues
are quite redigtic. Others may be slightly exaggerated with the purpose of making our points.

308

using System
using System | Q

public class CopyApp {

public static void Main(string[] args) {
Filelnfo inFile;
do {
inFile = new Filelnfo(args[0]);
if (linFile.Exists)
args[0] = "sone other input file name";
} while (linFile.Exists);

Filelnfo outFile;
do {
outFile = new Filelnfo(args[1]);
if (outFile.Exists)
args[1] = "sone other output file nane";
} while (outFile.Exists);

FileStreaminStr i nFi |l e. OpenRead(),

out Str outFile. CpenWite();
int c;
do{
c = inStr.ReadByte();
if(c !'=-1) outStr. WiteByte((byte)c);

if (Streanful | (outStr))
Dr eanConmand(" Fi x some extra room on the disk");
} while (c !'= -1);

inStr.d ose();
if (!'FileCOosed(inStr))
Dr eanConmand(" Deal with input file which cannot be cl osed");

out Str. d ose();
if (!'FileC osed(outStr))
Dr eanConmand(" Deal with output file which cannot be cl osed");

Program 34.2 Afile copy program with excessive error
handling.

Thelineintervals 8-12 and 15-19 deal with non-existing/existing input/output files respectively. Itisa
problem if the input fileis non-existing, and it may be problematic to overwrite an existing output file. Line
27-28 deals with memory problems, in case there is not enough room for the output file. The line intervals
32-33 and 36-37 address file closing problems. The methods Dr eanConmand, Fi | ed osed, and St r eanful |
are imaginary abstractions, which are needed to complete and compile the version of the file copy program
shown in Program 34.2.

The important lesson to learn from the example above is that the original "normal file copying aspects' in
Program 34.1 aimost disappears in between the error handling aspects of Program 34.2.

309

310

35. Object-oriented Exception Handling

It may be asked if thereisasolid link between object-oriented programming and exception handling. | see
two solid object-oriented contributions to error handling. The contributions are (1) representation of an error
as an object, and (2) classification of errorsin class inheritance hierarchies. These contributions will be
explained at an overall level inthis chapter. In Chapter 36 we will address the same issues relative to C#.

35.1. Errors as Objects

Lecture 9 - slide 13

An error is characterized by several pieces of information. It is attractive to keep these informations together.
By keeping relevant error information together it becomes easier to propagate error information from one
place in a program to another.

Seenin thislight, it is obvious that an error should be represented as an object.

All relevant knowledge about an error is encapsulated in an object

« Encapsulation of relevant error knowledge
« Placeof occurrence (class, method, line number)
« Kind of error
« Error message formulation
« Cadll stack information

« Transportation of the error
« Fromthe place of origin to the place of handling
« Viaasgpecia t hr ow mechanism in the language

An error is an object. Objects are instances of classes. Therefore there will exist classes that describe
common properties of errors. In the next section we will discuss the organization of these classesin aclass
hierarchy.

35.2. Classification of Errors

Lecture 9 - slide 14

There are many kinds of errors: Fatal errors, non-fatal errors, system errors, application errors, arithmetic
errors, 10 errors, software errors, hardware errors, etc. It would be very helpful if we could bring order into
this mess.

In Section 35.1 we redlized that a concrete error can be represented as an instance of a class, and
consequently that we can deal with types of errors. Like other types, different types of errors can therefore be
organized in type hierarchies. At the programming language level we can define a set of error/classes, and
we can organize these in an inheritance hierarchy.

311

Errors can be classified and speciaized by means of aclass hierarchy

Figure 35.1 shows an outline of type hierarchy for different kinds of errors. The concrete C# counterpart to
this figure is discussed in Section 36.4.

Fatal error Mon-fatal error
E
System error Application error
Ty

Mull reference error Divide by zero error

Figure35.1 Asampleerror classification hierarchy

As hinted by the introductory words of this section, there may be several different classifications of errors.
The classification in Figure 35.1 only represents one such possibility. If multiple inheritanceis available (see
Section 27.4 and Section 27.5) multiple error classification schemes may coexist.

312

36. Exceptions and Exception Handling in C#

Chapter 33, Chapter 34, and Chapter 35 have provided a context for this chapter. Warmed up in this way, we
will now discuss different aspects of exceptions and exception handling in C#.

36.1. Exceptionsin a C# program

Lecture 9 - side 16

Let us start with an simple example. Several variants of the example will appear throughout this chapter. In
Program 36.1 thei nt table, declared and instantiated in line 6, is accessed by the expression M t abl e, i dx)
inline 9. In Mwe happen to address a non-existing element in the table. Recall that an array of 6 elements
holds the elementst abl e[0] .. . t abl e[5] . Therefore the cell addressed by t abl e[6] is non-existing.
Consequently, the execution of M t abl e, i dx) inline9 causes an error (index out of range). Thisisarun-
time error, because the error happens when the program is executing. Y ou can see this as a contrast to
compile-time errors, which are identified before the program starts. In C#, arun-time error is materialized as
an exception, which is an instance of class Except i on or one of its subclasses. After its creation the
exception is thrown. Throwing an exception means that the exception object is brought to the attention of
exception handlers (catchers, see Section 36.3) which have a chance to react on the error condition
represented by the exception. In the example shown in Program 36.1 the thrown exception is hot handled.

using System
cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};
int idx = 6;

Mt abl e, idx);
}

public static void Mint[] table, int idx){
Consol e. Wi teLine("Accessing elenment {0}: {1}",
idx, table[idx]);

Program 36.1 A C# program with an exception.

The output of Program 36.1 is shown in Listing 36.2. The effect of the w i t eLi ne command in line 13 never
occurs, because the error happens before wii t eLi ne takes effect. The output in Listing 36.2 istherefore
produced exclusively by the unhandled exception. We can see that the exception is classified as an

I ndexQut O RangeExcept i on, which is quite reasonable. We can also see the stack trace from the beginning
of the program to the place where the exception is thrown: Mai n, M(read from bottom to top in Listing 36.2).

Unhandl ed Exception: System | ndexQut Of RangeExcepti on:
I ndex was outside the bounds of the array.
at ExceptionDeno. MInt32[] table, Int32 idx)
at ExceptionDeno. Mai n()

Listing 36.2 Output from the C# program with an
exception.

313

36.2. Thetry-catch statement C#

Lecture 9 - slide 17

In Section 36.1 we illustrated an unhandled exception. The error occurred, the exception object was formed,
it was propagated through the calling chain, but it was never reacted upon (handled).

We will now introduce a new control structure, which allows usto handle exceptions, as materialized by
objects of type Except i on. Handling an exception imply in some situations that we attempt to recover from
the error which is represented by the exception, such that the program execution can continue. In other
situations the handling of the exception only involves afew repairs or state changes just before the program
terminates. Thisistypically done to save data or to close connections such that the program can start again
when the error in the source program has been corrected.

The try-catch statement allows us handle certain exceptions instead of stopping the program

The syntax of the new control structure is as shown below.

try
try-bl ock

catch (exception-type-1 nane)
cat ch- bl ock-1

catch (exception-type-2 nane)
cat ch- bl ock- 2

Syntax 36.1 The syntax of try-catch statement C#

try-bl ock and cat ch- bl ock-i are indeed block statements. It means that braces{. ..} are mandatory after
try and after catch. Even if only asingle action happensin try or catch, the action must be dressed asa
block.

Let us assume that we are interested in handling the exceptions that are caused by execution of some
command c. This can be arranged by embedding c in atry-catch control structure. It can also be arranged if
another command d, which directly or indirectly activates ¢, is embedded in atry-catch control structure.

If an exception of agiven type occurs, it can be handled in one of the matching catch clauses. A catch clause
matches an exception object e, if the type of e isa subtype of excepti on-type-i (asgiveninone of the
catch clauses). The matching of exceptions and catch clauses are attempted in the order provided by the
catch clausesin the try control structure. Notice that each catch clause in addition specifies a name, to which
the given exception object will be bound (in the scope of the handler). The namesin catch clauses are similar
to formal parameter names in methods.

Syntax 36.1 does not reflect the whole truth. The names of exceptions, next to the exception types, may be
missing. It is even possible to have a catch clause without specification of an exception type. Thereisalso an
optional finally clause, which we will discussin Section 36.9.

314

36.3. Handling exceptionsin C#

Lecture 9 - slide 18

Now that we have introduced the try-catch control structure let us handle the exception in Program 36.1. In
Program 36.3 - inside M- around the two activations of Wi t eLi ne, we introduce atry-catch construct. If an
I ndexQut O RangeExcept i on occursin the try part, the control will be transferred to the neighbor catch part
in which we adjust the index (using the method Adj ust | ndex), and we print the result. The program now
prints"ve get el enent nunber 5: 15",

Notice that once we have left the try part, due to an error, we will not come back to the try part again, even if
we have repaired the problem. In Program 36.3 this means that the Consol e. Wi t eLi ne call in 16-17 is
never executed. After having executed the catch clausein line 19-23, line 24 is executed next, and Mreturns
to Mai n.

usi ng System

cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};

int idx = 6;
Mtable, idx);

}

public static void Mint[] table, int idx){
try{

Consol e. Wi teLine("Accessing elenment {0}: {1}",
idx, table[idx]);

Consol e. Wi teLine("Accessing element {0}: {1}",
idx-1, table[idx-1]);

catch (1 ndexQut OFf RangeException e){
i nt newl dx = Adj ust | ndex(idx,0,5);
Consol e. WiteLine("We get el enment nunber {0}: {1}",
newl dx, tabl e[new dx]);
}

Consol e. WiteLine("End of M);
}

public static int Adjustlndex(int i, int low, int high){
int res;

if (i <low
res = | ow
else if (i > high)
res = high;
else res = i;

return res;

}
}

Program 36.3 A C# programwith a handled exception.

In the example above we handled the exception in the immediate neighborhood of the offending statement. It
is aso possible to handle the exception at a more remote place in the program, but always along the path of
activated, non-completed methods. We will illustrate thisin Section 36.7.

315

Exercise 9.1. Exceptionsin Convert. ToDouble

The static methods in the static class Syst em Convert are ableto convert values of one type to values of
another type.

Consult the documentation of Syst em Convert. ToDoubl e. There are several overloads of this method.
Which exceptions can occur by converting a string to a double?

Write a program which triggers these exceptions.

Finally, supply handlers of the exceptions. The handlers should report the problem on standard output,
rethrow the exception, and then continue.

36.4. The hierarchy of exceptionsin C#

Lecture 9 - slide 19

In this section we will take a concrete ook at the classification of exceptionsin C#. Our general discussion
of thistopic can be found in Section 35.2.

The following shows an excerpt the Except i on classtree in C#. Thetreeis shown by textual indentation.
Thus, the classes Appl i cat i onExcept i on and Syst enExcept i on are sons (and subclasses) of Except i on.

« Exception
« ApplicationException
« Your own exception types
« SystemException
« ArgumentException
« ArgumentNullException
» ArgumentOutOf RangeException
« DivideByZeroException
» IndexOutOfRangeException
» NullReferenceException
« RankException
« StackOverflowException
» |OException
» EndOfStreamException
« FileNotFoundException
» FileLoadException

Notice first that the Except i on classtreeis not the whole story. There are many more exception classesin
the C# libraries than shown above.

316

Exceptions of type Syst enExcept i on are thrown by the common language runtime (the virtual machine) if
some error condition occurs. System exceptions are nonfatal and recoverable. As a programmer, you are also
welcome to throw a Syst enExcept i on object (or more precisely, an object of one of the subclasses of

Syst enExcept i on) from aprogram, which you are writing.

An Ar gunent Except i on can be thrown if a an operation receives an illegal argument. The programmer of the
operation decides which arguments are legal and illegal. The two shown subclasses of Ar gument Except i on
reflect that the argument cannot be nul I and that the argument is outside its legal range respectively.

TheDi vi deByZer oExcept i on occursif zeroisused asadivisor in adivision. The

I ndexQut Of RangeExcept i on occursif an an array is accessed with an index, which is outside the legal
bounds. The Nul | Ref er enceExcept i ons occursin an expression liker ef . name whereref isnul | instead of
areference to an object. The RankExcept i on occursif an array with the wrong number of dimensionsis
passed to an operation. The st ackOver f | owExcept i on occurs if the memory space devoted to non-
completed method calsis exhausted. The | CExcept i on (in the namespace Syst em | O) reflects different
kinds of errorsrelated to file input and file output.

Appl i cati onExcept i ons are "thrown when a non-fatal application error occurs' (quote from MSDN). The
common runtime system throws instances of Syst enExcept i on, NOt Appl i cat i onExcept i on. Origindly, the
exception classes that you program in your own code were intended to be subclasses of

Appl i cati onExcept i on. Inversion 3.5 of the .NET framework, Microsoft recommends that your own
exceptions are programmed as subclasses of Except i on [exceptions-best-practices).

Y ou are encouraged to identify and throw exceptions which are speciaizations of Syst enExcept i on. By

(re)using existing exception types, it becomes possible for the system, or for third-party program
contributions, to catch the exceptions that you throw from your own code.

Exercise 9.2. Exceptionsin class Stack
In the lecture about inheritance we specialized the abstract class st ack.

Now introduce exception handling in your non-abstract specialization of st ack. | suggest that you refine
your own solution to the previous exercise. It is also possible to refine my solution.

More specifically, introduce one or more stack-related exception classes. The dide page "Raising and
throwing exceptionsin C#" tells you how to do it. Make sure to specialize the appropriate pre-existing
exception class!

Arrange that push on afull stack and that Pop/Top on an empty stack throw one of the new exceptions.
Also, in the abstract stack class, make sure that Toggl eTop throws an exception if the stack is empty, or if
the stack only contains a single element.

Finaly, in asample client program such as this one, handle the exceptions that are thrown. In this exercises
it is sufficient to report the errors on standard outpui.

317

Exercise 9.3. More exceptionsin class Sack

In continuation of the previous exercise, we now wish to introduce the following somewhat
unconventional handling of stack exceptions:

« If you push an element on afull stack throw half of the elements away, and carry out the pushing.

» If you pop/top an empty stack, push three dummy elements on the stack, and do the pop/top
operation after this.

With these ideas, most stack programs will be able to terminate normally (run to the end).

| suggest that you introduce yet another specialization of the stack class, which specializes Push, Pop, and
Top. The specialized stack operations should handle relevant stack-related exceptions, and del egate the real
work to its superclass. Thus, in the specialized stack class, each stack operation, such as Push, you should
embed base. push(el) inatry-catch control structure, which repairs the stack - as suggested above - in
the catch clause.

36.5. The class System.Exception in C#

Lecture 9 - slide 20

The class Except i on isthe common superclass of all exception classes, and therefore it holds all common
data and operations of exceptions. In this section we will examine the class Except i on in some details.

« Constructors
o Parameterless. Excepti on()
« With an explanation: Except i on(string)
« With an explanation and an inner exception: Except i on(stri ng, Excepti on)
» Properties
« Message: A description of the problem (string)
e StackTrace: Thecal chain from the point of throwing to the point of catching
* InnerException: The exception that caused the current exception
« Data: A dictionary of key/value pairs.
« For communication in between functions along the exception propagation chain.
e Others...

Except i on isaclass (and instances of class Except i on represents a concrete error). Therefore there exists
constructors of class Except i ons, which (as usua) are used for initialization of anewly alocated Excepti on
object. (See Section 12.4 for ageneral discussion of constructors).

318

The most useful constructor in class Except i on takes a string, which holds an intuitive explanation of the
problem. This string will appear on the screen, if athrown exception remains unhandled. The third
constructor, of theform Excepti on(stri ng, Excepti on), involves an inner exception. Inner exceptions will
be discussed in Section 36.11.

As outlined above, an exception has an interface of properties (see Chapter 18) that give access to the data,
which are encapsulated by the Except i on object. Y ou can access the message (originally provided as input
to the constructor), the stack trace, a possible inner exception, and datain terms of a key-value dictionary
(used to keep track of additional datathat needsto travel together with the exception). For general
information about dictionaries, see Chapter 46.

36.6. Handling more than one type of exception in C#

Lecture 9 - slide 21

We now continue the example from Section 36.3. In this section we will see how to handle multiple types of
exceptions in asingle try-catch statement.

The scene of Program 36.4 is similar to the scene in Program 36.3. In the catch clauses of the try-catch
control structure we handle Nul | Ref er enceExcept i on and Di vi deByZer oExcept i on. On purpose, we do not
yet handle | ndexQut OF RangeExcept i on. Just wait a moment...

using System

cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};

int idx = 6;
Mtable, idx);

}

public static void Mint[] table, int idx){
try{

Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

catch (Nul | Ref erenceExcepti on){
Consol e. WiteLine("A null reference exception");
t hr ow, /] rethrowi ng the exception

}
catch (DivideByZer oExcepti on){
Consol e. WiteLine("Divide by zero");
t hr ow, /] rethrowi ng the exception

}

Program 36.4 A C# program with an exception handling
attempt - not a success.

When we run the program in Program 36.4 the two handlers do not match the exception that occurs (the
I ndexQut O RangeExcept i on exception). Therefore the exception remains unhandled, and the program stops
with the output shown in Listing 36.5.

319

Notice that we do not provide names of the exceptions in the catch clausesin Program 36.4. We could do so.
But because the names are not used they would cause the compiler to issue warnings.

While we are here, let us dwell on the two catch clauses that actually appear in the try-catch statement in
Program 36.4. The null reference exception describes the problem of executingr. f in state wherer refersto
nul | . The divide by zero exception describes the problem of executing a/ b in state whereb iszero. The
catch clauses report the problems, but they do not handle them. Instead, both catch clauses rethrow the
exceptions. Thisisdone by t hr owin line 19 and 23. By rethrowing the exceptions, an outer exception
handler (surrounding the try catch) or exception handlers along the dynamic calling chain will have a chance
to make arepair. Reporting the exception is atypical temptation of the programmer. But the reporting itself
does not solve the problem! Therefore you should rethrow the exception in order to let another part of the
program have to chance to make an effective repair. Rethrowing of exceptionsis discussed in Section 36.10.

Unhandl ed Excepti on:
Syst em | ndexCut Of RangeExcept i on:
I ndex was outside the bounds of the array.
at ExceptionDenp. MInt32[] table, Int32 idx)
at ExceptionDenop. Mai n()

Listing 36.5 Output from the C# program with an unhandled
exception.

It was really too bad that we did not hit the | ndexQut Of RangeExcept i on exception in Program 36.4. In
Program 36.6 we will make a better job.

We extend the catch clauses with two new entries. We add the | ndexQut Of RangeExcept i on and we add the
root exception class Except i on. Notice that the more general exception classes should always occur at the
rear end of thelist of catch clauses. Thereason is that the catch clauses are consulted in the order they appear.
(If the Except i on catcher was the first one, none of the other would ever have a chance to take effect).

In the concrete example, the | ndexQut Of RangeExcept i on clauseisthefirst that matches the thrown
exception. (Notice that newly added Except i on clause also matches, but we never get that far). Therefore we
get the output shown in Listing 36.7.

usi ng System

cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};

int idx = 6;
Mtable, idx);

}

public static void Mint[] table, int idx){
try{

Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

catch (Nul | Ref erenceExcepti on){
Consol e. WiteLine("A null reference exception");
t hr ow; /1 rethrowi ng the exception

}
catch (DivideByZer oExcepti on){

Consol e. WiteLine("Divide by zero");
t hr ow; /1 rethrowi ng the exception

320

}
catch (I ndexCQut Of RangeExcepti on) {
int newl dx = Adjustlndex(idx,0,5);
Consol e. WiteLine("We get el ement nunber {0}: {1}",
newl dx, tabl e[new dx]);

catch (Exception){
Consol e. WiteLi ne("We cannot deal with the problent);
t hr ow, /1 rethrowi ng the exception

}

Program 36.6 A C# program with an exception handling
attempt - now successful.

We get el ement nunber 5: 15

Listing 36.7 Output from the C# program with a handled
exception.

Handle specialized exceptions before genera exceptions

36.7. Propagation of exceptionsin C#

Lecture 9 - slide 22

In the examples shown until now (see Program 36.3, Program 36.4, and Program 36.6) we have handled
exceptions close to the place where they are thrown. Thisis not necessary. We can propagate an exception
obj ect to another part of the program, along the chain of the incomplete method activations.

In Program 36.8 there is atry-catch statement in Mand (as anew thing) also in Mai n. Thelocal catchersin m
do not handle the actual exception (which till is of type index out of range). The handlersin mai n do! When
the error occursin M the local exception handlers all have a chance of handling it. They do not! Therefore the
exception is propagated to the caller, which is mai n. Due to the propagation of the exception, line 34 of Mis
never executed. The catchers around the activation of Min Mai n have arelevant clause that deals with

I ndexQut O RangeExcept i on. It handles the problem by use of the static method Adj ust | ndex. After having
executed the catch clause in Mai n, the command after t ry- cat ch in Mai n is executed (line 17). The output of
Program 36.8 is shown in Listing 36.9.

usi ng System
cl ass Excepti onDenp{
public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};

int idx = 6;

try{
Mtable, idx);

catch (I ndexQut Of RangeExcepti on){
int newl dx = Adjust!ndex(idx,0,5);
Consol e. WiteLi ne("We get el enent nunber {0}: {1}",
newl dx, tabl e[new dx]);
}

Consol e. Wi teLine("End of Min");

321

}

public static void Mint[] table, int idx){

try{
Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

catch (Nul | Ref erenceException){
Consol e. WiteLine("A null reference exception");
t hr ow; /1 rethrowi ng the exception

}

catch (Divi deByZer oExcepti on) {
Consol e. WiteLine("Dividing by zero");
t hr ow; /1 rethrowi ng the exception

}
Consol e. WiteLine("End of M);

Program 36.8 A C# program with simple propagation of
exception handling.

We get el ement number 5: 15
End of Main

Listing 36.9 Output from the C# program simple
propagation.

In order to illustrate alonger error propagation chain, we now in Program 36.10 introduce the calling chain

Main —>M—N—P
using System
cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};

int idx = 6;
Consol e. Wi teLine("Min");
try{

Mtable, idx);

}
catch (I ndexCQut Of RangeExcepti on) {
Mt abl e, Adjustlndex(idx,O0,5));
}
}

public static void Mint[] table, int idx){
Consol e. WiteLine("Mtable, {0})", idx);
N(t abl e, i dx);

}

public static void N(int[] table, int idx){
Consol e. WiteLine("N(table, {0})", idx);
P(tabl e,idx);

}

public static void P(int[] table, int idx){
Consol e. WiteLine("P(table, {0})", idx);
Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

322

Program 36.10 A C# program with deeper exception
propagation chain.

Theerror occursin P, and it ishandled in Mai n. Here iswhat happens when the expression M t abl e, i dx)
inline 11 is executed:

The method mcalls method N, Ncalls P, and in P an exception is thrown.

2. Theerror ispropagated back from P to Mai n viaN and M, because there are no (relevant) handlersin
P,NoOr M.

3. Theexceptionishandledin vai n, and as part of the handling mis called again: M t abl e,
Adj ust | ndex(i dx, 0,5)) .

4, Asabove McalsN,NcalspP,and P calswi teLi ne . Now no errors occur.

Duetothetracing calls of wi t eLi ne in Mai n, M N, and P the output shown in Listing 36.11, in part,
confirms the story told about. To obtain the full confirmation, consult Exercise 9.4.

Mai n

Mt abl e, 6)

N(t abl e, 6)

P(t abl e, 6)

Mt abl e, 5)

N(t abl e, 5)

P(t abl e, 5)

Accessing element 5: 15

Listing 36.11 Output from the C# program deeper exception
propagation.

Notice the yo-yo effect caused by the error deep in the calling chain.

Exer cise 9.4. Revealing the propagation of exceptions

We have written a program that revea s how exceptions are propagated. In the program output, we see that
the calling chainis Mai n, M N, P.

The program output does not, however, reveal that the chainisfollowed in reverse order in an attempt to
find an appropriate exception handler.

Revise the program with handlersin M N, and P that touch the exception without actually handling it. The
handlers should reveal, on standard output, that P, N, and Mare passed in an attempt to locate a relevant
exception handler. Rethrow the exception in each case.

323

36.8. Raising and throwing exceptionsin C#

Lecture 9 - slide 23

The I ndexQut O RangeExcept i on, which we have worked with in the previous sections, was raised by the
system, as part of anillegal array indexing. We will now show how to explicitly raise an exception in our
own program. We will also see how to define our own subclass of class Appl i cati onExcepti on.

The syntax of throw appearsin in Syntax 36.2 and a simple example is shown next in Program 36.12. Notice

the athletic metaphor behind throwing and catching.

t hr ow excepti on-obj ect

Syntax 36.2 The syntax of exception throwing in C#
ih.row new MyException("Description of probleni);

Program 36.12 A throw statement in C#.

It issimple to define the class MyExcept i on as subclass of Appl i cati onExcepti on, whichinturnisa
subclass of Except i on, see Section 36.4. Notice the convention that our own exception classes are subclasses
of Appl i cationExcepti on.

cl ass MyException: ApplicationException{
public MyException(String problenj:
base(probl em {

Program 36.13 Definition of the exception class.

It is recommended to adhere to a coding style where the suffixes (endings) of exception class names are
". .. Exception".

36.9. Try-catch with afinally clause

Lecture 9 - slide 24

A try-catch control structure can be ended with an optional finally clause. Thus, we redly dea with atry-
catch-finally control structure. In this section we will study the finally clause.

The syntax of try-catch-finally, shownin Syntax 36.3, is anatura extension of the try-catch control structure

illustrated in Syntax 36.1. try- bl ock, cat ch- bl ock, and fi nal | y- bl ock are all block statements. As
explained in Section 36.2 is meansthat braces{. . .} are mandatory after try, catch, and finally.

324

try
try- bl ock

catch (exception-type nane)
cat ch- bl ock

Hhally
finally-bl ock

Syntax 36.3 The syntax of the try-catch-finally statement C#

At least one catch or finally clause must appear in atry statement. The finally clause will be executed in all
cases, both in case of errors, in case of error-free execution of try part, and in cases where the control is
passed out of try by means of ajumping command. We will now, in Program 36.14 study an example of a
try-catch-finally statement.

Mai n of Program 36.14 arranges that Mis called (in line 30) for each value in the enumeration type Cont r ol
(line 6). Inside the static method Mwe illustrate a number of possible ways out of M

If reason iSReturni ng, Mcalsreturn .
If reason isJunpi ng , Mcalls goto which brings the control outside try-catch-finally.

3. IfreasoniscContinue, continueforcesthe for loop to the next iteration, which is non-existing. The
call of continue leaves the try-catch-finally abruptly.

If reason iSBreaki ng , break breaks out of the for loop, and try-catch-finally isleft abruptly.
If reason iSThrow ng , an Except i on isthrown. The exception is "handled" locally.

If reason is5, the expression (Control)i doesnot hit avaluein the Cont rol enumeration type.
This causes execution and termination of the try clause, in particular the execution of Wi t eLi ne in
line17.

usi ng System
cl ass Fi nal | yDeno{

internal enum Control {Returning, Junping, Continuing, Breaking,
Thr owi ng, Nor mal }

public static void M Control reason)({

for(int i =1; i <=1; i++) [/ a single iteration
try{

Consol e. WiteLine("\nEnter try: {0}", reason);
if (reason == Control.Returning) return;
else if (reason == Control.Junping) goto finish;
else if (reason == Control. Continuing) continue;
else if (reason == Control.Breaking) break;
else if (reason == Control.Throw ng) throw new Exception();

Consol e. WiteLine("Inside try");

}
cat ch(Exception){
Consol e. WiteLine("lnside catch");

}
finally{

Consol e. WiteLine("lInside finally");
}

finish: return;

325

}

public static void Min(){
for(int i =0; i <=5; i++)
M (Control)i);

Program 36.14 Illustration of try-catch-finally.

The outcome of the example in Program 36.14 can be seen in the program output in Listing 36.15. So please
take a careful ook at it.

Enter try: Returning
Inside finally

Enter try: Junping
Inside finally

Enter try: Continuing
Inside finally

Enter try: Breaking
Inside finally

Enter try: Throw ng
I nsi de catch
Inside finally

Enter try: Nornal
Inside try
Inside finally

Listing 36.15 Output from the try-catch-finally program.

Asit appears, the finally clauseis executed in each of the six cases enumerated above. Thus, it is not possible
to bypass afinally clause of atry-catch-finally control structure. The finally clause is executed independent
of the way we execute and leave the try clause.

Y ou should place codein finally clauses of try-catch-finaly or try-finally which should be executed in all
cases, both in case or "normal execution”, in case of errors, and in case of exit-attempts viajumping
commands.

36.10. Rethrowing an exception

Lecture 9 - slide 25

We will now study the idea of rethrowing an exception. We have already encountered and discussed
exception rethrowing in Section 36.6 (see Program 36.4).

« Rethrowing
» Preserving information about the original exception, and the cal chain
« Usually recommended

326

In Program 36.16 we illustrate rethrowing by means of the standard example of this chapter. The situation is
asfollows:

Mai n callsMm, McalsN, NcallspP.
In P an | ndexQut OF RangeExcept i on exception isthrown as usual.

On itsway back the calling chain, the exception is caught in N. But N regrets, and rethrows the
exception.

4. The exception is passed unhandled through Mmand Mai n .
usi ng System
cl ass Excepti onDenp{

public static void Min(){
Consol e. Wi teLine("Min");
int[] table = new int[6]{10, 11, 12, 13, 14, 15};
int idx = 6;
Mtable, idx);
}

public static void Mint[] table, int idx){
Consol e. WiteLine("Mtable, {0})", idx);
N(t abl e, i dx);

}

public static void N(int[] table, int idx){
Consol e. WiteLine("N(table, {0})", idx);

try{
P(table,idx);

}

catch (I ndexQut Of RangeException e){
/1 WII not/cannot handl e exception here.
/1 Rethrow original exception.
t hr ow;

}
}

public static void P(int[] table, int idx){
Consol e. WiteLine("P(table, {0})", idx);
Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

Program 36.16 Rethrowing an exception.

The output of Program 36.16 is shown in Listing 36.17. From the stack trace in Listing 36.17 it does not
appear that the static method N actually has touched (and "smelled to") the exception. Thisisamain point of
this example.

327

Mai n

Mt abl e, 6)
N(t abl e, 6)
P(tabl e, 6)

Unhandl ed Excepti on:
Syst em | ndexQut Of RangeExcepti on:
I ndex was outside the bounds of the array.
at ExceptionDeno. P(Int32[] table, Int32 idx)
at ExceptionDeno. N(Int32[] table, Int32 idx)
at ExceptionDeno. M Int32[] table, Int32 idx)
at ExceptionDenop. Mai n()

Listing 36.17 Output from the program that rethrows an
exception.

Touching, but not handling the exception

An outer handler will see the original exception

36.11. Raising an exception in an exception handler

Lecture 9 - slide 26

We will now study an alternative to rethrowing, as discussed and illustrated in Program 36.16.

« Raising and throwing a new exception
« Usethisapproach if you, of some reason, want to hide the original exception
» Security, simplicity, ...
« Consider propagation of the inner exception

In Program 36.18 we show a program similar to the program discussed in the previous section. Instead of
rethrowing the exception in N, we throw a new instance of | ndexQut Of RangeExcept i on. AScan be seenin
Listing 36.19 this affects the stack trace. From the outside, we can no longer see that the problem occurred in
P.

usi ng System
cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};
int idx = 6;
Mtable, idx);

}

public static void Mint[] table, int idx){
Consol e. WiteLine("Mtable, {0})", idx);
N(tabl e, i dx);

}

public static void N(int[] table, int idx){
Consol e. WiteLine("N(table, {0})", idx);

328

try{
P(tabl e,idx);

}
catch (I ndexCQut Of RangeException e){
/1 WIIl not/can no handl e here. Raise new exception.
t hr ow new | ndexQut Of RangeExcepti on(" I ndex out of range");
}
}

public static void P(int[] table, int idx){
Consol e. WiteLine("P(table, {0})", idx);
Consol e. Wi teLine("Accessing element {0}: {1}",
idx, table[idx]);

Program 36.18 Raising and throwing a new exception.

Mt abl e, 6)
N(t abl e, 6)
P(tabl e, 6)

Unhandl ed Exception: System | ndexQut Of RangeExcepti on:
I ndex out of range
at ExceptionDeno. N(Int32[] table, Int32 idx)
at ExceptionDenp. MInt32[] table, Int32 idx)
at ExceptionDeno. Mai n()

Listing 36.19 Output from the program that raises a new
exception.

Asafinal option, we may wish to reflect, in relation to the client, that the problem actually occurred in p.
This can be done by passing an inner exception to the new exception, as constructed in line 24 of Program
36.20. Notice the effect this has on the stack tracein Listing 36.21.

using System
cl ass Excepti onDenp{

public static void Min(){
int[] table = new int[6]{10, 11, 12, 13, 14, 15};
int idx = 6;
Mtable, idx);

}

public static void Mint[] table, int idx){
Consol e. WiteLine("Mtable, {0})", idx);
N(t abl e, i dx);

}

public static void N(int[] table, int idx){
Consol e. WiteLine("N(table, {0})", idx);

try{
P(tabl e,idx);

}
catch (1 ndexQut Of RangeException e){
/[l WII not/cannot handl e exception here.
/| Rai se new exception wi th propagation of inner exception.
t hrow new | ndexQut Of RangeException("Index out of range", e);

}
}

public static void P(int[] table, int idx){
Consol e. WiteLine("P(table, {0})", idx);

329

Consol e. Wi teLi ne("Accessing element {0}: {1}",

Mt abl e, 6)
N(t abl e, 6)
P(t abl e, 6)

Unhandl ed Excepti on:

I ndex out of range
I ndex was outside

at Excepti onDeno.
at Excepti onDeno.

--- End of inner

at Excepti onDeno.
at ExceptionDeno.
at Excepti onDeno.

i dx, table[idx]);

Program 36.20 Raising and throwing a new exception,
propagating original inner exception.

Syst em | ndexQut Of RangeExcept i on:
---> System | ndexQut Of RangeExcepti on:
t he bounds of the array.

P(Int32[] table, Int32 idx)
N(Int32[] table, Int32 idx)
exception stack trace ---
N(Int32[] table, Int32 idx)
M I nt32[] table, Int32 idx)
Mai n()

Listing 36.21 Output fromthe program that raises a new
exception, with inner exception.

330

36.12. Recommendations about exception handling

Lecture 9 - slide 29

We are now almost done with exception handling. We will now formulate a few recommendations that are
related to exception handling.

e Control flow
» Do not use throw and try-catch asiterative or conditional control structures
e Normal control flow should be done with normal control structures
- Efficiency
» Itistime consuming to throw an exception
» Itismore efficient to dea with the problem as a normal program aspect - if possible
« Naming
« Suffix names of exception classes with "Except i on"
» Exception class hierarchy
« Your own exception classes should be subclasses of Appl i cati onExcepti on
» Or dlternatively (as of amore recent recommendation) of Except i on.

» Exception classes
« Prefer predefined exception classes instead of programming your own exception classes
« Consider specialization of existing and specific exception classes
» Catching
« Do not catch exceptions for which there is no cure
« Leave such exceptionsto earlier (outer) parts of the call-chain
» Burying
« Avoid empty handler exceptions - exception burrying
 If you touch an exception without handling it, always rethrow it

36.13. References

[Exceptions-best- Best practices for handling exceptions (MSDN)
practices) http://msdn.microsoft.com/en-us/library/seyhszts.aspx

331

332

37. Streams

We are now about to start the first chapter inl¢icture about Input and Output (10). Traditionall®, deals
with transfer of data to/from secondary storagestmotably disks. 10 also covers the transmissiatata
to/from networks.

In this and the following chapters we will studg ttlasses that are related to input and outpus. ifbludes
file and directory classes. At the abstract lethed stream class is the most important class in the 10
landscape. Therefore we choose to start the |@ stith an exploration of streams, and an undersitanof
thestream class in C#. This includes sevesakam subclasses and several client classesr@fm . The
clients we have in mind are the so-called readdeaiiter classes.

37.1. The Stream Concept

Lecture 10 - slide 2
A stream is an abstract concept. A streamadsranectiorbetween a program and a storage/network.

Essentially, we can read data from the streamarmgram, or we can write data from a prograniméo t
stream. This understanding of a stream is illusttat Figure 37.1.

A stream

| Program j— | Destination |
— A stream reads e A

Figure 37.1 Reading from and writing to a stream

A streamis a flow of data from a program to a backingetar from a backing store to a
program

The program can eith&rite to a stream, aradfrom a stream.

Stream and stream processing includes the follawing

« Reading from or writing to files in secondary megn(utisk)
» Reading from or writing to primary memory (RAM)

« Connection to the Internet

« Socket connection between two programs

The second item (reading and writing to/from priyn@emory) seems to be special compared to thesther
Sometimes it may be attractive to have files imaiiy memory, and therefore it is natural that weusth be
able to use stream operation to access such fileel In other situations, we wish to use intédwa
structures as sources or destinations of streanss for instance, typical that we wish to read anite data
from/to strings. We will see how this can be dan&eéction 37.14.

333

37.2. The abstract class Stream in C#

Lecture 10 - slide 3

Thestream class in C# is an abstract class (see Sectiof).30bklongs to theystem.l0 namespace,
together with a lot other 10 related types. Theralasstream class provides a generic view on different
kinds of sources and destinations, and it isoldtesat classes from the operating system detaitaese.

Thestream class supports both synchronous and asynchro@apédrations. Client classes that invoke a
synchronous operation wait until the operationospleted before they can initiate other operatmms
actions. Use of a synchronous operation is nobblem if the operation is fast. Many 10 operations
secondary storage are, however, very slow seetiveeta the speed of the operations on primaryasfer
Therefore it may in some circumstances be attradtivinitiate an 10 operation, do something elsé, a
consult the result of the 10 operation at a laténpin time. In order to provide for this, tlsg@eam class
supports the asynchronous 10 operatiBagnRead andBeginwrite . In the current version of the material
we do not cover the asynchronous operations.

Let us now look at the most important operationsto@ams. Thet al i ¢ nanes refer to abstract methods.
The abstract methods will be implemented in nortrabssubclasses afream .

e int Read (byte[] buf, int pos, int len)

* int ReadByte()

e void Wite (byte[] buf, int pos, int len)
* void WriteByte(byte b)

* bool CanRead

* bool CanWite

* bool CanSeek

e long Length

e void Seek (long offset, SeekOrigin org)
e void Flush)

* void Close()

In order to us®&ead you should allocate a byte array and pass (aeneferto) this array as the first parameter
of Read. The callrRead(buf, p, Igt) readsat mostgt bytes, and stores themuuaflp] ... buf[p+igt-1]
Read returns the actual number of characters read,hndaa be less thag .

write works in a similar way. We assume that a numbdiytds are stored in an existing byte array called
buf . The callwrite(buf, p, Igt) writesigt bytespuf[p] ... buf[p+igt-1] , to the stream.

As you can see, onljeadByte andwriteByte are non-abstract methodkzadByte returns the integer value
of the byte being read, or -1 in case that thedaride stream has bee encountered. The two opesatio
ReadByte andwriteByte rely onRead andwrite . Internally,ReadByte callsRead on a one-byte array, it
accesses this byte, and it returns this bytgeByte works in a similar way. Based on these informatjon
is not surprising that it is recommended to redefiendByte andwriteByte in specializedstream classes.
The default implementations BkadByte andwriteByte are simply too inefficient. The redefinitions shibu
be able to profit from internal buffering.

The explanations afead in relation torReadByte (andwrite in relation towriteByte) may seem a little

surprising. Why not haveeadByte as an abstract method, amehd as a non-abstract method, which once
and for all is implemented in classeam by multiple calls oReadByte ? Such a design seems to be ideal:

334

The task of implementingeadByte in subclasses is easy, and no subclass shoulchegdrto implement
Read. The reason behind the actual design of the athstiraam class is - of courseefficiency The basic
read and write primitives of streams should provatesfficient reading and writing. It is typically
inefficient to read a single byte from a file. Oamy types of hardware (such as harddisks) we alveas
many bytes at a time. The design of the read aitd aperations of stream take advantage of this
observation.

It is not possible to read, write, and seek irsakkams. Therefore it is possible to query a strieaunts actual
capabilities. The boolean operations (properti@sRead, CanWrite , CanSeek are used for such querying.

The static fielodNull represents a stream without a backing store.

Null is a public static field of typstream in the abstract classream . If you, for some reason, wish to
discard the data that you write, you can writ@ Btteam.Null . You can also read frogtream.Null ; This
will always give zero as result, however.

37.3. Subclasses of class Stream

Lecture 10 - slide 5

The abstract clasgream is the superclass of a number of non-abstractetaBelow we list the most
important of these. Like the clasgeam , many of the subclassessifeam belong to thesystem.l0
namespace.

e System.lO.FileStream

« Provides a stream backed by a file from the opsyatystem
e System.lO.BufferedStream

- Encapsulates buffering around another stream
s System.lO.MemoryStream

« Provides a stream backed by RAM memory
* System.Net.Sockets.NetworkStream

« Encapsulates a socket connection as a stream
e System.lO.Compression.GZipStream

» Provides stream access to compressed data
e System.Security.Cryptography.CryptoStream

e Write encrypts an®ead decrypts
« And others...

We show example uses of claisstream in Section 37.4 and Section 37.6. Please notmseher, that
file 10 is typically handled through one of the deaand writer classes, which behind the scenaydtde the
work to astream class. We have a lot more to say about the resdkwriter classes later in this material.
Section 37.9 will supply you with an overview oétheader and writer classes in C#.

The clas®ufferedStream is intended to be used as a so-called decora@mmaiher stream class. In Section
40.1 we discuss theecorator design pattern. The concrete exampl®edorator, which we will discuss in
Section 40.2, involves compressed streams. Ndiatgttis not relevant to use buffering BirRStream
because it natively makes use of buffering.

335

37.4. Example: Filestreams

Lecture 10 - slide 6

Filestream 10, as illustrated by the examples in this sectisised fobinary input and outputit means
that theFilestream operations transfer raw chuncks of bits betweerptiogram and the file. The bits are
not interpreted. As a contrast, the reader ancgnelasses introduced in Section 37.9 interpret and
transforms the raw binary data to values in C#gype

Let us show a couple of very simple programs th#ewo and read from filestreams. Figure 37.1 ewrit
bytes corresponding to the three characters '‘Qard 'P' to the filewFile.oin . Notice that we do not
write characters, but numbers that belong to tple typepbyte . The file opening is done via construction
of theFileStream object inCreate mode.Create is a value in the enumeration tyeMode in the
namespacseystem.lO . File closing is done by theiese method.

using System.IO;

class ReadProg {
static void Main() {

Stream s= new FileStream("myFile.bin", FileMode.Create)
s.WriteByte(79) ; //O 01001111
s.WriteByte(79) ; /O 01001111
s.WriteByte(80) ; /P 01010000
s.Close()
}
}

Program 37.1 A program that writes bytes corresponding to
'O' 'P' to a file stream.

After having executed the program in Figure 37€lftle myFile.bin exists. Program 37.2 reads it. We
create &ileStream Object inOpen mode, and we read the individual bytes with uséheReadByte method.
In line 11 and 12 we illustrate what happens ifre@d beyond the end of the file. We see HeatiByte in
that case returns -1. The number -1 is not a valtggebyte , which supports the range 0..255. Therefore
the type of the value returned RyadByte isint .

using System;
using System.IO;

class WriteProg {
static void Main() {
Stream s= new FileStream("myFile.bin", FileMode.Open)
inti, j, k, m, n;
= s.ReadByte() ; //O 79 01001111
j= s.ReadByte() ; //O 79 01001111
k= s.ReadByte() ; //P 80 01010000

m = s.ReadByte() ; /-1 EOF
n = s.ReadByte() ; I1-1 EOF
Console.WriteLine("{0} {1} {2} {3} {4}", i, |, k, m, n);
s.Close() ;
}

}

Program 37.2 A program that reads the written fil

336

37.5. The using control structure

Lecture 10 - slide 7

The simple file reading and writing examples inti®er37.4 show that file opening (in terms of cregtthe
FileStream object) and file closing (in terms of sendinglese message to the stream) appear in pairs.
This inspires a new control structure which enstimasthe file always is closed when we are dorth i
The syntax of theising construct is explained below.

using (type variable= initializer)
body

Syntax 37.1 The syntax of the using statement
The meaning (semantics) of the using construdtaddllowing:

» Inthe scope afising , bindvari abl e to the value of ni ti al i zer
« Thetype must implement the interfat®isposable
« Executebody with the established name binding
» At the end obody dovariableDispose
« ThebDispose methods in the subclassessotam call Close

We encountered the interfamgsposable when we studied the interfaces in the C# librages Section
31.4. The interfac®isposable prescribes a single methauispose , which in general is supposed to
release resources. The abstract ckagam implementsbDisposable , and thebispose method of class
Stream calls the Strearalose method.

Program 37.3 is a reimplementation of Program 87aflillustrates thesing construct. Notice that we do
not explicitly callclose in Program 37.3.

using System.IO;

class ReadProg {
static void Main() {
using (Stream s = new FileStream("myFile.txt", FileMode.C reate)){
s.WriteByte(79); // O 01001111
s.WriteByte(79); // O 01001111
s.WriteByte(80); // P 01010000
}
}
}

Program 37.3 The simple write-program programmed
with 'using'.

The following fragment shows what is actually cageby ausing construct. Most important,tay-finally
construct is involved, see Section 36.9. The useyefinally implies thabispose Wwill be called
independent of the way we leanaly . Even if we attempt to exiody with a jump or via an exception,
Dispose Will be called.

337

1 /I The using statement ...

2

3 using (type variable = initializer)

4 body

5

6 //...is equivalent to the following try-finally s
he

8 {type variable = initializer;

9 try {

10 body

1)}

12 finally {

i3 if (variable != null)

14 ((IDisposable)variable).Dispose();
15 }

16 }

tatement

Program 37.4 The control structure 'using' defined by 'try-

finally'.

37.6. More FileStream Examples

Lecture 10 - slide 8

We will show yet another simple exampleraéstream
another.

s, namely a static method that copies one file to

1 using System;

2 using System.lO;

8

4 public class CopyApp {

5

6 public static void Main(string[] args) {

7 FileCopy(args|[0], args[1]);

8

9

10 public static void FileCopy(string fromFile, stri ng toFile){
11 try{

12 using(FileStream fromStream =

13 new FileStream(fromFile, FileMode.Open))
14 using(FileStream toStream =

15 new FileStream(toFile, FileMode.Create))
16 int c;

17

18 do{

19 c= fromStream.ReadByte();

20 if(c I=-1) toStream.WriteByte((byte)c);

21 } while (c !=-1);

22 }

23}

24 1}

25 catch(FileNotFoundException e){

26 Console.WriteLine("File {0} not found: ", e.F ileName);

27 throw;
28 }

338

catch(Exception){
Console.WriteLine("Other file copy exception");
throw;

}
}

}

Program 37.5 A FileCopy method in a source file copy-file.c
uses two FileStreams.

Exercise 10.1. A variant of the file copy program

The purpose of this exercise is to train the us@@Read method in classtream , and subclasses of class
Stream .

Write a variant of the file copy program. Your pragn should copy the entire file into a byte array.
Instead of the metharkadByte you should use thRead method, which reads a number of bytes into a
byte array. (Please take careful look at the doctiati®n ofRead in classFileStream before you
proceed). After this, write out the byte array tanslard output such that you can make sure thdi¢hs
correctly read.

Are you able to read the entire file with a singgdl toRead? Or do you prefer to read chunks of a certain
(maximum) size?

37.7. The class Encoding

Lecture 10 - slide 10
Before we study the reader and writer classes Welaiify one important topic, namebncodings

The problem is that a byte (as represented bywe\atltypevyte) and a character (as represented as value
of typechar) are two different things. In the old days theyevbasically the same, or it was at least
straightforward to convert one to the other. Inddgs there were at most 256 different charactexitadnle

at a given point in time (corresponding to a stifirward encoding of a single character in a sirigite).
Today, the datatypehar should be able to represent a wide variety oediffit characters that belong to
different alphabets in different cultures. We siitled to represent a character by means of a nwhbgtes,
because a byte is a fundamental unit in most soft@ad in most digital hardware.

As a naive approach, we could go for the followsotution:

We want to be able to represent a maximum of, 28§000 different characters. For this
purpose we need lg@00000) bits, which is 18 bits. If we operate iitsiif 8 bits (= one
byte) we see that we need at least 3 bytes peacieas. Most likely, we will go for 4 bytes
per character, because it fits much better withatbel length of most computers. Thus, the
byte size of a text will now be four times the sifean ASCII text. This is not acceptable
because it would bloat the representation of tited Hn secondary disk storage.

As of 2007, the Unicode standard defines more 100900 different characters. Unicode organizes
characters in a number planesof up to 2° (= 65536) characters. The Basic Multilingual Plam@MP -
contains the most common characters.

339

Encodings are invented to solve the problem thathawe outlined above. An encoding is a mapping
between values of type charactecae poinnumber between 0 and 200000 in our case) to aseqLof
bytes. The naive approach outlined above represesitaple encoding, in which we need 4 bytes ewen f
the original ASCII characters. It is attractivewsyer, if characters in the original, 7-bit ASClplaabet can
be encoded in a single byte. The price of that weay well be that some rarely used charactersnedid
considerable more bytes for their encoding.

Let us remind ourselves that in C#, the type is represented as 16 bit entities (Unicode cherscand

that astring is a sequence of values of typar . We have already touched on this in Section 6tThé&

time Unicode was designed, it was hypothesizedltBddits was enough to to represent all charactete
world. As mentione above, this turned out not tdrbe. Therefore the typar in C# is not big enough to
hold all Unicode characters. The remedy is to uskipte char values for representation of a single Unicode
character. We see that history repeats itself...

An encoding is a mapping between characters/stengsoyte arrays

An object of classystem.Text.Encoding represents knowledge about a particular character
encoding

Let us now review the operations in cl&asoding: , which is located in the namespagystem.Text

» byte[] GetBytes(string) Instance method
« byte[] GetBytes(char[]) Instance method
« Encodes string/char array to a byte array relative ®dhbrrent encoding
« char[] GetChars(byte[]) Instance method
- Decodesa byte array to a char array relative to the eureacoding
« byte[] Convert(Encoding, Encoding, byte[]) Static method
« Convertsa byte array from one encoding (first parametegrtother encoding (second
parameter)

The methodsetBytes implements the encoding in the direction of chimecto byte sequences. In concrete
terms, the methodetBytes transforms a&tring or an array othars to abyte array.

The inverse methodsetChars converts an array of bytes to the correspondireyasf characters. On a
given stringstr and for a given encodirige.GetChars(e.GetBytes(str)) corresponds tetr .

For given encodingst ande2, and for some given byte arrey supposed to be encodeckin
Convert(el,e2,ba) iS equivalent t@2.GetBytes(el.GetChars(ba))

37.8. Sample use of class Encoding

Lecture 10 - slide 11
Now that we understand the idea behind encodiegsisl play a little with them. In Program 37.6 wake a

number different encodings, and we convert a gateang to some of these encodings. We explain the
details after the program.

340

using System;
using System.Text;

/* Adapted from an example provided by Microsoft */
class ConvertExampleClass{
public static void Main(){
string unicodeStr = lI"Azeudegiaead"
"A \UOOEG6 u \uOOE5 \uOOEG6 \uOOF8 i \uOOEG6 \ uOOES5";

/I Different encodings.
Encoding ascii = Encoding.ASCIl
unicode = Encoding.Unicode
utf8 = Encoding.UTF8 ,
isoLatinl = Encoding.GetEncoding("iso-8859-1")

/I Encodes the characters in a string to a byte arr ay:
byte[] unicodeBytes = unicode. GetBytes (unicodesStr),
asciiBytes = ascii. GetBytes (unicodeStr),
utf8Bytes = utf8. GetBytes (unicodesStr),
isoLatin1Bytes = utf8. GetBytes (unicodeStr);

/I Convert from byte array in unicode to byte array in utf8:
byte[] utf8BytesFromUnicode =
Encoding. Convert(unicode, utf8, unicodeBytes)

/I Convert from byte array in utf8 to byte array in ascii:
byte[] asciiBytesFromUtf8 =
Encoding. Convert(utf8, ascii, utf8Bytes)

/I Decodes the bytes in byte arrays to a char array :
char[] utf8Chars = utf8. GetChars (utf8BytesFromUnicode);
char[] asciiChars = ascii. GetChars (asciiBytesFromUtf8);

/I Convert char[] to string:
string utf8String = new string(utf8Chars),
asciiString = new String(asciiChars);

/I Display the strings created before and after the conversion.
Console.WriteLine("Original string: {0}", unico deSstr);
Console.WriteLine("String via UTF-8: {0}", utf8 String);
Console.WriteLine("Original string: {0}", unico deStr);
Console.WriteLine("ASCII converted string: {0}" , asciistring);

}
}

Program 37.6 Sample encodings, conversions, and decodir
of a string of Danish characters.

In line 7 we declare a sample stringicodeStr , which we initialize to a string with plenty of ti@nal
Danish characters. We notate the string with esnatsionwu dddd whered is a hexadecimal digit. We
could, as well, have used the string constantercdmment at the end of line 7.

In line 11-14 we make a number of instances ofsgasoding . Some commoBncoding 0bjects can be
accessed conveniently via static properties ob@asding . The UTF-8 encoding can in that way be
accessed witBncoding.UTF8 . The static methodetEncoding accesses an encoding via the name of the
encoding. (In order to get access to all suppaetenbdings, the static methadtEncodings (plural) is
useful). The ISO Latin 1 encoding is accessed s@awith use ofsetEncoding in line 14.

In line 17-20 we convert the stringicodeStr tobyte arrays in different encodings. For this purpose we
use the instance methadtBytes .

341

Next, in line 22-28, we show how to use the statithodconvert to convert ayte array in one encoding
to abyte array in another encoding.

In line 30-32 it is shown how to convert byte ag@y a particular encoding to a char array. ltdeelby the
instance methodetChars . We most probably wish to obtain a string instebdchar array. For that
purpose we just use an approprigiiéng constructor, as shown in line 34-36.

In line 38-43 we display the valueswistring andasciiString , and for comparison we also print the
originalunicodeStr . The printed result is shown in Listing 37.7 sltnot surprising that the national Danish
characters cannot be represented in the ASCII ctaarset. The Danish characters are (ambiguously)
translated to '?".

Original string: Azeud e giea
String via UTF-8: Aseudaegia®a
Original string: Azeud e giea
ASCII converted string: A?2u???i??

Listing 37.7 Output from the Encoding progral

Exercise 10.2. Finding the encoding of a given text file

Make a UTF-8 text file with some words in Daniske 8ire to use plenty of special Danish characters.
You may consider to write a simple C# program &ate the file. You may also create the text file in
another way.

In this exercise you should avoid writing a bytdermark (BOM) in your UTF-8 text file. (A BOM irnée
UTF-8 text file may short circuit the decoding we asking for later in the exercise). One way toiGv
the BOM is to denote the UTF-8 encoding witiw UTF8Encoding() , Or equivalentlynew
UTF8Encoding(false) . You may want to consult the constructors in cl#ssEncoding for more
information.

Now write a C# program which systematically - itbap - reads the text file six times with the feliog
objects of type&ncoding: 1ISO-8859-1, UTF-7, UTF-8, UTF-16 (Unicode), UTF32d 7 bits ASCII.

More concretely, | suggest you make a list of sigaaling objects. For each encoding, op@axéReader
and read the entire file (witkeadToEnd, for instance) with the current encoding. Echodharacters,
which you read, to standard output.

You should be able to recognize the correct, matgcbhihcoding (UTF-8) when you see it.

37.9. Readers and Writers in C#

Lecture 10 - slide 9

In the rest of this chapter we will explore a famof so-called reader and writer classes. In mosttal
cases one or more of these classes are used purposes instead ofsweam subclass, see Section 37.2.

Table 37.1 provides an overview of the reader anigtmclasses. In the horizontal dimension we hapeit
(readers) and output (writers). In the vertical @irsion we distinguish between binary (bits strieduas
bytes) and text (char/string) 10.

342

Input Output

Text Reader Text Witer
Text StreamReader StreamWriter
StringReader StringWriter
Binary BinaryReader BinaryWriter

Table 37.1 An overview of Reader and Writer classes

The classtream and its subclasses are oriented towards inpubatpit of bytes. In contrast, the reader
and writer classes are able to deal with input@rtgut of characters (values of type char) andesbf
other simple types. Thus, the reader and writessela operate at a higher level of abstractiontti@astream
classes.

In Section 37.3 we listed some important subclaskelssstream . We will now discuss how the reader
and writer classes in Table 37.1 are related tetigam classes. None of the classes in Tableir#Tetit
from classstream . Rather, theylelegatepart of their work to &tream class. Thus, the reader and writer
classes aggregatkaye a) stream class together with other pieces of data. Thesd@samReader ,
StreamWriter , BinaryReader , andBinaryWriter all have constructors that taksteam class as
parameter. In that way, it is possible to buildrsteaders and writes orsaeam class.

TextReader andTextwriter in Table 37.1 are abstract classes. Their suladastgReader and
StringWriter are build on strings rather than on streams. We haore to say abostringreader and
StringWriter in Section 37.14.

In the following sections we will rather systematig describe the reader and writer classes inerapl1,
and we will show examples of their use.

37.10. The class TextWriter

Lecture 10 - slide 12

In this section we discuss the abstract ctassvriter , and not least its non-abstract subclass
StreamWriter . We cover the sibling classegingwriter andstringReader in Section 37.14.

Most important, classextwriter ~ supports writing of text - characters and strings a chosen encoding.
Encodings were discussed in Section 37.7. WithofiséassTextwriter it is also possible to write textual
representations of simple types, sucihasanddouble .

We illustrate the use of clasgseamwriter in Program 37.8. Recall from Table 37.1 th@amwriter IS a
non-abstract subclass of clagstwriter

In Program 37.8 we writegr andstrequiv (in line 9-10) to three different files. Both sigs are identical,
they contain a lot of Danish letters, but theyrastated differently. It is the same string thatwged in
Program 37.6 for illustration of encodings. Forteatthe files we use a particular encoding (sextiGe
37.7). Notice that we in line 12, 16 and 20 usgreamWriter — constructor that takessaeam and an
encoding as parameters. There a six other constsuitt chose from (see below). In line 24-26 weenttie
two strings to each of the three files. Try outpihegram, and read the three text files with yawofite text
editor. Depending of the capabilities of your editmu may or may not be able to read them all.

343

using System;

using System.IO;

using System.Text;

public class TextWriterProg{

public static void Main(){

stringstr= "Aaeud®egiaead"
strEquiv = "A \uOOE6 u \uOOES5 \uOOE6 \u0 OF8 i \uOOE6 \uOOE5";
TextWriter
twl = new StreamWriter (// Iso-Latin-1
new FileStream("f-iso.txt", FileMode.C reate),
Encoding.GetEncoding("iso-8859-1")),
tw2 = new StreamWriter (/I UTF-8
new FileStream("f-utf8.txt", FileMode. Create),
new UTF8Encoding()),
tw3 = new StreamWriter (/I UTF-16
new FileStream("f-utf16.txt", FileMode .Create),

new UnicodeEncoding())

twl.WriteLine(str); twl.WriteLine(strEquiv)
tw2.WriteLine(str); tw2.WriteLine(strEquiv)
tw3.WriteLine(str); tw3.WriteLine(strEquiv)

twl.Close();
tw2.Close();
tw3.Close();

Program 37.8 Writing a text string using three different
encodings with StreamWriters.

You may wonder if knowledge about the applied eimopis somehow represented in the text file. That fi
few bytes in a text file created fronTextwriter ~ may contain some information about the encoding.
StreamWriter callSEncoding.GetPreamble() in order to get a byte array that represents kedge¢ about
the encoding. This byte array is written in theibepg of the text file. This preamble is primariged to
determine the byte order of UTF-16 and UTF-32 emugysd (Two different byte orders are widely used on
computers from different CPU manufacturers: Bigiandmost significant byte first) and little-endiélaast
significant byte first)). The preambles of the AS&id the ISO Latin 1 encodings are empty.

The next program, shown in Program 37.9, firstt@®astreamwriter on a given file path (a text string)
"simple-types.txt ". The default encoding is used. (The default emzpts system/culture dependent. It
can be accessed with the static propentpding.Default). By use of the heavily overloadedite

method it writes an integer, a double, a decintad, aboolean to the file.

Next, from line 15-18, it writes oint and aDie to a text file namednbn-simple-types.txt ". As
expected, theostring method is used on timeint and theDie objects. The contents of the two text files
are shown in Listing 37.10 (only on web) and LigtBv.11 (only on web).

using System;
using System.IO;

public class TextSimpleTypes{

public static void Main(){

344

using(TextWriter tw = new StreamWriter("simple-types.txt"))
tw.Write(5) ; tw.WriteLine();
tw.Write(5.5) ; tw.WriteLine();
tw.Write(5555M) ; tw.WriteLine();
tw.Write(5==6) ; tw.WriteLine();

}

using(TextWriter twnst = new StreamWriter("non- simple-types.txt")){
twnst.Write(new Point(1,2)) ; twnst.WriteLine();
twnst.Write(new Die(6)) ; twnst.WriteLine();

}

Program 37.9 Writing values of simple types and objects of

own classes.

The following items summarize the operations irssfareamwriter

« 7 overloaded constructors

- Parameters involved: File name, stream, encodunffgtbsize

e StreamWriter(String)

e StreamWriter(Stream)

e StreamWriter(Stream, Encoding)
« others

« 17/18 overloadetrite /WriteLine operations

« Chars, strings, simple types. Formatted output

e Encoding

« A property that gets the encoding used for tieiswriter

e NewLine

« A property that gets/sets the applied newline gtahthisTextwriter

« others

Exercise 10.3. Die tossing - writing to text file

Write a program that tosse®& 1000 times, and writes the outcome of the tosseséxtfile. Use a

Textwriter ~ to accomplish the task.

Write another program that reads the text file.dethe number of ones, twos, threes, fours, fiaes,

Sixes.

37.11. The class TextReader

Lecture 10 - slide 15

The clasSextReader is an abstract class of whisheamReader

iS a non-abstract subclasgeamReader

is able to read characters from a byte streamiveltd a given encoding. In most respects, thesclas
TextReader IS symmetric to classextwriter . However, there are read counterparts to all the
overloadedwrite methods imextwriter . We will come back to this observation below.

345

Program 37.12 is a program that reads the textthatproduced by Program 37.8. In Program 37.12 we
create thre@extReader Object. They are all based on file stream objantsencodings similar to the ones
used in Program 37.8. From ea@htReader we read the two strings that we wrote in Program 3t is
hardly surprising that we get six instances ofdiiange string "A @& u d & gia a". In line 1%2Y are all
written to standard output via use@ihsole.WriteLine

The last half part of Program 37.12 (from line B¥gds the three files as binary information (as ogites).
The purpose of this reading is to exercisedtigal content®f the three files. This is done by opening each
of the files viaFileStream objects, see Section 37.4. Recall thiastream allows for binary reading (in
terms of bytes) of a file. The functi@@eamReport (line 39-49) reads each byte of a giveStream

and it prints these bytes on the console. The ouingListing 37.13 reveals - as expected - subithnt
differences between the actual, binary contenthethree files. Notice that the ISO Latin 1 féethe
shortest, the UTF-8 file is in between, and the tBHile is the longest.

using System;

using System.IO;

using System.Text;

public class TextReaderProg{

public static void Main(){

TextReader trl = new StreamReader (
new FileStream("f-iso.txt", FileMode.Open),
Encoding.GetEncoding("iso-8859-1")),
tr2 = new StreamReader (
new FileStream("f-utf8.txt", FileMode.Open),
new UTF8Encoding()),
tr3 = new StreamReader (/I UTF-16
new FileStream("f-utf16.txt" , FileMode.Open),
new UnicodeEncoding()) ;
Console.WriteLine(tr1. ReadLine ()); Console.WriteLine(tr1. ReadLine ());
Console.WriteLine(tr2. ReadLine ()); Console.WriteLine(tr2. ReadLine ());
Console.WriteLine(tr3. ReadLine ()); Console.WriteLine(tr3. ReadLine ());
trl.Close();
tr2.Close();
tr3.Close();
/I Raw reading of the files to control the contents at byte level
FileStream fsl = new FileStream("f-iso.txt", F ileMode.Open),
fs2 = new FileStream("f-utf8.txt", FileMode.Open),
fs3 = new FileStream("f-utf16.txt", FileMode.Open);

StreamReport(fs1, "Iso Latin 1");
StreamReport(fs2, "UTF-8");
StreamReport(fs3, "UTF-16");

fs1.Close();
fs2.Close();
fs3.Close();

}

public static void StreamReport(FileStream fs, st ring encoding){
Console.WriteLine();
Console.WriteLine(encoding);
intch, i=0;
dof
ch = fs.ReadByte();
if (ch I=-1) Console.Write("{0,4}", ch);

346

i++;

if (%10 == 0) Console.WriteLine();
} while (ch 1= -1);
Console.WriteLine();

}

}

Program 37.12 Reading back the text strings encoded in thr
different ways, with StreamReader.

Axeudegiea
Axrudegiea
Aeudegiea
Axrudegiea
Axeudegiea
Axrudegiea

Iso Latin 1

65 32230 32117 32229 32230 32
248 32105 32230 32229 13 10 65
32230 32117 32229 32230 32 248
32 105 32230 32229 13 10

UTF-8
65 32195166 32117 32 195 165 32
195166 32195184 32105 32 195 166
32195165 13 10 65 32195166 32
117 32195165 32 195166 32 195 184
32105 32195166 32195165 13 10

UTF-16

255254 65 032 0230 032 O
117 0 32 0229 0 32 0230 O
32 0248 032 0105 032 O

230 032 0229 013 010 O

65 0 32 0230 032 0117 O

32 0229 032 0230 032 O

248 032 0105 0 32 0230 O
32 0229 013 010 O

Listing 37.13 Output from the program that reads back the
strings encoded in three different ways.

Below, in Program 37.14, we show a program thadsdhe values from the filaimple-types.txt ", as
written by Program 37.9. Notice that we read a &ha time using thrReadLine method ofStreamReader .
ReadLine returns a string, which we parse by the stdige methods in the structs32 , Double , Decimal ,
andBoolean respectively. There are no dedicated methodsassstreamReader for reading the textual

representations of integers, doubles, decimaldebas, etc. The output of Program 37.14 is shown in
Listing 37.15 (only on web).

347

using System;
using System.IO;

public class TextSimpleTypes{
public static void Main(){

using(TextReader twst = new StreamReader ("simple-types.txt")){

inti= Int32.Parse (twst. ReadLine ());
double d = Double.Parse (twst. ReadLine ());
decimal m = Decimal.Parse (twst. ReadLine ());
bool b = Boolean.Parse (twst. ReadLine ());
Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
}
}

Program 37.14 A program that reads line of text and parses
them to values of simple types.

As we did for clasSextwriter in Section 37.10 we summarize the operationsasstextReader below:

10 StreamReader constructors
« Similar to the StreamWriter constructors
e StreamReader(String)
e StreamReader(Stream)
e StreamReader(Stream, bool)
e StreamReader(Stream, Encoding)

« others
e int Read() Reads a single character. Returns -1 if atoéfite
* int Read(char[], int, int) Returns the number of characters read
* int Peek()

e String ReadLine()
e String ReadToEnd()
e CurrentEncoding
« A property that gets the encoding of this StreandRea

The methodread reads a single character; It returns -1 if theiBl positioned at the end of the file. Thead
method that accepts three parameters is simildreteream method of the same name, see Section 37.2. As
such, it reads a number of characters into andyrabocated char array (which is passed as tke fir
parameter oRead). Peek reads the next available character without advaitie file position. You can use
the method to look a little ahead of the actuatlimg As we have seeReadLine reads characters until an
end of line character is encountered. SimilarbadToEnd reads the rest of stream - from the current psiti
until the end of the file - and returns it as @ngfrReadToEnd is often convenient if you wish to get access to
a text file as a (potentially large) text string.

348

37.12. The class BinaryWriter

Lecture 10 - slide 18

In this section we will study a writer class whigtoduces binary data. As such, a binary writeinslar to a
FileStream used in write access mode, see Section 37.4.uBtiEgation ofBinaryWriter is, however, that

it supports a heavily overloadedite method just like the clagextwriter did. Thewrite methods can be
applied on most simple data types. Thee methods oBinarywriter ~ produce binary data, not characters.

Encodings, see Section 37.7, played important folegextReader andTextwriter . Encodings only play a
minimal role inBinarywriter ; Encodings are only used when we write charattetise binary file.

Below, in Program 37.16 we show a program simddeitogram 37.9. We write four values of different
simple types to a file with use oBmarywriter . In comments of the program we show the expected
number of bytes to be written. With use dfilainfo object (see Section 38.1) we check our expecttion
in line 18-19. The output of the program is 29eagected.

using System;
using System.IO;

public class BinaryWriteSimpleTypes{

public static void Main(){
string fn = "simple-types.bin";

using(BinaryWriter bw =
new BinaryWriter (
new FileStream(fn, FileMode.Create))) {
bw.Write(5) ; // 4 bytes
bw.Write(5.5) ; 1/ 8 bytes
bw.Write(5555M) ; // 16 bytes
bw.Write(5==6) ; // 1 bytes

}
Filelnfo fi = new Filelnfo(fn) ;
Console.WriteLine("Length of {0}: {1}", fn, fiLength);
}
}

Program 37.16 Use of a BinaryWriter to write some values ¢
simple types.

The following operations are supplied &iyarywriter

« Two public constructors
* BinaryWriter(Stream)
e BinaryWriter(Stream, Encoding)
« 18 overloadedvrite operations
« One for each simple type
e Write(char) , Write(char[]) , andwrite(char[], int, int) - use Encoding
e Write(string) - use Encoding
* Write(byte[]) andwrite(byte[], int, int)
e Seek(int offset, SeekOrigin origin)
« others

349

The second constructor allows for registrationrokacoding, which is used if we write characterbinary
data. Thewnrite methods, which accepts an array as first parart@gether with two integers as second and
third parameters, write a section of the involvasys.

Exercise 10.4. Die tossing - writing to a binary file
This exercise is a variant of the die tossing aledafriting exercise based on text files.
Modify the program to usegnarywriter ~ and aBinaryReader

Take notice of the different sizes of the text filem the previous exercise and the binary filexfrihis
exercise. Explain your observations.

37.13. The class BinaryReader

Lecture 10 - slide 20

The clas®inaryReader is the natural counterpart dmarywriter . Both of them deal with input from and
output to binary data (in contrast to text in sanen encoding).

The following program reads the binary file prodiity Program 37.16. It produces the expected ouspet
Program 37.16 (only on web).

using System;
using System.IO;

public class BinaryReadSimpleTypes{

public static void Main(){
string fn = "simple-types.bin";

using(BinaryReader br =
new BinaryReader (
new FileStream(fn, FileMode.Open))){

inti= br.ReadInt32() ;

double d = br.ReadDouble()
decimal dm = br.ReadDecimal() ;
bool b = br.ReadBoolean()

Console.WriteLine("Integer i: {0}", i);
Console.WriteLine("Double d: {0}", d);
Console.WriteLine("Decimal dm: {0}", dm);
Console.WriteLine("Boolean b: {0}", b);

Program 37.17 Use of a BinaryReader to write the values
written by means of the BinaryWriter.

The following gives an overview of the operationghe classinaryReader

350

« Two public constructors

* BinaryReader(Stream)

* BinaryReader(Stream, Encoding)
« 15 individually name&eadtype operations

* ReadBoolean , ReadChar, ReadByte , ReadDouble , ReadDecimal , ReadIntl6 |, ...
« Three overloadeHead operations

« Read() andRead (char[] buffer, int index, int count)

read characters - using Encoding
* Read (bytes[] buffer, int index, int count) reads bytes

The most noteworthy observation is that there exlarge number of specifically named operationsh{sas
ReadInt32 andReadDouble) through which it is possible to read the binagresentations of values in
simple types.

37.14. The classes StringReader and StringWriter

Lecture 10 - slide 22

StringReader IS @ hon-abstract subclasstektReader . Similarly, Stringwriter is a non-abstract subclass
of Textwriter . Table 37.1 gives you an overview of these classes

The idea ofstringReader IS to use traditional stream/file input operatiémsstring access, and to use
traditional stream/file output operations for sgrimutation. Thus, relative to Figure 37.1 the seuad
destinations of reading and writing will be strings

A stringReader ~ can be constructed on a stringS#ingwriter ~, however, cannot be constructed on a
string, because strings are non-mutable in C#Sseton 6.4. Thereforesaringwriter object is
constructed on an instanceSafingBuilder

In Program 37.19 we illustrate, in concrete terinmsy to make &tringWriter on thestringBuilder

referred by the variabk (see line 9). In line 11-17 we iterate five tintksough the for loop, with
increasing integer values in the variablén total, the textual representations of 20 sam@lues are written
to thestringBuilder object. The content of th&ringBuilder object is printed in line 19. The output of
Program 37.19 is shown in Program 37.20 (only ob)we

using System;

using System.IO;

using System.Text;

public class TextSimpleTypes{

public static void Main(){

StringBuilder sb = new StringBuilder() ; /I A mutable string
using(TextWriter tw = new StringWriter(sb))
for (inti=0;i<5; i++){
tw.Write(5 * i); tw.WriteLine();
tw.Write(5.5 * i); tw.WriteLine();
tw.Write(5555M * i); tw.WriteLine();
tw.Write(5 * i == 6); tw.WriteLine();}

351

}

Console.WriteLine(sh);

Program 37.19 A StringWriter program similar to the
StreamReader program shown earlier.

Symmetrically, we illustrate how to read from argjr In Program 37.21 we make a string with broken
lines in line 8-11. With use ofsringReader built onstr we read an integer, a double, a decimal, and a
boolean value. The output is shown in Program 3{©2a8/ on web).

using System;
using System.IO;

public class TextSimpleTypes{

public static void Main(){

string str ="5"+"\n" +
"5,5" + "\n" +
"5555,0" + "\n" +
"false";
using(TextReader tr= new StringReader(str))i
int i = Int32.Parse(tr.ReadLine());
double d = Double.Parse(tr.ReadLine());
decimal m = Decimal.Parse(tr.ReadLine());
bool b = Boolean.Parse(tr.ReadLine());
Console.WriteLine("{0} \n{1} \n{2} \n{3}", i, d, m, b);
}
}

Program 37.21 A StringReader progran

The use obtringwriter andstringReader objects for accessing the characters in strings iattractive
alternative to use of the natigeing andsStringBuilder operations. It is, in particular, attractive and
convenient that we can switch from a file sourcstfidation to a string source/destination. In thayw
existing file manipulation programs may be useédatly as string manipulation programs. The only
necessary modification of the program is a replaggrof astreamReader Wwith StringReader , or a
replacement oftreamwriter ~ with aStringwriter

Be sure to use the abstract clasgaseader andTextwriter —as much as possible. You should only use
StreamReader /StringReader ~ andStreamWriter /StringWriter for instantiation purposes in the context of
a constructor (such as line 11 of Program 37.19%iaedlL3 of Program 37.21).

352

37.15. The Console class

Lecture 10 - slide 23

We have used static methods in ttvasole class in almost all our programs. It is now timekamine the
Console class a little closer. In contrast to most otli@rélated classes, tldensole class resides in the
System namespace, and not$gstem.I0 . TheConsole class encapsulates three streastemdard input
standard outpytandstandard error The static property , of typeTextReader , represents standard input.
The static propertiesut anderror represent standard output and standard erroratdgglg, and they are
both of typeTextwriter . Recall in this context thakxtReader andTextwriter — are both abstract classes,
see Section 37.9.

using System;
using System.IO;

class App{
public static void Main(string[] args){

TextWriter standardOutput = Console.Out ;
StreamWriter myOut = null,
myError = null;

if (args.Length == 2) {
Console.Out.WriteLine("Redirecting std outp ut and error to files");
myOut = new StreamWriter(args[0]);
Console.SetOut(myOut);
myError = new StreamWriter(args[1]);
Console.SetError(myError);

}else {
Console.Out.WriteLine("Keeping standard out put and error unchanged");
}

/I Output from this section of the program may be r edirected
Console.Out.WriteLine("Text to std output - by Console.Out.WriteLine");
Console.WriteLine("Text to standard output - by Console.WriteLine(...)");
Console.Error.WriteLine("Error msg - by Consol e.Error.WriteLine(...)");

if (args.Length == 2) {
myOut.Close(); myError.Close();

Console.SetOut(standardOutput);
Console.Out.WriteLine("Now we are back again”)
Console.Out.WriteLine("Good Bye");

}
}

Program 37.23 A program that redirects standard output an
standard error to a file.

In the program shown above it is demonstrated lwogohtrol standard output and standard error. Ipags
two program argumentargs in line 6) to Program 37.23 we redirect standarpet and standard error to
specific files (instances atreamwriter) in line 13-17. That is the main point, which weskto illustrate
in Program 37.23.

Below we supply an overview of the methods and @rigs of theconsole class. Theonsole class is

static. As such, all methods and properties insatassole are static. There will never be objects of type
Console around. The&onsole class offers the following operations:

353

Access to and control of , out , anderror
Write , WriteLine , Read, andReadLine methods
« Shortcuts t@ut.Write , out.WriteLine , in.Read , andin.ReadLine
Many properties and methods that control the ugthgrlbuffer and window
» Size, colors, and positions
Immediate, non-blocking input from the Console
« The propertyeyAvailable returns if a key is pressed (non-blocking)
« ReadKey() returns info about the pressed key (blocking)
Other operations
e Clear() ,Beep() , andBeep(int, int) methods.

354

38. Directories and Files

The previous chapter was about streams, and asataechbout files. In this chapter we will dealwihe
properties of files beyond reading and writingekibpying, renaming, creation time, existence,deidtion
represent a few of these. In addition to files witalso in this chapter discuss directories.

38.1. The File and FileInfo classes

Lecture 10 - slide 26

Two overlapping file-related classes are availabline C# programmekFileinfo andFile . Both classes
belong to the namespasgstem.10 . Objects of clasEileinfo represents a single file, created on the basis
of the name or path of the file (which is a strirBf)e clas&ile contains static methods for file
manipulation. ClasEkile is static, see Section 11.12, and as such therbecao instances of clasg . If

you intend to write object-oriented programs wite manipulation needs it is recommended that you
represent files as instances of clgigsnfo

Let us right away write a program which illustrabesv to use instances of clasieinfo for representation
of files. All aspects related to clasiginfo is shown inpurplein Program 38.1.

using System;
using System.IO;

public class FileInfoDemo{

public static void Main(){
/I Setting up file names
string fileName = "file-info.cs",
fileNameCopy = "file-info-copy.cs";

/I Testing file existence
FileInfo fi = new Filelnfo(fileName); /I this source file
Console.WriteLine("{0} does {1} exist",
fileName, fi.Exists ? "™ "not");

/I Show file info properties:

Console.WriteLine("DirectoryName: {0}", fi.DirectoryName);
Console.WriteLine("FullName: {0}", fi.FullName);
Console.WriteLine("Extension: {0}", fi.Extension);
Console.WriteLine("Name: {0}", fi.Name);
Console.WriteLine("Length: {0}", fi.Length);
Console.WriteLine("CreationTime: {0}", fi.CreationTime);

/I Copy one file to another
fi.CopyTo(fileNameCopy);
FileInfo fiCopy = new FileInfo(fileNameCopy);

/I Does the copy exist?
Console.WriteLine("{0} does {1} exist",
fileNameCopy, fiCopy.Exists ? "™ "not");

/I Delete the copy again
fiCopy.Delete();

/I Does the copy exist?

Console.WriteLine("{0} does {1} exist",
fileNameCopy, fiCopy.Exists ? "™ "not"); I n??

355

/I Create new Filelnfo object for the copy
FileInfo fiCopyl = new FileInfo(fileNameCopy);
/I Check if the copy exists?
Console.WriteLine("{0} does {1} exist", fileNam eCopy,
fiCopyl.Exists ?": "not");

/I Achieve a TextReader (StreamReader) from the fil e info object
/I and echo the lines in the file to standard outpu t
using(StreamReader sr = fi.OpenText ()1

for (inti=1;i<=10; i++)
Console.WriteLine(" " + sr.ReadLine());

}
}
}

Program 38.1 A demonstration of the Filelnfo cla:

In line 12 we create mileinfo object on the source file of the C# program téxitven in Program 38.1. In
line 13-14 we report on the existence of thisifiléhe file system. (We expect existence, of cquisdine
16-22 we access various properties (in the sen€gf gfoperties, see Chapter 18) of thenfo object. In
line 25 we copy the file, and in line 30 we cheuk éxistence of the copy. In line 33 we deletecthi®y, and
in line 37 we check the existence of copy agairaiAgt our intuition, we find out that the copy béftfile
still exists after its deletion. (See next paragrégr an explanation). If, however, we establigheah

Filelnfo object on the path to the deleted file, we getetkigected result. In line 45-50 we use tipenText
method of theileinfo object to establish BextReader on the file. Via a number &eadLine activations
in line 49 we demonstrate that we can read thecotsDf the file.

The file existence problem described above occecalse the instance of clasinfo and the state of
the underlying file system become inconsistent. inB@ance methoHefresh of classFileinfo can be used
to update the&ileinfo object from the information in the operating systéf you need trustworthy
information about your files, you should alwayd tia¢ Refresh operation before you access ailyinfo
attribute. If we caltiCopy.Refresh() in line 34, the problem observed in line 37 vaagsh

The output of Program 38.1 is shown in Listing 3@2ly on web).

The following gives an overview of some selectedrapons in classileinfo

« A single constructor
* Filelnfo(string)
« Properties (getters) that access information atheuturrent file
o ExampleSLength , Extension , Directory , Exists , LastAccessTime
« Stream, reader, and writirctory methods
o ExampleSCreate , AppendText , CreateText , Open, OpenRead, OpenWrite , OpenText
» Classical file manipulations
e CopyTo, Delete , MoveTo, Replace
« Others
e Refresh , ...

The parameter of thmleinfo constructor is an absolute or relative path tilea The file path must be
well-formedaccording to a set of rules described in the dassimentation. As examples, the file paths
"c:\temp c:\user "and "dir1\dir2\file.dat " are both malformed.

356

We have also written af version of Program 38.Wliich we use the static clasg instead ofileinfo
see Program 38.3. We do not include this programthe listing of its output, in the paper editioiithe
material. We notice that the file existence frusbres in Program 38.1 (of the deleted file) do appear
when we use the static operations of the statgsele

There is a substantial overlap between the instaratbods of classileinfo and the static
methods in classile

38.2. The Directory and DirectoryInfo classes

Lecture 10 - slide 28

The classebirectorylinfo andbirectory ~ are natural directory counterparts of the classasfo and
File , as described in Section 38.1. In this sectiomwlleshow an example use of clasgectoryinfo , and
we will provide an overview of the members in thess. Like for files, an instance of clasigctoryinfo

is intended to represent a given directory of theeulying file system. We recommend that you usecthss
Directorylnfo , rather than the static classectory , when you write object-oriented programs.

It is worth noticing that the classeiginfo andbirectoryinfo have a common abstract, superclass class
FileSysteminfo

Here follows a short program that use an instafcéagsbirectoryinfo for representation of a given
directory from the underlying operating system.

using System;
using System.IO;

public class DirectorylnfoDemo{

public static void Main(){
string fileName = "directory-info.cs"; /I The current source file

/I Get the Directorylnfo of the current directory
/Il from the Filelnfo of the current source file

FileInfo fi = new Filelnfo(fileName); /I This source file
DirectoryInfo di = fi.Directory;

Console.WriteLine("File {0} is in directory \n {1}", fi, di);

/I Get the files and directories in the parent dire ctory.
FileInfo[] files = di.Parent.GetFiles()
Directorylnfol[] dirs = di.Parent.GetDirectories() ;

/I Show the name of files and directories on the co nsole
Console.WriteLine("\nListing directory {0}:", d i.Parent.Name);
foreach(DirectoryInfo d in dirs)

Console.WriteLine(d.Name);
foreach(Filelnfo f in files)
Console.WriteLine(f.Name);

Program 38.5 A demonstration of the Directorylnfo
class.

357

Like in Program 38.3 the starting point in Progra8mb is eFileinfo object that represents the source file
shown in Program 38.5. Based on Hieinfo object, we create Birectoryinfo objectin line 12. This
DirectoryInfo object represents the directory in which the dctaarce file resides. Let us call it the
current directory. In line 17 we illustrate thearent property and theetFiles method; We create an array,
fles , of Filelnfo object of the parent directory of the current clioey. Thus, this array holds all files of
the parent of current directory. Similarlijrs declared in line 18 is assigned to hold all divéess of the
parent of current directory. We print these filesl @irectories in line 20-25.

The output of Program 38.5 (only on web) is showhisting 38.6 (only on web). A similar program,
programmed with use of the static operations iestiaectory , is shown in Program 38.7 (only on web).

The following shows an overview of the instancepgmies and instance methods in claigsctoryinfo:

« A single constructor

* Directorylnfo(string)
» Properties (getters) that access information attwucurrent directory

. ExampIeSCreationTime , LastAccessTime , Exists , Nameg FullName
- Directory Navigation operations

* Up: Parent , Root

» Down: GetDirectories , GetFiles , GetFileSystemInfo (all overloaded)
« Classical directory manipulations

e Create , MoveTo, Delete
e Others

e Refresh , ...

The constructor takes a directory path string aarpater. It is possible to creat®igectoryinfo object on
a string that represents a non-existing directaityr pLike file paths, the given directory path mstwell-
formed (according to rules stated in the class ohacuation).

The downwards directory navigation operatiGe®irectories , GetFiles , andGetFileSysteminfo are
able to filter their results (with use of stringghwwildcards, such asemp* ", which match all
files/directories whose names start witdip). It is also possible to specify if the operas®hould access
direct files/directories, or if they should accdgect as well as indirect file/directories.

As forFile andFileinfo , there is substantial overlap between the classaesry and
DirectoryInfo

358

39. Serialization

In this material we care about object-oriented progning. All our data are encapsulated in objattisen
we deal with 10 it is therefore natural to look &miutions that help us witbutput and input of objects

For each classit is possible to decidesiorage formatThe storage format of clasgells which pieces of
data inc instances to save on secondary storage. Thesletdiie storage format need to be decided. This
involves (1) which fields to store, (2) the sequentfields in the stored representation, and §8) af a
binary or a textual representation. However, ag lswe have pairs ofriteObject andReadObject
operations for whiclreadObject(WriteObject(C-object)) is equivalent ta-object the details of the
storage format are of secondary interest.

Instances of classmay have references to instances of other clasags andk. In general, an instance of
classc may be part of anbject graphin which we findc-object,b-object,E-objects as well as objects of
other types. We soon realize that the real proliéemot how to store instances®in isolation. Rather, the
problem is how to store an object network in whiebbjects take part (or in whichcobject is a root).

People who have devised a storage format for a cJagho have written thewriteObject and

ReadObject operations for class and who have dealt with the 10 problem of obggeiphs quickly realize
that the invented solutions generalizes to arlyitctasses. Thus, instead of solving the objectriébiem
again and again for specific classes, it is aftradb solve the problem at a general level, ankentae
solution available for arbitrary classes. Thisxaaly what serialization is about. The serialiaatproblem
has been solved by the implementers of C#. Itdeeflore easy for the C# programmer to save aniévetr
objects via serialization.

39.1. Serialization

Lecture 10 - slide 31

Serialization provides for input and output of @&wark of objects. Serialization is about objectpuif and
deserialization is about object input.

« Serialization
» Writes an object to a file
« Also writes the objects referred fram
« Deserialization
» Reads a serialized file in order to reestablishstrélized objecd
« Also reestablishes the network of objects originedferred frono

Serialization of objects is, in principle, simptedeal with from C#. There are, however, a couple o
circumstances that complicate the matters:

« The need to control or customize the serializatiod the deserialization of objects of specific s/pe
« The support of more than one C# technique to oltt&rsame serialization or deserialization effect.

The need to control (customize) the details ofasigation and deserialization is unavoidable, astavhen
the ideas should be applied on real-life examples.

359

The support of several different techniques fondaerialization is due to the development of @#C# 2.0
serialization relies almost exclusively on the akeerialization and deserialization attributesCk 1.0 it
was also necessary to implement certain interfaxesntrol and customize the serialization. In théssion
of the material, we only describe serializationtoolied by attributes.

« Serialization and deserialization is supportedcl@ases that implement thermatter
interface:
* BinaryFormatter andSoapFormatter
» Methods iniformatter:
e Serialize andDeserialize

In the following section we will discuss an examiblat usesinaryFormatter

39.2. Examples of Serialization in C#

Lecture 10 - slide 32

Below we show the clag=erson and clas®ate , similar to the ones we used for illustration of/acy leaks
in Section 16.5. Clag®=rson in Program 39.1 encapsulates a name and two Hpgets: birth date and
death date. For a person still alive, the deatl dfer tonull . Redundantlytheage instance variable holds
the age of the person. Thedate method can be used to updatedte variable.

ThebDate class shown in Program 39.2 is a very simple implgtation of a date class. (In the paper version
of the material we only show an outline of theee class. The complete version is available in thb we
version). Thererson class relies on theate . We use classate for illustration of serialization; In real life
you should always use the stroeteTime . TheDate class encapsulates year, month, and day. In additi
holds anameOfDay instance variable (with values suchsasday or Monday), which isredundant With
appropriate calendar knowledge, taemeOfDay can be calculated frogear , month, andday . ThePerson

class needs age calculation, which is providechbydarDiff method of claspate . Internally in class

Date , YearDiff ~ relies on the methodsBefore andequals . (Equals is defined according the standard
recommendations, see Section 28.16. We have nibtisiglass, included a redefinition ®tHashCode and
therefore we get a warning from the compiler whiasspate is compiled.)

Theredundancyis classPerson and clas®ate is introduced on purpose, because it helps ustiidite the
serialization control in Program 39.2. In most eirstances we would avoid such redundancy, atileast
simple classes.

The preparation of clag®rson and clas®ate for serialization is very simple. We mark bothsslas with
the attributgSerializable] , see line 3 in both classes. As of now you carsiden[Serializable] as
some magic, special purpose notation. In regiyalizable] represents application of an attribute.
When we are done with serialization we have seeerakbuses of attributes, and therefore we will be
motivated to understand the general ideas of atetoin C#. We discuss the general ideas behiridués
in Section 39.6.

Please notice that in the paper version of thigri@tmost program examples have been abbreviated.
full details of all examples appear in the web verof the material.

360

using System;

[Serializable]
public class Person{

private string name;
private int age; /l Redundant
private Date dateOfBirth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;
age = Date.Today.YearDiff(dateOfBirth);

}

public Date DateOfBirth {
get {return new Date(dateOfBirth);}

public int Age{
get {return Alive ? age : dateOfDeath.YearDiff(
}

public bool Alive{
get {return dateOfDeath == null;}

}

public void Died(Date d){
dateOfDeath = d;

}

public void Update(){
age = Date.Today.YearDiff(dateOfBirth);

}

public override string ToString(){
return "Person: " + name +
" *" + dateOfBirth +
(Alive 2™ :" +" + dateOfDeath) +
" Age: " + age;

dateOfBirth);}

Program 39.1 The Person class - Serializab

using System;

[Serializable]
public class Date{
private ushort year;
private byte month, day;
private DayOfWeek nameOfDay; /I Redundant

public Date(int year, int month, int day){
this.year = (ushort)year;
this.month = (byte)month;
this.day = (byte)day;
this.nameOfDay = (new DateTime(year, month, day

}

public Date(Date d){
this.year = d.year; this.month = d.month;
this.day = d.day; this.nameOfDay = d.nameOfDay;

}

361

))-DayOfWeek;

public int Year{get{return year;}}
public int Month{get{return month;}}
public int Day{get{return day;}}

// return this minus other, as of usual birthday calculations.
public int YearDiff(Date other){
...

}

public override bool Equals(Object obj){
...

}

/l'Is this date less than other date
public bool IsBefore(Date other){
...

}

public static Date Today{
...

}

public override string ToString(){
return string.Format("{0} {1}.{2}.{3}", nameOfD ay, day, month, year);

}
}

Program 39.2 An outline of the Date class - Serializat

In Program 39.3 it is illustrated how to serialaael deserialize a graph of objects. The graph, wivie
serialize, consists of orrerson and the twate objects referred by theerson object. The serialization,
which takes place in line 13-17, is done by sentli@gerialize =~ message to th&naryFormatter ~ object.
The serialization relies on a binary stream, asassmted by an instance of classstream , see Section
37.4.

The deserialization, as done in line 24-28, wilimost real-life settings be done in another progianour
example we reset the program state in line 19-2@&&¢he deserialization. The actual deserializatsodone
by sending th®eserialize ~ message to th@naryFormatter ~ object. As in the serialization, the file stream
with the binary data, is passed as a parameter.

using System;

using System.IO;

using System.Runtime.Serialization;

using System.Runtime.Serialization.Formatters.Binar Y;

class Client{

public static void Main(){
Person p = new Person("Peter”, new Date(1936, 5 , 11));
p.Died(new Date(2007,5,10));
Console.WriteLine("{0}", p);

using (FileStream strm =
new FileStream("person.dat", FileMod e.Create){
IFormatter fmt = new BinaryFormatter();
fmt.Serialize(strm, p);

}

Jl s
p = null;

362

Console.WriteLine("Reseting person”);
e

using (FileStream strm =
new FileStream("person.dat”, FileMod e.Open)){
IFormatter fmt = new BinaryFormatter();
p = fmt.Deserialize(strm) as Person;

}

Console.WriteLine("{0}", p):
}

}

Program 39.3 The Person client class - applies serialization
and deserialization.

The program output shown in Listing 39.4 tells ttetPerson object and the twbDate objects have
survived the serialization and deserialization peses. In between the two output lines in lineridLlene 30
of Program 39.3 the three objects have been tnaedfto and reestablished from the binary file.

Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71
Reseting person
Person: Peter *Monday 11.5.1936 +Thursday 10.5.20 07 Age: 71

Listing 39.4 Output of the Person client cla:

Exercise 10.5. Serializing with an XML formatter

In the programs shown on the accompanying slideave used a binary formatter for serialization of
Person andDate object.

Modify the client program to use a so-called Saamhtter in the namespace
System.Runtime. Serialization.Formatters.Soap . SOAP is an XML language intended for exchange
of XML documents. SOAP is related to the disciplaieveb services in the area of Internet technalogy

After the serialization you should take a lookle file person.dat , which is written and read by the
client program.

39.3. Custom Serialization

Lecture 10 - slide 33

In thePerson andDate classes, shown in Section 39.2, the redundararnstvariables do not need to be
serialized. In clasBerson , age does need to be serialized because it can beat@dudromdateOfBirth
anddateOfDeath . In clasDate , nameOfDay does need to serialized because it can calculiasdcalendar
knowledge. In relation to serialization and pegsise, we say that these two instance variablesaarsient
It is sufficient to serialize the essential infotina, and to reestablish the values of the transmestance
variables after deserialization. In Program 39.&4 Brogram 39.6 we show the serialization and the
deserialization respectively.

The serialization is controlled by marking somédse(instance variables) fisonSerialized], see line 9 of
Program 39.5 and line 9 of Program 39.6.

363

The deserialization is controlled by a method mankéh the attribut¢OnDeserialized()], see line 21 of
Program 39.5. This method is called when deseaititiz takes place. The method starting at linef21 o
Program 39.5 assigns the redundayat variable of aPerson object.

using System;
using System.Runtime.Serialization;

[Serializable]
public class Person{

private string name;

[NonSerialized()]
private int age;

private Date dateOfBirth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;
age = Date.Today.YearDiff(date OfBirth);

}

[OnDeserialized()]
internal void FixPersonAfterDeserializing(

StreamingContext context)
age = Date.Today.YearDiff(date OfBirth);

}
...

Program 39.5 The Person class - Serialization control with
attributes.

ThebDate class shown below in Program 39.6 follows the spattern as theerson class of Program 39.5.

using System;
using System.Runtime.Serialization;

[Serializable]

public class Date{
private ushort year;
private byte month, day;

[NonSerialized()]
private DayOfWeek nameOfDay;

public Date(int year, int month, int day){

this.year = (ushort)year;

this.month = (byte)month;

this.day = (byte)day;

this.nameOfDay = (new DateTime(year, month, day)).DayOfWeek;
}

public Date(Date d){
this.year = d.year; this.month = d.month;
this.day = d.day; this.nameOfDay = d.nameOfDay;

}
[OnDeserialized()]

364

internal void FixDateAfterDeserializing(
StreamingContext context){
nameOfDay = (new DateTime(year, month, day)).Da yOfWeek;

}

...
}

Program 39.6 The Date class - Serialization control with
attributes .

39.4. Considerations about Serialization

Lecture 10 - slide 34

We want to raise a few additional issues aboutbaation:

« Security

- Encapsulated and private data is made availabliem
« Versioning

« The private state of class C is changed

« It may not be possible to read serialized objettgpme C
« Performance

« Some claim that serialization is relatively slow

39.5. Serialization and Alternatives

Lecture 10 - slide 35

As mentioned in the introduction of this chapt&hapter 39 - serialization deals with input andpatibf

objects and object graphs. It should be remembamuever, that there are alternatives to seriainats
summarized below, it is possible to program obf@cat a low level (using binary of textual 10 priiaes
from Chapter 37). At the other end of the spectituimpossible us database technology.

« Serialization
« An easy way to save and restore objects in betywe®Eram sessions
« Useful in many projects where persistency is nesgsbut not a key topic
« Requires only little programming
« Custom programmed file 10
« Full control of object 10
« May require a lot of programming
« Objects in Relational Databases
« Impedance mismatchCircular objects in retangular boxes"
« Useful when the program handles large amountstaf da
« Useful if the data is accessed simultaneous froraraé programs
« Not a topic in this course

365

39.6. Attributes

Lecture 10 - slide 36

In our treatment of serialization we made extensse of attributes, see for instance Section 38 .his
section we will discuss attributes at a more gdreval, and independent of serialization.

Attributes offer a mechanism that allows the pragreer to extend the programming language in simple
ways. Attributes allow the programmer to assoaixtea information (meta data) to selected and pfardd
constructs in C#. The constructs to which it isgilde to attach attributes are assemblies, classests,
constructors, delegates, enumeration types, flglisables), events, methods, parameters, propedie
returns.

We all know that members of a class in C# havecatsal visibility modifiers, see Section 11.16chse

visibility modifiers were not part of C#, we coutdve used attributes as a way to extend the laeguily
different kinds of member visibilities. Certainrditites can be accessed by the compiler, and hénebg
attributes can affect the checking done by the dlemand the code generated by the compiler. Attgb

can also be accessed at run-time. There are waylsefounning program to access the attributesvefig

constructs, such that the attribute and attribatees can affect the program execution.

Program 39.7 illustrates the use of the predefotediete attribute. Being "obsolete” means "no longer in
use". In line 3, the attribute is associated witissc. In line 9, another usage of the attribute is eisted
with methodwvin classp.

using System;

[Obsolete("Use class D instead")]
class C{
...

}

class D{
[Obsolete("Do not call this method." true)]
public void M(¥{
}
}

class E{
public static void Main(){
C c =new C();
D d = new D();
d.M();
}
}

Program 39.7 An obsolete class C, and a class D with an
obsolete method M.

The compiler is aware of th@bsolete attribute. When we compile Program 39.7 we cartlseeffect of
the attribute, see Listing 39.8.

366

>Csc prog.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00. 50727.42

for Microsoft (R) Windows (R) 2005 Framework versio n 2.0.50727

Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.
prog.cs(16,5): warning CS0618: 'C' is obsolete: 'Us e class D instead'
prog.cs(16,15): warning CS0618: 'C' is obsolete: 'U se class D instead'
prog.cs(18,5): error CS0619: 'D.M()' is obsolete: ' Do not call this method."

Listing 39.8 Compiling class C, D, and |

C# comes with a lot of predefined attributessolete is one of them, and we encountered quite a few in
Section 39.3 in the context of serialization. Uagting frameworks for C# also heavily rely onibtites.

It is also possible to define our own attributen. dtribute is defined as a class. Attributes asfim this
way are subclasses of the clagstem.Attribute . As a naming convention, the names of all attebut
classes should havettiibute " as a suffix. Thus, an attributels defined by a classattribute , which
inherits from the classystem.Attribute . The attribute usage notatipfia,b,c)] in front of some C#
constructC causes an instance of clagstribute , made with the appropriate three-parameter coctsiru
to be associated wil. In the attribute usage notatiptia,b,c,d=e)] d refers to a property of class
XAttribute . The propertyl must be read-write (both gettable and settabée) Section 18.5. Thus, as it
appears, an attribute accepts botiitional parameterandkeyword parameters

Below, in Program 39.9 we have reproduced the ¢tlabid thedbsolete attribute. You should notice the
three different constructors and the read/writgertyiserror . The attributenttributeUsage attribute in
5-6 illustrates how attributes help define attrésubitributeUsage define the constructs to which it
possible to associate thigObsolete attribute. The expressiatribute Targets.Method |

AttributeTargets.Property denotes two values in tltembined enumeration typaributeTargets

which carries a so-called flag attribute. Combiredmerations are discussed in Focus box 6.3.

/I In part, reproduced from the book "C# to the Poi nt"
using System;

[AttributeUsage(AttributeTargets.Method |
AttributeTargets.Property)]
public sealed class MyObsoleteAttribute: Attribute {
string message;
bool isError;

public string Message{
get {
return message;
}
}

public bool IsError {
get {
return isError;

}
set{
isError = value;

}
}

public MyObsoleteAttribute() {
message = ""; isError = false;

}

367

public MyObsoleteAttribute(string msg) {
message = msg; isError = false;

}
public MyObsoleteAttribute(string msg, bool error) {
message = msg; isError = error;
}
}

Program 39.9 A reproduction of class ObsoleteAttribL

In Program 39.10 we show a sample use of the atitriprogrammed in Program 39.9. The program does no
compile because we attempt to associatetfadsolete attribute to a class in line 3. As explained ahove
we have restricteslyObsolete to be connected with only methods and properties.

using System;

[MyObsolete("Use class D instead")]
class C{
...

}

class D
[MyObsolete("Do not call this method.",IsError=true)
public void M(){
}

}

class E{
public static void Main(){
C c =new C();
D d = new D();
d.MQ);

Program 39.10 Sample usage of the reproduced class - cau
a compilation error.

368

40. Patterns and Technigues

In relation to streams, which we discussed in Givapt in the beginning of the 10 lecture, it iserant to
bring up theDecorator design pattern. Therefore we conclude the 10 feciith a discussion dbecorator.

40.1. The Decorator Pattern

Lecture 10 - slide 38

It is often necessary to extend an object of atasgh extra capabilities. As an example, threw method of
aTriangle class can be extended with the traditional angteezige annotations for equally sized angles or
edges. The typical way to solve the problem isafiné a subclass of classhat extends in the appropriate
way. In this section we are primarily concernechveiktensions of classthat do not affect the client
interface ofc. Therefore, the extensions we have in mind beliegespecializations (see Chapter 25). The
extensions we will deal with consist of adding d@iddial code to the existing methodsaof

The decorator design pattern allows us to exterldss dynamically, at run-time. Extension by use of
inheritance, as discussed above, is static bedatad®s place at compile-time. The main idea behin
Decorator is a chain of objects, along the line illustratedrigure 40.1. A message fromient to an
instance ofoncreteComponent is passed through two instance<oficreteDecorator by means of
delegation In order to arrange such delegatiooacreteDecorator ~ and aConcreteComponent should
implement a common interface. This is importantlose aConcreteDecorator IS used as a stand in for a
ConcreteComponent . This arrangement can for instance be obtaindgtidoglass hierarchy shown in Figure
40.2.

[Client |
.

(A ConcreteDecorator |———.
(A ConcreteDecorator |———.
A ConcreteComponent

Figure 40.1 Two decorator objects of a ConcreteComponent object

In Figure 40.2 th@ecorator s and theconcreteComponent share a common, abstract superclass called
Conmponent . When &Client operate on &@oncreteComponent it should do so via the typ@nponent . This
facilitates the object organization of Figure 4técause aecorator can act as a stand in for a
ConcreteComponent

Componen

o~ e

-

Decorator

K:ancretecﬁm ponent

e T
o s

| Cuncretel:iécnratnrﬁd | ConcreteDecoratorB |

Figure 40.2 A template of the class structure in the Decoralesign pattern.

369

« Component: Defines the common interface of participantshie Decorator pattern
« Decorator: References another Component to which it delsgatgponsibilities

The class diagram decorator is similar toComposite, see Section 32.1. In Figure 40.Decorator is
intended to aggregate (reference) a siagheonent . In Figure 32.1 &£omposite typically aggregate two or
morecConponent S . Thus, &omposite typically gives rise to trees, whereaBecorator gives rise to a linear
lists.

Decorator Objects can be added and chained at run-tin@ieAt accesses the outesnponent (typically
aConcreteDecorator), Which delegates part of the work to anotbemonent . While passing, it does part
of the work itself.

Use ofDecorator can be seen as a dynamic alternative to statidasging

40.2. The Decorator Pattern and Streams

Lecture 10 - slide 40

TheDecorator discussion above in Section 40.1 was abstracgandral. It is not obvious how it relates to
streams and 10. We will now introduce the streacodstors that drive our interest in the patterre Th
following summarizes the stream classes that a@vad.

We build acompressed stream on abuffered stream on afile stream
Thecompressed stream decorates thbuffered stream

Thebuffered stream decorates thBle stream

The idea behind the decoration of clagsstream (see Section 37.4) is to supply additional propsrof
the stream. The additional properties in our exanapébufferingandcompressionBuffering may result in
better performance because many read and writeti@es do not need to touch the harddisk as sush.of)
compression means that the files become smalletig@that classilestream already apply buffering
itself, and as such the buffer decoration is mdifustrative nature than of practical value).

Figure 40.3 corresponds to Figure 40.1. Thus, Eigd:3 shows objects, not classesidstream object
is decorated with buffering and compressiorciidnt program is able to operate GripStream (a
compressed stream) as if it wasileStream

[Client |

v
|A GZipStream ———
| A BufferedStream J—_
| A Filestream |

Figure 40.3 Compression and buffering decoration of a FileStmea

370

In Program 40.1 we readrgeStream into a buffer of typeyte[] . This is done in line 11-16. In line 18-27
we establish the decorateitkstream (see theourple parts). In line 27 we write the buffer to the deded
stream. In line 29-32 we compare the size of tiggral file and the compressed file. We see theatfin
Listing 40.2 when the program is applied on its @earce file.

using System;
using System.IO;
using System.lO.Compression;

public class CompressProg{

public static void Main(string[] args){
byte[] buffer;
long originalLength;

/I Read a file, arg[0], into buffer
using(Stream infile = new FileStream(args[0], F ileMode.Open)){
buffer = new byte[infile.Length];
infile.Read(buffer, 0, buffer.Length);
originalLength = infile.Length;

/I Compress buffer to a GZipStream
Stream compressedzipStream =
new GZipStream(
new BufferedStream(
new FileStream(
args[1], FileMode.Create),
128),
CompressionMode.Compress)
compressedzipStream.Write(buffer, 0, buffer Length) ;
compressedzipStream.Close();

/I Report compression rate:
Console.WriteLine("CompressionRate: {0}/{1}",
MeasureFileLength(args[1]),
originalLength);

}
public static long MeasureFileLength(string fileN ame){
using(Stream infile = new FileStream(fileName, FileMode.Open))
return infile.Length;
}
}

Program 40.1 A program that compresses a fi

> compress compress.cs out
CompressionRate: 545/1126

Listing 40.2 Sample application together with program outp
(compression rate).

When Program 40.1 is executed, a compressed fietien. In Program 40.3 we show how to read tites
back again. In line 11-17 we set up the decoratedms, very similar to Program 40.1. In line 21v#&8read
the compressed file into the buffer, and finalljlime 32-35 we write the buffer back to an uncorspedl file.

371

1 using System;

2 using System.|O;

3 using System.lO.Compression;

4

5 public class CompressProg{

6

7 public static void Main(string[] args){
8 byte[] buffer;

9 const int LargeEnough = 10000;

10

11 Stream compressedzipStream =

12 new GZipStream(

i3 new BufferedStream(

14 new FileStream(

15 args[0], FileMode.Open),
16 128),

17 CompressionMode.Decompress) ;
18

19 buffer = new byte[LargeEnough];

20

21 /I Read and decompress the compressed stream:

22 int bytesRead = 0,
23 bufferPtr = 0;

24 do{
25 /I Read chunks of 10 bytes per call of Read:
26 bytesRead = compressedzipStream.Read(buffer, bufferPtr, 10)

27 if (bytesRead != 0) bufferPtr += bytesRead,;
28 }while (bytesRead != 0);

30 compressedzipStream.Close();

32 /I Write contens of buffer to the output file

88 using(Stream outfile = new FileStream(args[1], File Mode.Create)){
34 outfile.Write(buffer, 0, bufferPtr);

&8sl |

36 }

37

38 }

Program 40.3 The corresponding program that decompress
the file.

With this we are done with the 10 lecture.

372

41. Motivation for Generic Types

This chapter starts the lecture abgerterics. Generic types and generic methods. Viggherics we
are aiming at more general types (classes, stinttsfaces, etc). The measure that we will bring
into use idype parametrization.

This chapter is intended as motivation. Type patarieed types will be the topic of Chapter 42
and type parameterized methods will be treatechiaper 43.

41.1. Operations on sets

Lecture 11 - slide 2

In this chapter we decide to develop and use tesstt . We use the claset as a motivating
example. It is our goal, once and for all, to beedb write a classet that supports all possible
types of elements. It is the intention that thess$at can be used in any future program, in which
there is a need for sets.

It is noteworthy that .NET has not supported a mat#tical set class until version 3.5. As of
version 3.5, the clas@shSet <T> supports sets, see also Section 45.1. Thus, &ttbheof writing
this material, there was no set class availabtekenNET Framework.

The classet should represent a mathematical set of items. §ugeclassset with the usual and
well-known set operations:

« aSet.Member(element)

« aSet.nsert (element)

« aSet.Delete (element)

« aSet.Count

+ aSet.Subset (another Set)

« aSet.GetEnumerator ()

« aSet.ntersection (another Set)
+ aSet.Union (another Set)

« aSet.Diff (another Set)

The set operationst er sect i on, Uni on, andDi f f are handled in Exercise 11.1.

41.2. The classes IntSet and StringSet

Lecture 11 - slide 3

Let us imagine that we first encounter a need éts of integers. This causes us (maybe somewhat
narrow-minded) to write a class called Set . Our version of clasisnt Set is shown in Program

373

41.1. The version provided in the paper versiothefmaterial is abbreviated to save some space.
The version in the web version is complete withdaliails.

usi ng System
usi ng System Col | ecti ons;

public class IntSet {

private int capacity;

private static int DefaultCapacity = 10;
private int[] st ore;

private int next;

public IntSet (int capacity)({
this.capacity = capacity;
store = new int[capacity] ;

next = 0; /1l The next place to insert
}
public IntSet (): this(DefaultCapacity){
}

public IntSet (int[] el ements): this(elenents. Length){
foreach(int el in elements) this.Insert(el);

}

/| Copy constructor
public IntSet (IntSet s): this(s.capacity){
f oreach(int el ins) this.lInsert(el);

}

public bool Menber (int el ement) {
for(int idx = 0; idx < next; idx++)
if (elenent.Equal s(store[idx]))
return true
return fal se

}

public void Insert(int el ement) {
if ('this.Menber(elenment)){
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<int> (ref store, capacity * 2);
capacity = capacity * 2;

store[next] = el enent;
next ++;
}
}

public void Del ete(int el ement) {
bool found = fal se;
int foundldx = 0O;
for(int idx = 0; !found & (idx < next); idx++){
if (element.Equal s(store[idx])){
found = true
f oundl dx = i dx;

}

if (found){ /1 shift remaining elenents |eft
for(int idx = foundldx+1; idx < next; idx++)

374

store[idx-1] = store[idx];
store[next-1] = default(int);
next - - ;

}
}

/1 Additional operations: Count, Subset, ToString, Full, and Get Enumerator

Program 41.1 Theclass IntSet.

The class nt Set is an example of an everyday implementation afgat sets. We have not
attempted to come up with a clever representatiandllows for fast set operations. Tihe Set
class is good enough for small sets. If you aragte work on sets with many elements, you
should use a set class of better quality.

We chose to represent the elements in an integgey.ale keep track of the position where to
insert the next element (by use of the instanceblanext). If there is not enough room in the
array, we use tharray. Resi ze operation to make it larger. We delete elemems fthe set by
shifting elements in the array 'to the left’, inl@rto avoid wasted space. This approach is fairly
expensive, but it is good enough for our purposhs. nt Set class is equipped with a

Get Enuner at or method, which returns an iterator. (We encountéegdtors (enumerators) in the
I nterval class studied in Section 21.3. See also Sectidghf8i details on iterators. The

Get Enuner at or details are not shown in the paper version). Thereerator allows for traversal of
all elements of the set withf@each control structure.

A set is only, in a minimal sense, dependent oriythes of elements (in our case, the type). It

does not even matter if the type of elements iglaevtype or a reference type (see Section 14.1 and
Section 13.1 respectively). We do, however, applyadity on the elements, via use of thgal s
method. Nevertheless, the tyjpe occurs many times in the class definition of Set . We have
emphasized occurrencesiot with color marks in Program 41.1.

usi ng System
usi ng System Col | ecti ons;

cl ass App{

public static void Min(){
IntSet sl new IntSet (),
s2 new IntSet ();

sl.Insert(1l); sl.lnsert(2); sl.lnsert(3);
sl.Insert(4); sl.lnsert(5); sl.lnsert(6);
sl.Insert(5); sl.lnsert(6); sl.lnsert(8);
sl.Delete(3); sl.Delete(6); sl.lnsert(9);

s2.lnsert(8); s2.lnsert(9);

Consol e. WiteLine("sl: {0}", s1);
Consol e. WiteLine("s2: {0}", s2);

Il Exercises:
/I Console.WriteLine("{0}", s2.Intersection(s1));

375

/I Console.WriteLine("{0}", s2.Union(s1));
/I Console.WriteLine("{0}", s2.Diff(s1));

i f (sl.Subset(s2))
Consol e. WiteLine("sl is a subset of s2");
el se
Consol e. WiteLine("sl is not a subset of s2");

i f (s2.Subset(sl))
Consol e. WiteLine("s2 is a subset of sl1");
el se
Consol e. WiteLine("s2 is not a subset of s1");

Program 41.2 Aclient of IntSet.

In Program 41.2 we see a sample application ofclasset . We establish two empty integer sets
s1 ands2, we insert some numbers into these, and we trgauie of the set operations on them.
The comment lines 20-23 make use of set operatibinch will be implemented in Exercise 11.1.
The output of Program 41.2 confirms thatis a subset af1. The program output is shown in
Listing 41.3 (only on web).

We will now assume that we, a couple of days aftehave programmed claisst Set , realize a
need of classt ri ngSet . Too bad! Classt ri ngSet is almost lika nt Set . But instead of
occurrences afnt we have occurrences €fri ng.

We know how bad it is to copy the source textrafSet to a new file calledt ri ngSet , and to
globally replace 'int' with 'string’. When we ndednodify the set class, all our modifications will
have do be done twice!

For illustrative purposes - and despite the obsemgust described - we have made the class
StringSet, see Program 41.4 (only on web). We have alsacegptl the client program, in
Program 41.5 (only on web) and the program outplisting 41.6 (only on web).

41.3. The class ObjectSet

Lecture 11 - slide 4
In Section 41.2 we learned the following lesson:

There is an endless numberTgpeset classes. One for eadlype. Each of them is
similar to the others.

We will now review the solution to the problem winiwvas used in Java before version 1.5, and in

C# before version 2. These are the versions dfitbdanguages prior to the introduction of
generics.

376

The idea is simple: We implement a set class ohetd typedbj ect . We call itoj ect Set . The
type bj ect is the most general type in the type system (seddh 28.2). All other types inherit
from the classbj ect .

Below, in Program 41.7 we show the claspect Set . In the paper version, only an outline with a
few constructors and methods is included. The vebion shows the full definition of class
hj ect Set .

usi ng System
usi ng System Col | ecti ons;

public class ObjectSet {

private int capacity;

private static int DefaultCapacity = 10;
private Object] st ore;

private int next;

publ i c ObjectSet (int capacity){
this.capacity = capacity;
store = new Object[capacity] ;
next = 0;

}

/I Other constructors

publ i c bool Menber (Object el ement) {
for(int idx = 0; idx < next; idx++)
if (element.Equal s(store[idx]))
return true;
return fal se;

}

public void Insert (Object el ement) {
if ('this.Menber (el enent))
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<Object> (ref store, capacity * 2);
capacity = capacity * 2;

}
store[next] = el ement;
next ++;

}
}

/I Other methods

Program 41.7 An outline of the class ObjectSet.

We can now write programs with a setbbg, a set oBankAccount, a set of nt, etc. In Program
41.8 (only on web) we show a program, similar togfam 41.2, which illustrates setstoe
objects. (The clasa e can be found in Section 10.1).

The main problem with clag®j ect Set is illustrated below in Program 41.10. In line 2@we
make a set of dice{), a set of integers?), a set of stringssg), and set of mixed objects4. Let

377

us focus ors1. If we take a die out af1 with the purpose of usingtie operation on it, we need to
typecase the element twige. This is shown in line 23. From the compiler'smaf view, all
elements in the setL are instances of classj ect . With the castbDi e) o in line 23, we guarantee
that each element in the set isi@. (If an integer or a playing card should sneak the set, an
exception will be thrown). - The output of the prawg is shown in Listing 41.11 (only on web).

using System
using System Col | ecti ons;

cl ass App{

public static void Min(){

Die d1 = new Die(6), d2 = new Die(10),
d3 = new Die(16), d4 = new Die(8);
int sum = O;
string netString = "";
ObjectSet
sl = new ObjectSet (/I A set of dice
new Die[]{dl, d2, d3, d4}),
s2 = new ObjectSet (Il A set of ints
new oject[]{1, 2, 3, 4}),
s3 = new ObjectSet (Il A set of strings
new string[]{"a", "b", "c", "d"}),
s4 = new ObjectSet (/I A set of mixed things...

new object[]{new Die(6), "a", 7});
foreach(Object o in sl){
((Die) o0).Toss();
Consol e. WiteLine("{0}", (Die)o);
}

// Sonme details have been left out

Program 41.10 A client of ObjectSet - working with set
of different types.

378

41.4. Problems

Lecture 11 - slide 5

The classesnt Set, St ri ngSet andj ect Set suffer from both programming and type problems:

+ Problems withntSet andstringSet
- Tedious to write both version€opy and paste programming.
« Error prone to maintain both versions
+ Problems withDbjectSet
« Elements of the set must be downcasted in caseeec o use some of their
specialized operations
« We can create an inhomogeneous set
- A setof "apples” and "bananas"

Generic types, to be introduced in the followingater, offer a type safe alternatived ect Set ,
in which we are able to avoid type casting.

379

380

42. Generic Types

Generic types are types that carry type paramelgpe parameterized classes will be of particular
importance. The motivation for working with typerpaeterized classes was gained in Chapter 41.

42.1. The generic class Set<T>

Lecture 11 - slide 7

Let us, right away, present the generic set dass> . It is shown in Program 42.1. As usual, we
show an abbreviated version of the class in thempegition of the material.

usi ng System
usi ng System Col | ecti ons. Ceneri c;
usi ng System Col | ecti ons;

public class Set<T> {

private int capacity;

private static int DefaultCapacity = 10;
private T[] store;

private int next;

public Set(int capacity){
this.capacity = capacity;
store = new T[capacity] ;
next = 0;

}
public Set(): this(DefaultCapacity){
}

public Set(T[] elenments): this(elenments.Length){
foreach(T el in elenents) this.Insert(el);

}

/I Copy constructor
public Set(Set<T> s): this(s.capacity){
foreach(T el in s) this.Insert(el);

}

public bool Menber (T el ement){
for(int idx = 0; idx < next; idx++)
if (element.Equal s(store[idx]))
return true;
return fal se

}

public void Insert(T el ement){
if ('this.Mnber(elenment)){
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<T>(ref store, capacity * 2);
capacity = capacity * 2;

}

381

store[next] = el enent;
next ++;
}

}

public void Delete(T el ement){
bool found = fal se;
int foundldx = O;
for(int idx = 0; !found && (idx < next); idx++){
if (elenment.Equal s(store[idx])){
found = true;
foundl dx = idx;

}

if (found){ /I shift remaining elements left
for(int idx = foundl dx+1; idx < next; idx++)

store[idx-1] = store[idx];
store[next-1] = defaul t(T);
next - -;
}
}
/I Additional operations: Count, Subset, ToString, Full, and GetEnumerator

Program 42.1 Theclass Set <T>.

The advantage of classt<T> over clas®bjectSet becomes clear when we study a client of
Set<T> . Please take a look at Program 42.2 and compaiéhiProgram 41.10. We are able to
work with both sets of value types, suctsasint> , and sets of reference types, such as

Set<Die> . When we take an element out of the set it isveoessary to cast it, as in Program 41.10.

Notice that doreach loop does not provide the best illustration ofthspect, because ttype in
foreach(type var in collection) isused implicitly for casting a value in collaxtitotype.

The only way to access elements in a set is tatsigerator. Please take a look at Exercise 1f1.2 i

you wish to go deeper into this issue.

using System
using System Col | ecti ons;

cl ass App{

public static void Min(){
Die d1 = new Die(6), d2
d3 = new Die(16), d4
int sum = O;
string netString = "";

new Di e(10),
new Di e(8);

Il Working with sets of dice:
Set<Die> sl = new Set<Die> (/I A set of dice
new Di e[]{d1, d2, d3, d4});
foreach(Die d in sl1){
d. Toss();
Consol e. WiteLine("{0}", d);

382

/ Working with sets of ints

Set<int> s2 = new Set<int> (Il A set of ints
new int[]{1, 2, 3, 4});
foreach(int i in s2)
sum += i;

Consol e. WiteLine("Sum {0}", sum;

/' Working with sets of strings
Set<string> s3 = new Set<string> (// A set of strings
new string[]{"a", "b", "c", "d"});
foreach(string str in s3)
netString += str;
Consol e. Wi teLine("Appended string: {0}", netString);

Program 42.2 A client of Set <T> - working with sets of
different types.

The output of Program 42.2 is shown in Listing 4@83ly on web).

Exercise 11.1. Intersection, union, and difference: Operations on sets

On the accompanying slide we have shown a gen@ssset<T> .

Add the classical set operations intersection, uaind set difference to the generic classTt> .
Test the new operations from a client program.

Hint: The enumerator, that comes with the ckessr> , may be useful for the implementation of
the requested set operations.

Exercise 11.2. An element access operation on sets

The only way to get access to an element from & &4 use of the enumerator (also known as
the iterator) of the set. In this exercise we viskchange that.

Invent some operation on the set that allows ydake out an existing element in the set. This
corresponds to accessing a given item in an amaylist, for instance via an indexaer:r[i] and

I st[j]. Notice in this context that there is no ordemsn elements in the set. It is not natural
to talk about "the first" or "the last" elementtire set.

Given the invented operation $et<T> use it to illustrate that, for some concrete typeo
casting is necessary when elements are accesseddror>

383

42.2. Generic Types

Lecture 11 - slide 8

Let us now describe the general concepts behin@i@enypes in C#. C# supports not only generic
classes, but also generic structs (see Sectiof, 4&feric interfaces (see Section 42.8), and gener
delegate types (see Section 43.2). Overall, wendisish between templates and constructed types:

« Templates
« C<T>is not a type
+ C<T>is a template from which a type can be constructed
« Tis aformal type parameter
« Constructed type
« The type constructed from a template
« C<int> , C<string> , andD<C<int>>
« int ,string , andcC<int> areactual type parameters of C andD

When we talk about a generic type we do it in tleaning of a template.

The word "template" is appropriate, and in fact josthe point. But most C# writers do not use it,
because the word "template” it used in C++ in adalprelated, but slightly different meaning. A
template in C++ is a type parameterized class, wisiexpanded at compile time. Each actual type
parameter will create a new class, just like we ld@ueate it ourselves in a text editor. In C#,
generic classes are able to share the class rapagsa at run-time. For more details on these
matters, consult for instance [Golding05].

As a possible coding style, it is often recommentbedlse capital, single letter names (such, as
andu) as formal type parameters. In that way it becoeasser to recognize templates, to spot
formal type names in our programs, to keep temgplapart from constructed types, and to avoid
very name clauses of generic types. In situatiomsreva type takes more than one formal type
parameters, an alternative coding style callsdamal type parameter names likeandTy, (such
asTKey andTval ue) wherex andy describe the role of each of the formal type patans.

The ability to have generic types is knowrpasametric polymorphism

42.3. Constraints on Formal Type Parameters

Lecture 11 - slide 9

Let us again consider our implementation of theegerclassset<T> in Program 42.1. Take a close
look at the class, and find out if we make any agsions about the formal type parameten
Program 42.1. Will any typereally apply? Please consider this, before yowegxd!

In Set<T> it happens to be the case that we do not makassymption of the type parameter
This is typical forcollection classes (which are classes that serve as eleroamtainers).

384

It is possible to express a number of constrainta tormal type parameter

The more constraints an the more we can do anobjects in the body af<T>

Sometimes we write a parameterized classcsay, in which we wish to be able to make some
concrete assumptions about the type pararmetéou may ask what we want to express. We could,
for instance, want to express that

1. Tis avalue type, allowing for instance use oftifpe T? (nullable types, see Section 14.9)
insideC<T>.

2. Tis areference type, allowing, for instance, thegpam fragment v; v = null; inside
C<T>.

3. T has a multiplicative operator, allowing for expressions liket1, t2; ... t1 *
t2... INC<T>.

4. T has a method named that accepts a parameter which is also of type

5. T has a C# indexer of two integer parameters, algiorT t; ... t[i, j] ... within
C<T>.

6. Tis a subclass of clagankAccount , allowing for the program fragmenta;
ba.AddInterests(); within C<T>.

7. Timplements the interfagEnumerable , allowingforeach iterations based on T €kT>,
see Section 31.6 .

8. Tis atype with a parameterless constructor, allgwhe expressiomew T() in C<T>.

It turns out that the constraints in 1, 2, 6,] 8rcan be expressed directly in C#. The consgamnt
4 and 5 can be expressed indirectly in C#, wheteasonstraint in 3 cannot be expressed in C#.

Here follows a program fragment that illustrates ldgal form ofconstraints on type parameters in

generic types in C#. We define generic clags&sF, andG all of which are subclasses of clasa
andB are classes defined elsewhere. The constraintobreed in Program 42.4.

385

class C<S, T>: D
where T: A, ICloneable
where S: B {

.

class E<T>: D
where T: class {

.

class F<T>: D
where T: struct {

.

class &<T>: D
where T: new() {

Program 42.4 lllustrations of the various constraints on
type parameters.

The class has formal type parametes&ndT. The first constraint requires thats A, or a subclass
of A, and that it implements the interfac@ onabl e. Thus, only class or subclasses @fthat
implement d onabl e can be used as actual parameter correspondingrtee type parameter
must beB or a subclass @.

The clas€ has a formal type parameterwhich must be a class. In the same way, the elass a
formal type parametar, which must be a struct.

The classs has a formal type parameterwhich must have a parameterless constructor.

As a consequence of the inheritance rules in Cif,aringle class can be given in a constraint.
Multiple interfaces can be given. A class shoulthedefore any interface. Thus, in line 2 of
Program 42.4, whereis constrained by, |d oneabl e, A can be a class, and everything aftam
the constraint need to be interfaces.

42.4. Constraints: Strings of comparable elements

Lecture 11 - slide 10

We will now program a generic class with constaift/e will make a clask ri ng<T> which
generalizesyst em St ri ng from C#. An instance it ri ng<T> contains a sequence BValues/
T-objects. In contrast, an instancesgét em St ri ng contains a sequence of Unicode characters.
With use ofst ri ng<T> we can for instance make a string of integerssiagsof bank accounts, and
a string of dice.

386

Old-fashioned character strings can be ordere@usecwe have an ordering of characters. The
ordering we have in mind is sometimes calkedcographic ordering, because it reflects the
ordering of words in dictionaries and encyclopete also wish to support ordering of our new
generalized strings fromst ri ng<T>. It can only be achieved if we provide an ordehghe
values/objects i. This is done by requiring thatimplements the interfageconpar abl e, which
has a single methazbnpar eTo. For details om Conpar abl e andConpar eTo, please consult
Section 31.5.

Now take a look at the definition efri ng<T> in Program 42.5. In line 3 we state tBati ng<T>
should implement the interfac€onpar abl e<St ri ng<T>>. It is important to understand that we
hereby commit ourselves to implemertdoapar eTo method inSt ri ng<T>.

You may be confused about the interfacenpar abl e, as discussed in Program 42.5 in contrast to
| Corpar abl e<S>, which is used asConpar abl e<St ri ng<T>> in line 3 of Program 42.5.

| Corrpar abl e<S> is a generic interface. It is generic becausedlsvs us to specify the parameter
to the methoatonpar eTo with better precision. We discuss the generiafate! Conpar abl e<S>

in Section 42.8.

There is an additional important detail in linef3Poogram 42.5, namely the constraint, which is
colored. The constraint states that the typeust ba Conpar abl e itself (again using the generic
version of the interface). In plain English it medhat there must becanpar eTo method available
on the type, which we provide as the actual tygarmpater of our new string class. Our plan is, of
course, to use thenpar eTo method ofT to program th&onpar eTo method ofSt ri ng<T>.

usi ng System

public class String<T>: | Conparabl e<String<T>> where T: IComparable<T> {
private T[] content;
public String(){

content = new T[O];
}

public String(T e){
content = new T[]{e};
}

public String(T el, T e2){
content = new T[]{el, e2};
}

public String(T el, T e2, T e3){
content = new T[]{el, e2, e3};
}

public int CompareTo(String<T> other){
int thisLength = this.content.Length,
ot herLength = ot her.content. Length;

for (int i =0; i < Math.M n(thisLength, otherLength); i++){
i f (this.content[i].CompareTo(other.content]i]) <0)
return -1;
el se i f (this.content[i].CompareTo(other.content]i]) > 0)

387

return 1;

/'l 1 ongest possible prefixes of this and other are pair-w se equal.
if (thisLength < otherlLength)
return -1,
el se if (thisLength > otherLength)
return 1;
el se return O;

}

public override string ToString(){
string res = "[";
for(int i = 0; i < content.Length;i++){
res += content[i];
if (i < content.Length - 1) res +="

}

reS +: II]II,
return res;

}

Program 42.5 The generic class St ri ng<T>.

In line 5 we see that a string Dielements is represented as an arrayefments. This is a natural
and straightforward choice. Next we see four caestrs, which allows us to make strings of zero,
one, two or three parameters. This is convenient,gmod enough for toy usage. For real life use,
we need a general constructor that accepts an afrfaglements. The can most conveniently be
made by use of parameter arrays, see Section 20.9.

After the constructors, from line 23-39, we seeioylementation o€onpar eTo. From an overall
point of view we can observe that it ugespar eTo of typeT, as discussed above. This is thee
aspects in line 28 and 30. It may be sufficienhtike this observation for some readers. If you
want to understand what goes on inside the metiead, on.

Recall thattonpar eTo must return a negative result if the current abgéess thamt her, O if the
current object is equal @ her, and a positive result if the current object isajer thamt her . The
for-loop in line 27 traverses the overlapping pre$ of two strings. Inside the loop we return a
result, if it is possible to do so. If the for-lotgrminates, the longest possible prefixes of W t
string are equal to each other. The lengths ofwtleestrings are now used to determine a result.

If Tis the typehar, if the current string is "abcxy”, andaf her is "abcxyz", we compare "abcxy"
with "abcxy" in the for loop. "abcxy" is shorterathh "abcxyz", and therefore the result of the
comparison -1.

The methodrost ri ng starting in line 41 allows us to print instancésia i ng<T> in the usual way.

In Program 42.6 we see a client classtofi ng<T>. We construct and compare strings of integers,
strings of strings, strings of doubles, stringbobdleans, and strings of dice. The dimmed method
Repor t Conpar e activates thet ri ng<T> operationConpar eTo on pairs of such strings.

Repor t Conpar e is a generic method, and it will be "undimmed" axglained in Program 43.1.
Take a look at the program output in Listing 421d &e sure that you can understand the results.

388

using System
class StringApp{
public static void Min(){

Repor t Conpar e(new String<int>(1, 2) ,
new String<int>(1))
Report Conpar e(new String<string>("1", "2", "3")
new String<string>("1"));
Report Conpar e(new String<double>(0.5, 1.7, 3.0) ,
new String<double>(1.0, 1.7, 3.0));
Repor t Conpar e(new String<bool>(true, false) ,
new String<bool>(false, true));
Report Conpar e(new String<Die>(new Die(), new Die())
new String<Die>(new Die(), new Die()));

s. ConpareTo(t)

Program 42.6 Illustrating Srings of different
types.

Result of conparing [1, 2] and [1]: 1

Result of conparing [1, 2, 3] and [1]: 1

Result of conparing [0,5, 1,7, 3] and [1, 1,7, 3]: -1
Result of conparing [True, False] and [Fal se, True]: 1
Result of conparing [[3], [6]] and [[3], [5]]: 1

Listing 42.7 Output from the Sring of different types
program.

Exercise 11.3. Comparable Pairs
This exercise is inspired by an example in the Hdopklansen and Sesto@# Precisely.

Program a clasSomparablePair<T,U> which implements the interface
IComparable<ComparablePair<T,U>> . If you prefer, you can build the class
ComparablePair<T,U> on top of clas®air<sS,T> from an earlier exercise in this lecture.

It is required that andu are types that implemenrbmparable<T> andicomparable<U>
respectively. How is that expressed in the ctassparablePair<T,u> ?

The generic classomparablePair<T,U> should represent a pdtru) of values/objects whetas
of typeT andu is of typeu. The generic class should have an appropriatercmter that
initializes both parts of the pair. In additioneth should be properties that return each of the
parts. Finally, the class should - of course - enpént the operatiotonpar eTo because it is
prescribed by the interfaggstem.IComparable<ComparablePair<T,U>>

Given two pairs p = (a,b) and g= (c,d). p is coasd less than g if a is less than c. If a is etyual

389

c then b and d controls the ordering. This is sintib lexicographic ordering on strings.

If needed, you may get useful inspiration fromithenpar abl e classString<T> on the
accompanying slide.

Be sure to test-drive your solution!

42.5. Another example of constraints

Lecture 11 - slide 11

We will now illustrate the need for the class atrda constraints. We have already touched on
these constraints in our discussion of Program.42.4

In Program 42.8 we have two generic clagsasdD. Each of them have a single type paramater,
andu respectively. As shown witred color in line 7 and 15, the compiler complainslite 7 we
assign the valueul | to the variable of typeT. In line 15 we make a nullable type from u. (If
you wish to be reminded about nullable types, clir&ection 14.9). Before you go on, attempt to
explain the error messages, which are shown as eotsnn Program 42.8.

/* Exanple from Hansen and Sestoft: C# Precisely */

cl ass C<T>{
/I Compiler Error message:
/I Cannot convert null to type parameter 'T' becaus e it could
/I be a value type. Consider using 'default(T)' ins tead.
T f=null;
}

cl ass D<U>{
/[l Compiler Error message:
/[The type 'U' must be a non-nullable value type i n order to use
/l it as parameter 'T' in the generic type or metho d
/['System.Nullable<T>'
u?f ;

Program 42.8 Two generic classes C and D - with
compiler errors.

In Program 42.9 we show new versionsof> andb<U>. Shown inpur ple we emphasize the
constraints that are necessary for solving thelpnos.

The instance variableof typeT in C<T> is assigned toul | . This only makes sensefifis a
reference type. Therefore thiass constraint oI is necessary.

The use obr? in D<U> only makes senselifis a value type. (To understand this, you arerredeto

the discussion in Section 14.9). Value types ira@#provided by structs (see Section 6.6). The
struct constraint oru is therefore the one to use.

390

/* Exanple from Hansen and Sestoft: C# Precisely */

cl ass C<T> where T: class {
Tf = null;
}

cl ass D<U> where U: struct {
u? f;
}

cl ass Appl{

/I Does NOT compile:
C<double> ¢ = new C<double>();
D<A> d=new D<A>();

/I OK:

C<A> cl=new C<A>();
D<double> d1 = new D<double>();

}

class A{}

Program 42.9 Two generic classes C and D - with the
necessary constraints.

In line 11-21 we show clients a¢kT> andb<u>. The compiler errors in line 14 and 15 are easy to
explain. The typeoubl e is not a reference type, aadwhich is programmed in line 23, is not a
value type. Thereforéoubl e andA violate the constraints akT> andb<U>. In line 18 and 19 we
switch the roles ofioubl e andA. Now everything is fine.

42.6. Variance

Lecture 11 - slide 12

Consider the question asked in the following box.

A CheckAccount iSa BankAccount

But is aSet<CheckAccount> aSet<BankAccount> 7

You are encouraged to review our discussion ofdlagelation in Section 25.2.

The question is howet <T> is varies wherr varies. Variation in this context is specializaticf.
Chapter 25. Iset <T> specialized whenm is specialized?

Take a look at Program 42.10. In line 7-14 we aaoresta number of bank accounts and check
accounts, and we make a set of bank accosnisr(line 17) and a set of check accounts (n
line 18). In line 21 and 22 we populate the twes8b far so good. Next, in line 25 (shown in
purple) we play the polymorphism game as we have doneyriaes earlier, for example in line

391

13 of Program 28.17. Het <CheckAccount > iSa Set <BankAccount > line 25 of Program 42.10
should be OK (just as line 13 of Program 28.17K9.0

The compiler does not like line 25, however. Thesoa is thaset <CheckAccount > iSNOT a
Set <BankAccount >.

If we for a moment assume tlslt <CheckAccount > iSa Set <BankAccount > the rest of the
program reveals the troubles. We insert a BewkAccount object ins1, and via the alias
established in line 25, the n@®ankAccount object is also inserted ing@. When we in line 34-35
iterate through all theneckAccount objects of the se2, we encounter an instance of
BankAccount . We cannot carry out$meCheckAccount Oper at i on On an instance of
BankAccount .

using System
cl ass Set OF Account s{
public static void Min(){

/I Construct accounts:

BankAccount bal = new BankAccount ("John", 0.02),
ba2 = new BankAccount (" Anne", 0.02),
ba3 = new BankAccount (" Frank", 0.02);
CheckAccount cal new CheckAccount ("M ke", 0.03),
new CheckAccount ("Lene", 0.03),
new CheckAccount ("Joan", 0.03);

ca2 =
ca3 =
/I Constructs empty sets of accounts:

Set<BankAccount> s1 = new Set<BankAccount>();
Set<CheckAccount> s2 = new Set<CheckAccount>();

Il Insert elements in the sets:
sl.Insert(bal); sl.lnsert(ba2);
s2.lnsert(cal); s2.lnsert(ca2);

/I Establish s1 as an alias to s2

sl=s2 ; /l Compile-time error:
/I Cannot implicitly convert type 'Set<CheckAccount >!
Il to 'Set<BankAccount>'

/I Insert a BankAccount object into s1,

// and via the alias also in s2
sl.Insert(new BankAccount("Bodil", 0.02));

392

/I Activates some CheckAccount operation on a BankA ccount object
f oreach(CheckAccount ca in s2)
ca. SoneCheckAccount Oper ati on();

Consol e. WiteLine("Set of BankAccount: {0}", s1);
Consol e. WiteLine("Set of CheckAccount: {0}", s2);

Program 42.10 Sets of check accounts and bank
accounts.

The experimental insight obtained above is - peshaggainst our intuition. It can be argued that an
instance oBet <CheckAccount > should be a valid stand in for an instanceeaf<BankAccount >,

as attempted in line 25. On the other hand, itmasked if the extension &t <CheckAccount >

is a subset afet <BankAccount >. (See Section 25.2 for a definition of extensi@r)asked in this
way: Is the set of set of check accounts a suliseset of set of bank accounts? As designed in
Section 25.3 the set @heckAccountsis a subset of the set BankAccount. But this does not imply
that the_set of setf CheckAccount is a subset of the set of sétBankAccount . A set of

CheckAccount (understood as a single objects) is incompatililfle &vset oBankAccount
(understood as a single object).

Figure 42.1 A set of bank accounts and a set of check accounts

In Program 42.10 we establish the scene illustratédgure 42.1. More precisely, the illustration
shows the situation as of line 28 of Program 42TH@ problem is that we in line 31 add a new
instance oBankAccount tos1, which refers to an instance &t <CheckAccount >. Later in the
program (line 35) this would cause "a minor exmasiif the program was allowed to reach this
point . Thus, the real problem occurs if we muthteset of check accounts that are referred from a
variable of static typset <BankAccount >. (See Section 28.10 for the definitiongtic type).

In general, we distinguish between the followingds of variances in betwesat <T> andT:

393

« Covariance
+ The set types vary in the same way as the elempest
« Contravariance
« The set types vary in the opposite way as the aletgpes
« Invariance
+ The set types are not affected by the variatiorte@tlement types

If Program 42.10 could be compiled and executetiaut problems (if line 25 is considered OK),
then we would have covariance betwsen<T> andT

In C#Set <T> is invariant in relation to.

We notice that the problem discussed above is a@irtolthe parameter variance problem, which we
discussed in Section 29.2.

C# and Java do both agree on invariance in bet&eesT> andT. But in contrast to C#, Java has a
solution to the problem in terms wfldcard types. We realized above thagét <T> is not a
generalization of all sets. In Java 1.5, a wilddgsk written aset <?> (a set of unknown) is a
generalization of all sets. It is, however, notgible to mutate an object of static tyge <?>. If

you are interested to known more about generidawa, you should consult Gilad Bracha's tutorial
"Generics in the Java Programming Language”, [Bx2004].

42.7. Generic structs

Lecture 11 - slide 13

It is possible to make type parameterized strisitsilar to the type parameterized classes that we
have seen in the previous sections.

As an example we will see how we can define theegerstruct\ul | abl e<T> which defines the
type behind the notatiore for an arbitrary value type Nullable types were discussed earlier in
Section 14.9. Recall that nullable types enjoyipaldr compiler support, beyond the translation of
T2 toNul | abl e<T>. This includes support of lifted operators (operathat are extended to work
onT? in addition tor) and support of theul I value as such.

usi ng System

public struct Null abl e<T>
where T :struct {

private T val ue;
private bool hasVal ue;

public Nullable(T val ue){
this.value = val ue;
this. hasVal ue = true;

}

394

public bool HasVal ue{

get{
return hasVal ue;

}
}

public T Val ue{
get{
i f (hasVal ue)
return val ue;
el se throw new I nval i dOperati onException();

}
}

Program 42.11 A partial reproduction of struct
Nul | abl e<T>.

The generic structul | abl e<T> aggregates a value of type T and a boolean vaheboolean
value is stored in the boolean instance variabte/al ue. If nv is of typeNul | abl e<T> for some
value typert, and if the variabl@asval ue of nv isf al se, thennv is considered to have the value
nul I . The compiler arranges that the assignment nul | is translated tav. hasval ue = fal se.
This is somehow done behind the scene bedausal ue is private.

42.8. Generic interfaces: IComparable<T>

Lecture 11 - slide 14

In this section we will take a look at the genemnierfacel Conpar abl e<T>. We have earlier in the
material (Section 31.5) studied the non-generierfatel conpar abl e, see Program 31.6.

If you review your solution to Exercise 8.6 you glibbe able to spot the weakness of a class
Conpar abl eDi e, which implements Conpar abl e. The weakness is that the parameter of the
methodConpar eTo must have abj ect as parameter. A method with the signature

Conpar eTo(Di e) does not implement the interfaiceonpar abl e. (Due to static overloading of
methods in C#, the methodsnpar eTo(Obj ect) andConpar eTo(Di e) are two different methods,
which just as well could have the signatubeisect Conpar eTo(Obj ect) andbi eConpar eTo(Di e)).
Thus, as given by the signaturedofipar eTo, we compare & e and any possible object.

In Program 42.12 we reproduceonpar abl e<T>. Program 42.12 corresponds to Program 31.6.
(Do not use any of these - both interfaces arespdrtheSyst emnamespace). As it appears, in the
generic interface the parameterofipar eTo is of typeT. This alleviates the problem of the non-
generic interfaceConpar abl e.

395

using System

public interface | Conparabl e <T>{
i nt ConpareTo(T other);

}

Program 42.12 Areproduction of the generic interface
| Conpar abl e<T>.

Below we show a version of clasise which implements the interfac€onpar abl e<Di e>. You
should notice that this allows us to use as formal parameter of the methaugpar eTo.

using System

public class Die: IComparable<Die> {
private int nunber O Eyes;
private Random randomNunber Suppl i er;
private const int maxNunber Of Eyes = 6;

public Die(){
randomNunber Suppl i er = Random I nst ance() ;
nunber O Eyes = NewTossHowManyEyes() ;

}
public int CompareTo(Die other)
return this.numberOfEyes.CompareTo(other.number OfEyes);

/!l O her Die nethods

Program 42.13 A class Die that implements
| Conpar abl e<T>.

The implementation of the generic interface is ntgpe safe and less clumsy than the
implementation of the non-generic solution

42.9. Generic equality interfaces

Lecture 11 - slide 15

Before reading this section you may want to renyiodrself about the fundamental equality
operations in C#, see Section 13.5.

There exist a couple of generic interfaces whidsprbesqual s operations. The most
fundamental i$ Equat abl e<T>, which prescribes a singigual s instance method. It may be
attractive to implementequat abl e in certain structs, because it could avoid thedreddoxing the
struct value in order to make use of the inhergchl s method from clasesbj ect .

| Equal i t yConpar er <T> is similar, but it also supportsGat HasCode method. (Notice also that the

signatures of thequal s methods are different in the two interfacemjuat abl e<T> prescribes
x. Equal s(y) whereas Equal i t yConpar er <T> prescribegqual s(x, y)).

396

Below, in Program 42.14 and Program 42.15 we sheproductions of the two interfaces. Notice
again that the two interfaces are present in tineas@acesyst emand
System Col | ecti ons. Generi c respectively. Use them from there if you need them

usi ng System

public interface | Equatable <T>{
bool Equals (T other);

}

Program 42.14 Areproduction of the generic interface
| Equat abl e<T>.

usi ng System

public interface | EqualityConparer <T>{
bool Equals (T x, T y);
int GetHashCode (T x);

}

Program 42.15 A reproduction of the generic interface
| Equal i t yConpar er <T>.

Several operations in generic collections, sud asst <T> in Section 45.9, need equality
operations. ThendexOf method inLi st <T> is a concrete example, see Section 45.11. Using

| st. I ndexOF (el) we search for the eleme#it in the listl st . Comparison o&l with the elements
of the list is done by thdefault equality comparer of the typer. The abstract generic class

Equal i t yConpar er <T> Offers a stati©ef aul t property. Thedef aul t property delivers the default
equality comparer for type The abstract, generic clasgial i t yConpar er <T> implements the
interfacel Equal i t yConpar er <T>.

Unfortunately the relations between the generierfates Equat abl e<T> and

| Equal i t yConpar er <T>, the clas€qual i t yConpar er <T> and its subclasses are quite complicated.
It seems to be the cases that these interfaceslasses have been patched several times, during the
evolution of versions of the .Net libraries. Thedli landscape of types is therefore more
complicated than it could have been desired.

42.10. Generic Classes and Inheritance

Lecture 11 - slide 16

In this section we will clarify inheritance rela¢ito generic classes. We will answer the following
guestions:

Can a generic/non-generic class inherit from a non-generic/generic class?

The legal and illegal subclassings are summariesuoib

397

- Legal subclassing
« A generic subclass of a hon-generic superclass
« A generic subclass of a constructed superclass
« A generic subclass of generic superclass

- lllegal subclassing
« A non-generic subclass of generic superclass

You can refresh the terminology (generic class/ttanted class) in Section 42.2.
The rules are exemplified below.

using System

/I A generic subclass of a non-generic superclass.
cl ass SoneCeneri cSet 1<T>: | nt Set {
I

}

/I A generic subclass of a constructed superclass
cl ass SoneCeneri cSet 2<T>: Set <i nt >{
I

}

/I A generic subclass of a generic superclass

/I The most realistic case

cl ass Speci al i zedSet <T>: Set <T>{
1.

}

/I A non-generic subclass of a generic superclass
/I lllegal. Compile-time error:
/I The type or namespace name 'T' could not be foun d
cl ass Set: Set<T>{
I

}

Program 42.16 Possible and impossible subclasses of
Set classes.

From line 4 to 6 we are about to program a geradai€sSomeGener i cSet 1<T> based on a non-
generic classnt Set . This particular task seems to be a difficult enae, but it is legal - in general
- to use a non-generic class as a subclass ofigehess.

Next, from line 9 to 11, we are about to progragesneric clasSoneGeneri cSet 2<T> based on a
constructed classet <i nt >. This is also OK.

From line 15-17 we show the most realistic caseehkige program a generic class based on another
generic class. In the specific example, we are atoospecializeset <T> to Speci al i zedSet <T>.

The type parametarof Speci al i zedSet <T> also becomes the type parametesea<T>. In

general, it would also be allowed fggeci al i zedSet <T> to introduce additional type parameters,
such as irspeci al i zedSet <T, S>: Set <T>.

398

The case shown from line 22 to 24 is illegal, siyrpécause is not the name of any known type.
In line 22,7 is name of amctual type parameter, batis not around! It is most likely that the
programmer is confused about the rolefoofnal andactual type parameters, see Section 42.2.

42.11. References

[Bracha2004] Gilad Bracha, "Generics in the JawwgRimming Language", July 2004.
[Golding05] Tod GoldingProfessional .NET 2.0 Generics. Wiley Publishing, Inc., 200!

399

400

43. Generic Methods

We are used to working with procedures, functiams] methods with parameters. Procedures,
functions and methods are all known as abstractidmparameter is like a variable that generalizes
the abstraction. Each parameter of a procedurgaidn, or a method is of a particular type. In

this chapter we shall see how such types themsearebe passed as parameters to methods. When
methods are parameterized with types, we talk ady@neric methods.

43.1. Generic Methods

Lecture 11 - slide 18

In Section 42.2 we realized that a generic typel{ss a generic class) is a template from which it
is possible to construct a real class. In the samg a generic method is template from which we
can construct a real method.

In C# and similar languages, all methods belongdsses. Some of these classes are generic, some
are just simple, ordinary classes. We can havergemethods in both generic types, and in non-
generic types.

Our first example in Program 43.1 is the generithm@&Repor t Conpar e in the non-generic class
St ri ngApp. Report Conpar e iS a method in the client class®fr i ng<T> which we encountered in
Section 42.4. When we first met it, we where négriested in the details of it, so therefore it was
dimmed in Program 42.6.

Notice first that the methoekpor t Conpar e takes two ordinary parameterandt . They are both

of typest ri ng<T> for some given typ&. The method is supposed to report the orderiryg of
relative tot via output written to the consoleis a (formal) type parameter of the method. Type
parameters of methods are given in "triangular ket <.. > in between the method name and the
ordinary parameter list. It is highlighted withir ple in Program 43.1.

The formal type parameter Bépor t Conpar e is passed on as an actual type parameter to our
generic classt ri ng<T> from Section 42.4. If we look at our definitiontble generic class
String<T> in Program 42.5 we notice thatmust implementconpar abl e<T>. This is a constraint
of T, identical to one of the constraints of type pagters of types, see Section 42.3. The only way
to ensure this in Program 43.1 is to add the camitto the generic method. This is thee part,

see line 15.

Notice in line 7-11 of Program 43.1 that the actypk parameter atepor t Conpar e iS not given
explicitly. The actual type parameters of the foadls are conveniently inferred from the conteit. |

is, however, possible to pass the actual type petemexplicitly. If we chose to do so, line 7 of
Program 43.1 would be

Repor t Conpar e<i nt >(new String<int>(), new String<int>(1));

401

The remaining aspects Bépor t Met hod are simple and straightforward.

usi ng System
class StringApp{
public static void Min(){

Report Conpare(new String<int>(), new String<int>(1));

Report Conpar e(new String<int>(1), new String<int>(1));

Report Conpare(new String<int>(1,2,3), new String<int>(1));
Report Conpare(new String<int>(1), new String<int>(1,2,3));
Report Conpare(new String<int>(1,2,3), new String<int>(1,2,3));

}
public static void ReportCompare <T>(String<T> s, String<T> t)
where T: IComparable<T> {
Console.WriteLine("Result of comparing {0} and {1}: {2}",
s, t, s.CompareTo(t));
}

}

Program 43.1 The generic method ReportComparein
the generic String programs.

Let us now study an additional program example @éheric methods. Program 43.2 contains a
bubblesort method in line 5-18ubbl esort sorts an array of element typewhereT is a type
parameter of the method. The type parameter makesubblesort method more general, because it
allow us to sort an array of arbitrary typeThe only requirement is, quite naturally, that
objects/values of type typeshould be comparable, such that we can ask ivahe is less than or
equal to another value. This is expressed by ¢hepar abl e<T> constraint on T at the end of line

5.

The implementation of bubblesort in Program 432 tasurprises. In a double for loop we
compare and swap elements. Comparison is madebfobsicause[i] values are of type that
implements conpar abl e<T>. Swapping of elements are done bys$hep method via use of C#
ref parameters, see Section 20.6. Notice $hap is also a generic method, because it can swap
values/objects of arbitrary types. Be sure to matie formal type parameteiof Swap in line 13.

Finally we have the generic methrebort Arr ay, (see line 18-21), which simply prints the values
of the array to standard output.

usi ng System

cl ass Sort Denp{

static voi d BubbleSort<T>(T[] a) where T: IComparable<T> {
int n = a.lLength;
for (int i =0; i <n - 1; ++i)

for (int j =n-1;j >i; --j)

if (a[j-1].CompareTo(a[j]) > 0)
Swap(ref a[j-1], ref a[j]);

402

public static void Swap<T>(ref T a, ref T b) {

T tenp;
temp = a; a =Db; b =tenp;
}
public static void ReportArray<T>(T[] a) {

foreach(T t in a) Console. Wite("{0,4}", t);
Consol e. WiteLine();
}

public static void Min(){
doubl e[] da = new double[]{5.7, 3.0, 6.9, -5,3, 0.3};

Die[] dia = new Die[]{new Die(), new Die(), new Die(),
new Die(), new Die(), newDie()};

Report Array(da); BubbleSorti(da) ; ReportArray(da);
Consol e. Wi teLine();
Report Array(di a); BubbleSort(dia) ; ReportArray(dia);

Consol e. WiteLine();

/I Equivalent:

Report Array(da); BubbleSort<double>(da) ; ReportArray(da);

Consol e. WiteLine();

Report Array(di a); BubbleSort<Die>(dia) ; ReportArray(dia);
}

Program 43.2 A generic bubble sort program.

In themai n method we make an array of doubles and an arrdicef Values of typeoubl e are
comparable. We compile the program with a versioriassbi e that implements Conpar abl e<T>,
such as thei e class of Program 42.13. The callsBabbl eSort in line 29 and 31 do not supply an
actual type parameter Bobbl eSor t <T>. The compiler is smart enough to infer the actyjaé
parameter from the declared types of the variabdeanddi a respectively. In line 35 and 37 we
show equivalent calls @ubbl eSort to which we explicitly supply the actual type paeters

doubl e andbi e.

The output of Program 43.2 is shown in Listing 4@®3ly on web).

43.2. Generic Delegates

Lecture 11 - slide 19

Delegates were introduced in Section 22.1. Reaaih fthere that a delegate is a type of methods. In
the previous section we learned about generic ndstHbtherefore not surprising that we also need
to discuss generic delegates.

In Program 22.3 we introduced a delegaieer i cFuncti on, which covers all function from

doubl e todoubl e. In the same program we also introducedpose, which composes two numeric
functions to a single numeric function. In matheoatnotation, the composition 6andg is

403

denoted o g, and it maps x té(g(x)). We are now going to generalize the funcionpose, such
that it can be used on other functions of more g@sggnatures.

Let us assume that we work with two functiér@sdg of the following signatures:

- g:T—>U
. f:U—>S

Thus,g maps a value of type T to a value of typd bhaps a value of type U to a value of type S.
The composite functioho g therefore maps a value of type T to a value oé {$pvia a value of
type U:

« fog: T—S

In line 6 of Program 43.4 we show a delegate calledt i on, which is a function type that maps a
value of type S to values of type T. (It correspotaNuner i cFuncti on in Program 22.3). In line
10-13 of Program 43.4 we show the funct@npose, which we motivated abovEuncti on is a
generic delegate because it is type parameterizeshpose is a generic method, as discussed in
Section 43.1. The generic methed nt Tabl eOf Funct i on, shown in line 16-23, takesFanct i on

f and an arraynput Val ues of types[], and it applies and printgs) on each elementof

i nput Val ues.

using System
public class ConpositionDenp {

/I A function from Sto T
public delegate T Function <S, T>(S d);

/I The generic function for function composition
/[from T to Svia U
public static Function<T,S> Conpose<T, U, S>
(Function<Uy, S> f, Function<T, U> g){
return delegate(T d){return f(g(d));};
}

/I A generic PrintTable function
public static void PrintTabl eO Functi on<S, T>
(Function<S, T> f, string fnane,
S[] inputVal ues){
foreach(S s in inputVal ues)
Consol e. WiteLine("{0,35}({1,-4:F3}) ={2}", fname, s, f(s));

Consol e. WiteLine();
}

/I DieFromInt: int -> Die
public static Die DieFromint(int i){
return new Die(i);

}

/l Round: double -> int
public static int Round(double d){
return (int)(Math.Round(d));

404

public static void Min(){
doubl e[] i nput = new doubl e[25];
for(int i =0; i < 25; i++4)
input[i] = (double) (i*2);

/l Compose(DieFromint, Round): double -> Die
Il (via int)

Pri nt Tabl eOf Funct i on(Compose<double,int,Die>(DieFromInt, Round)
"Di e of double",
i nput) ;

Program 43.4 An example that involves other types
than double.

In line 43 ofmvai n we compose the two functiobseFr omi nt andRound. They are both
programmed explicitly, in line 26 and 31 respedtivé&he functionRound maps aloubl e to ani nt .
The functionDi eFr om nt maps an nt to abi e. Thus,Conpose(Di eFrom nt, Round) maps a
doubl e to abi e. Notice how we pass the three involved tygpasl e, i nt, andbDi e as actual type

parameters tGonpose in line 43.

The version of class e used in Program 43.4 can, for instance, be tles dhown in Program 12.6.
The parameter of the constructor determines themmar number of eyes of the die.

The output of Program 43.4 is shown in Listing 4@sBly on web).

405

43.3. Generic types and methods - Pros and Cons

Lecture 11 - slide 21

In this final section about generic types and meashwee will briefly summarize the advantages and
disadvantages of generics.

« Advantages
- Readability and Documentation
« More precise indication of types.
- Less downcasting from class Object
« Type Checking
- Better and more precise typechecking
- Efficiency

- There is a potential for more efficient programs
+ Less casting - fewer boxings
- Disadvantages

« Complexity
« Yet another abstraction and parametrization-lemelop of the existing

This ends the general discussion of generics.drdtture about collections, from Chapter 44 to
Chapter 48, we will make heavy use of generic types

406

44. Collections - History and Overview

This chapter is the first in our coverage of cdllmts.

Collections are used to organize and process a @uaflobjects or values of the same type. In alraogt
real-life program, collections of objects or valydgy important roles.

Collections fit nicely in our agenda of object-ared programming. A collection holds a number géots
(of the same type), but a concrete collectionss #@kelf an object. The commonalities of a nundfer
collections objects are described by the type efctbllection objects. In the following chapters wi#
encounter a number of different interfaces andselaswhich represent collection types. Not sumgigi
generic types as discussed in Chapter 42, plagnpartant role when we wish to deal with collectiimat
are constrained to contain only objects of a paldicelement type.

In the rest of this short introductory chapter wit lriefly outline the historic development of ¢ettion
programming. In the main part of the lecture, Caagb and Chapter 46, we deal with two main caiegor
of collections: Lists and Dictionaries.

44.1. A historic View on Collection Programming

Lecture 12 - slide 2

We identify three stages or epochs related to dveldpment of collections:

» Native arrays and custom made lists
» Fixed sized arrays - limited set of operations
« Variable sized linked lists - direct pointer manipulation
» First generation collection classes
« Elements of typ®bject - Flexible sizing - Rich repertoire of operations
« Type unsafe - Casting - Inhomogeneous collections
« Second generation collection classes
« The flexibility of the first generation collectiomsmains
« Type safe - Generic - Type parameterized - Homogene

Arrays are fundamental in imperative programmig,ifistance in C. In older programs - or old-faskid
programs - many collections are dealt with by mesdrearays. Many modern programs still use arrays f
collections, either due to old habits or becaush@inherent efficiency of array processing. Tfiigiency
of arrays stems from the fact that the memory nedéalethe elements is allocated as a single cotisecu
area of fixed size.

Another fundamental technique for dealing with ections is encountered in linked lists. In linkesd bne
elements is connected to the next element by a@guoifhe linking is done by use of pointers. Ingén
linked list, an element is linked to its successodouble-linked list, an element is both linkedts
successor and to its predecessor. Linked treels,asubinary trees, are also common. In some lamguag
(such as C and Pascal) linked data structuresreequplicit pointer manipulation. Other languagasch as
Lisp) hide the pointers behind the scene.

407

First generation collection classes deemphasizedherete representation of collections. Instelaal, t
capabilities and interfaces (such as insertioretitel, searching, conversion, etc) of collectiorestaought
into focus. This reflects good and solid objecented thinking. Typical first-generation collecticlasses
blur the distinction between (consecutive) arrays @inked) lists. The concept of anayList is seen both
in early versions of Java and C#. Collection coteape organized in type hierarchiesLi& isa

Collection and aSet isaCollection (see Section 25.2). The element type of collestisrthe most
general type in the system, namebject . As a consequence of this, it is hard to avoitectibn of "pears"
and "bananas" (inhomogeneous collections). Thpg, $afeness must be dealt with at run-time. This is
against the trend of static type checking and safety. We will briefly review the first generationllection
classes of C# in Chapter 47.

The second (and current) generation of collectinake use of generic types (type parameterizededassd
interfaces), as discussed in Chapter 42. The weaksef the first generation collection classeg teeen
the primary motivation for introduction all the cplaxity of genericity (see Chapter 41 where we waitd
generic classes by a study of the cles9. With use of type parameterized classes we @itally express
List<Banana> andList<Pear> and hereby eliminate the risk of type errors attrmne. In the following
chapters we will - with the exception of Chapter-4imit ourselves to study type parameterizedesilbns.

408

45. Generic Collections in C#

In this chapter we will study different list intades and classes.

45.1. Overview of Generic Collections in C#

Lecture 12 - slide 4

We start by showing a type hierarchy of list-retatypes. The white boxes in Figure 45.1 are inteseand
the grey boxes are classes.

IEnumerable<T>= |Stack<T>
JICollection<T> | © Queue<T
IList<T>
Y

S

HashSet<T> | IJsl:::T:r| Collection<T> | LinkedList<T> |

Figure 45.1 Theclassand interface inheritance treerelated to Lists

All interfaces and classes seen in Figure 45.1rt ifgen Stack<T> andQueue<T>, will be discussed in the
forthcoming sections of the current chapter.

The classystem.Array (see Section 28.2) which conceptually is the siiass of all native array types in
C#, also implements the generic interfaces<T> . Notice, however, thatrray 's implementation of
IList<T> is carried out by special means, and that it d@¢show up in the usual C# documentation. A
more detailed discussion of theay class is carried out in Section 47.1.

Version 3.5 of the .NET Framework contains a classhset<T> , that supports the mathematical set
concept. As such, it is similar to the claes<T> , which we used as example for introduction of gene
types in Section 42.HashSet<T> is, however, much more efficient thae<T> .

45.2. The Interface IEnumerable<T>

Lecture 12 - slide 5
At the most general level of Figure 4%t&versability is emphasized. This covers the ability to stepugh

all elements of a collection. The interfaeeumerable<T> announces one parameterless method called
GetEnumerator . The type parameteris the type of the elements in the collection.

« Operations in the interfacenumerable<T>
» IEnumerator<T> GetEnumerator ()

409

As the name indicatesgtEnumerator returns an enumerator, which offers the followimgrface:

» Operations in the interfacenumerator<T>
e T Current
* bool MoveNext ()
e void Reset ()

We have discussed the non-generic versions ofibtgifaces in Section 31.6. ABnumerator object is
used as the basis of traversal iaraach loop.

Without access to aenumerator object it would not be possible to traverse tlareints of a collection in
aforeach loop. You do not very often use tBetEnumerator operation explicitly in your own program, but
you most probably rely on it implicitly! The reasi@that many of your collections are traverseoinflone
end to the other, by use far each. Theforeach control structure would not work without the ogera
GetEnumerator . As you can see from Figure 45.1 all of our cditets implement the interface
IEnumerable<T> and hereby they provide the operat@nEnumerator

It is worth noticing that an object of typEumerator<T> does not support removal of elements from the
collection. In C# it is therefore not allowed torm@ve elements during traversal of a collection for@ach
loop. In the Java counterpartiumerator<T> (callediterator in Java), there is@move method. The
remove Method can be called once for each step forwatldeirtollectionremove is an optional operation in
the Javaterator interface. Consequently, removal of elements iseoessarily supported by all
implementations of the Jawuarator interface.

45.3. The Interface ICollection<T>

Lecture 12 - slide 6

At the next level of Figure 45.1 we encounterith@iection<T> interface. It can be summarized as
follows.

« Operations in the interfageollection<T>
» The operation prescribed in the superinterface IEnumerable<T>
« boolcContains (T element)
« void Add(T element)
« boolRemove(T element)
e void Clear ()
« void CopyTo(T[] targetArray, int startindex)
« int Count
« boolIsrReadOnly

In addition to traversability, elements of typean be added to and removed from objects of type
ICollection<T> . At this level of abstraction, it is not specifiathere in the collection an element is added.
As listed about, a few other operations are supdofNembership testingéntains), resetting €lear),
copying of the collection to an arragopyTo), and measuring of sizedunt). Some collections cannot be

410

mutated once they have been created.idHwadonly property allows us to find out if a givéDollection
object is a read only collection.

45.4. The Interface IList<T>

Lecture 12 - slide 7

At the next level of interfaces in Figure 45.1 weatiLisi<T> . This interface prescribes random access to
elements.

« Operations in the interfacgst<T>
» Those prescribed in the superinterfaces ICollection<T> and IEnumerable<T>
e Tthis [intindex]
« intIndexOf (T element)
« voidInsert (intindex,T element)
« void RemoveAt(int index)

In addition toiCollection<T> , the typelList<T> allows for indexed access to thelements. The first
mentioned operationh{s) is an indexer, an@dexOf is its inverse operation. (See Chapter 19 forreegs
discussion of indexers). In additianist<T> has operations for inserting and removing elemantgven
index positions.

45.5. Overview of the class Collection<T>

Lecture 12 - slide 8

We now encounter the first class in the collectimrarchy, namelgollection<T> . Most interfaces and
classes discussed in this chapter belong to thesenesystem.Collections.Generic , but of some odd
reason the clasllection<T> belongs tystem.Collections.ObjectModel

As can be seen from Figure 45.1 the generic daiggtion<T> implements the generic interface

IList<T> . As such it supports all the operations of theg¢hnterfaces we discussed in Section 45.2 - Sectio
45.4. As it appears from Figure 45.1 the geneastlist<T> implements the same interface. It turns out
thatCollection<T> is a minimal class which implements the threerfates, and not much more. As we

will see in Section 45.9jst<T> has many more operations, most of which are restqoibed by the
interfaces it implement.

Basically, an instance @abllection<T> supports indexed access to its elements. Cortvasrays,
however, there is no limit on the number of eleraémthe collection. The generic classlection<T> has
another twist: It is well suited as a superclassfecialized (non-generic) collections. We wikk sehy and
how in Section 45.7.

We will not summarize the public interfaceafilection<T> in the paper version of material, because it is
the sum of the interfaces @humerable<T> , ICollection<T> , andiList<T> . You should, however notice
the two constructors afollection<T> , a parameterless constructor and a non-copyingppng"
constructor on anist<T>

411

Collectioninitializers are new in C# 3.0. Instead of initializing a cotlen via anList , typically an array,
such as in

Collection<int> Ist = new Collection<int>(new int [H1, 2, 3, 4});

it is possible in C# 3.0 to make use of colleciitializers:

Collection<int> Ist = new Collection{1, 2, 3, 4};
A collection initializer uses thedd method repeatedly to insert the elements within into an empty list.

Collection initializers are often used in concetitiwobject initializers, see Section 18.4, to provide for
smooth creation of collection of objects, which mstances of our own types.

You may be interested to know details of the aateptesentation (data structure) used internaltiién
generic classollection<T> . Is it an array? Is it a linked list? Or is it setiing else, such as a mix of
arrays and lists, or a tree structure? Most likielig, a resizeable array. Notice however that faomobject-
oriented programming point of view (implying encalasion and visibility control) it is inappropriate ask
such a question. It is sufficient to know aboutititerface ofCollection<T> together with the time
complexities of the involved operations. (As aniaddal remark, the source code of the C# libraveisten
by Microsoft is not generally available for insgent Therefore we cannot easily check the reprasient
details of the class). The interfacecofiection<T> includes details about the execution times of the
operations otollection<T> relative to the size of a collection. We deal withing issues of the operations
in the collection classes in Section 45.17.

45.6. Sample use of class Collection<T>

Lecture 12 - slide 9

Let us now write a program that shows how to usectintral operations ollection<T> . In Program 45.1
we use an instance of the constructed atagsction<char> . Thus, we deal with a collection of character
values. It is actually worth noticing that we in € deal with collections of value types (such as
Collection<char>) as well as collections of reference types (susatoection<Point>).

using System;
using System.Collections.ObjectModel;
using System.Collections.Generic;
class BasicCollectionDemo{
public static void Main(){
/I Initialization - use of a collection initializer . After that add 2 elements.

IList<char> Ist = new Collection<char> {a','b', 'c'}
Ist. Add('d"); Ist. Add(‘e");

/I Mutate existing elements in the list:
Ist[0] = 'Z"; Ist[1]++;

/I Insert and push towards the end:

412

Ist.Insert(0,'n");

/I Insert at end - with Insert:
Ist.Insert(Ist.Count,'x"); /I equivalent to Ist. Add('x");

/ Remove element 0 and pull toward the beginning:
Ist. RemoveAt(0);

/I Remove first occurrence of 'c':
Ist. Remove('c’);

/ Remove remaining elements:
Ist.Clear();

}

public static void ReportList<T>(string explanati on, IList<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.Write("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}

Program 45.1 Basic operations on a Collection of
characters.

The program shown above explains itself in the cemisy and the program output in Listing 45.2 i als
relatively self-contained. Notice the use of tolection initializer in line 9 of Program 45.1. As mentioned
in Section 45.5 collection initializers have beetmaduced in C# 3.0. In earlier versions of C#atsw
necessary to initialize a collection by use oaamy initializer (see the discussion of Program 6.7) via the
second constructor mentioned above.

Initial List
abcde

Ist[0] = 'Z"; Ist[1]++;
zccde

Ist.Insert(0,'n");
nzccde

Ist.Insert(Ist.Count,'x’);
nzccdex

Ist. RemoveAt(0);
zccdex

Ist. Remove('c’);
zcdex

Ist.Clear();

Listing 45.2 Output of the program with basic operations on a
Collection of characters.

413

We make the following important observations alibatoperations iollection<T>

» The indexer Istfidx] = expr mutates an existing element in the collection
» Thelength of the callection is unchanged
« Thelnsert operation splices a new element into the collectio
« Push subsequent elements towards the end of tleetamh
« Makesthe collection longer
« TheRemove andremoveAt operations take elements out of the collections
» Pull subsequent elements towards the beginninigeofollection
« Makesthe collection shorter

45.7. Specialization of Collections

Lecture 12 - slide 10

Let us now assume that we wish to make our owrgialimed (non-generic) collection class of a paitc
type of objects. Below we will - for illustrativeupposes - write a class callesimalFarm which is intended
to hold instances of clagaimal . It is reasonable to programimalFarm as a subclass of an existing
collection class. In this section we shall see tlvaéction<Animal> is a good choice of superclass of

AnimalFarm .

The classinimalFarm depends on the classimal . You are invited to take a look at clagsmal via the
accompanying slide . We do not include classal here because it does not add new insight to our

interests in collection classes. The four operatiainclassAnimalFarm are shown below.

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {
protected override void Insertltem (int i, Animal a){
base.Insertltem(i,a);
Console.WriteLine("**Insertlitem: {0}, {1}", i, a);
}
protected override void Setltem (int i, Animal a){

base.Setltem(i,a);
Console.WriteLine("**Setltem: {0}, {1}", i, a);
}

protected override void Removeltem (int i){
base.Removeltem(i);
Console.WriteLine("**Removeltem: {0}", i);

}

protected override void Clearltems (){
base.Clearltems();
Console.WriteLine("**Clearltems");

}
}

Program 45.3 A class AnimalFarm - a subclass of Col | ect i on<Ani nmal > - testing protected members.

414

It is important to notice that the four highlightederations in Program 45.3 are redefinitions dieil,
protected methods iollection<Animal> . Each of the methods activate the similar methatie
superclass (this is method combination). In addjtibey reveal on standard output that the pratectethod
has been called. A more realistic example of chassalFarm will be presented in Program 45.6.

The four operations are not part of the clientriaige of clasanimalFarm . They are protected operations.
The client interface ofnimalFarm is identical to the public operations inheriteghfrCollection<Animal>
It means that we use the operatians, Insert , Remove etc. on instances of classimalFarm .

We should now understand the role of the four ptetoperationssertitem , Removeltem , Setltem , and
Clearltems relative to the operations in the public cliertenface. Whenever an element is inserted into a
collection, the protected methodertitem is called. Botindd andinsert are programmed by use of
Insertitem . Similarly, bothRemove andremoveAt are programmed by use Rémoveltem . And so on. We
see that the major functionality behind the operetiinCollection<T> is controlled by the four protected
methodgnsertitem , Removeltem , Setltem , andClearltems

using System;
using System.Collections.ObjectModel;

class App{
public static void Main(){
AnimalFarm af = new AnimalFarm();

/I Populating the farm with Add
af.Add (new Animal("elephant"));
af.Add (new Animal("giraffe));
af.Add (new Animal("tiger"));
ReportList("Adding elephant, giraffe, and tiger with Add(...)", af);

/I Additional population with Insert
af.Insert (0, new Animal("dog"));
af.Insert (0, new Animal("cat"));
ReportList("Inserting dog and cat at index 0 wi th Insert(0, ...)", af);

/l Mutate the animal farm:
af[1l] = new Animal("herring", AnimalGroup.Fish, Sex.Male);
ReportList("After af[1] = herring”, af);

/I Remove tiger
af.Remove (new Animal("tiger"));
ReportList("Removing tiger with Remove(...)", a f);

/l Remove animal at index 2
af.RemoveAt (2);
ReportList("Removing animal at index 2, with Re moveAt(2)", af);

/I Clear the farm
af.Clear ();
ReportList("Clear the farm with Clear()", af);

}

public static void ReportList<T>(string explanati on, Collection<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.WriteLine("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();
}
}

415

Program 45.4 A sample client of AnimalFarm - revealing use of protected Col | ect i on<Ani mal >
methods.

Take a close look at the output of Program 4514isting 45.5. The output explains the program bébrav

**|nsertltem: 0, Animal: elephant
**|nsertltem: 1, Animal: giraffe
**Insertltem: 2, Animal: tiger

Adding elephant, giraffe, and tiger with Add(...)
Animal: elephant
Animal: giraffe

Animal: tiger

**|nsertltem: 0, Animal: dog

**|nsertltem: 0, Animal: cat

Inserting dog and cat at index 0 with Insert(0, ...)
Animal: cat

Animal: dog

Animal: elephant
Animal: giraffe
Animal: tiger

**Setltem: 1, Animal: herring
After af[1] = herring

Animal: cat

Animal: herring

Animal: elephant

Animal: giraffe

Animal: tiger

**Removeltem: 4

Removing tiger with Remove(...)
Animal: cat

Animal: herring

Animal: elephant

Animal: giraffe

*Removeltem: 2

Removing animal at index 2, with RemoveAt(2)
Animal: cat

Animal: herring

Animal: giraffe

**Clearltems
Clear the farm with Clear()

Listing 45.5 Output from sample client of AnimalFarm.

416

45.8. Specialization of Collections - a realigi@mple

Lecture 12 - slide 11

The protected methods in classmalFarm , as shown in Section 45.7, did only reveal if/wlites protected
methods were called by other methods. In this eatie will show a more realistic example that revkf
the four protected methods ©dllection<T> in a more useful way.

In the example we program the following semantiasie insertion and removal operations of class
AnimalFarm:

- If we add an animal, an additional animal of thpagite sex is also added.

« Any animal removal or clearing of an animal farmagected.

In addition, we add aetGroup operation toanimalFarm , which returns a collection (an sub animal farm) o
all animals that belongs to a given group (sucélldsrds).

The classinimal has not been changed, and it still available e@mpanying slide.

using System;
using System.Collections.ObjectModel;

public class AnimalFarm: Collection<Animal> {

/I Auto insert animal of opposite sex
protected override void Insertltem (int i, Animal a){
if(a.Sex == Sex.Male){
base.Insertltem(i,a);

base.Insertltem(i, new Animal(a.Name, a.Group , Sex.Female));
}else {
base.Insertltem(i,a);
base.Insertltem(i,new Animal(a.Name, a.Group, Sex.Male));
}
}
/I Prevent removal
protected override void Removeltem (int i){
Console.WriteLine("[Removal denied]");
}
/I Prevent clearing
protected override void Clearltems ()X
Console.WriteLine("[Clearing denied]");
}

/I Return all male animals in a given group
public AnimalFarm GetGroup(AnimalGroup gX{
AnimalFarm res = new AnimalFarm();
foreach(Animal a in this)
if (a.Group == g && a.Sex == Sex.Male) res.Ad d(a);
return res;

}

Program 45.6 The class AnimalFarm - a subclass of
Col | ecti on<Ani mal >.

Notice the way we implement the rejectiorRiEmoveltem andcClearltems : We do not call the superclass
operation.

417

In Program 45.7 (only on web) we showsaimalFarm client program similar (but not not identical) to
Program 45.4. The program output in Listing 458y@n web) reveals the special semantics of theali
protected operations frogvllection<T> - as redefined in Program 45.6.

45.9. Overview of the class List<T>

Lecture 12 - slide 12

We are now going to study the generic classT> . As it appears from Figure 45.1 baik<T> and
Collection<T> implement the same interface, nameist<T> , see Section 45.4. But as already noticed,
List<T> offers many more operations thasllection<T>

In the same style as in earlier sections, we peogit overview of the important operationg.iefT>

« Constructors
e List() , List(IEnumerable<T>) , List(int)
« Via acollectioninitializer: new List<T> {t1, t2, ..., tn}
« Element access
« thigint] , GetRange(int, int)
« Measurement
e Count, Capacity
« Element addition

e Add(T) , AddRange(IEnumerable<T>) , Insert(int, T) ,
InsertRange(int, IEnumerable<T>)

« Element removal

* Remove(T) , RemoveAll(Predicate<T>) , RemoveAt(int) , RemoveRange(int,
int) , Clear()
» Reorganization
* Reverse() , Reverse(int, int) ,
Sort() , Sort(Comparison<T>) ,
Sort(IComparer<T>) , Sort(int, int, IComparer<T>)
» Searching
* BinarySearch(T) , BinarySearch(int, int, T, IComparer<T>) , BinarySearch(T,
IComparer<T>)
* Find(Predicate<T>) , FindAll(Predicate<T>) , Findindex(Predicate<T>) ,
FindLast(Predicate<T>) , FindLastIndex(Predicate<T>) , IndexOf(T) , LastindexOf(T)
» Boolean queries
e Contains(T) , Exists(Predicate<T>) , TrueForAll(Predicate<T>)
« Conversions
e ConvertAll<TOutput>(Converter<T,TOutput>) , CopyTo(T[) ,

Compared witlcollection<T> the classist<T> offers sorting, searching, reversing, and coneersi
operationsList<T> also has a number of "range operations” whichaipesn a number of elements via a
single operation. We also notice a numbehigher-order operations. Operations that take a delegate value
(a function) as parametagonvertAll is a generic method which is parameterized wightyipeTOutput .
ConvertAll accepts a function of delegate type which convesta typeT to TOutput .

418

45.10. Sample use of class List<T>

Lecture 12 - slide 13

In this and the following sections we will show htawise some of the operationg.isi<T> . We start with

a basic example similar to Program 45.1 in whichweek on a list of charactersist<char> . We insert a
number ofchar values into a list, and we remove some valuesedls The program appears in Program 45.9
and the self-explaining output can be seen intgsti5.10 (only on web). Notice in particular how tlange
operationsnsertRange (line 28) andremoveRange (line 40) operate on the list.

1 using System;

2 using System.Collections.Generic;

3

4 [* Very similar to our illustration of class Collec tion<char> */
5 class BasicListDemo{

6

7 public static void Main(){

8

9 /I List initialization and adding elements to the e nd of the list:
10 List<char> Ist = new List<char> {a', 'b', 'c'} ;

11 Ist.Add('d"); Ist.Add(‘e");

12

13

14 /I Mutate existing elements in the list

15 Ist[0] = 'Z"; Ist[1]++;

16

17

18 /I Insert and push towards the end

19 Ist.Insert(0,'n’);

20

21

22 /I Insert at end - with Insert

23 Ist.Insert(Ist.Count,'x’); /I equivalent to Ist.Add('x’);
24

25

26 /I Insert a new list into existing list, at positio n2.
27 Ist.InsertRange(2, new List<char>{'1', '2', '3, '4 D
28

29

30 /I Remove element 0 and push toward the beginning

31 Ist.RemoveAt(0);

32

88

34 /I Remove first occurrence of 'c'

35 Ist.Remove('c);

36

37

38 /I Remove 2 elements, starting at element 1

39 Ist.RemoveRange(1, 2);

40

41

42 /I Remove all remaining digits

43 Ist.RemoveAll(delegate(char ch){return Char.IsD igit(ch);});
44

45

46 /I Test of all remaining characters are letters

47 if (Ist. TrueForAll(delegate(char ch){return Cha r.IsLetter(ch);}))
48 Console.WriteLine("All characters in Ist are letters");
49 else

50 Console.WriteLine("NOT All characters in Ist are letters");
51 }

419

public static void ReportList<T>(string explanati on, List<T> list){
Console.WriteLine(explanation);
foreach(T el in list)
Console.Write(*{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}
}

Program 45.9 Basic operationson a List of characters.

45.11. Sample use of the Find operations in List<T

Lecture 12 - slide 14

In this section we will illustrate how to use thearch operations inst<T> . More specifically, we will
apply the methodsind , FindAll andindexOf on an instance afst<Point> , wherePoint is a type, such
as defined by the struct in Program 14.12. Theaifmers discussed in this section do all use lisearch. It
means that they work by looking at one element #fie other, in a rather trivial way. As a contrag will
look at binary search operations in Section 45:M8¢ch searches in a "more advanced" way.

In the program below - Program 45.11 - we declaretePoint> in line 11, and we add six points to the
listin line 13-16. In line 20 we shown how to umel to locate the first point in the list whose x-ctioate
is equal to 5. The same is shown in line 25. Tlferdince between the two usesroild is that the first
relies on a delegate given on the flytegate(Point g){return (q.Getx() == 5);} , while the other
relies on an existing static metheiddxs (defined in line 40 - 42). The approach showririg RO is, in my
opinion, superior.

In line 29 we show how to use the variamtiall , which returns &oint list instead of just a singkint
as returned bgind . In line 36 we show howdexOf can be used to find the index of a giveint ina
Point list. It is worth asking how theoint parameter ohdexof is compared with the points Roint list.
The documentation states that the points are caddar use of the default equality comparer of yipe T,
which in our case is struebint . We have discussebe default equality comparer in Section 42.9 in the
slipstream of our coverage of the generic inteda®guatable<T> andiEqualityComparer<T>

We use the static meth@dportList to show aoint list on standard output. We cakbporiList ~ several
times in Program 45.11. The program output is shiomitisting 45.12.

using System;
using System.Collections.Generic;

class C{
public static void Main(){

System.Threading.Thread.CurrentThread.CurrentC ulture =
new System.Globalization.Culturelnfo("en-US ");

List<Point> pointLst = new List<Point>();

/I Construct points and point list:

pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));

420

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 }

O©CoOoO~NOoOUh, WNBE

ReportList("Initial point list", pointLst);

// Find first point in list with x coordinate 5
Pointp = pointLst.Find(delegate(Point g){return (gq.Getx() == 5):D;
Console.WriteLine("Found with delegate predica te: {O)\n", p);

/I Equivalent. Use predicate which is a static meth od
p= pointLst.Find(new Predicate<Point>(FindX5));
Console.WriteLine("Found with static member pr edicate: {0}\n", p);

/I Find all points in list with x coordinate 5
List<Point> resLst = new List<Point>();
resLst = pointLst.FindAll(delegate(Point g){return (q.Getx() ==5);};
ReportList("All points with x coordinate 5", r esLst);

// Find index of a given point in pointLst.
/I Notice that Point happens to be a struct - thus value comparison
Point searchPoint = new Point(5,4);
Console.WriteLine("Index of {0} {1}", searchPo int,
pointLst.IndexOf(searchPoint));

public static bool FindX5(Point p){
return p.Getx() == 5;

public static void ReportList<T>(string explanati on,List<T> list){
Console.WriteLine(explanation);
intcnt = 0;
foreach(T el in list){
Console.Write(*{0, 3}", el);
cnt++;
if (cnt%4 == 0) Console.WriteLine();

}
if (cnt%4 != 0) Console.WriteLine();
Console.WriteLine();

Program 45.11 Sample uses of List.Find.

Initial point list

Point:(0,0). Point:(5,9). Point:(5,4). Point:(7.1,- 13).
Point:(5,-2). Point:(14,-3.4).

Found with delegate predicate: Point:(5,9).

Found with static member predicate: Point:(5,9).

All points with x coordinate 5

10 Point:(5,9). Point:(5,4). Point:(5,-2).

11

12 Index of Point:(5,4). 2

Listing 45.12 Output fromthe Find program.

421

45.12. Sample use of Sort in List<T>

Lecture 12 - slide 15

As a client user of the generic clags<T> it is likely that you never need to write a sogtiprocedure! You
are supposed to use one of the already existing methods inist<T>

Sorting the elements in a collection of elementypéT depends on kessthan or equal operation onT. If

the typerT is taken directly from the C# libraries, it mayryevell be the case that we can just use the defaul
less than or equal operation of the typer. If T is one of our own types, we will have to supply an
implementation of the comparison operation oursel¥dis can be done by passing a delegate objéut to
Sort method.

Below, in Program 45.13 we illustrate most of therfoverloadedort operations inist<t> . The actual
type parameter in the example, passed fasint . The program output (the lists before and aftetirsg) is
shown in Listing 45.14 (only on web).

using System;
using System.Collections.Generic;

class C{
public static void Main(){

List<int> listOriginal = new List<int>{5, 3, 2 . 7,-4, 0},
list;

/I Sorting by means of the default comparer of int:
list = new List<int>(listOriginal);
ReportList(list);
list.Sort();
ReportList(list);
Console.WriteLine();

/I Equivalent - explicit notatation of the Comparer
list = new List<int>(listOriginal);
ReportList(list);
list.Sort(Comparer<int>.Default);
ReportList(list);
Console.WriteLine();

/I Equivalent - explicit instantiation of an IntCom parer:
list = new List<int>(listOriginal);
ReportList(list);
list.Sort(new IntComparer());
ReportList(list);
Console.WriteLine();

/I Similar - use of a delegate value for comparison
list = new List<int>(listOriginal);
ReportList(list);

list.Sort(delegate(int x, int y){

if (x<vy)
return -1;
else if (x ==y)
return O;
else return 1;});
ReportList(list);
Console.WriteLine();

}

422

public static void ReportList<T>(List<T> list){
foreach(T el in list)
Console.Write("{0, 3}", el);
Console.WriteLine();

}
}

public class IntComparer: Comparer<int>{
public override int Compare(int x, int y){

if (x <vy)
return -1;
else if (x ==y)
return O;
else return 1;
}
}
Program 45.13 Four different activations of the List.Sort
method.
Throughout Program 45.13 we do several sortingstOfiginal , as declared in line 8. In line 14 we rely

the default comparer of typ& . The default comparer is explained in the follogwmay in the .NET
framework documentation a@fst.Sort

This method uses the default comparenparer.Default for typeT to determine the order
of list elements. Theomparer.Default ~ property checks whether typémplements the
IComparable generic interface and uses that implementaticavailable. If not,
Comparer.Default ~ checks whether typeimplements thé&Comparable interface. If typer
does not implement either interfac@mparer.Default ~ throws an

InvalidOperationException

The sorting done in line 21 is equivalent to lide [h line 21 we show how to patbe default comparer of
typeint explicitly to thesort method.

Let us now assume the type does not have a default comparer. In other wavdsyill have to implement
the comparer ourselves. The callsoft in line 28 passes a newComparer instance t®ort . The class
IntComparer is programmed in line 53-61, at the bottom of Paog45.13. Notice thattComparer is a
subclass o€omparer<int> , which is an abstract class in the namespggiem.Collections.Generic with
an abstract method nameempare. The generic classomparer<T> is in many ways similar to the class
EqualityComparer<T> , which we touched on in Section 42.9. Most impatithoth have a statimefault
property, which returns a comparer object.

As a final resort that always works we can passmaparer function tgort . In C#, such a function is
programmed as a delegate. (Delegates are discusSedpter 22). Line 35-40 shows how this can beedo
Notice that the delegate we use is programmed®fiythThis style of programming is a reminiscente
functional programming.

| find it much more natural to pass amtlering method instead ofan object of a class with an ordering

method. (The latter is a left over from older object-oried programming languages in which the only way to
pass a functior as parameter is via an object of a class in whishan instance method). In general, | also
prefer to be explicit about the ordering insteadebfing on some default ordering which may turm tou
surprise you.

Let us summarize the lessons that we have learnedthe example:

423

« Some types have a default comparer which is usedtsort()

« The default comparer of T can extracteddoyparer<T>.Default

« An anonymous delegate comparer is attractive if the default comparer of the tyjmes not exist,
of if it is inappropriate.

Exercise 12.1. Shuffle List

Write ashuffle operation that disorders the elements of a cadleéh a random fashion. A shuffle
operation is useful in many context. There isshafle operation in
System.Collections.Generic.List<T> . In the similar Java libraries there is a shuffiethod.

In which class do you want to place gmffle operation? You may consider to make use of extensi
methods.

You can decide on programming either a mutating won-mutating variant of the operation. Be sure to
understand the difference between these two options

Test the Shuffle operation, for instanceLamcard> . The clasard (representing a playing card) is one
of the classes we have seen earlier in the course.

Exercise 12.2. Course and Project classes

In the earlier exercise about courses and profemisd in the lecture about abstract classes aedates)
we refined the program abosidoleanCourse , GradedCourse , andProject . Revise your solution (or the
model solution) such that the courses in the dtagsct are represented as a variable of type
List<Course> instead of by use of four variables of typeirse .

Reimplement and simplify the methedssed in classProject . Take advantage of the new representation
of the courses in a project, such that the "3 ddtmile" (see the original exercise) is implemeritea
more natural way.

45.13. Sample use of BinarySearch in List<T>

Lecture 12 - slide 16

The search operations discussed in Section 45.Irh@kementedinear search processes. The search
operations of this section implemdaibary search processes, which are much faster when appliedrge |
collections. On collections of size linear search has - not surprisingly - time caxjpy O(n). Binary
search has time complexi®(log n). Whenn is large, the difference betweemandlog n is dramatic.

TheBinarySearch ~ operations inist<T> require, as a precondition, that the list is ceddvefore the search
is performed. If necessary, tBert operation (see Section 45.12) can be used tolisstdhe ordering.

You may ask why we should search for an elementhwie - in the starting point - is able to pasmpat
to theBinarySearch method. There is a couple of good answers. Kiestnay be interested to know if the
element is present or not in the list. Seconday @so be possible to search for an incompletecoifpy
only comparing some selected fields in thenparer method). Using this approach we are actually asted
in finding the complete object, with all the daigds, in the collection.

424

If theB

inarySearch

operation finds an element in the list, the indéthe element is returned. This is a non-

negative integer. If the element is not found, gatiee integer, say is returned. Below we will see that that
-i (or more precisely the bitwise complemeijtin that case is the position of the element, lifad been
present in the list.

u
u

sing System;
sing System.Collections.Generic;

class BinarySearchDemo{

I
I
I

public static void Main(){

System.Threading.Thread.CurrentThread.CurrentCultur
new System.Globalization.Culturelnfo("en-US

List<Point> pointLst = new List<Point>();

/I Construct points and point list:
pointLst.Add(new Point(0,0)); pointLst. Add(new
pointLst.Add(new Point(5,4)); pointLst. Add(new
pointLst.Add(new Point(5,-2)); pointLst.Add(ne
ReportList("The initial point list", pointLst)

/I Sort point list, using a specific point Comparer

/I Notice the PointComparer:

/I Ordering according to sum of x and y coordinates
IComparer<Point> pointComparer = new PointComp

pointLst.Sort(pointComparer) ;
ReportList("The sorted point list", pointLst);

int res;
Point searchPoint;

/[Run-time error.
// Failed to compare two elements in the array
searchPoint = new Point(5,4);
res = pointLst.BinarySearch(searchPoint);
Console.WriteLine("BinarySearch for {0}: {1}",

searchPoint = new Point(5,4);
res =
Console.WriteLine("BinarySearch for {0}: {1}",

searchPoint = new Point(1,8);
res =
Console.WriteLine("BinarySearch for {0}: {1}",

}

public static void ReportList<T>(string explanati
Console.WriteLine(explanation);
int cnt = 0;
foreach(T el in list){
Console.Write("{0, 3}", el);
cnt++;
if (cnt%4 == 0) Console.WriteLine();

}
if (cnt%4 != 0) Console.WriteLine();
Console.WriteLine();

}
}

/I Compare the sum of the x and y coordinates.

425

pointLst.BinarySearch(searchPoint, pointComparer)

pointLst.BinarySearch(searchPoint, pointComparer)

")

/I Point is a struct.

Point(5, 9));
Point(7.1,-13));
w Point(14,-3.4));

arer();

searchPoint, res);
searchPoint, res);
searchPoint, res);

on,List<T> list){

/I Somewhat non-traditional!
public class PointComparer: Comparer<Point>{
public override int Compare(Point p1, Point p2){
double p1Sum = pl.Getx() + p1.Gety();
double p2Sum = p2.Getx() + p2.Gety();
if (p1Sum < p2Sum)
return -1;
else if (p1Sum == p2Sum)
return O;
else return 1;

Program 45.15 Sample uses of List.BinarySearch.

Program 45.15 works on a list of points. Six poarts created and inserted into a list in line 13Néxt, in
line 23, the list is sorted. As it appears fromprhat comparer programmed in line 62-72, a pping less
than or equal to poirt, if p.x +p.y <=q.X +g.y. You may think that this is odd, but it is owgcision for this
particular program example.

In line 33 we attempt to activate binary searclogpgise of the default comparer. But such a compioes
not exist for clas®oint. This problem is revealed at run-time.

In line 37 and 41 we search for the points (5,4) @n8) respectively. In both cases we expectrto fihe
point (5,4), which happens to be located at plaitetBe sorted list. The output of the program vetin
Program 45.17 (only on web) confirms this.

In the next program, Program 45.17 we illustratawtappens if we search for a non-existing poitt wi
BinarySearch . The clas®ointComparer and the generic meth@&&portList are not shown in the paper
version of Program 45.17. Please consult ProgradbAkhere they both appear.

using System;
using System.Collections.Generic;

class BinarySearchDemo{
public static void Main(){

System.Threading.Thread.CurrentThread.CurrentC ulture =
new System.Globalization.Culturelnfo("en-US ");

List<Point> pointLst = new List<Point>();

/I Construct points and point list:

pointLst.Add(new Point(0,0)); pointLst.Add(new Point(5, 9));
pointLst.Add(new Point(5,4)); pointLst.Add(new Point(7.1,-13));
pointLst.Add(new Point(5,-2)); pointLst.Add(ne w Point(14,-3.4));

ReportList("Initial point list", pointLst);

/I Sort point list, using a specific point Comparer :
IComparer<Point> pointComparer = new PointComp arer();
pointLst.Sort(pointComparer) ;
ReportList("Sorted point list", pointLst);

int res;
Point searchPoint;

searchPoint = new Point(1,1);

res = pointLst.BinarySearch(searchPoint, pointComparer) ;
Console.WriteLine("BinarySearch for {0}: {1}\n ", searchPoint, res);

426

if (res<0) /I search point not found

pointLst.Insert(~res , searchPoint); Il Insert searchPoint such

// that pointLst remains sorted
Console.WriteLine("Inserting {0} at index {1 }", searchPoint, ~res);
ReportList("Point list after insertion”, poi ntLst);

}

/I ReportList not shown

}

/I Class PointComparer not shown

Program 45.17 Searching for a non-existing Point.

The scene of Program 45.17 is the same as thaibgfdMm 45.15. In line 28 we do binary searchingkiog
for the point (1,1). None of the points in the paog have an "x plus y sum" of 2. Therefore, thenp(i,1)
is not located byinarySearch . TheBinarySearch method returns a negatighost index. The ghost index
is the bitwise complement of the index where t@ihthe point in such a way that the list will remsorted.
(Notice the bitwise complement operatiowhich turns 0 to 1 and 1 to 0 at the binary levEle program
output reveals that position ~(-3) is the natutate of the point (1,1) to maintain the orderingha list.
Notice that the value of ~(-3) is 2, due the useval's complement arithmetic. This explains theratle of
the negative values returned iyarySearch

The output of Program 45.17 is shown in Listingl85only on web).

Contrary tosort , it is not possible to pass a delegatpitarySearch . This seems to be a flaw in the design
of theList<T> library.

We have learned the following lessons alB#rySearch

« Binary search can only be done on sorted lists
« In order to use binary search, we need - in genreoaprovide an expliciComparer object
- Binary search returns a (non-negative) integdrafélement is found
« The index of the located element
« Binary search returns a negative integer if thenel# is not found
« The complement of this number igjl@ost index
« The index of the element if it had been in the list

45.14. Overview of the class LinkedList<T>

Lecture 12 - slide 17

The collections implemented lapllection<T> of Section 45.5 andst<T> of Section 45.9 were based on
arrays. We will now turn our interest towards atige, which is based onliaked representation.

Below, in Figure 45.2 we show the object-structafra double linked list.

427

iii g Iiﬁ T :L; jr= ;l: = iii
(1) (a2} (a3} (at) (a5}
oo Lo W i e

Figure 45.2 Adoublelinked list whereinstances of Li nkedLi st Node keep
the list together

The generic clagsnkedList<T> relies on a "building block classihkedListNode<T> . We need to deal
with instances ofinkedListNode s when we work with linked lists in C#. In otherngs, LinkedListNode

is not just a class behind the scene - it is aroitapt class for clients afnkedListNode<T> . In Figure 45.2
the five rectangular nodes are instancasmsédListNode<T> for some element type The circular, green
nodes are instances of the element typ&/'e will studyLinkedListNode<T> in Section 45.15 after we have
surveyed the list operationslimkedList<T>

As it can be seen from the class diagram of theléss in Figure 45.1jnkedList<T> implements the
interfacelCollection<T> , See Section 45.3. Unlil@llection<T> andList<T> , LinkedList<T> does not
implement indexed access, aglief<T> . This is a natural choice because indexed acses# iefficient in
a linked representation. The following operatioresavailable ininkedList<T>

« Constructors
* LinkedList() , LinkedList(IEnumerable<T>)
« Accessors (properties)
e First ,Last , Count
« Element addition
e AddFirst(T) , AddFirst(LinkedListNode<T>) , AddLast(T)
AddLast(LinkedListNode<T>) , AddBefore(LinkedListNode<T>,
T), AddBefore(LinkedListNode<T>, LinkedListNode<T>) ,
AddAfter(LinkedListNode<T>, T))
AddAfter(LinkedListNode<T>, LinkedListNode<T>)
« Element removal
e Remove(T) , Remove(LinkedListNode<T>) , RemoveFirst() ,
Removelast() , Clear()
» Searching
e Find(T) , FindLast(T)
- Boolean queries
* Contains(T)

, Add(T)

A linked list can be constructed as an empty cotbecor as a collection filled with elements fromosher
collection, represented as @numerable<T> , see Section 45.2.

TheFirst andLast properties access the first/lasikedListNode in the double linked listCount returns
the number of elements in the list - not by coumtimem each timeount is referred - but via some
bookkeeping information encapsulated in a linketldbject. Thusgount is anO(1) operation.

AlthoughLinkedList<T> implements the generic interfa®llection<T> , which has a method named
Add, theAdd operation is not readily available on linked lidige will in Program 45.19 show thadd is
present as an explicit interface implementatior, Section 31.8. Instead add, the designers of
LinkedList<T> want us to use one of thedRelative operationsaddFirst , AddLast , AddBefore , and
AddAfter . None of these are prescribed by the interfaciction<T> , however. Each of theddRelative

428

operations are overloaded in two variants, suctwtleacan add an element of typer an object of type
LinkedListNode<T> (which in turn reference an object of type

Using theremove methods, it is possible to remove an elementyé fly or a specific instance of
LinkedListNode<T> . Remove(T) IS anO(n) operationRemove(LinkedListNode<T>) is anO(1) operation.
There are also parameter-less methods for rema@irst/last element in the linked list. The time
complexity of these ar@(1).

Finally there are linear search operations fromegiend of the listtind andFindLast . The boolean
Contains operation is similar to theind operations. These operations all seem to relyreBaduals
operation inherited from clag®ject . In that wayFind , FindLast andContains are more primitive (not as
well-designed) as the similar methods.isi<T> . (The documentation in the .NET libraries is dilebout
these details).

45.15. The class LinkedListNode<T>

Lecture 12 - slide 18

As illustrated in Figure 45.2, instances of theegenclass.inkedListNode<T> keep a linked list together.

In the figure, the rectangular boxes are instan€esgkedListNode<T> . From the figure it appears that each
instance otinkedListNode<T> has three references: One to the left, one teldraent, and one to the right.
Actually, there is a fourth reference, namely ® lihked list instance to which a giveinkedListNode

object belongs.

The class.inkedListNode<T> is sealed, generic class that represents a nocabheutode in a
linked list

A LinkedListNode can at most belong to a single linked list
The members dfinkedListNode<T> are as follows:

» A single constructorinkedListNode(T)
» Four properties

e Next - gQetter

* Previous - getter

« List - getter

e \Value - getter and setter

The propertiesiext andPrevious access neighbor instanced bkedListNode<T> . Value accesses the
element of typa. List accesses the linked list to which the instanagneédListNode belongsNext ,
Previous , andList are all gettersvalue is both a getter and a setter.

It is not possible to initialize or to mutate thelds behind the propertie&xt , Previous , andList via
public interfaces. It is clearly the intention thia¢ linked list - and only linked list - has autitypto change
these fields. If we programmed our own, speciappae linked list class it would therefore not bsye@
reuse the clagsnkedListNode<T> . This is unfortunate.

429

Related to the discussion about the interfaaen@édListNode<T> we may ask howinkedList is allowed
to access the private/internal details of an irc#afLinkedListNode . The best guess seems to be that the
fields are internal.

45.16. Sample use of class LinkedList<T>

Lecture 12 - slide 19

We will illustrate the use dfinkedList<T> andLinkedListNode<T> in Program 45.19. In line 8 we make a
linked list of integers from an array. Notice theewof theLinkedList ~ constructor
LinkedList ~ (IEnumerable<T>).

In line 16 we attempt to add the integer 17 tolithle=d list. This is not possible, because the me#ud is
not easily available, see the discussion in Seattoh4. If we insist to usedd, it must be done as in line 20.
Most likely, you should use one of thed variants instead, for instangedFirst or AddLast .

using System;
using System.Collections.Generic;

class LinkedListDemof{
public static void Main(){

LinkedList<int> Ist = new LinkedList<int>(

new int[]{5, 3, 2, 7,-4,0});
// Using Add.
/I Compile-time error: 'LinkedList<int>' does not ¢ ontain a
I definition for 'Add’

Il IstAdd(17)
I

/I Add is implemented as an explicit interface impl ementation
((ICollection<int>)Ist).Add(17) ;

/I Using AddFirst and AddLast
Ist. AddFirst(-88);
Ist. AddLast(88);

/I Using Remove.
Ist.Remove(17);

/I Using RemoveFirst and RemovelLast
Ist. RemoveFirst(); Ist. RemoveLast();

/I Using Clear
Ist.Clear();

}

public static void ReportList<T>(string explanati on, LinkedList<T> list){
Console.WriteLine(explanation);

430

foreach(T el in list)
Console.Write("{0, 4}", el);
Console.WriteLine(); Console.WriteLine();

}

}

Program 45.19 Basic operations on a LinkedList of
integers.

The output of Program 45.19 is shown in Listing245 By studying Listing 45.20 you will learn additial
details of theinkedList ~ operations.

Initial LinkedList
532740

((ICollection<int>)Ist).Add(17);
532 7-4 017

Ist. AddFirst(-88); Ist. AddFirst(88);
-88 5 3 2 7 -4 017 88

Ist. Remove(17);
-88 5 3 2 7 -4 088

Ist. RemoveFirst(); Ist. RemoveLast();
532740

Ist.Clear();

Listing 45.20 Output of the program with basic operations on
a LinkedList.

ThelLinkedList ~example in Program 45.19 did not show how toLirs@dListNode S together with
LinkedList<T> . To make up for that we will in Program 45.21 cemitate on the use oihkedList<T>
andLinkedListNode<T> together.

using System;
using System.Collections.Generic;

class LinkedListNodeDemo{
public static void Main(){
LinkedList<int> Ist = new LinkedList<int>(

new int[[{5, 3, 2, 7, -4, 0});

LinkedListNode<int> nodel, node2, node;
nodel = Ist.First;
node?2 = Ist.Last;

/l Run-time error.
/I The LinkedListNode is already in the list.
/I Error message: The LinkedList node belongs a Lin kedList.
I* Ist. AddLast(nodel); */
/I Move first node to last node in list
Ist. Remove(nodel); Ist. AddLast(nodel);

/I Navigate in list via LinkedListNode objects

431

nodel = Ist.First;
Console.WriteLine("Third element in list: node 1 = Ist.First;
nodel.Next.Next.Value {O0}\n",
nodel.Next.Next.Value);

/I Add an integer after a LinkedListNode object
Ist. AddAfter(nodel, 17);

/I Add a LinkedListNode object after another Linked ListNode object
Ist. AddAfter(nodel, new LinkedListNode<int>(18);
/I Navigate in LinkedListNode objects and add an in t before a node:

node = nodel.Next.Next.Next;
Ist. AddBefore(node, 99);

/I Navigate in LinkedListNode objects and remo ve a node.
node = node.Previous;
Ist. Remove(node);

}

/l Method ReportList not shown in this version.

}

Program 45.21 Basic operations on a LinkedList of integers -
using Li nkedLi st Nodes.

In line 8-9 we make the same initial integer listmProgram 45.19. In line 13-14 we see how t@s&to
the first/lastLinkedListNode ~ objects of the list.

In line 19 we attempt to ad@del , which is the firstinkedListNode inist , as the last node of the list.
This fails because it could bring the linked ligioi an inconsistent state. (Recall in this contieat a
LinkedListNode ~ knows the list to which it belongs). Instead, lagven in line 22, we should first remove
nodel and then addodel with AddLast .

Please take a close look at the remaining addivaysgations, and removals in Program 45.21. As aboe
show a self-explaining output of the program, sisting 45.22.

432

Initial LinkedList
53 27-40

nodel = Ist.First; Ist. Remove(nodel); Ist. AddLast(n odel);
3274005

Third element in list: nodel = Ist.First; nodel.Ne xt.Next.Value 7

Ist. AddAfter(nodel, 17);
317 2 7 -4 0 5

Ist. AddAfter(nodel, new LinkedListNode<int>(18));
31817 2 7 -4 0 5

node = nodel.Next.Next.Next; Ist. AddBefore(node, 99);
3181799 2 7 -4 0 5

node = node.Previous; Ist. Remove(node);
31817 2 7 -4 0 5

Listing 45.22 Output of the program with LinkedListNode
operationson a LinkedList.

45.17. Time complexity overview: Collection classe

Lecture 12 - slide 20

In this section we will discuss the efficiency efexted and important list operations in the tlulasses
Collection<T> , List<T> , andLinkedList<T> . This is done by listing thime complexities of the
operations in a table, see Table 45.1. If you ateeamfortable with Big O notation, you can fortansce
consult Wikipedia [Big-O] or a book about algorithrand data structures.

The time complexities of the list operations areshaften supplied as part of the documentatiomef t
operations. The choice of one list type in favoanbdther is often based on requirements to the time
complexities of important operations. Therefore gbould pay careful attention to the informationatb
time complexities in the C# library documentation.

Throughout the discussion we will assume thatigie tontaim elements. It may be helpful to relate the
table with the class diagram in Figure 45.1 fromohtit appears which interfaces to expect fromlite
classes.

433

Operation Collection<T> List<T> LinkedList<T>

thisi] 0(2) 0O(1) -
Count 0(1) O(1) O(1)
Add(e) O(1) or O(n) O(1) or O(n) o(1)
Insert(i,e) O(n) O(n) -
Remove(e) O(n) O(n) O(n)
IndexOf(e) O(n) o(n) -
Contains(e) O(n) O(n) O(n)
BinarySearch(e) - O(log n) =
Sort() - O(nlog n) or O(n’) -
AddBefore(lin) - - 0o(1)
AddAfter(lin,e) - - O(1)
Remove(lin) - - 0o(1)
RemoveFirst() - = 0(1)
RemovelLast() - - 0o(1)

Table 45.1 Time complexities of important operations in the classes
Col | ecti on<T>, Li st <T>, and Li nkedLi st <T>.

As it can be seen in the class diagram of Figur& dbthree classes implement tbellection<T>
interface with the operatio®unt , Add, Remove, andContains . Thus, these four operations appear for all
classes in Table 45.1.

count is efficient for all lists, because it maintainsiaternal counter, the value of which can be regdrby
thecount property. Thus, independent of the length oftadisunt runs in constant time.

For all three types of listadd(e) adds an elemeit(of typeT) to the end of the list. This can be done in
constant time, because all the three types oftist® direct access the rear end of the list. ifine t
complexityO(1)/O(n) given forcCollection<T> andList<T> reflects that under normal circumstances it
takes only constant time to add an elementdelliaction or aList . If however, the list is full it may need
resizing, and in that case the run time is linaar. i

Remove(e) andContains(e) , wheree is of typeT, will have to search far in the list. This behavior is
common for all three types of lists. Therefore tilne times ofRemove andContains areO(n).

The indexethis[i] is only available in the lists that implemest<T> . Such lists are based on arrays,
and therefore the runtime of the indexe®{d). (Recall that in arrays it is possible to compthtlocation
of an element with a given index; No searching, tatever, is involved).

BinarySearch ~andSort are operations inist<T> . Sort implements a Quicksort variant, and as such the
worst possible time complexity &(n?), but the expected time complexityGgn log n). The runtime of
BinarySearch IS, as expected(log n).

The bottom five operations in the table belongiigedList . The methodaddBefore , AddAfter , and
Remove all work on aLinkedListNode , lin , and as such their runtimes do not depend. ¢@nly a few

434

references need to be assigned. The number oepaissignments do not depend®nThus, when applied
on objects of typeinkedListNode the runtime of these three operations@f#¥). RemoveFirst and
RemoveLast are of time complexit{D(1) because a linked list maintain direct referenodsoth ends of the
list.

45.18. Using Collections through Interfaces

Lecture 12 - slide 21

We started this chapter with a discussion of figgrfaces, and we will end the chapter in a sinway.

It is, of course, necessary to use one of the cddie classes (such asi<T>) when you need a collection

in your program. The morale of this section is, beer, that you should not use list classes mone tha
necessary. In short, you should typically useT> or Collection<T> (for some type T) when you make a
collection object. All other places you are betifrusing one of the interface types, suchLas<T> . The
key observations can be summarized as follows.

It is an advantage to use collections via intedanstead of classes
If possible, only use collection classes in ing&diuns, just aftenew
This leads to programs with fewer bindings to cetermplementations of collections

With this approach, it is easy to replace a calbectlass with another

Thus, please consider the following when you uslecions:
Program against collection interfaces, not collection classes

If the types of variables and parameters are gagimterfaces it is easy, a later point in timegtiange the
representation of your collections (say, fronmflection<T> to one of your own collections which
implementglist<T>). Notice that if you, for instance, appligt<T> operations, which are not prescribed
by one of the interfaces, you need to declare {isuof typeList<T> for some typq.

Let us illustrate how this can be done in Progr&n23. The thing to notice is that the only placerefer to
a list class (hereollection<Animal> ()) is in line 9: newCollection<Animal> . All other places, as
emphasized witlpur ple, we use the interfageollection<Animal> . If we, tomorrow, wish to change the
representation of the animal collection, the oncp to modify is line 9.

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;

class CollectioninterfaceDemo{

public static void Main(){
ICollection<Animal> Ist = new Collection<Animal>()

/I Add elements to the end of the empty list:
Ist. Add(new Animal("Cat")); Ist.Add(new Animal ("Dog", Sex.Female));

435

Collection<Animal>
List<Animal>

Ist. Add(new Animal("Mouse")); Ist.Add(new Anim al("Rat"));

Ist. Add(new Animal("Mouse", Sex.Female)); Ist. Add(new Animal("Rat"));
Ist. Add(new Animal("Herring", AnimalGroup.Fish, Sex.Female));
Ist. Add(new Animal("Eagle", AnimalGroup.Bird, S ex.Male));

/I Report in various ways on the animal collection:
Print("Initial List", Ist);
ReportFemaleMale(Ist);
ReportGroup(lst);

}

public static void Print<T>(string explanation, ICollection<T>
Console.WriteLine(explanation);
foreach(T el in list)
Console.WriteLine("{0, 3}", el);
Console.WriteLine(); Console.WriteLine();

}

public static void ReportFemaleMale(ICollection<Animal> list){
int numberOfMales = 0,
numberOfFemales = 0;

foreach(Animal a in list)
if (a.Sex == Sex.Male) numberOfMales++;
else if (a.Sex == Sex.Female) numberOfFemales ++;

Console.WriteLine("Males: {0}, Females: {1}",
numberOfMales, numberOfFemal es);
}

public static void ReportGroup(ICollection<Animal> list{
int numberOfMammals = 0,
numberOfBirds = 0,
numberOfFish = 0;

foreach(Animal a in list)
if (a.Group == AnimalGroup.Mammal) numberOfMa mmals++;
else if (a.Group == AnimalGroup.Bird) numberO fBirds++;
else if (a.Group == AnimalGroup.Fish) numberO frish++;

Console.WriteLine("Mammals: {0}, Birds: {1}, Fi sh: {2}",

list){

numberOfMammals, numberOfBir ds, numberOfFish);

Program 45.23 A programbased on | Col | ect i on<Ani rmal > - witha Col | ecti on<Ani mal >.

45.19. References

[Big-O] Wikipedia: Big O Notation

http://en.wikipedia.org/wiki/Big_O_notation

436

On the accompanying slide we show versions of Rragt5.23, which are tightly bound to the class
, and we show a version in which we have replazdéction<Animal> with

46. Generic Dictionaries in C#

In the same style as our coverage of lists in Gragl we will in this chapter discuss generic ifstegs and
classes fodictionaries. This covers the high-level conceptasbociative arrays and the low-level concept of
hash tables.

46.1. Overview of Generic Dictionaries in C#

Lecture 12 - slide 24

A dictionary is a data structure that maps keysalaes. A given key can have at most one valuken t
dictionary. In other words, the key of a key-vapser must be unique in the dictionary. A given watan be
associated with many different keys.

At the conceptual level, a dictionary can be unet as an associative array (see Section 192 ar
collection of key-value pairs. In principle the leation classes from Chapter 45 can be used as an
underlying representation. It is, however, convenie provide a specialized interface to dictioaearnvhich
sets them apart from collections in general. Intaaidwe often need good performance (fast lookapyl
therefore it is more than justified to have spesigdport for dictionaries in the C# libraries.

Figure 46.1 gives an overview of the generic irteet and the generic classes of dictionaries. ifjheefis
comparable with Figure 45.1 for collections. Aslsube white boxes represent interfaces and the gre
boxes represent classes. As it appears from Fitfuewe model dictionaries &humerable S (see Section
45.2) andcollection S (see Section 45.3) at the highest levels of attébns. From the figure we can
directly read that a dictionaig a ICollection of KeyvaluePair S. (Theisarelation is discussed in Section
25.2).

[Enumerable<KeyValuePalr<k, V>3
ICollection <KeyValuePalr<k, V>>

[Dictionary <K.v>

"Dictionary<K.V> | | SortedDictionary<K,V> | | SortedList<K,V> |
Figure 46.1 The class and interface inheritance tree related to Dictionaries

The symbok stands for the type of keys, and the symbstiands for the type of values.
KeyValuePair<k,V> is a simple struct that aggregates a key andue\tala single object.

Dictinonary<K,V> is implemented in terms of a hashtable that majects of type to objects of type.
SortedDictinonary<K,V> relies on binary search tressrtedList<k,v> is based on a sorted arrays. More
details can be found in Section 46.5. In Sectiol 4& review the time complexities of the operagiohthe
three dictionary classes shown above.

437

46.2. The interface IDictionary<K,V>

Lecture 12 - slide 25

From Figure 46.1 we see that the interfas&ionary<K,v> is a subinterface of
ICollection<KeyValuePair<K,V>> . We gave an overview of the generic interfexglection<T> in
Section 45.3. Because of this subinterface relakips we know that it is possible to use the opmrat
Contains , Add, Remove 0N objects of typ&eyVvaluePair<k,v> . Notice, however, that these operations are
rather inconvenient because the generic ®aggaluePair is involved. Instead ofdd(new

KeyValuePair(k,v)) we prefer another overload add, namelyaddk,v) . The mentioned operations
Contains , Add, andRemove ONKeyValuePairs ~ are available in theictionary classes of Figure 46.1, but
they are degraded to explicit interface implemeoist (see Section 31.8).

The following provides an overview of the operatidmiDictionary<K,v>

» The operations prescribed in ICollection<KeyValuePair<K,V>>

» The operations prescribed in IEnumerable<KeyValuePair<K,V>>

« Vithis [Kkey] - both getter and setter; the settatsadr mutates

« void Add(K key, V value) - only possible if key is nalteady present
» boolRemove(K key)

» boolcontainskey (K key)

» boolTryGetvalue (K key, out V value)

* ICollection<k> Keys - getter

* ICollection<V> Values - getter

V this[K key] is an indexer via which we can set and get a vall@egiven key by means of array notation
(see Section 19.1). dict is declared of typ®ictionary<K,v> then the indexer notation allows us to
express

valVar = dict[someKey];
dict[someKey] = someValue;

The first line accesses (gets/reads) the valueded withsomeKey. If no value is associated wishmekey
anKeyNotFoundException is thrown. The second line adds (sets/writes)saoaation betweesomeKey
andsomeValue todict . If the association is already in the dictiondhg setter mutates the value associated
with someKey.

The operatioradd(key,value) ~ adds an association betwaen andvalue to the dictionary. If the key is
already associated with (another) value in theatiery anArgumentException will be thrown.

Remove(key) removes the associationiely and its associated value. Via the value returtietRemove
operation signals if the removal was succesgkihove returnsfalse if key is not present in the dictionary.

ContainsKey(key) tells ifkey is present in the dictionary.

The operation caltryGetvalue(key, valueVar) accesses the valuelkafy , and it passes the value via an
output parameter (see Section 20.7). If no valasseciated with key, the default value of tygsee
Section 12.3) is passed back in the output paranétes method is added of convenience. Alternativie
indexer can be used in combination withhtainsKey

438

The propertiegeys andvalues return collections of the keys and the values a@ictionary.

46.3. Overview of the class Dictionary<K,V>

Lecture 12 - slide 26

The generic classictionary<K,v> is based on hashtabl@sctionary<k,v> implements the interface
IDictionary<K,V> as described in Section 46.2. Almost all methauk@operties obictionary<k,v> are
prescribed by the direct and indirect interfacethefclass. In the web version of the material wmengerate
the most important operations mittionary<k,V>

As it appears from the discussion of dictionariesva, it is necessary that two keys can be comdared
equality. The equality comparison can be provigeseveral different ways. It is possible to pass an
EqualityComparer oObject to thepictionary ~ constructor. Alternatively, we fall back on thefault equality
comparer of the key typeK. The propertyComparer of clasDictionary<K,v> returns the comparer used
for key comparison in the current dictionary. Skse #he discussion of equality comparison in Secta.9.

As already mentioned, a dictionary is implemented &ash table. A hash table provides very fagisaco
the a value of a given key. Under normal circumstan and with a good hash function - the run tiofake
access operations are constant (the run timestdiepend on the size of the dictionary). Thus tithe
complexity is O(1). Please consult Section 46.61ore details on the efficiency of the dictionary
operations.

46.4. Sample use of class Dictionary<K,V>

Lecture 12 - slide 27

In this section we will illustrate the use of dastaries with a simple example. We go for a dictigrihat
maps objects of typeerson to objects of typ@ankAccount . Given aPerson object (the key) we wish to
have efficient access to the pers@aiskAccount (the value).

The classerson is similar to Program 20.3. The clagskAccount is similar to Program 25.1. The exact
versions ofPerson andBankAccount , as used in the dictionary example, can be acdesa¢he
accompanying slide page, or via the program indeRis lecture.

using System;
using System.Collections.Generic;

class DictionaryDemo{
public static void Main(){

IDictionary<Person, BankAccount> bankMap =
new Dictionary<Person,BankAccount>(new PersonComparer());

/l Make bank accounts and person objects

BankAccount bal = new BankAccount("Kurt", 0.01),
ba2 = new BankAccount("Maria", 0.0 2),
ba3 = new BankAccount("Francoi", 0 .03),
ba4 = new BankAccount("Unknown", O .04);

Person pl = new Person("Kurt"),

439

18 p2 = new Person("Maria"),

19 p3 = new Person("Francoi");

20

21 bal.Deposit(100); ba2.Deposit(200); ba3.Deposit (300);
22

23 /I Populate the bankMap:

24 bankMap.Add(p1, bal);

25 bankMap.Add(p2, ba2);

26 bankMap.Add(p3, ba3);

27

28

29 /[Print Kurt's entry in the map:

30 Console.WriteLine("{O}\n", bankMap[p1]);

31

87, /I Mutate Kurt's entry in the map

33 bankMap[pl] = ba4;

34

85

36 /I Mutate Maria's entry in the map. PersonComparer crucial!
37 ba4.Deposit(400);

38 bankMap[new Person("Maria")] = ba4;

39

40

41

42 /I Add p3 yet another time to the map

43 /I Run-time error: An item with the same key has al ready been added.
44 I* bankMap.Add(p3, bal);

45

46 */

47

48 /I Try getting values of some given keys

49 BankAccount balRes = null,

50 ba2Res = null;

51 bool resl = false,

52 res2 = false;

53 resl= bankMap.TryGetValue(p2, out balRes);

54 res2 = bankMap.TryGetValue(new Person("Anders"), out ba2Re S);

55 Console.WriteLine("Account: {0}. Boolean result
56 Console.WriteLine("Account: {0}. Boolean result
57 Console.WriteLine();

58

59 /l Remove an entry from the map

60 bankMap.Remove(pl);

61

62

63 /l Remove another entry - works because of PersonCo
64 bankMap.Remove(new Person("Francoi"));
65

66 }

67

68 public static void ReportDictionary<K, V>(string
69 IDictio

70 Console.WriteLine(explanation);

71 foreach(KeyValuePair<K,V> kvp in dict)

72 Console.WriteLine("{0}: {1}", kvp.Key, kvp.Va
73 Console.WriteLine();

74 }

75}

76

77 public class PersonComparer: IEqualityComparer<Pers
78

79 public bool Equals(Person p1, Person p2){

80 return (p1l.Name == p2.Name);

81 }

82

440

{1}", balRes, resl);
{1}", ba2Res, res2);

mparer

explanation,
nary<K,V> dict){

lue);

on>{

public int GetHashCode(Person p){
return p.Name.GetHashCode();

}
}

Program 46.1 A programworking with
Di cti onar y<Per son, BankAccount >.

In line 8-9 we make the dictionabgnkMap of typeDictionary<Person,BankAccount> . We pass an
instance of clasBersonComparer , see line 76-86, which implemenigualityComparer<Person> . Inline
11-19 we make sampBankAccount andPerson objects, and in line 24-26 we populate the diargn
bankMap.

In line 30 we see how to access the bank accoymgrsbrp1 (Kurt). We use the provided indexer of the
dictionary. In line 33 we mutate tihankmap: Kurt's bank account is changed from the one eefezd byail
to the one referenced by4. In line 38 we mutate Maria's bank account imailar way. Notice, however,
that that the relative weak equalityrafrson objects (implemented in claBsrsonComparer) implies that
the newperson("Maria") in line 38 is equal to the person referencegddyand therefore line 38 mutates
the dictionary entry for Maria.

In line 43 we attempt add yet another entry fomEa. This is illegal because there is alreadyrarnydor
Francoi in the dictionary. If the comments around U3 are removed, a run time error will occur.

In line 52-53 we illustrat@ryGetvalue . First, in line 52, we attempt to access Mariatoant. The out
parametebaResl is assigned to Maria's account atad is returned from the method. In line 53 we attempt
to access the account of a brand mewon object, which has no bank account in the dictignan is
returned througha2Res, andfalse is returned from the method.

Finally, in line 58-64 we remove entries from thetionary by use of theemove method. First Kurt's entry
is removed after which Francoi's entry is removed.

The output of the program is shown in Listing 4@8&ly on web).

Exer cise 12.3. Switching from Dictionary to SortedDictionary

The program on this slide instantiateSi@ionary<Person,BankAccount> . As recommended earlier in
this lecture, we should work with the dictionarg a variable of the interface tymactionary<k,v>

You are now asked to replabetionary<Person,BankAccount> with
SortedDictionary<Person,BankAccount> in the above mentioned program.

This causes a minor problem. Identify the probland fix it.

Can you tell the difference between the outpuhefgrogram on this slide and the output of yoursesV
program?

You can access thBankAccount andPerson classes in the web version of the material.

441

46.5. Notes about Dictionary Classes

Lecture 12 - slide 28

As can be seen from Figure 46.1 several differenegjc classes implement timéctionary<k,v>
interface Dictionary<K,v> , as discussed in Section 46.3 and Section 4®dsisd on a hash table
representatiorsortedDictionary<K,V> is based on a binary tree, and (as the name sjgnal
SortedList<K,v> is based on an array of key/value pairs, sortekklyg.

The following provides an itemized overview of theee generic dictionary classes.

« ClassbDictionary<K,v>
« Based on a hash table
» Requires that the keys in tygecan be compared by &quals operation
« Key values should not be mutated
« The efficiency of class dictionary relies on a gdadh function for the key type
« Consider overriding the meth@#tHashCode in clask
« Adictionary is enumerated in terms of the stiugtvaluePair<k,v>
« ClasssSortedDictionary<K,V>
- Based on a binary search tree
« Requires amcomparer for keys of typex - for ordering purposes
« Provided when a sorted dictionary is constructed
o ClassSortedList<K,V>
- Based on a sorted collection of key/value pairs
» Aresizeable array
« Requires amcomparer for keys, just likeSortedDictionary<K,v>
« Requires less memory thanrtedDictionary<K,v>

When you have to chose between the three dictiatiasges the most important concern is the diffexen
time characteristics of the operations of the @as$he next section provides an overview of these.

442

46.6. Time complexity overview: Dictionary classes

Lecture 12 - slide 29

We will now review the time complexities of the masportant dictionary operations. This is doné¢ha
same way as we did for collections (lists) in Setd5.17. We will assume that we work on a dictigrinat
holdsn entries of key/value pairs.

Operation Dictionary<K,V> SortedDictionary<K,V> SortedList<K,V>
this[key] o1 O(log n) O(log n) or O(n)
Add(key,value) O(1) or O(n) O(log n) O(n)
Remove(key) o1 O(log n) O(n)
ContainsKey(key) o) O(log n) O(log n)
ContainsValue(value) O(n) O(n) O(n)

Table 46.1 Time complexities of important operations in the classes
Di cti onary<K, V>, Sort edDi cti onary<K, V>, and
Sort edLi st <K, V>,

As noticed in Section 46.5 an object of typeionary<k,v> is based on hash tables. Eventually, it will be
necessary to enlarge the hashtable to hold neweelsnit is good wisdom to enlarge the hashtablenwh
becomes half full. Th®(1) or O(n) time complexity foradd reflects that a work proportional tais needed
when it becomes necessary to enlarge the hash table

Most operations on the binary tree representati@mdDictionary<K,v> are logarithmic im. The only
exception (among the operations listed in the Jableontainsvalue , which in the worst case requires a full
tree traversal.

In SortedList<K,v> the indexer is efficienD(log n) when an existing item is mutated. If use of thaeixer
causes addition of a new entry, the run time isstimae as the run time afd. Adding elements to a sorted
list requires, in average, that half of the elerseme pushed towards the end of the list in o@lerdate free
space for the new entry. This is @n) operationRemove is symmetric, pulling elements towards the
beginning of the list, and therefore aldn). Containskey is efficient because we can do binary search on
the sorted listContainsvalue requires linear search, and therefore it i©ém operation.

Given the table in Table 46.1 it is tempting to dade thabDictionary<k,v> is the best of the three classes.
Notice, however, that the difference between atamisun timecl andc2 log(n) is not necessarily
significant. If the constardl is large and the constarft is small, the binary tree may be an attractive
alternative. Furthermore, we know that the hashktalill be slow when it is almost full. In that casere

and more collisions can be expected. At some [oititne the hash table will stop working if it istn

resized. This is not an issue if we work with bakhbinary trees. Finally, the hashtable deperitisadly

on a good hash function, preferable programmedfigadly for the key typex. This is not an issue if we use
binary trees.

443

444

47. Non-generic Collections in C#

This is a short chapter in which we discuss thegmmeric collection classes. You may encounteiofise
these classes in many older C# programs. In Sedtidnhthese collection classes were cdiliesti generation
collection classes.

47.1. The non-generic collection library in C#

Lecture 12 - slide 31

The overview of the non-generic collection inteda@nd classes in Figure 47.1 is a counterpaneteum
of Figure 45.1 and Figure 46.1. The white boxesasgnt interfaces and the grey boxes represerseslas
Most classes and interfaces shown in Figure 48dnbeo the namespasgstem.Collections

The non-generic collection classes store dataps dyject

As the most important characteristics, the elemehtise lists are of typebject . Both keys and values of
dictionaries ar®bjects . Without use of type parametrization, there areneans to constraint the data in
collections to of a more specific type. Thus, if flseinstance work with a collection of bank acctnve
cannot statically guarantee that all elements efctiilection are bank accounts. We may accideniasigrt
an object of another type. We will find the errorantime. Most likely, an exception will be raisetien we
try to cast ambject t0 BankAccount .

IEnumerable | Queue
ction 2 | stack
ICollecion 53— [BitArray
e L.z

|Ami;ru§t | Array ListDictionary |Hasﬁ1‘ahle Sorte_l:_liJstl

Figure 47.1 Theclassand interface inheritance tree related to collections

ThelEnumerable |, ICollection , IList andiDictionary interfaces of Figure 47.1 are natural counterparts
to the generic interfaceBnumerable<T> | ICollection<T> , IList<T> andIDictionary<K,V>

The classrrayList — corresponds toist<T> . As suchArrayList is a class with a rich repertoire of
operations for searching, sorting, and range ojp@i@trrayList is undoubtedly the most widely used
collection class in C# 1.0 programs.

TheArray class shown next tarrayList in Figure 47.1 deserves some special clarificatitoimelongs to
thesystem namespace. You cannot instantiate class in your programs, becauseay is an abstract
class. And you cannot useay as a superclass of one of your own classes. &xsActay seems pretty
useless. At least it is fair to state the classy is rather special compared to the other classEgyiure 47.1.

Let us now explain the role of classay . As mentioned earlier, see Section 28.2 , chasg acts as the
superclass of all "native" array types in C#. (8mediscussion of arrays in Section 6.4). Conseityyeil

445

the nice operation igystem.Array can be used on all "native" arrays that you ug@ur C# programs. If,
for instance, we have the array declarations

int[] ia = new int[3];
string[] sa = new string[5,6];
BankAccount[] baa = new BankAccount[10];

the following are legal expressions

ia.Length

a.Rank
Array.BinarySearch(ia, 5)
Array.Find(sa, IsPalindrome)
Array.Sort(baa)

In theArray class, you should pay attention to the (overloadttic methodtreatelnstance , which
allows for programmatic creation on an arbitramagr TheArray instance methodsetvalue andSetvalue
allow us to access elements in arbitrary arrapgependent of element type and rank.

When we talk about "native arrays" in C# we refethie array concept implemented in the languageiels.
The compiler provides special support for thesé&vaatrrays. In contrast, generic and non-generic
collections are provided via the class library. T#compiler and the C# interpreter do not havéqaar
knowledge or support of the collection classes.cdldd have written these classes ourselves! It is
interesting to notice that the native arrays, as/ed from class\rray in Figure 47.1, are type safe. The type
safeness of native arrays is due to the specilostipy the compiler, which allows for declaratioithe
element types of the arrays (see the exampl@s obtring , andBankAccount arrays above).

The classiashTable in Figure 47.1 corresponds to the generic aéssnary<k,v> , see Section 46.3 and
Section 46.4).

The class.istDictionary , wWhich belongs to the namespagystem.Collections.Specialized , has no
natural generic counterpartstDictionary is based on linear search in an unordered callect
key/value pairsListDictionary should therefore only be used for small dictioesri

As the name suggests, classedList corresponds tBortedList<K,V> . Both rely on a (linear) list
representation, sorted by keys.

The clas®itArray is - by nature - a non-generic collection clagse Binary digit 1 is represented as
boolearntrue, and the binary digit O is represented as bodlaae BitArray provides a compact
representation of a bit arrays. In the contexnhdekers, see Program 19.4, we have earlier distasse
partial reproduction of the clasgArray

In addition to the types shown in Figure 47.1 thexist some specialized collections in the namespac
System.Collections.Specialized . As an example, the classingCollection is a collection of strings.
The clas<CollectionBase in the namespac®stem.Collection is intended as the superclass of new,
specialized collection classes. In the documemaifdhis class, an example shows how to define an
Int16Collection as a subclass abllectionBase . Needless to sagll these classes are obsolete relative
to both C#2.0 and C#3.0. As of today, the classmglme necessary for backward compatibility, but,
unfortunately, they also add to the complexityhaf tNET class libraries.

446

48. Patterns and Technigues

In earlier parts of this material (Section 31.6 &adtion 45.2) we have at length discussed enuaneriat
C#, including their relationship for each loops.

In this section we first briefly rephrase this e tdesign pattern known Hsrator. Following that we will
show how to implement iterators (enumerators) wgé ofyield return, which is a variant of thesturn
statement.

48.1. The Iterator Design Pattern

Lecture 12 - slide 34

Thelterator design pattern provides sequential access tognegated collection. At an overall level, an
iterator

« Provides for a smaller interface of the collectitass

« All members associated with traversals have bectagred to the iterator class
« Makes it possible to have several simultaneou®tsas
« Does not reveal the internal representation otdikection

As we have seen in Section 31.6 and Section 4a&rsal of a collection requires a few relatedratens,
such asurrent , MoveNext , andReset . We could imagine a slightly more advanced iteratioich could
move backwards as well. With use of iterators weeHactored these operations out of the colleatiasses,
and organized them in iterators (enumerators). Withrefactoring, a collection can be asked tovdelan
iterator:

aCollection.GetEnumerator()

Each iterator maintains the state, which is necgdeaarry out a traversal of a collection. If weed two
independent, simultaneous traversals we can agléoiterators of the collections. This could, fiestance
be used to manage simultaneous iteration from &ods of a list.

In more primitive collections, such as linked ligtee Section 45.14) it is hecessary to reveablbject
structure that keeps the list together.LitedList<T> this relates to the details hkedListNode<T>
instances). With use of iterators it is not necgsgareveal such details. An iterator is an enakgied,
abstract representation of some state that mamemasgersal. The concrete representation of thie $$ not
leaked to clients. This is very satisfactory inodject-oriented programming context.

Iterators (enumerators) are typically used viadoleloops. As an alternative, it is of course glgssible to
use the operations in tEnumerator interface directly to carry out traversals. Exeeci2.4 is a
opportunity to train such a more direct use ofiters.

Exercise 12.4. Explicit use of iterator - instead of using foreach

447

In this program we will make direct use of an itergan enumerator) instead of traversing with afse
foreach.

In the animal collection program, which we havensearlier in this lecture, we traverse the animal
collections several times with use of foreach. BRepleach use of foreach with an application of an
iterator.

48.2. Making iterators with yield return

Lecture 12 - slide 35

In this section we will show how to use the spepiaiposeyield return statement to define iterators, or as
they are called in C#, enumerators. First, we pvitigram a very simple collection of up to threred
values. Next we will revisit the integer sequencareration, which can be found in Section 58.3.

In Program 48.1 we will program a collection clasa]edGivencCollection , which just covers zero, one,
two or three values of some arbitrary typéAs a simpleminded approach, we represent theséues with
three instance variables of typeand with three boolean variables which tell§i&@ torresponding values
are present. As an invariant, the instance variadnle filled from the lower end. It would be tempgtio use
the typeT? instead off, and the valueull for a missing value. But this is not possibl& i class.

It is important that the clagsvenCollection implements the generic interfa@@umerable<T> . Because
this interface, in turn, implements the non-genmomerable , we must both define the generic and the
non-genericGetEnumerator method. The latter must be defined as an exphtetface (see Section 31.8), in
order not to conflict with the former. If we forgdie non-generiGetEnumerator , we get a slightly
misleading error message:

'GivenCollection<T> ' does not implement interface member
'System.Collections.|IEnumerable.GetEnumerator()'.
‘GivenCollection<T> 'is either static, not public, or has the wronyine type.

This message can cause a lot of headache, bet®ussal problem (the missing, non-generic
GetEnumerator method) is slightly camouflaged in the error mgssa

The implementation of the non-generic enumeratstrgelegates its work to the generic version.

The implementation of the genedgumerator method uses thgeld return statement. Let us assume that
an instance o6ivenCollection<T> holds threa values (infirst , second , andthird). The three boolean
variablesirstDefined , secondDefined , andthirdDefined are all true. The&etEnumerator method has
three yield return statements in sequence (se®&0r&2). By means of theseetEnumerator can return
three values before it is done. This is entireffedent from a normal method, which only returngeafter
which it is done). Th&etEnumerator in classGivenCollection acts as a coroutine in relation to its calling
place (which is théoreach statement in the client program Program 48.2)o/gtine can resume
execution at the place where execution stopped @adier call. A normal method always (re)startsrf its
first statement each time it is called.

448

using System;
using System.Collections.Generic;
using System.Collections;

public class GivenCollection<T> : IEnumerable<T>{

private T first, second, third;
private bool firstDefined, secondDefined, thirdDe fined;

public GivenCollection(){
this.firstDefined = false;
this.secondDefined = false;
this.thirdDefined = false;

}

public GivenCollection(T first){
this.first = first;
this.firstDefined = true;
this.secondDefined = false;
this.thirdDefined = false;

}

public GivenCollection(T first, T second){
this.first = first;
this.second = second;
this.firstDefined = true;
this.secondDefined = true;
this.thirdDefined = false;

}

public GivenCollection(T first, T second, T third)i
this.first = first;
this.second = second;
this.third = third;
this.firstDefined = true;
this.secondDefined = true;
this.thirdDefined = true;

}

public int Count(){
int res;
if (MfirstDefined) res = 0;
else if (!secondDefined) res = 1;
else if ('thirdDefined) res = 2;
else res = 3;
return res;

public IEnumerator<T> GetEnumerator(){

if (firstDefined) yield return first;

if (secondDefined) yield return second; // not else
if (thirdDefined) yield return third; // not else

}

IEnumerator IEnumerable.GetEnumerator(){
return GetEnumerator();

}

Program 48.1 A collection of up to three instance variables of
type T - with an iterator.

449

In Program 48.2 we show a simple program that mistées sGivenCollection of the integers 7, 5, and 3.
Theforeach loop in line 11-12 traverses the three correspandistance variables, and prints each of them.

using System;
class Client{
public static void Main(){
GivenCollection<int> gc = new GivenCollection< int>(7,5,3);

Console.WriteLine("Number of elements in given Collection: {0}",
gc.Count());
foreach(intiingc){ // Output: 753
Console.WriteLine(i);

}

Program 48.2 A sampleiteration of the three instance variable
collection.

Exercise 12.5. Theiterator behind ayield

Reprogram the iterator in classenCollection without using theield return statement in the
GetEnumerator method.

Let us now revisit the integer enumeration clasdée&®ection 58.3. The main point in our first dissios of
these classes was tBemposite design pattern, cf. Section 32.1, as illustrateHigure 58.1 of Section 58.3.
The three classestinterval , IntSingular ~, andintCompSeq all inherit the abstract claggSequece

You can examine the abstract clasSequence in Program 58.9 in the appendix of this matefihle three
concrete subclasses were programmed in Prograr,3&.dgram 58.11, and Program 58.12.

TheGetEnumerator methods ofntinterval , IntSingular ~, andintCompSeq are all emphasized below in
Program 48.3, Program 48.4, and Program 48.5. <itie use ofield return in all of them.

In Program 48.3 the if-else GktEnumerator in line 19-24 distinguishes between increasing dexteasing
intervals. ThesetEnumerator method ofintSingular is trivial. TheGetEnumerator method of

IntCompSeq in Program 48.5 is surprisingly simple - at leashpared with the counterpart in Program
58.12. The two foreach statements (in sequend&)ari9-22 activate all the machinery, which we
programmed manually in Program 58.12. This includesrsive access to enumerators of composite
sequences.

The simplicity of enumerators, programmed with ¢iegturn, is noteworthy compared to all the undedy
stuff of explicitly programmed classes that impletie interfaceEnumerator

Iterators (iterator blocks), programmed wgtéld return , are only allowed to appear in methods that
implement an enumerator or an enumerable inte(fEh asEnumerator Or IEnumerator ~ and their
generic counterparts). Such methods are handlad/ény special way by the compiler, and a number of
restrictions apply to these methods. The compgeregates all the machinery, which we program ovesel
when a class implements the enumerator or enuneeirstbifaces. Methods with iterator blocks that
implement and enumerator or an enumerable intertstoen an enumerator object, on which MeeeNext

450

can be called a number of times. For more detail¢epators please consult Section 10.14 in th& O#
Language Specification [csharp-3-spec].

public class Intinterval: IntSequence{
private int from, to;

public Intinterval(int from, int to){
this.from = from;
this.to = to;

}

public override int? Min{
get {return Math.Min(from,to);}

}

public override int? Max{
get {return Math.Max(from,to);}

public override IEnumerator GetEnumerator (){
if (from < to)
for(int i = from; i <= to; i++)
yield return i;
else
for(int i = from; i >= to; i--)
yield return i;

}

Program 48.3 Theclass Intinterval - Revisited.

public class IntSingular: IntSequence{
private int it;
public IntSingular(int it){

this.it = it;
}

public override int? Min{
get {return it;}

public override int? Max{
get {return it;}

public override IEnumerator GetEnumerator(){
yield return it;

}
}

Program 48.4 Theclass IntSingular - Revisited.

451

public class IntCompSeq: IntSequence{

private IntSequence s1, s2;

public IntCompSeq(IntSequence s1, IntSequence s2) {
this.s1 = s1;
this.s2 = s2;

}

public override int? Min{
get {return (s1.Min < s2.Min) ? s1.Min : s2.Min i}

public override int? Max{
get {return (s1.Max > s2.Max) ? s1.Max : s2.Max i}

public override IEnumerator GetEnumerator (){
foreach(intiin sl)

yield return i;
foreach(int i in s2)

yield return i;

}

Program 48.5 The class IntCompSeq - Revisited.

In the web edition of the material we show a sargfint program that contains a couplart$equence s.

48.3. References

[Csharp-3-spec] "The C# Language Specification,3.0"

452

49. Correctness

This is the first chapter in the lecture about cacts and assertions. We all want to write conpeagrams.
But what is correctness? Program correctness myalvelative to something else. In this lecturenitke
discuss program correctness relative poagram specification. In Chapter 50, (the next chapter) we will
take a closer look at a particular approach to qammgspecification, on which the rest of this leetwiill be
based.

49.1. Software Qualities

Lecture 13 - slide 2

Program correctness is one of severafram qualities. A software quality is a positive property of prag.
There are many different software qualities thay fmaconsidered and promoted. In Table 49.1 wealist
number of important program qualities.

Quality Description Contrast

Correct Satigfies expectations, intentions, or Erroneous
requirements

Robust Can resist unexpected events Fragile

Reusable Can be used in several contexts Application specific

Simple Avoids complicated solutions Complex

Testable Constructed to ease revelation of errai-

Understandable Mental manageability Cryptic

Table 49.1 Different program qualities listed by name, description, and (for
selected qualities) a contrasting, opposite quality

Of all software qualities, correctness play a patér important role. Program correctness is i@aglie of its
own. Who would care about robustness, reusabidlitg, simplicity of an incorrect program?

453

49.2. Correctness

Lecture 13 - slide 3

Software correctness is only rarely an absoluteepin Correctness should be seen relative to samgeth
else. We will distinguish between program corressmelative to

« The programmers own, immediate comprehension
« Not formulated - not documented - volatile - ea$ilggotten
« Sometimes incomplete
« A program specification
« Formulated - written
« Well-considered and agreed upon
e Formal or informal
» Part of the program

At the time the program is written, it may be teimgtto rely on the comprehension and specificaitiaiine
mind of the programmer. It is not difficult to undand, however, that such a specification is ilelathe
specification may slide away from the original urs@nding, or it may totally fade away. In a softeva
house it may also easily be the case that the anuger is replaced. Of these reasons it is attetbivase
correctness on written and formal specifications.

In the following section we will discuss writtenchformal specifications that are based on mathealati
grounds.

49.3. Specifications

Lecture 13 - slide 4

We will introduce the following straightforward dieition of a specification:

A program specification is a definition of what a computer program is extpd to do
[Wikipedia].

What - not how.

Notice that specifications answ&hat questions, nothow questions.

In the area of formal mathematically-oriented sfieaiions, the following two variants are well-know

« Algebraic specifications

« Equations that define how certain operations warklesignated constructors
« Axiomatic specifications

« Logical expressions - assertions - associatedalgigses and operations

- Often divided into invariants, preconditions, amms$fgonditions

454

We will first study an algebraic specification o$tack, see Program 49.1. We have already encednigs
specification earlier in the material, namely ie ttontext of our discussion of abstract data typ&ection
1.5. From line 4-11 we declare the syntax of therafions that work on stacks. The operations are
categorized as constructors, destructors, andteedeé\s the name suggests, constructors are apesdhat
constructs a stack. Boplush andpop arefunctions that return a stack. This is different from theerative
stackprocedures we experienced in Program 30.1, which mutate tdeksvithout returning any value.

An arbitrary stack can be constructed in termsnaf or more constructors. Destructors are operatiats
work on stacks. (The term "destructor" may be sljgmisleading). Any stack can be constructed witho
use of destructors. As an example, the expregsigrpush(5, pop (push (6, push (7, new ()))))) is
equivalent withpush(7, new ()). The selectors extract information about the stack

Type stack [int]
decl are

constructors
new () -> stack;
push (int, stack) -> stack;

destructors
pop (stack) -> stack;

sel ectors
top (stack) ->int;
i snew (stack) -> bool;

for all
i inint;
s in stack;

| et
pop (new()) = error;
pop (push (i,s)) = s;
top (new()) = error;
top (push (i,s)) =i;
isnew (new()) = true;
i snew (push(i,s)) = fal se;

end

end stack.

Program 49.1 An algebraic specification of a stack.

The lines 12-21 define threeaning (also known as thgemantics) of the stack. It tells us what the concept of
a stack is all about. The idea is to define equattbat express how each destructor and each@eleatk

on expressions formulated in terms of constructing. equation in line 16 specifies that it is ameto pop
the empty stack. The equation in line 17 specthes pop applied on staskon which we have just pushed
the integer is equivalent witls. Please consider the remaining equations and swkethat you understand
their meaning relative to your intuition of theataoncept.

The specification in Program 49.1 tells us whatalsis. It is noteworthy that the specificatiorProgram
49.1 defines the stack concept without any bindng concrete representation of a stack. The spatdn
gives very little input to the programmer about Howmplement a stack with use of a list or angrfar
instance. A good specification answedsat questions, nothow questions.

If you wish to see other similar specificationsabktract datatypes, you may review our specifioatiuf
natural numbers and booleans in Program 1.9 angrdrol.10 respectively.

Below, in Program 49.2 we show an axiomatic spedtifbn of a single function, namely the square root
function. An axiomatic specification is formulatgdterms of a precondition and a postcondition. The
precondition specifies the prerequisite for actorabf the square root function. It states that tnly

455

possible to calculate the square root of non-negatumbers. The precondition constrains the owptite
function. In case of the square root function,ggeare of the result should be very close to tphatin

sqrt(x: Real) -> Real
precondition: x >= 0;

postcondi tion: abs(result * result - x) <= 0.000001

Program 49.2 An axiomatic specification of the squareroot
function.

In the rest of this lecture we will study objectemted programming, in which methods can be spetifiith
preconditions and postconditions.

456

50. Specification with preconditions and
postconditions

As exemplified at the end of the previous chagisFconditions and postconditions can be used toifgpe
the meaning of a function. In this chapter we wsiilldy preconditions and postconditions in moreitdeta

50.1. Logical expressions

Lecture 13 - slide 6

Logical expressions and assertions form the bdgseconditions and postconditions. Consequentéy/, w
define the concepts of logical expressions andésse before preconditions and postconditions:

A logical expression is an expression of type boolean

An assertion is a logical expression, which, if false, indicaga error [Foldoc]

A precondition of an operation is an assertion which must bejtrsiebefore the operation is
called

A postcondition of an operation is an assertion which must bejtrsieafter the operation has
been completed

We have worked with logical expressions numerausgiduring this course. Logical expressions améor
by relational, equational, conjunctional (and) digjunctional (or) operators. You find these oparatat
level 3, 4, 8, and 9 in Table 6.1.

Assertions are also used in the context of progesting. In Section 55.7 we surveyed a large ctileof
assertions, which are available in the NUnit testools for C#. As stated in Section 55.8, an &ssein a
test case, which returns the value false, cautshiee. A failed testcase signals that the unidemtest is

incorrect. Assertions used in test cases are sitoilassertions found in postconditions.

We can now characterize a precondition in the falg way:

» A precondition states if it makes sense to calbperation
« The precondition is prerequisite for the activation

The precondition is typically formulated in ternfgtoe formal parameters of the operation.

Similarly, a postcondition can be characterizetbisws:

- A postcondition states if the operation returnsdésired result, or has the desired effect, redativ
to the given parameters that satisfy the precanditi
« The postcondition defines timaeaning of the operation

457

The postcondition of a procedure or function F nlnestulfilled if the precondition of F holds, arfdA
terminates (F runs to its completion).

50.2. Examples of preconditions and postconditions

Lecture 13 - slide 7

We will now study preconditions and postconditiofishe operations in a circular list. A circulastlis a
linked list, in the sense we discussed in Sectmt4t However, the circular list discussed in g@stion is
only single-linked. The distinctive characteristadsa circular list are the following:

1. The lastLi nkedLi st Node is linked to the firsti nkedLi st Node of the list

2. Thed rcul arLi st object refers to thei nkedLi st Node of the last element instead of the
Li nkedLi st Node Of the first element.

We show a circular list with five elements in Figls0.1. The idea of referring the last elemenemdtof the
first element from thei r cul ar Li st object means that both the front and the reanefist can be reached
in constant time. In many context, this is a vesgful property. Notice also, that it is possibleléal with
double-linked circular lists as well.

 Circulartist >

@ © ®© © ©

Figure 50.1 Acircular list. Thelarge yellow object represents the circular list as
such. The circular green nodes represent the elements of the list. The rectangular
nodes are instances of a classakinto Li nkedLi st Node, which connect the
congtituents of the list together.

Below we specify the operations of the circularith preconditions and postconditions. The speaifon

in Program 50.1 defines the meaning of operatidiiseoyellow object in Figure 50.1. In the prograsting,
the preconditions are marked with keywoediuire, and shown imed. The postconditions are marked with
the keywordensure, and shown imlue. The names of the keywords stem from the objeented
programming language Eiffel [Meyer97, Meyer92, eB3], which is strong in the area of assertions.
Apart from that, the syntax used in Program 50Q#sand Java like.

class Circul arList {

/] Construct an enpty circular |ist
public CircularList()

require true;

ensure Enmpty();

/1l Return ny nunber of elenents
public int Size()
require true;
ensure size = Count El ements() && noChange;

458

/1l Insert el as a new first el enent
public void InsertFirst(Object el)
require !'Full();
ensure 'Enpty() & & IsCircular() & IsFirst(el);

/'l Insert el as a new | ast el enent
public void InsertlLast(Cbject el)
require !'Full();
ensure !'Enpty() &% IsCircular() &% IsLast(el);

/] Delete ny first el enent
public void DeleteFirst()

require !Enpty();
ensure

Enpty() ||
(IsCircular() & IsFirst(old RetrieveSecond()));

/'l Delete ny |ast el ement
public void Del eteLast ()

require !Enmpty();
ensure

Empty() ||
(IsCrcular() & isLast(old RetrieveButlLast()));

/[l Return the first elenent in the list
oj ect RetrieveFirst()

require !Enpty();
ensure IsFirst(result) && noChange;

// Return the last elenent in the |ist
hj ect RetrievelLast()

require !Enmpty();
ensure |sLast(result) && noChange;

Program 50.1 Circular list with preconditions and
postconditions.

The preconditionr ue of the constructor says that there are no paaiaelquirements to call the constructor.
This is natural and typical. The postconditionted tonstructor expresses that the constructor nakes
empty circular list.

The operatiorsi ze returns an integer corresponding to the counteabeu of elements in the list.

Count El enent s IS an operation, which counts the elements ifisheln a particular implementation of

G rcul arLi st, the operatiorsi ze my return the value of a private instance variadech keeps track of the
total number of elements in the lisbchange is a special assertion, which ensures that the stahe list

has not changed due the execution ofsthe operation. We see that the postcondition exprabses
consistency between the value returnedilne, and the counted number of elements in the list.

The operationmnsert Fi r st is supposed to insert an element, to becomergtesfement of the list (the one
shown at the left hand side of Figure 50.1). Theepndition expresses that the list must not bebiefibre
the insertion. The postcondition expresses thalishes not empty after the insertion, that istsl circular,
and thakl indeed is the first element of the list. The speaiion of the operationnsert Last is similar to
InsertFirst.

The operatiormel et eFi r st requires as a precondition a non-empty list. Téstqgondition obDel et eFi r st
expresses that the list either is empty or circufdahe list is non-empty (and therefore circulaffer the
deletion, the second element before the deletiost fmeithe first element after the deletion. Notiee

459

modifierol d. The value ofd d(expr essi on) is the value oéxpr essi on, as evaluated in the state just
before the current operation is execut@il et eLast IS Symmetric tmel et eFi r st .

Retri eveFirst returns the first element of the list. The predbod of Ret ri eveFi r st says that the list
must be non-empty in order for this operation t&ensense. The postcondition says that the resinitiéed
the first element, and thatt ri eveFi r st is a pure function (it does not mutate the stateecircular list).
RetriveLast IS symmetrical t®etri eveFirst.

What about the operatioBspt y, Ful | , Count El enent's, 1 sGircul ar, | sFirst, | sLast, Retri eveSecond,
andRet ri eveBut Last ? They are intended to be auxiliary, public booleperations in the circular list. In an
implementation oti r cul ar Li st we must implement these operations. They are sgupim be
implemented as simple as possible, and they arsupgtosed to carry preconditions and postconditions
order to be operational (meaning that the spetifinaan be confirmed at run-time) these auxiliary
operations be must be implemented. Nothing comesde! In reality, we check the consistency betwee
the operations listed in Program 50.1 and the Emyiboolean operations. An inconsistency revealsreor

in either the circular list operations, or in thex@iary operations. The necessary auxiliary ogereat are
typically much simpler than the circular list opiwas, and therefore an inconsistency most oftdrrexeal
an error in the way we have implemented a cirdidapperation.

50.3. An Assertion Language

Lecture 13 - slide 8
We are now about to focus on the language in whieliormulate the assertions (preconditions and

postconditions). In the previous section we haudistl examples, in which we have met several featur
the assertion language.

As it will appear, we are pragmatic with respectht® assertion language. The reason is that we allo
programmed, boolean functions to be used in therti@s language. These boolean function are sibling
the functions that we are about to specify.

It is an important goal that the preconditions Hrepostconditions should be checkable at program
execution time. Thus, the it should be possibleraatistic to evaluation the assertions at run-time

The following items characterize the assertiongliage:

460

Logical expressions - as in the programming languag
Programmed assertions - via boolean functionseoptbgramming language
« Should be simple functions
« Problems if there are errors in these
Universal (for all...") and existential'there exists...") quantifiers
» Requires programming - iteration - traversal
« It may be expensive to check assertions with gfiersi
Informal assertions, written in natural language
« Cannot be checked
« Much better than nothing
Special means of expression
« old Expr - The value of the expression at the beginnintpefoperation
« nochange - A simple way to state that the operation haschanged the state of the
object

Use of universal and existential quantifiers, kndvam mathematical formalisms, makes it hard tockhe
the assertions. Therefore such means of expressionest exist directly in the assertion languafje:d
wish to expresfor all ... orthere exists ... it must be programmed explicitly in boolean fuoos.

We may easily encounter elements of a specificahahwe cannot (or will no) check by programmed
exceptions. It may be too expensive, or too coraf#it to program boolean functions which repredersge
elements. In such situations we may wish to fatkian informal assertions, similar to comments.

50.4. References

[Switzer93] Robert SwitzeEiffel and Introduction. Prentice Hall, 1993.

[Meyer92] Bertrand Meyeliffel the Language. Prentice Hall, 1992.

[Meyer97] Bertrand MeyeQbject-oriented software construction, second edition. Prentice Hall,
1997.

461

462

51. Responsibilities and Contracts

This section is about responsibilities and cong,aand their connection to preconditions and postitions.
Recall from Section 2.2 in the initial lecture tha already touched on responsibilities in thesslgam of
the pizza delivery example, see Figure 2.1. Atethe of the chapter, in Section 51.8 we briefly désc
Design by Contract, which broadens the scope fplicability of contracts in the development process

51.1. Division of Responsibilities

Lecture 13 - slide 10

A class encapsulates some description of states@mé operations. A subset of the operations mpkbeu
interface between the class and other classesoddther, the class manages a certain amount of
responsibility. Internally, the class is responsible for keepghmystate consistent and sound. Externally, the
operations of the class are responsible for dediiom of the messages that they handle, and tHayjo&

the work (results) the operations deliver.

It is bad if a class is irresponsible. Class iroesgibility may occur if a pair classes both exghetother
class to be responsible.

It is also bad if a class is too responsible. A pabver-responsible classes redundantly caretahetsame
properties. This is not necessary, and it bloasathount of program lines in the implementatiothef
classes.

This leads us to the essence of this and the folpaections, namely division of responsibilitiest us first
enumerate the consequences of well-defined adiegfiiked division of responsibilities:

- Without well-defined division of responsibilities
» All classes accept a large responsibility
« All program parts check all possible conditionsfédsive programming)
« Makesalarge program even larger
- With well-defined division of responsibilities
« Operations can safely operate under given assungtio
« Itis well-defined which parts should check whi@nditions
« Smplifiesthe program

51.2. The highly responsible program

Lecture 13 - slide 11

Before we proceed to the role of preconditions postconditions in relation to responsibility, wdlwtudy
an example of an object-oriented program with tlegses that altogether are over-responsible.

We make our points with yet another version ofckaskAccount , see Program 51.2, in relation to a client

of classBankAccount , see Program 51.1. As you will realize below,itlustration of over-responsibility is
slightly exaggerated in relation to a real-life gmam.

463

Themi n method in Program 51.1 withdraws and deposits smonghe bank account referred by the
variableba, which is declared and initialized in line 5. Befavithdrawing money in line &kni n checks the
soundness of the account (wittcount oK), and it checks if there are enough money availahiter the
withdrawalmai n checks if the account is still sound. It also dewith the situation whenai n withdraws an

amount of money, which is greater then the balafitke account. Similar observations applyéposi t in
line 19.

public class dient{
public static void Min(){
BankAccount ba = new BankAccount ("Peter");

if (ba.Account OK && ba. EnoughMoney(1000))
ba. Wt hDr aw(1000) ;

el se

W t hdr awi ngProbl ens("...");
if (!ba.Account CK)

Maj or Probl en("...");

if (ba.Bal ance <= 0)
BankAccount Over dr awn(ba) ;

i f (ba.Account OK)
ba. Deposi t (1500);
if (!ba.Account CK)
Maj or Probl em("...");

Program 51.1 Excerpt of highly responsible class Client of
BankAccount.

In classBankAccount below, thew t hdr aw method in line 9-16 check the soundness of th& haoount,
and it deals with insufficient funds, before théuat withdrawal takes place in line 15.

Thepeposi t method in line 18-24 cares about the situationrer/iséents deposit very large amounts. In
such cases the bank account attempts to cheak ihtmey comes from illegal or criminal sources.

public class BankAccount {

private doubl e interestRate;
private string owner;
private doubl e bal ance;

11

public void Wthdraw (doubl e amount) {
if (!Account CK)
Conpl ai nAbout NonVal i dAccount () ;
else if (!this.EnoughMney(anount))
Conmpl ai nAbout M ssi nghvbney() ;
el se
bal ance -= anount;

}

public void Deposit (double amount) {
if (anmpbunt >= 10000000)
Checkl f MoneyHaveBeenSt ol en() ;

464

else if (!Account OK)
Conpl ai nAbout NonVal i dAccount () ;
al se bal ance += anount;

Program 51.2 Excerpt of highly responsible class
BankAccount.

Seen altogether, the amount of code in ProgramdidIProgram 51.2 is much larger than desired. The
checks that happen more than once should be elieinkn addition, some of the responsibilities dtidne
delegated to third party objects.

51.3. Responsibility division by pre and postcaiodis

Lecture 13 - slide 12

Preconditions and postconditions can be used tdalthhe responsibility between classes in an object
oriented program. The idea is to make it the resibdrty of particular objects to fulfill the preodlition of a
method, and to make it the responsibility of othigjects to fulfill the postcondition of a methodchélrules
are as follows:

« Fulfillment of the_precondition

« The responsibility of the caller

« The responsibility of thelient in an object-oriented program
+ Fulfillment of the_postcondition

» The responsibility of the called operation

« The responsibility of theerver in an object-oriented program

Client andserver are roles of objects relative to the message pagsibetween them. The client and server
roles were discussed in Section 2.1. In some bdbksserver is called a supplier.

Let us recall the precondition and the postconditibthe square root functicmrt , as shown in Program
49.2. A function that callsqgrt is responsible to pass a non-negative numbeietéutirction. If a negative
number is passed, the square root function shauttbthing at all to deal with it. If, on the otheand, a
non-negative number is passeddot , it is the responsibility ofqgrt to deliver a result which fulfills the
postcondition. Thus, the caller e§rt should do nothing at all to check or rectify theult.

Now we know who to blame if an assertion fails:

Blame the caller if a precondition of an operafiails

Blame the called operation if the postconditioranfoperation fails

465

51.4. Contracts

Lecture 13 - slide 13

In everyday life, a contract is an enforceable egnent between two (or more) parties. Often, cotdrae
regulated by law. In relation to programming in genh, we define a contract in the following way:

A contract expresses the mutual obligations in between phdsprogram that cooperate abo

the solution of some problem

In object-oriented programming it is natural that program parts are classes.

The preconditions and the postconditions of thdipuhethods in a class together form a contracivben
the class and its clients.

It can be a serious matter if a contract is brokebroken contract is tantamount to an inconsistenc
between the specification and the program, arglusually interpreted as an error in the programe &rror
is usually fatal. A broken contract should raisd throw an exception. Unless the exception is rethdhe
broken contract will cause the program to stop.

51.5. Everyday Contracts

Lecture 13 - slide 14
Contracts are all around us in our everyday/ life

When we do serious business in our everyday likeare very much aware of contracts. When we aecept
new job or when we buy a house, the mutual agreeméormulated in a contract.

Below we list some additional everyday contracts:

« Student and University
« The student enrolls some course
« The university offers a teacher, a room, superwisiod other resources
- Citizen and Tax office
« The citizen does a tax return
« The tax office calculates the taxes, and reguliepaid amount of money
« Football player and Football club
« The player promises to play 50 games per season
« The football club pays 10.000.000 kroner to the/g@iaor. month
- Citizen and Insurance company
« The insurance holder pays the insurance and prertosgvoid insurance fraud
« In case of a damage or accident, the insurance aoympays compensation

466

51.6. Contracts: Obligations and Benefits

Lecture 13 - slide 15

Contracts in object-oriented programs, specifieghtconditions and postconditions of certain meshod
express obligations and benefits.

In Figure 51.1 we personalize the obligations agwkfits of a client and server. In the contextighiFe 51.1

the server is called a supplier. This terminolag/well as the syntax used in the illustration, €draom the
object-oriented programming language Eiffel [Meykr®leyer92, Switzer93].

class Supplier| class Cliamr|

Supplier x;
vind opSupplier(.){

require pre opClient(...){

do
xopSupplier(..)
ensure posi I
! J

] I

Henefit:
| can assume that the precondition
i3 troe

Obligation:
| must make sure that the precondition
is true

Oblisation:

S Benefil:
I must fulfill the postecondition

I can assume that postcondition 18 true

Figure 51.1 A give-and-take situation involving a client and a server (supplier)
class.

The Client, shown to the right in Figure 51.1 musike an effort to arrange, that everything is pregéor

callingopsSuppl i er in the classuppl i er. These efforts can be enjoyed by the supplieralse he can take
for granted that required preconditionopBuppl i er is fulfilled.

The roles are shifted with respect to the reshefgame. The supplier must make an effort to ertbatehe
postcondition obpsuppl i er is fulfilled when the operation terminates. Traflects the fact the operation

has done the job, as agreed on in the contraottinn, the client can take for granted that theosjfie party
(the supplier) delivers an appropriate and comeslt.

The obligations and benefits of the contract caeuremarized as follows:

Obligation - May involve hard work

Benefit - A delight. No work involved

If you feel that the discussion in this sectiotois abstract, we will rephrase the essence in¢kegection
relative to the squareroot function.

467

51.7. Obligations and Benefits in Sqgrt

Lecture 13 - slide 16

In Program 49.2 of Section 49.3 we exemplified exatic specifications with a squareroot functiont s,
of convenience, rephrase the specification here.

sqrt(x: Real) -> Real
precondition: x >= 0;

postcondi tion: abs(result * result - x) <= 0.000001

Program 51.3 An axiomatic specification of the squareroot
function.

The obligations and benefits dr t , relative to its callers, are summarized in tHeWwing table:

- Obligation Benefit
Client Must pass a non-negative number Receives the squareroot of the input
Server Returns a number r for which r * r = x |Take for granted that x is non-negative

Table 51.1 Atabular presentation of the obligations and benefits of the
squareroot function (in a server role) and its callers (in a client role).

Notice in particular the obligation of the cliemtdathe benefit of the server, as emphasized ubiiget
color in the table.

51.8. Design by Contract

Lecture 13 - slide 27

As presented in Section 51.4, a contract of a atatfe sum of the assertions in the class. Thaentaact is
formed by concrete artifacts in the source program.

As part of the Eiffel efforts [Meyer97, Meyer92, &xer93], the use and benefits of contracts haes be
broadened such that contracts affects both desigihementation, and testing. The broad applicatibon
contract is known aBesign by Contract (DBC). Design by Contract is a trademark of theypany Eiffel
Software, and as such it may be problematic ta¢heséerm, at least in commercial contexts.

Design by Contract' (DBC) represents the idea of designing and spegfgrograms by means
of assertions

The following summarizes the use of contracts endtiferent phases of the software developmentga®ic
and beyond.

468

« Design: A pragmatic approach to program specification
« Documentation: Adds very important information to interface do@amtation of the classes
« Implementation: Guides and constrains the actual programming
« Verification: The program can be checked against the speatficatiery time it is executed
+ Test:

« Preconditions limit the testing work

« The check of postconditions and class invariantpato of the testing work
« Enduse: Trigger exception handling if assertions are \eda

The use of contracts for design purposes is ceftha contract of a planned class serves aspeugication
of the class. We have discussed program specifitatn Section 49.3 of this material.

Interface documentation - as pioneered by JavaDududes signatures of methods and informal
explanations found in so-called documentation conmmet is very useful to include both precondigpn
postconditions, and class invariants in such docuatien.

During program execution - both in the testing ghaisd in the end use phase - the actual state of th
program execution can be compared with the assertis such, it is possible to verify the implenagion
against the specification at program run-time nlireconsistency is discovered during testing, weeha
located an error. This is always a pleasure angteess. If an inconsistency is discovered duriryuese, an
exception is thrown. This is clearly less succds&xceptions have been treated in Chapter 33 pteh&6
of this material.

51.9. References

[Switzer93] Robert SwitzeEiffel and Introduction. Prentice Hall, 1993.

[Meyer92] Bertrand Meyeliffel the Language. Prentice Hall, 1992.

[Meyer97] Bertrand MeyeQbject-oriented software construction, second edition. Prentice Hall,
1997.

469

470

52. Class Invariants

In this chapter we will study yet another kind efeartions called class invariants. The class ianaserves
as a strengthening of both the preconditions aagtstconditions of all operations in the classwaswill
see in the first section of this chapter, a goad<invariant makes it easier to formulate botlegnditions
and postconditions of the operations in the class.

52.1. General aspects of contracts

Lecture 13 - slide 18

When we do computations in general, the valuebefariables in the running programs are modified
throughout the computation. In an object-orientexypam the states of the involved objects will vasythe
program execution progresses. This variation optlogram state is not arbitrary, however. Thengsisally
some rules that control and constrain the variati®uch rules can be formulatedmgriants. An invariant
describes some properties and relationships thaineconstant (do not vary) during the executioa of
program.

A classinvariant is an assertion that captures the propertieseatianships, which remain stable
throughout the life-time of instances of the class.

A classinvariant expresses properties of an object which are stalidletween operations

initiated via the public client interface
The following characterizes a class invariant:

» acts as a general strengthening of both the préeammdnd postcondition
« expresses aéalth criterion” of the object

- must be fulfilled by the constructor

« must be maintained by the public operations

« must not necessarily be maintained by private antkpted operations

The class invariant is an assertion, which shoalttie atvery stable point in time during the life of an
object. In this context, a stable point in timguist after the completion of the constructor antetween
executions of public operations on the class. étahle point in time, the object is in rest - thgeot is not
in the middle of being updated. The unstable pamtane are, for instance, in the middle of the&xtion
of a constructor, or in the middle of the executd@ public operation. In addition, a non-publpeaation
may leave the object in a state, which does nidfgdhe class invariant. The reason is that aipubl
operation may need to activate several non-pulpi@rations, and it may need to carry out additictete
changes (assignments) in order to reach a staketbiit satisfies the class invariant. A non-gudieration
may be responsible for only a fraction of the updpof an object.

You can think of the class invariant as a healiteigon, which must be fulfilled by all objects loetween
operations. As a precondition of every public ofieraof the class, it can therefore be assumedttieatiass
invariant holds. In addition, it can be assumed psstcondition of every public operation thatdlaess
invariant holds. In this sense, the class invas@ntes as a general strengthening of both thepd&wn
and the postcondition of public operations in tleess. Theeffective precondition is the formulated

471

precondition in conjunction with the class invatig@imilarly, theeffective postcondition is the formulated
postcondition in conjunction with the class invatia

A class invariant expresses some constraints that be true at every stable point in time
during the life of an object

Our primary interest in this chapter is class irts. Invariants are, however, also useful andbiamt in
other contexts.

52.2. Everyday invariants

Lecture 13 - slide 19

Before we proceed to a programming example, wedséllv the attention to useful everyday invariants.

« Coffee Machine
« In between operations there is always at |east one cup of coffee available
« Toilet
« Inbetween "transactions’ thereis always at least 0.75 meter of toilet paper on therall
« Keysand wallet
« In between using keys and/or wallet
» During daytime: Keys and wallet are in the pocket
« During nighttime: Keys are wallet are located on the bedside table or underneath
the pillow

The coffee machine invariant ensures that nobodlygwifor coffee in vain. If you happen to fill yojug
with the last cup of coffee from the coffee potuyoperation on the coffee machine is not compleatad
you have brewed a new pot of coffee.

The toilet paper invariant should be broadly apjated. As a consequence of the invariant, the diperaf
emptying the toilet paper reel is not completedt®fou have found and mounted an extra, full oéel
paper.

The last everyday invariant is - in my experienoten broken by women and children, because tbayod
always wear practical cloth with pockets suitaldleviallets and keys. As a consequence, these iamgort

items tend to be forgotten or misplaced, suchttiey are not available when needed. If the prop&sgd
and wallet invariant is observed, you either usekify or wallet, or you will be confident wherefitod them.

Adherence to invariants is the key to order indaily lives

472

52.3. An example of a class invariant

Lecture 13 - slide 20

It is now time to study the invariant of the ciraulist. Recall that we introduced preconditiond an

postconditions of the circular list in Program 56f1Section 50.2.

The class invariant of a circular lists exprestas the list is circular whenever it is non-emptyProgram
52.1 the invariant is formulated at the bottomhaf program, in line 43-45. In the same way as the
preconditions and postconditions, the class inmariavolves subexpressions that are realized by

programmed operationsnfpt y, i sCi rcul ar, andsi ze) of the class.

1 class GrcularList {

2

3 /1 Construct an enpty circular |ist
4 public G rcul arlList()

5

6 ensure enpty();

2

8 /1 Return my nunber of elenents

9 public int size()

10

11 ensure (size = countEl ements) && noChange;
12

13 // Insert el as a new first el enent
14 public void insertFirst(Object el)

16 ensure !enpty() &% isFirst(el);

18 // Insert el as a new | ast el enent
19 public void insertLast(Object el)

21 ensure !enpty() && islLast(el);

23 /] Delete ny first el enment
24 public void deleteFirst()

26 ensure (enpty() || isFirst(old retrieveSecond));

28 |/ Delete ny |ast el enent
29 public void del etelLast ()

31 ensure (enpty() || isLast(old retrieveButLast()));

33 // Return the first elenent in the |ist
34 (nject retrieveFirst()

36 ensure isFirst(result) && noChange;

38 // Return the last elenent in the |ist
39 bject retrievelLast()

40

41 ensure islLast(result) && noChange;
42

43 invariant

44 lenpty() inplies isCircular() and
45 enmpty() inplies (size() = 0);

46 }

Program 52.1 Circular list with a classinvariant.

473

If we compare Program 52.1 with Program 50.1 wasth noticing that the preconditions and postctods
become simpler and shorter, because they impliaggumes that the class invariant is true. Thigtjwe to
(a slightly idealised version of) Program 50.1, itheariant is factored out of all preconditions and
postconditions.

474

53. Inheritance is Subcontracting

In this chapter we will review inheritance - incing specialization - in the light of contracts. Siadization
was discussed in Chapter 25 and inheritance wasgdied in Chapter 27. The concept of contracts was
introduced in Chapter 51.

Stated briefly, we understand a subclasssaeontractor of its superclass. Being a subcontractor, it will
not be possible to carry out arbitrary redefiniiai operations in a subclass, relative to theraleaen
operations in the superclass.

53.1. Inheritance and Contracts

Lecture 13 - slide 22

The following question is of central importancehe discussion in this chapter.
How do the assertions in a subclass relate to the similar assertions in the superclass?

Figure 53.1 illustrates a class B which inheritarirclass A. Both class A and B have invariantaddition,
operations in class A that are redefined in claks® preconditions as well as postconditions.

class A class B A [
api...} §] opi..r {
require pre-opd 0| P :' require else pre-op
-
ENSUre posd-opf ' ap ensure then pos-ap
.)
im’ﬁrimt 1 Iml'lz;riam
class-A-imvariant] class-B-invarian

I L® I

Figure 53.1 The relationship between inheritance and contracts

The question from above can now to refined as \igdto

« How is the invariant in class B related to the mmat of class A?

« How is the precondition of the operatiomin class B related to the precondition of the adelen
operationop from class A?

« How is the postcondition of the operatignin class B related to the postcondition of therddden
operationop from class A?

Each of the three questions are symbolized wittdaguestion mark in Figure 53.1.

475

53.2. Subcontracting

Lecture 13 - slide 23

Due to polymorphism, an instance of a subclassactas atand in for - or subcontractor of - an instance of
the superclass. Consequently, the contract ofithelass must comply with the contract of the supes:
The contract of a subclass must therefore &eontract of the superclass' contract. This is closely eslat
to the principle of substitution, which we discusge Section 25.7.

The notion of subcontracting is realized by enfoggparticular requirements to preconditions,
postconditions, and class invariants across cl&sarchies. In order to understand inheritance as
subcontracting, the following rules must applydssertions in a subclass:

» The precondition must not be stronger than theqmdition in the superclass
« The postcondition must not be weaker than the paslition in the superclass
« The class invariant must not be weaker than thariamt in the superclass

As discussed in Section 50.1, a precondition af@eration states the prerequisites for callingofperation.
If the precondition is evaluated to the vatuge, the operation can be called. It is the respolitsilif the
caller (the client) to fulfill the precondition. €lpostcondition of the operation states the meamiiige
operation, in terms of requirements to the retunvedde and/or requirements to the effect of theatpen. It
is the responsibility of the operation itself ($erver) to fulfill the postcondition. The postcaimh must be
true if the precondition is satisfied and if the opermatterminates normally (without throwing an exdepy.

If we assume that the precondition of a redefingeration in a subclass is stronger than the preétonaf
the original operation in the superclass, therstii#lass cannot be used as a subcontractor afipleectass.
Consequently, the preconditions of redefined opmratin subclasses must be equal to or weakertkiean
preconditions of corresponding operations in supsses.

In case the postcondition of a redefined operatiansubclass is weaker than the postconditiohef t
operation in the superclass, the redefined operalies not solve the problem as promised by theairin
the superclass. Therefore, the postconditionsd#fieed operations must be equal to or stronger the
postconditions of corresponding operations in stipeses.

The superclass has promised to solve some probkether virtual operations. Redefined and overridden

operations in subclasses are obliged to solverblglgm under the same, or possible weaker conditithis

causes the weakening of preconditions. The job thgriee redefined and overridden operations musisbe
least as good as promised in the superclass. &bses the strengthening of postconditions.

The invariant of the superclass expresses requinesme instance variables in the superclass, blesfmints
in time. These instance variables are also présentbclasses, and the requirements to these tiersis
subclasses. Consequently, class invariants camenot veakened in subclasses.

Relative to Figure 53.1 the formulated preconditio& op2 in B. op serves as a weakeningpk- op1 of
A. op. The effective precondition @& op is pre-opl or pre-op2. Similarly, the effective postcondition of

B. op2 iSpost - opl and post - op2. The use of the Eiffel keywordgquire else andensure then signals this
understanding.

Operationsin subclasses cannot arbitrarily redefine/override operationsin super classes

476

In our discussion of redefinition of methods in 8@t 28.9 we came up with some technical and syictlc
requirements to redefinitions. The contributionlinad above in terms of subcontracting constra t
meaning (the semantics) of redefined operatiossiiitlasses in relation to the original operations i
superclasses. This is very satisfactory!

53.3. Class invariants in the triangle class néma

Lecture 13 - slide 24

We studied the specialization hierarchy of polygionSection 25.5. In Figure 53.1 below we revisé five
triangle classes. It is our interest to understaoa the class invariants are strengthened in ssbetaof the
most general triangle class.

A

IX \H h
Figure 53.2 The hierarchy of triangle classes. The root class represents the most
general triangle. The son to the left represents an isosceles triangle (where to
sides are of same lengths). The son to the right represents a right triangle, where
one of the angles is 90 degrees. The triangle at the bottom left is an equilateral

trianlge (where all three sides are of equal lengths). The triangle at the bottom
right is both an isosceles triangle and a right triangle.

The invariants of the five types of triangles candescribed as follows:

e Most general triangle:
3 angles, 3 edges
Sum of angles: 180 degrees

« Isoscelestriangle
Invariant of general triangle
2 edges of equal length

« Equilateral triangle:
Invariant of isosceles triangle
3 edges of equal length

« Right triangle:
Invariant of general triangle
Pythagoras

» Isoscelesright triangle:
Invariant of isosceles triangle
Invariant of right triangle

Notice that thetalic contributions above describe the strengthenings relative tanthariant of the
superclass.

477

53.4. Assertions in Abstract classes

Lecture 13 - slide 25

Abstract classes where discussed in Section 3G hbatract method in an abstract class definesaine

and parameters of the method - and nothing more.iftended meaning of the method is an informatenat
In Chapter 30 we did not encounter any means to@ef constrain the actual result or effect oftians
methods. In this section we will see how the meguoinan abstract method can be specified.

In Program 30.1 we studied an abstract ctaask. Below, in Program 53.1 we show a version of the
abstract stack with contractual elements - pret¢mmdi and postconditions. Possible future non-abstr
subclasses aft ack will be subcontractors. It means that such subelsvill have to fulfill the contract of
the abstract stack, in the way we have discuss8edtion 53.2.

478

using System
public abstract class Stack{

abstract public void Push(Cbject el);
require !full
ensure lenmpty && top() = el && size() =old size() + 1 &&
"all elenments below el are unaffected";

abstract public void Pop();
require !enpty();
ensure !full() && size() = old size() - 1 &&
"all elements renaining are unaffected"

abstract public Object Top
require !enpty();
ensure nochange && Top = "the nost recently pushed el ement"; {
get; }

abstract public bool Ful
require true
ensure nochange && Full = (size() = capacity); {
get; }

abstract public bool Enpty
require true
ensure nochange && Enpty = (size() = 0); {
get;}

abstract public int Size
require true
ensure nochange && Size = "nunber of elenents on stack"; {
get;}

public void Toggl eTop()
require size() >= 2; {
if (Size >= 2){
oj ect topEl1 = Top; Pop();
oj ect topEl 2 = Top; Pop();
Push(topEl 1); Push(topEl 2);

ensure size() = old size() &&
"top and el enent bel ow top have been exchanged"” &&
"all other elenents are unaffected";

}

public override String ToString(){
return("Stack");
}
}

Program 53.1 An abstract class with preconditions and
postconditions.

As we have seen beforequire clauses are preconditions aaur e clauses are postconditions. Notice the
use ofold andnochange, which we introduced in Section 50.2. Thilic strings' represent informal
preconditions. Alternatively, and more rigidly, wey consider to implement these parts of the asasras
private boolean functions. Notice, however, thatduld be quite demanding to do so, at least coetpar
with the remaining implementation efforts involved.

479

