AALBORG UNIVERSITY
INSTITUTE OF ELECTRONIC SYSTEMS
DEPARTMENT OF COMPUTER SCIENCE

Title: POWER - Programming Oriented Web EngineeRing

Main Subjects:

- Programming Oriented
Web Page Authoring
- Abstracted Markup Language

Semester:
F10D

Project Period:
February 2, 1999 —
June 29, 2000

Author:
Carsten Hellegaard

Supervisor:
Kurt Nermark

Number of pages:
97

Number of copies:
6

Abstract:

Creating large and complex hypertext
document systems for the World Wide Web
requires tool support if we are to obtain an
acceptable result. It is our belief that a
creative development process leading to
automatically generated page systems is the
most desirable way of action.

Automated Web solutions have so far been
hampered by the "page-at-a-time" approach
of traditional authoring tools. Creation and
maintenance of large Web systems is likely to
involve a tedious and error-prone manual
edition of every contained page, when
working with WY SIWIGs and similar tools.

We introduce the programming oriented
approach to Web authoring, where an
ordinary programming language is used to
generate HTML code. This method provides
users with the powerful abstraction and
automation mechanisms of the programming
language in the authoring process.

This report presents the analysis, design and
implementation of Lisp Abstracted Markup
Language (LAML), which is a HTML
generating authoring language based on a
programming language of the LISP family,
namely Scheme. The sample Web systems
developed with LAML seem to prove the
legitimacy of the programming oriented
approach to Web authoring.

Preface

This report is the printed result of our 10" semester project at the Department of Computer
Science, Aalborg University. The work presented in this report is a continuation of the project
initiated at our 9™ semester, which has previously been described in [Hellegaard, 99].
Knowledge of this preliminary work may be of some benefit to the reader, but it is not a
necessity as the most fundamental issues raised in [Hellegaard, 99] have also been included in
this report (albeit it may be rewritten at some points).

All program examples described in this report and additional ones may be found on the
accompanying CD (located on the inner sleeve at the back of the report) along with other
useful stuff, such as Kurt Nermarks newest LAML distribution, GNU-Emacs for Windows,
Mz-Scheme, drScheme and more.

The figures presented in this report will be numbered in succession for each chapter. Figures
and figure text might not always be self explanatory, but additional discussion will be found

in the surrounding paragraphs.

Aalborg, June 2000

Carsten Hellegaard

Synopsis

For at opné acceptable resultater ved konstruktion og vedligeholdelse af starre World Wide
Web hypertext systemer er det en nedvendighed at anvende sterke vearktejer. Vi er af den
overbevisning, at en kreativ udviklingsproces som benytter en hegj grad af automatisering
reprasenterer den bedste mulighed for generering af komplekse Web systemer.

Traditionelle forfatningsvaerktejer har indtil videre med deres enkeltsidet baserede metoder
vaeret med til at hemme udviklingen af automatiserede Web losninger. Med de sakaldte
WYSIWIGs eller lignende verktejer bliver udvikling og isar vedligeholdelse af store og
komplekse Web systemer hurtigt en langsommelig og fejlfyldt opgave, da systemets enkelte
sider skal editeres manuelt.

Derfor introducerer vi en ny fremgangsméde baseret pd programmering, hvor et almindeligt
programmeringssprog bruges til at danne HTML dokumenter. Med denne metode opnar far
brugeren 1 udviklingsprocessen raderet over programmeringssprogets kraftfulde mekanismer
for abstraktion og automatisering.

I denne rapport beskrives analysen, designet og implementeringen af Lisp Abstracted Markup
Language (LAML), som er et HTML producerende udviklingssprog bygget i Scheme, der er
et sprog i LISP familien. Udbyggelsen af LAML til ogsd at understette CSS, som er et
tilherende style sheet sprog, bliver desuden beskrevet og testet gennem et antal eksperimenter.

De eksempler pd Web systemer som er udviklet med LAML og beskrevet senere i rapporten,
ser umiddelbart ud til at retferdiggere den programmerings baserede metode til Web
udvikling. Rapportens konklusion understreger, at metoden er en keerkommen tilfgjelse til de
eksisterende Web varktejer, hovedsageligt pa baggrund af den bedre héndtering af komplekse
Web systemer.

Table of Content

1. INTRODUCTION

2. ANALYSIS

2.1 ANOTHER MARKUP LANGUAGE?cociitiiiitiiiiiniiiicteie sttt sttt st sa e
2.1.1 Hypertext Markup LANQUAZE.cccooviviiieeiieiesiene et ettt et enae s ereas
2.1.2 Standard Generalized Markup LANGUAZE....................c..covoeieiiiiiiiiiiieeieeeeiee oot
2.1.3 Extended Markup LANGUAZE...............ccccoooeiiiiiiii ittt

2.2 MARKUP PRODUCING TOOLSuutiiiiieiiieititiiet ettt e e et ee e e e e e e e atteeeeeaeeesaebeseeaaesesenstsanesaeaesessrsnesaeaeen
2. 2.0 AULROFTIG TOOLS ... ettt eae ettt eas
2.2.2 COMVEFSTON TOOLSeioiiiiiie ettt et eae et ae e
2.2.3 GEAETALION TOOLS ..ot ettt ettt ae ettt eas

2.3 PROGRAMMING ORIENTED HTML PAGE GENERATION........uuutiiiieeiieiiitiieeeeeeeeciteeeeeeeeesesteaeeeeeeeseneseseeeaeaesns

3. FORMULATION OF PROBLEM

4. CHOOSING A PROGRAMMING PARADIGM

4.1 MARKUP LANGUAGE PROPERTIESuttttieiitieieitreeeiottteeeiereeeeesseeesesssesssssssesssssasesossasssssssssssssssesasssasssssesesnses
4.1.1 Markup Language TerminolOZYccccovivieiviieiieeieiiee oottt ettt ebe e
4.1.2 Markup Languages versus Programming LANGUAZEScc..cvvecveieeiueiieeieaiieeeseieeseseeseesensseneens

4.2 THE IMPERATIVE PARADIGM ...c.viiuiiiiiiiitiiiitiienit sttt sttt st

4.3 THE OBJECT ORIENTED PARADIGMcuuuiiiiiiiiiieiiiieee e e e ettt e e e eeeatteeeeeaeeesaeteseeeaesesensteaeeeaeeesenstrneeeaeanns

4.4 THE FUNCTION ORIENTED PARADIGMuuuttiiiieiiieiitiieeee e ee ettt e e e e eesetteteeeaeee s eteseeeaeeesesnsasesseaesennnsaeneas

4.5 THE MOTIVATED CHOICEttitiieieeeeecttteeeeeeeeeeeteeeeeeeeeeaeteesaeaeseseastassesaeaesesstssseaaeaesestsaseeaeaesassrsseaaeanann

5. LISP ABSTRACTED MARKUP LANGUAGE

ST DIESIGNceetiiieee e ettt e e ettt e e e e e et e e e e e e e s e taeaeeeeeeeseasasteeseaaeaeasssssesaeaeaeasssbeesaaaeaeanstaesaaaeaeanssbaanaaaeaeanntes
5100 DESIGH C IECHIA ..ottt ettt ekttt ekt bt e et e e ebte et e et e e st e e iee e
S L2 LAML SYFIEAX ..ottt et te et et e bt et e e tb e et aestb e assteestbeassteessbeesneeensbennneeenes
5.1.3 Explicit String Concatenation in LAML SIQEEMERLS...............c..cc..covecieiieieiieieeeeeeieiees e ene s
5.1.4 The LAML LANGUAZE BASIScooccvveveeeeiiieeeiee ettt ettt sttt ettt esne s e
5.1.5 Obtaining a higher level of fUNCHONALILYc.cccoovviveiieiioieeeecieee et
5.2 EXAMPLE LAML APPLICATIONSooutiiiiitiieniiiitiietiiest sttt sttt bttt sassbe s sa st s s sas s
S 2.0 STIMPLE STYLE ... ettt ettt
5.2.2 WEDSTE SEPIC.......cc.oiiiieeeeeee ettt e ettt a ettt
5.2.3 SPOFt RESUILS SEVIE ..ot ettt ettt
5.2.4 CD WEB BASE......c.oeiieeieeeeeee ettt ettt ekt a ettt
5.2.5 CRESS LIDFATYceeeieeeee e ettt ettt e et et e et a et et ne et
5.3 SUPPORT FOR CASCADING STYLE SHEETSceittetiieieeeieiieteeeeeeeeeeteteeeeeaeeesasseesaeaesessssesseeasaeasnsssnseesesesesses
5.3.1 CSS COMPONEHLS ..ottt ettt ettt e e tb e e st e e tb e e steestb e assteestbearnteessbeenneeessbensneeees
5.4 EXPERIMENTS ON LAML AND CSS....cciiiiiiiiiiiiiiti et
5.4.1 CSS Containment it HTMLcoocoooii oot
5.4.2 Inline and External USe Of CSScc.oovi oottt sttt et ae e ens
S 3 EVAIUALION. ...t ettt
5.5 SUPPORT FOR CGl ..cuuiiiiiiiiiiiiiiiiiiictci ettt s e st

6. PROGRAMMING ORIENTED WEB ENGINEERING

6.1 LAML COMPARED WITH TRADITIONAL WEB TOOLS ...cceeiuttieiaitieeiotieaaasteeeseaesaeeseseeaaassseeesaassssesassessassseeesanns
0. 1.1 LAML CRAFACICFISTICS ..ottt ettt ettt ettt
0. 1.2 USEF ACGUIFEIMEIIES ...ttt ettt ettt ettt ettt ettt e st et e e e s
6.1.3 It's ROt A POPULATTEY CORESE ..ottt

6.2 CONCLUSION .evtieiiieiierereiereieieirereeeseeeieitareretessisiesresstessssieisrasssessseissssasssesessiessssresesessiessrsrssesessinsisnresesesssnsnse 86
7. EVALUATION 89
7.1 HYPOTHESISES. ... etie e ieeeee ettt e e e e e e e e et e e e e e e e e s st e e e st e e e seeaeaeseaeeeseamteeeseseseessaseneseamseeeseeneessesenesasnsesesesnnens 89
7.2 FUTURE PERSPECTIVES OF POWER ...ttt ettt e st e et e e s a e s ten e s e e e senenens 91
7.3 CONCLUSION ...ttt eeeeee et e et e e et e e e st e e e e e e e e seae e e e e st e e e seaaeeeseaesese e teeeseeaeesseseseseasteseseeneessesenesesnsesesenenens 92

LITERATURE 95

1. Introduction

Following the enormous world wide expansion of the Internet in the recent years, intense
scrutiny have surrounded the language for describing Web pages; HyperText Markup
Language (HTML). Markup languages such as HTML allow users to pinpoint different
elements of a text, simply by marking up the desired content with appropriate markup tags
(e.g. <myname>Carsten</myname>, where Carsten is markuped using the start-tag
<myname> and the end-tag </myname>). HTML provides a fixed set of tag-elements to
format and display text and images on Web pages, together with possibilities for hyperlinking
to other source files across the net.

Initially opting for fast network delivery HTML was defined as a small finite set of markup
elements. Having the language consist of a finite set of elements meant that viewers (the so
called browsers) could be built to understand the whole language, thereby eleminating the
need to send a syntax defining part along with the HTML document, as is the case of SGML
documents. Keeping HTML a simple language also ensured wide spread usage, because a lot
of people found themselves able to write personal Web pages.

Along with the rising popularity of delivering online information the demands to the Web
language rose as well. As a markup language HTML offered no possibilities of calculation
through mathematical algorithms and such functionality was later incorporated by inline
scripts or applets executing an alien programming language. The much criticized blending of
content and layout information in HTML (HTML originally consisted of both elements for
defining layout and elements for identifying different parts of the Web pages) have lately
been answered by the emergence of style sheets and an on-going removal of layout elements
in HTML. Also the fixed set of HTML elements eventually became a reason for concern, as
many requested possibilities for constructing personalized elements. This need prompted the
development of eXtended Markup Language (XML), which may be viewed as a light version
of SGML, especially suitable for network usage. XML allows structured data to be
interchanged through a common set of defined elements. The opinion among the top Web
vendors state a Web revolution in the nearest future due to the new possibilities offered by
XML (XML will be discussed in greater detail in the analysis).

Simultanenous with the ascending complexity of Web engineering, which have turned from a
single language (HTML) to encompass a host of different languages, Web authoring have
been subjected to extensive research. Web authoring is still commonly regarded as HTML
authoring, eventhough some authoring tools may include small often used java- or CGI-
scripts. One branch of authoring tools, conversion tools, have always been popular due to the
minimum of effort needed. Such tools automatically convert ordinary textual documents to
HTML Web pages without needing any intervention from the user. In the early days many
used the LaTeX2HTML converting program to obtain Web versions of their publications,
while today most commercial wordprocessors have built in converters to support the "save-as-
HTML" mechanism. Regarding actual Web authoring (not just conversion of existing
material) the commercial attention has almost solely been on WYSIWIG authoring tools.

10

These tools offers manipulation of different Web page content in a WYSIWIG environment
and they are thereby liberating the users from knowing the HTML language.

Eventhough WYSIWIG tools receive substantial endorsement world wide some contradictory
scientific voices have been raised. The prime accusations blame WYSIWIG tools for being
inflexible to the user, because the full control of the more complex structures of HTML
experienced on language level are lost to the user when developing with a tool. Likewise has
the "page-at-a-time" approach of existing tools been heavily criticized. Web sites normally
commit to a uniform page layout with a high degree of redundancy, which strongly
recommends some kind of automation of the authoring process. New ideas for authoring tools
capable of automatically generating Web page content or whole Web systems have been
adressed by several scolars, including [Owen, 97], [Kesseler, 95], [Thimbleby, 97] and
[Nermark, 99]. Our intensions are to investigate and further research this area, where
development of large Web systems should benefit significantly from a tool providing a high
degree of automation. This report argues in favour of using an internal language, as described
in [Rosenberg, 98], to generate HTML pages from a higher level source. The algorithmic
capabilities of the programming language provides a sound basis on which to encapsulate
lower level details in abstracted structures on whom automating routines may be applied.

The work efforts described in this report is the continuation of our initial 9" semester
investigation, which was covered in [Hellegaard, 99]. The prior work included methods of
combining the abstracted authoring language with XML structures. We have discarded this
part of the prior project work and are now focusing on the authoring language with additional
support for Cascading Style Sheets (CSS) and Common Gateway Interface (CGI) scripting.
Concluding that XML probably wouldn't replace HTML as the de facto Web language, but
merely supplement it, we decided to concentrate our work on refining the other language part
with added functionality.

Onwards this report starts with an analysis of relevant Web languages and tools. The analysis
discusses the three markup languages we find most applicable for network usage and whether
to stick with the simple HTML or incorporate one of the more complex languages; SGML or
XML. Argueing for the continued use of HTML we next investigate the existing types of Web
authoring tools. Settling on a tool type we present our visions for further research. Based on
the analysis some general problems will be identified in chapter 3. As probable solutions to
the identified problems a couple of hypothesisses for further examination are formulated.
Chapter 4 examines relevant programming language paradigms in order to find the one most
suitable for the implementation of an authoring language. In chapter 5 we discuss the design
criterias and implementation of the authoring language along with the presentation of several
Web applications developed with the new tool. Additonal support for CSS and CGI is also
presented and evaluated. Partly on account of the Web applications developed with our new
authoring language we compare our system with existing tools in chapter 6, and an overall
conclusion of the implemented system with a final evaluation of the formulated hypothesisses
concludes the report in chapter 7.

11

2. Analysis

In this chapter we intend to analyse the most relevant methods for the building and
maintenance of large Web systems. Having performed this analysis we should obtain enough
knowledge about the existing solutions in this problem area and their different characteristics
to help us choose the direction in which we want our further work to proceed.

Following the enourmous increase in popularity of the Internet in recent years, it has become
obvious to most Web providers that creation and specifically maintenance of Web systems
require some sort of tool support to be done properly. As adressed in [Thimbleby, 97] will the
development of complex Web systems without elements of iterative design prove to be a very
tedious task, where even small changes require considerable work efforts. Especially when
working with hypertextual Web documents, which are of highly evolving nature, do we feel
this need of constant evaluation and rebuilding. In the context of iterative design methods we
find the two most central issues to be abstraction and automation. Performing iteration
processes, i.e. repetitive task, by means of automated computation on high level abstracted
structures presents a meaningful method of hypertext authoring, as possible changes are
centralized to alteration of the automation process instead of an error proving and time
consuming manual editing of a vast number of documents.

We understand abstraction to be the ability to ignore certain lower details and instead focus on
a higher level description. Applying this to the hypertext domain leaves us with the desire to
extend our hypertext system with new abstracted elements, which should then be available for
further exhaustive use. In [Rosenberg, 98] several methods for providing extensibility in
hypertext systems by the addition of generalized algorithms are presented, and below we
discuss those of Rosenbergs suggestions we believe to be the most important. Rosenbergs
methods are complemented in our research with the approach taking by the World Wide Web
Consortium (W3C), who recommend future use of a markup language, which is itself
extensible [XML, 98] :

External execution: Routines in any programming language located outside the
hypertext system may be executed. A well known example of this approach is the CG/
interface of HTML, which allows calls to any programming language with capabilities
of reading from standard input and writing to standard output. This type of
extensibility is in general however restricted by the circumstances under which the
calls are allowed to occur. To clarify this matter again look at HTMLs CGI support,
where CGI scripts are only executed upon command from the user, e.g. by submitting
a form or by activating a hyperlink.

Internal language: With this mechanism extensibility is offered by a programming
language built on top of the hypertext system. The full programming powers and
additional functionality of the programming language is then made available to the
user working with the hypertext system. The programming language of choice could
be anyone; for instance a fully object oriented language, where the sought extensibility

12

would be made very apparent by the object inheritance mechanisms provided in the
language.

Scripting: A hypertext system may also allow algorithms to be run in an internal
scripting language. Such scripting languages will typically be unique for every
hypertext system, instead of a generalized operating system level programming
language. A telling example is once again HTML with its script tags, wherein both
Javascript and VBscript algorithms may reside. At first sight scripting may strike many
as being very similar to the method of external execution, but a closer look reveals one
key difference, as the following example, again from the HTML domain, should
clarify. Externally executed algorithms through the CGI interface of HTML are called
and executed on the server side with an optional result returned to the client side,
while the above mentioned scripts are executed directly in the clients browser.

Guest algorithm: Whole areas of a host hypertext system may be under the control of
an alien programming language. Once again our example steams from the HTML
context, where java applets upholds full control in a window with an environment very
different from the HTML based host. In fact the relationship between the host and the
guest algorithm may be so limited, that the host language at some point could be
rendered irrelevant, whereupon our language investigation should be subjected entirely
to the guest algorithms.

Extensible language: Securing extensibility in hypertext system may be done apart from
adding generalized algorithms according to the above mentioned methods, as the W3C
suggests in [XML, 98]. Here the new markup language XML (eXtensible Markup
Language) is presented, which allows for infinitely many extensions to the existing
language. Constructing new markup elements, i.e. new kinds of markup fags, involves
making a DTD (Document Type Definition), which describes the syntactical
components of the new element, and a stylesheet to which the layout of the document
element conforms. We delve further into the details of the XML language in the
forthcomming section.

The other crucial topic for iterative design of Web documents we pinpointed earlier, was that
of automation. Some form of automated solution will soon prove to be necessary, as the Web
site complexity rises. Web sites consisting of a large number of pages most probably contain a
lot of redundant material, which on even the slightest alteration would constitute an
incomprehensible big manual task for the Web author to edit troughout the system. Locating
the redundant structures (possibly expressing them as abstract components) and performing a
programmed sence of repetition on these structures (automation) would present a more
desirable and time saving approach. So automation could exist in the authoring process
through programming capabilities, but fully automatic solutions are also possible. Whole
database can be converted automatically to Web pages, where indices would be run through a
loop, that created a uniform look. Another similar example is conversion from some text
format to Web pages (more details on this subject are presented in section 2.2.2).

Having established the need of abstraction and automation in the Web authoring process, we
quickly notice the lack of both in the HTML domain. The rest of this analysis is therefore a
closer examination of possible Web authoring tools based on the above presented methods,

13

where the emphasis of our examination will be on the degree of abstraction and automation
supported. The different approaches we believe to be of interest are divided and covered in
the following three sections.

In the first section we examine the possibility of using a more powerful markup language than
HTML. With all the hype today towards XML, we found it only natural to investigate the
possible impact of XML conquering HTMLs spot as the de facto Web language. As XML has
several benefits compared to HTML, we are wise to restrict our investigation somewhat to the
field of authoring. The second category includes different kinds of existing Web tools (what
we normally understand to be a Web authoring tool, e.g. WYSIWIGs and conversion tools).
Eventhough this category contains tools of very different nature, they are collected as one,
because of their common property as being user programs. Finally we set out to explore the
possibility of using a programming language to generate HTML codes from a higher level
source description.

2.1 Another Markup Language?

In this section we try to establish whether our need for extensibility and automation in the
Web authoring context is provided in a satisfactory manner, when using a more powerful
markup language or whether we are better of finding a solution still encompassing HTML.
Our investigation below covers the three markup languages we reason to be of interest,
namely HyperText Markup Language (HTML), Standard Generalized Markup Language
(SGML) and eXtended Markup Language (XML).

Many of the frustrations experienced by todays Web providers are pointed towards the
simplicity and inconsistent construction of the current Web language HTML. The original
specification of HTML consisted of a small set of elements, whose functionality ranged both
linking, structuring and layout purposes. Eventhough the HTML specification has been
improved several times, there still exist a growing suspicion about its qualities, which is
mostly due to its very static nature. When looking for an alternative Web language one
quickly notice, that HTML is actually just one language in the SGML family. SGML is a
meta language, which can be used for expressing other markup languages, besides containing
a vast range of complex features for describing documents, as well as being a highly flexible
and extensible language. Because SGML is such a complex language and therefore not
completely ideal for network usage, a new language XML, which is a blend of HTML
simplicity and some of SGML's most important capabilities, has been invented. Each
language 1s now examined in greater detail to unveil their god and bad sides towards the Web
domain.

2.1.1 Hypertext Markup Language

HTML is by far the best known markup language and it enjoys wide spread use, which the
evidence of several hundred millions of Web pages easily accessible on the World Wide Web
clearly proves. In fact HTML has played a significant role in the enormous growth of the
WWW in recent years. Having been developed especially for net usage, HTML became a

14

static language of little magnitude. The static nature originating from the fixed set of HTML
elements ensures excellent networking abilities. HTML documents do not need to be followed
by a syntax-defining-part, because the existing web-browsers parses and displays HTML-
pages according to information hard-coded into them. Since the browsers fully understand
HTML, processing and display of the web-pages is fast, as opposed to high-level SGML
markup languages, where a document-instance has to be parsed according to an accompanied
DTD (Document Type Definition, as the language defining part is called in the SGML world).
The omitance of a DTD while sending HTML documents across networks, of course, also
reduce the load on the given networks. At the same time, because HTML is such a simple
language it becomes easy and fast to learn and even people with little or none programming
experience manage to make pages coded in HTML and viewable on the Web. Contrary to
belief the simple language HTML still provides some quite satisfactory mechanisms for
displaying content, text, images, and other information types, eventhough tables is used as the
main method for page layout.

Language Properties

HTML has no doubt been very succesful and contributed a great deal to the Internets growing
popularity, but following the global desire of keeping all kinds of information online some
important functionality is discovered as being missing in the low-level HTML language. Prior
to other mishaps we discuss the important issue of keeping document content separated from
the layout descriptions of the document. The many advantages gained by locating document
separat from layout was established over a decade ago. In [Coombs, 87] the authors present
this case while arguing for the precedence of descriptive markup over procedural markup
(refer to figure 2.1 for an examplication of these two markup types).

Poem Procedural Markup Descriptive Markup
FRA DEN ANDEN .size 3 .upcase <title> fra den anden </title>
fra den anden <verse>
og lige i dette gjeblik .size 2 .lowcase .newline og lige i dette gjeblik
savner jeg dig allermest og lige i dette gjeblik savner jeg dig allermest
hvor den tynde hinde savner jeg dig allermest hvor den tynde hinde
imellem os brister hvor den tynde hinde imellem os brister
imellem os brister </verse>
og vi er sé taet .newline <verse>
at vi nder og vi er sa tet og vi er sa taet
fra den anden at vi &nder at vi dnder
fra den anden fra den anden
</verse>

Figure 2.1: The difference of procedural and descriptive markup. In procedural markup formatting commands
are present in the text, where layout changes are necessary. We have presented our example of procedural
markup with the fictitious “dot” commands of size, upcase, lowcase and newline. Using descriptive markup
means identifying element types with the use of certain text tokens (known as tags). The text stream ‘fra den
anden” above is identified as a title element by the start tag <title> and the corresponding end tag </title>. The
poem used in this example is part of the poem collection “Universets Celle”, copyright Brian Drejer & Forlaget
Facet, 1998.

15

As stated in [Coombs, 87], the major drawbacks of procedural markup is the formatter
dependent commands inherent in the text. Modifications in layout presents a tedious and
highly erroneous task, as the formatting commands might well have to be corrected
throughout the whole document. Making corrections in one source file containing both the
text and the layout commands also produces the unpleasant side effect of enhancing the
probabilities of corrupting the actual textual content. Besides is the portability of procedural
markup at a minimum, because of the system dependent formatting codes. By using
descriptive markup instead, we rid ourselves of these problems. For every legal element type
(i.e. tag) in a descriptive markup language, an externally located rule indicates how to format
each occurence of the given element. This ensures an automatically and consistently executed
layout of the text source file, while future layout modifications only involves editing the rule
base. Second will the portability of the text document increase dramatically, as no system
dependent codes are present, just text elements made distinct by markup, whose formatting
information need only be specified in a local rule base. Further advantages gained by using
descriptive as opposed to procedural markup were pointed out in [Coombs, 87]. The separate
source and layout files obviously makes it a rather simple matter to obtain different views of
the same text document. Shifting to the Web context this could for instance be pages
displayed according to personal preferences, e.g. a person with poor vision might want an
overall larger font size or maybe a colourblind person might have wishes towards the
composition of colours. A final notice is giving to the inherent structure of a descriptive
markup document, where the natural hierarchical structure forms a splendid basis for further
processing, e.g. for writing a structure-oriented editor conforming to the markup language.

The observant and knowing reader would probably by now argue, that HTML is a descriptive
markup language and therefore it should uphold the above mentioned properties. HTML was
however conceived with no attention paid to the importance of keeping content and layout in
separate files. Some tags in HTML are included for pure layout purposes (such as FONT, EM,
STRONG and CENTER), which does not conform to the original intentions concerning
descriptive markup systems. This negligence has however been acknowledged lately by the
W3C with the introduction of Cascading Style Sheets [CSS, 99]. CSS is a language for
writing styles (look and layout) for the different HTML elements individually or in groups
(see chapter 4 for elaborating examples and further information). Both internal and external
use of CSS is supported in the most recent specification of HTML (version 4.0 [HTML, 98]).
The W3C clearly recommends use of externally located style sheets in order to exploit the
discussed benefits of this approach. Initial steps have also been made to exclude all layout
related elements and element attributes from the HTML specification, as some have already
been branded obsolete, while others have got the predicament of deprecated. Obsolete
elements are removed from the HTML language, while deprecated elements are in line to be
made obsolete in a forthcoming version and developers are therefore advised to refrain from
using them. The function of deprecated elements can be emulated by the use of style sheets
and their continuing presence is purely due to reasons of backward compatibility.

When [Coombs, 87] state that descriptive markup documents become highly portable due to
the strict separation of content and layout descriptions, one might suspect HTML’s earlier
indifferent handling of this subject could hamper its portability. This has not been the case
however, because the descriptive nature of HTML ensures that local formatting rules exist for
every element, being it layout elements or others. Contrary to the procedural markup approach
are no machine dependent formatting codes present in HTML documents.

16

We now proceed to discuss another apparent lack in the HTML language. HTML is limited
due to its static nature, where new customized elements cannot be added. This i1s the main
reason for prompting the emergence of XML. Some vendors have pleaded for more elements
or an extensible markup language in order to construct industry specific languages, which
would ensure an easily compatible exchange of information between corporations of the same
industry across the Internet. The urge to construct customized elements have most notable
surfaced, when Netscape and Microsoft, the two main browser-vendors, have incorporated
support of their own proprietary elements in their respective browsers. Eventhough they
probably both thought it would be beneficial for the HTML language, these dual extensions
have caused some confusion in the HTML specifications, as the W3C tried to keep up with
both companies ideas. In ideal circumstances extensibility should be offered freely to
everybody, while proprietary elements ought to be avioded for all costs. Providing total
extensibility directly in the language is not possible without reverting to the scheme used in
SGML, where language documents are validated according to an accompaning syntax
defining instance. The XML approach also relies heavily on this mechanism and a more
detailed discussion will follow in the next section. Later we consider the possibilities of
creating higher level definitions on top of HTML, where extensibility are obtained either
through programming language capabilities as suggested by the earlier mentioned method of
an internal language (see section 2.3).

The concerns regarding HTML doesn’t stop with poor distribution of formatting information
and the disadvantages of a fixed set of elements, however. While HTML may be excellent for
delivery across networks and capable of decent page layout, it lacks any higher level
capability. It completely lacks any structuring ability (awareness of the structure through a
DTD), which makes it a very poor medium for information storage. Effective searching, re-
usability and validation are not very effective with HTML instances. In the section on XML
we will learn of a whole new range of applications thriving on these advantageous
functionalities, which become easily accessible in network environments when working with
XML. Many enthusiastic Web providers and users believe that XML and the newfound
powers it provide will revolutionalize the Web and with time render HTML obsolete.

Evaluation

From being cherished for its simplicity, HTML is now facing critical voices for lacking the
advanced functionality required for the complexity increasing next generation of Web pages.
The obvious solution of substituting HTML with a more powerful language promises to
deliver such capabilities with one swift stroke. The predicted impact of using another
language on the Web will be presented in the forthcoming sections. For now we want to focus
on other options upholding the continuing use of HTML, instead of turning to a new
language. Possible solutions based on HTML should of course try to deal with the three
problem areas identified before. With the emergence of a style language (CSS) for HTML a
more logical structure between formating information and content have been established, so a
solution supporting CSS covers this former problem satisfactory. Concerning the missing
extensibility in HTML our system could rely on the methods adressed in [Rosenberg, 98],
which ensures programming capabilities in hypertext systems. Providing the client side of a
network with easily accessible and customizable data structures as can be done using XML is
however not easily done in HTML.

17

From a HTML authoring point of view support for CSS and extensibility through a higher
level system on top of HTML might present an acceptable solution, while succumbing to the
fact that structured information will not be available for client side manipulation'. Two
approaches for optimizing the manual authoring task to encompass some degree of abstraction
and automation will be subject for further investigation. Of the methods discussed in
[Rosenberg, 98] we decide to look deeper into the construction of an internal language from
which to compile to HTML code (see section 2.3). Besides the advantages and disadvantages
of different types of HTML generating tools are to be considered in section 2.2.

The continuing use of HTML is at least for the foreseeable future quite reasonable by
principle of inertia. Several millions pages available on the Web today are written in HTML
and backward compability reasons should keep HTML in the picture for long. Besides have
the somewhat more complex nature of XML until now prevented it from reaching instant
world wide recognition. Moreover have people lately questioned the total extinction of HTML
due to XML’s emergence. It is now believed to be more likely that HTML and XML will
work hand in hand in the future (Working drafts from the W3C suggest having socalled XML
islands exist within HTML documents — e.i. XML code hidden in XML-tags analogous to
java-scripts residing in script-tags).

2.1.2 Standard Generalized Markup Language

SGML is the mother of all markup languages. It is with a fine word called a meta-language,
meaning that it is a collection of generalized rules, that can be used to form other more
specific markup languages. HTML is actually itself created by use of SGML. Markup
documents written in SGML require the accompany of both a stylesheet for specifying the
formatting style of each element and a Document Type Definition (DTD) for syntactical
validation of the enclosed elements in a given document.

SGML is currently enjoying widespread usage as a versatile language for information storage.
One example is the world's top leading technology companies, who quickly discovered the
advantages of defining a common industry specific markup language. Especially the increased
possibilities for cooperation, as companies sharing a industry specific markup language will
not be confronted with problems concerning information compability when exhanging
information.

A few notable examples of already existing industry specific markup languages are: TIM
(Telecommunications Interchange Markup), which is the telecommunications industry
specific markup language, is primarily used for information storage. The semiconductor
industry, where each manufacturer has to maintain a lot of technical information on their
produced ICs. In order to enable smooth exchange of these data, an industry consortium (the
Pinnacles Group) was formed by leading companies; Intel, National Semiconductor, Philips,
Texas Instruments and Hitachi with the task of designing an industry specific SGML markup
language. The specification was finished by the consortium in 1995, and the implementation
phase is well under way in the companies. Other examples are Microsoft, who use a SGML

' Two out of three ain’t bad — Meat Loaf

18

markup language to store and display information in their Encarta Encyclopedia® and
Newbridge Networks®, who are using a SGML markup language to store and display their
electronic documentation.

Language Properties

SGML is in possession of several strong features, which could make it suitable for network
usage. First of all is SGML very flexible as it offers any range of complexity from the simple
HTML to the much more complex TIM. SGML is extensible and can handle any degree of
structure, thereby making it an excellent store of data. Great structurability also provides the
opportunity of re-using information elements, thus promoting efficiency and economy in
document creation. Many optional complex options for extensive information processing also
exist in SGML. SGML is an open standard (ISO 8879-1986), making it available for
everybody, and it is already well established worldwide as a storage of information. Besides is
SGML system- and platform-independent, ensuring that SGML documents created on one
computer system can be viewed and manipulated on another machine without any information
conversion and possibility of loss between them. Totally different computer environments
have no difficulties in working with exactly the same SGML documents securing excellent
portability of SGML.

But imagining SGML replacing HTML as the language of choice on the Web, becomes a bit
harder when facing the following disadvantages in the Web domain of SGML compared to
HTML. The most striking difference is the complexity of SGML and the simplicity of HTML.
Even people with very little programming experience find it possible to write Web pages in
HTML. A completely other issue is the difficulties involved in programming software to
accomodate SGML. This is mainly due to the complexity of SGML's options, which only a
small percentage of users need anyway. Writing SGML-compliant software would be
significantly easier if the number of options in high-level markup languages were
considerable decreased (this is precisely the step performed in the realisation of XML). The
complexity of SGML has also meant that only a few sporadic tries have been made to develop
a SGML compatible browsers for the web. None so far have succeeded in challenging the
dominance of the HTML browsers provided by Netscape and Microsoft. Breaking the vendor
support and inertia of HTML would require something revolutionary new, which SGML
doesn’t seem to have.

SGML will also contribute to a heavier deliverance load over networks, because of the
included specification files for style and syntax. Usually HTML documents need none of
those, but considering the recent recommendation of using stylesheets with HTML documents
might turn this aspect into a rather insignificant matter.

Evaluation

Since XML is developed with the intensions of constructing a Web version of SGML it holds
SGML’s excellent structural advantages, but is ridden of the complex high level features that
distorts the easiness of use. This has convinced us to discard SGML as a serious contender for
the leading role as Web language and concentrate on XML’s contribution.

f More information available on http://encarta.msn.com/EncartaHome.asp
* Further details on http:/newbridge.com/index.html

19

2.1.3 Extended Markup Language

As stated earlier has the growing frustrations with the limitations of HTML urged the W3C to
think of a solution for further and improved possibilities regarding Web pages. A working
group was formed by the W3C and they eventually came up with the specification for a new
markup language, namely the eXtended Markup Language (XML). XML can be seen as a
light version of SGML, customized for the World Wide Web. Like SGML, but contrary to
HTML, is XML a meta-language, meaning that XML is capable of defining other markup
languages (notice that we regard an in XML defined set of markup elements as a specific
markup language). XML is only using the most common parts of SGML, all of the more
advanced and rarely used properties of SGML has been stripped off. As a consequence XML
is now much easier to understand and better suited for network delivery.

The parts of SGML that XML conserves are structurability, extensibility, validation and re-
usability. And like SGML does XML preserve system- and platform-independence, it is non-
propietary and an excellent store of information. XML is seen to hold SGML prime assets and
is ridden of any unnnecessary and seldom needed functionality to ensure excellent network
properties.

Language Properties

Apart from introducing the basis for a whole new range of Web applications XML has several
advantages compared to HTML. Below we try to outline the most important possibilities
gained from using XML. Some of XML’s qualities can be directly derived from the “10
commandments”, that XML was designed to uphold [XML, 98]. The most noteworthy being:

- XML is straightforwardly usable over the Internet.

- XML supports a wide variety of applications.

- XML is compatible with SGML.

- Programs to process XML documents are easy to write.

- XML documents are human-legible, reasonably clear and easy to create.

Another important design issue liberates XML from the need to always send along the
description of the syntactical composition of elements occuring in a given XML document, as
is the case with SGML. In XML it is made optional whether or not to send along a Document
Type Definition (DTD), in order to resemble the use of HTML documents. A XML document
that is parsed according to an accompaning DTD is called a valid XML document. Whereas
an XML document, that is only parsed for minor syntactical subjects (such as proper nesting
and obligatory end tags) is called a well-formed XML document. Unless the data structures
within a XML document are validated they cannot be used for further manipulation.

Eventhough XML documents cannot be validated without an accompaning DTD, future use
could be handled more intelligently. Industries with a common industry specific markup
language could exchange DTD’s from time to time, when updates have been performed. XML
documents written in this specific language could then be sent without the DTD on every
delivery and still be validated, thereby minimizing the network load.

20

Importantly XML opens for a whole new range of Web applications. Presented in [Bosak, 97]
a member of the W3C workgroup, who are responsible for the XML specification, has
grouped the most important application types in the following 4 categories:

1. Applications that require the Web client to mediate between two or more heterogeneous
databases.

2. Applications that attempt to distribute a significant proportion of the processing load from
the Web server to the Web client.

3. Applications that require the Web client to present different views of the same data to
different users.

4. Applications in which intelligent Web agents attempt to tailor information discovery to the
needs of individual users.

The first category offers important improvements, as information exchange is easily obtained
through a shared XML-language (use of the same DTD), regardless of any internal database
formats. Bosak provides an example from the American health care system, where access to a
patients medical records is available in a web-based interface. These records are represented
by a folder icon, which after possible alterations can be dragged over to the internal database
application and dropped, whereafter the updates are performed automatically in the database
trough interfaces to the common language XML.

This resembles the use of three-tier architectures, which Microsoft states in [MS, 98] will also
thrive on the emergence of XML. Microsoft feels that the classic client/server architectures
are increasingly being replaced by three-tier models, in which a front-end browser or other
application communicates with a perhaps heterogeneous back-end storage through a middle-
tier Web server, see figure 2.2.

Three-tier architectures holds several benefits compared to the well-known client/server
architectures, including better scalability, as several servers can be assigned storages with
extensive hit rates, and better security, as transactions happen through the server and not
directly at the source. XML succeeds in separating the user interface from the underlying data
structures in the storages, allowing integration of data from multiple (maybe incompatible)
sources. The underlying data formats are converted to XML (if necessary) on the middle-tier
and delivered to client applications by HTTP over the net, where it can be manipulated and
viewed as desired.

21

Data display
Multiple views created
from the XML data

Other
/ applications

Data manipulation
Different processing
DESktOp of the XML data
Data delivery
- o o e o XML exchanged
over HTTP

. . Web server
Middle-tier -DB access

-Data integration

Data Integration
e XML emitted or generated
from multiple sources

Storage

Mainframe Database

Figure 2.2: Overview of a three-tier architecture (adopted from [MS, 98]). Data structures are gathered from
different (possible heterogeneous) sources and interfaces to the common language XML provides easy access
and delivery across the network. Further manipulation of the XML data is now possible on any client machine
residing anywhere on a network.

Bosak has headlined the second category XML gives Java something to do’. This slogan is
originated from the fact that XML provides a way to distribute heavy workloads from the web
server to the web client. After a brief interaction with the server, where the XML documents
are downloaded, are the web client able to perform complex computations on the XML data
trough java applets or script languages such as javascript. The server is ridden of enormous
resource hits and the client might deliver quicker responses to interaction from the user, when
the data is on the client and ready to be manipulated at once. Bosaks main example of a
second category application is the Pinnacles Group, who have constructed their own specific
SGML language for IC-circuits. It could be a possibility for the different companies engineers
to enter a manufacturer’s web-site and download both the viewable data and a Java applet,
that allows the user to model different combinations of the available circuits.

Bosak is further expecting this kind of application to grow in importance, as users come to
expect and demand this kind of interoperability in manipulating their data. XML 1is partly
designed to accomodate this kind of application, as the information provider’s servers can
hardly be expected to keep up with these increasingly computation intensitive tasks.

The third category presents applications in which the user can choose between different views
of the uploaded data, without having to download it again in a different form. An example
application is a dynamic table of contents, which enables the user to traverse a large data

22

collection by expanding portions of the table of contents in order to reveal more detailed
levels of the document structure (similar to the directory structures presented in the Windows
Explorer). Should the same be done on the Web today, a time expensive server retrievel
would be necessary for each expansion or contraction of the table of contents. XML offers a
far better solution, as the entire table of contents structure is downloaded once on the client,
enabling it to perform the manipulations on the table of contents locally as they are requested.
Another example is some kind of manual that surplies notes in multiple languages, where user
selection determine which language to show.

Bosaks last category covers appplications, where it is possible for intelligent web agents to
provide different information to individuals based on personal preferences described in a
standardized markup language. Every imaginable information product will become
completely customizable and dynamic, as users become able to choose languages, levels of
comprehension, graphical user interfaces and content. This kind of application is expected to
trigger a growing interest in the “push” technology paradigm. Push technology is the opposite
of the familiar “pull” technology, where the user clicks on a hyperlink to retrieve the desired
information. Push technology enables the information providers to deliver information to the
users instead. The appearance and content of this information is again determined by
individually set preferences. Examples of push techonology already exist, but XML is
expected to take it a step further and provide complete customizability, e.g. a future push-
enabled browser could be set to download all “Metalized Magazine” record reports of the
Norwegian black metal scene as they appear online.

Others visions for improved web facilities due to the emergence of XML exist. The precise
description of information in XML documents presents a better base for searching than the
currently available primitive text searches in search engines like Excite and Altavista. Using
the above mentioned search engines current search methods to find books on “H.C.
Andersen” would probably yield both books by and about H.C. Andersen. This problem
would be eliminated in an XML environment, as books could easily be categorized in a
standard way by author, title, about and other criteria. A search in an XML environment
would therefore yield a clear distinction between <author>H.C. Andersen<author/> and
<subject>H.C. Andersen<subject/>. Query languages providing advanced search capabilities,
similar to SQL, in markup languages are currently subject to further research. This research
area has prompted the W3C to publish a note (being only a note it is the earliest stage of a
W3C document, but research is in progress) regarding an XML query language called XML-

QL*.

Microsoft are heavily involved in the specifications of XML and its auxiliary components and
they have some ideas about XML’s future usage as well. Microsoft expect that XML and
HTML will be used together in the future with XML delivering the structured data and
HTML displaying it, and that an XSL language could be used to generate HTML from XML.
Besides they are now working closely together with the W3C on a format for encapsulating
XML data (so called XML islands) in HTML pages. The data stored in these XML islands are
then available to processing through scripting. Microsoft also intends to make XML the only
storage media for all applications in the future “MS Office” packages in order to obtain the
highest degree of data integration.

* Consult http://www.w3.org/TR/NOTE-xml-ql/ for further information

23

Eventhough XML might look perfectly suited for network usage by now, it actually has a few
drawbacks. The first being the lack of many of SGML’s complex features which were omitted
in XML to ensure better network delivery. Some providers might still need the full power of
SGML and therefore won’t see XML as a better alternative than HTML. It would be
necessary for them to employ a multiple-tier process, where data is stored in a high level
SGML-language and converted to XML instead of HTML for display purposes.

Others fear that the emergence of XML will cause increasing stress on the networks.
Eventhough an XML document is not particular larger in size than its HTML counterpart, it is
expected that the greater capabilities of XML will cause web suppliers to incorporate more
advanced features in their web pages. Especially multimedia components, such as specialized
font sets, graphics and video will be encountered more frequently. The conclusion being that
XML instances require more network bandwidth than the plain old HTML instances.

A point that could show to be troublesome for XML is widespread acceptance, which of
course is crucial for its usage. It is not easy to make people change to new standards, but in
[Heinemann, 98] Adam Denning (Microsofts group manager for XML) identifies the
following 3 key factors as crucial to the task of getting people to start using and developing
XML applications:

1. People have to understand the values of XML. No one will adopt to XML just because it
is a new technology.

2. Tools, such as browsers and parsers, that makes it easy to utilize the powers of XML
should be available for the users.

3. The different industries have to agree upon specific XML vocabularies, e.g. booksellers
should agree upon a specific XML language for books. So everybody knows there is a
uniform way to describe books.

If these 3 factors comply, XML should gain widespread adoptance according to Adam
Denning. Such things are however quite difficult to predict, but the fact that XML is an open
standard and many leading technology companies are involved in shaping the XML
specifications, promises realistic hopes for a break trough for XML.

Evaluation

A whole new range of Web applications could be a reality if XML achieved wide-spread
usage. As our discussion above stated would validated XML structures on the client-side
present an excellent basis for advanced manipulation and computation on the client without
consulting the server further. This subject area most clearly shows XML’s superiority over
HTML, wherein such higher level functionality is impossible. Several factors however still
speak for preserverence of HTML. The somewhat more complex nature of XML, unavailable
XML tool and/or language implementations and the inertia of HTML’s world wide
appreciation all question whether or when XML will conquer the Web. Considering all the
hype and vendor support we do however believe XML will have some impact on the Web in
the future. But feeling the need of a powerful authoring system right away, we decide to look
beyond XML and concentrate on HTML for now. Since we are developing an authoring

24

system for markup languages a future translation from HTML-tool to XML-tool may not
present a major task either. Besides have recent voices from the Microsoft Corporation argued
for future cooperation between HTML and XML, which would secure the longevity of our
tool. As a consequence the rest of this analysis will concentrate on systems for authoring large
HTML systems.

2.2 Markup Producing Tools

This section covers the different types of markup producing tools. For every type of tool we
evaluate different existing implementations ranging from commercial programs enjoying
wide-spread use to purely scientific prototypes. The knowledge hereby obtained hopefully
enables us to find an area of focus, where we can supplement the markup tool world with
further research.

2.2.1 Authoring Tools

An authoring tool is understood to be any application that is specifically designed to aid users
in editing markup. The editing processes covered by this definition may range from direct
hand coding (perhaps in structure editors with automated syntax support) to WYSIWYG
editors that do not present the actual underlying markup to the author for editing (some tool
implementations may offer a view of the resulting HTML code for "hands-on" edition). In
every case we regard an authoring tool as being a full-fledged program for the user to interact
with. Word processors which allow textual content to be conceived and “’saved-as-HTML” are
not included in this definition, but have instead been included in the section on conversion
tools, see section 2.2.2.

Examples

Structure editors with support only for highlighting and indention of syntactical content are
less used today, as newer WYSIWYG (What You See Is What You Get) tools are preferred
by a majority of people. A major part of the existing structure editors have besides evolved to
include additional functionality and one example of such is the CoffeeCup HTML Editor ++
3. The User Interface of CoffeeCup, which primarily consist of a structural editor and
secondly buttons and menu items for further functionalities, is depicted below in figure 2.3.

> Shareware version available on http://www.coffeecup.com

25

= CoffeeCup HTML Editor++ - [D:\Programmei\CoffeeCup_Software\working\Testpage_html]

L2 File Edt Tags Tools Window Help E] 5||
ne|d@g sl - renly _sge==z

EE woEEmale Bl =
o Fae B us|d B8 |[R2824808 5 |

e
| The CoffeeCup HTML Editor++ [UNREGISTERED]
Y Java] ¥B | Gl HTHL® nEr]
reated with the CoffeeCup HTHML Editor++ --» T
= d [PRG] B &= http://www.coffeecup.com e sl
Sh== Brewsed on oktober 3 1983 15:35:38 =
%DF‘;!DGF\AMMEF\ e g
<TITLE>Test Page</TITLE>
i [ETFREp SR <HETA name="description” content=""> P
<METL name="keywords" contentc="">
<style type="text/oss"r s
sl =
- &:link {text-decoration: none;} =
HTML Files: [~ htm * him) i hivisited {text-decoration: none:} =
Testpage. htrnl TEE =
</style> —
</HEAD> ©
<BODY BGCOLOR="FFFFFF" TEXT="000000" LINK="0O000FF" VLINK="S00080" BACKGROUND="hckgrnd0Ol.3pg": i

<CEMTER><H1>CoffesCup Test Page</H1x

<HR WIDTH="50%" SIZE="9" COLOR="O0O0O0O0FF"><P>

An exawple HTNL page constructed using the Coffee Cup HTML Editor ++<FP>
Comments to the author?</ALi>

</ CENTER>

hittp: /. coffeecup.com LINE: 29 COL: 8 Total Lines: 29 - Saved

Figure 2.3: Screenshot of the CoffeeCup HTML Editor ++. The editor is loaded with a sample page, which
partly shows the structural dependent appearance of the HTML code (indented elements stands out clearly, but
the colour highlightning is unfortunately only partly visible in this greyscale image).

The editor part of CoffeeCup offer full customizability on highlighting details, together with a
generally customazible User Interface. An accompaning package contains several hundreds
animated icons, images, background images and sound files, besides including small and
often used preprogrammed Java-, VB- and CGl-scripts. A range of helpful stand-alone
programs can be associated with the HTML editor, in particularly a FTP program for easy
uploading of newly constructed HTML pages and programs for making image maps and
Cascading Style Sheets, which have all been developed by the CoffeeCup programmers team.
Related external programs and packages of graphics and sounds are one thing and the actual
functionalities of the HTML tool are something else entirely. The CoffeeCup editor makes
heavily use of automated markup insertion functions, which are the features of an authoring
tool that allow the user to produce markup without directly typing it. This includes a wide
range of tools from simple markup insertion aids (such as a bold button on a toolbar) to
wizards that construct higher level elements (e.g. a table or a form) based on a series of user
inputs. The editor in question offers both buttons for often used presentational tags (e.g. italic,
headers and paragraphs) and alignment settings (left, center and right), together with easy
access to every existing HTML tag. Wizards and small designer functions exist for both
forms, lists, tables, frames, hyperlinks and E-mail links, while a quick start function allows
the user to quickly type the initial (items such as title and meta-data) part of a HTML page. A
macro editor offers possibilities to constructs personal snippets of often used HTML code
(e.g. a page footer to be used in several pages needing a uniform look), which can easily be
accessed later during the authoring process. So the basis of the CoffeeCup HTML Editor ++ is
a structured editor added with comprehensive support for higher level functions.

26

We now turn our attention to WYSIWIGs, which contrary to structured editor do not reveal
the underlying HTML code to the page developer. Only the actual Web contents are available
for editing, whereas the HTML code is applied automatically according to the desired
appeareance of the content. The most notable WYSIWIG Web authoring tool around is
Microsofts commercial giant Frontpage, which has lately become an integrated part of
Microsofts Office package. Many significant similarities exist between CoffeeCup and
Frontpage, e.g. the heavy use of wizards for constructing the somewhat more complicated
Web page elements, such as tables and forms. CoffeeCup’s startup function is also paralleled
in Frontpage as illustrated below in figure 2.4, which shows the use of wizards in
Frontpage'’s startup dialogue.

Mew FrontPage Web |

" One Page'Web

1 Choose the kind of FrontPage web to create:
¢ |mport an Existing Web

% From Wizard or Template;

Corporate Presence ‘Wizard
Custorner Suppart YWeb
Discuzzion Web Wizard

E mphy YWeh

Project web

Creates a perzonal web, with pages on your interest,
photos and favarite web sites.

Chooze a fitle for your FrontPage web:
Teszt Page

q:htestpage

T | dd e cumentiel].4 | Cancel I Help

Figure 2.4: Screenshot of Frontpage’s startup dialogue. Apart from creating a single Web page or importing an
existing coherent set of pages users may choose to incorporate one of Frontpage’s predefined templates for a
Web site (it is later possible for the user to add to this limited set of predefined site templates with personal
designs). The current case depicts a selection of the Microsoft template for a personal Web page.

Frontpage’s possibilities for developing and using Web page templates easily outweighs the
simple startup mechanism employed in CoffeeCup. The most striking difference is however
CoffeeCup’s restriction of handling only single pages, whereas Frontpage is able of
controlling several related pages. This control gains in efficiency by the divided architecture
of Frontpage, which consists of the two connected tools, namely the Frontpage Explorer and

27

the Frontpage Editor. The Frontpage Explorer acts as a site manager controlling a host of
interconnected pages through high level descriptions. The most notable instrument being a
graphical interface to a representation of the hierarchical structure and related link properties
of a given site. A view of this mechanism for easy manipulation of overall site structure in
Frontpage Explorer is presented below in figure 2.5:

=¥ FrontPage Explorer - Test Page [g:Mestpage] - 0] x|
File Edit Miew Toolz: Help
DiNswPoge | Bpwtion B GBE |+ ER X (@0 9B |9 0w b
gation - Test Page
Home Page
4] ?
[[]
Interests Photo Album Favarites
Wweb Design
Contents of 'g:\estpage'
M ame l Title | Sizel Type | Modified D ate I Modified By I Comments AI
@ _private folder
& images folder
favarite.htrn Favorites 895 htm 03-10-99 23:58:49 kaonge
index. hitm Home Page 2kB hitm 03-10-99 23:58:49 konge
interest. htrn Interests 948 htm 03-10-99 23:58:49 konge
El mmyfava htm My Favaorite Site 3 468 htm 03-10-39 23:58:49 konge | _lj
4 3
HUM 2

Figure 2.5: Screenshot of the navigation part of Frontpage Explorer. Shown is the hierarchical structure of a
page evolved from the "Personal Web” template. Link relations of the pages spreading from the root element
“"Home Page” are very evident. The page "Web Design” has been added to descent from the “Interests” page
by virtue of a single mouse step.

Further functionalities of the Frontpage Explorer include help for file operations as well as
detailed link management, which provides views of every in- and out-going hyperlink for
specific pages, besides offering possiblities for verifying the actual status of all internal and
external links of the site (this mechanism is very helpful for spotting broken links). Frontpage
Explorer also presents the Web developer with an opportunity to build a site with uniformly
looking pages by the use of themes. Everyone of 54 predefined themes defines a coherent
appearance of background, banners, headings, ordinary text, buttons, link buttons and textual
links. Besides is a minor project managing system included, where unfinished parts of the site
being build and other future tasks, such as external link status verification, can be put forward
for reminding the developer, what still needs to be done. The final noteworthy mechanism in
Frontpage Explorer is the publishing function, which allows the whole site content to be

28

uploaded in an integrated fashion, where related documents and/or adherent non-textual
external files are automatically located correctly in the file system.

While high level site manipulations are managed in the Frontpage Explorer, the authoring
and editing of the actual content on specific pages are performed in the Frontpage Editor. At
first sight Frontpage Editor may look like an ordinary WYSIWYG word processor (true to
Microsofts uniformly looking Windows applications the Frontpage Editor in fact resembles
Word a great deal). For conviction refer to figure 2.6.

3 FrontPage Editor - [Home Page] - O] x|
B File Edit Wiew Go Inset Fomat Tools Table Frame ‘Window Help 18] x|
D&M ﬂﬂ|®|§.’@|%|<==>l0|ﬂ|k‘"
[Nl | ||Ana| 7| & u == = =1 |
|
Home Page
[Button] [Button] [Button]

nerests 1 Welcome to my Web site!

Ehoto Albur,

Favorites © The horme page is a good spot to let visitors know the purpose of this Web site. The
home page gives visitors an impression of your site's style.

If wou'd like to learn hows this web was created step-by-step, take the FrontPage Tutorial
in the Getting Started with Microsoft FrontFage book.

This page was last updated on 10/04/99.

1 Migrosoft”
E o.r 8 F .
E
Normal 1 I
8 seconds ML A

Figure 2.6: Screenshot of the Frontpage Editor. Opened and ready for editing is the root page of the personal
Web site template presented before during the discussion of the Frontpage Explorer. A quick glance shows that
Frontpage Editor mainly consist of typical word processing functionality, but important additions include
support for high level HTML constructs and possibilities for the developer to view the underlying HTML code,
as well as previewing the constructed pages in a small built-in browser.

However several factors make the process of writing Web pages using Frontpage different
from writing ordinary documents in a WYSIWYG text processor. Most apparent is the
hypertextual nature of Web pages, which necessarily require some degree of hyperlinking
mechanism unlike static text documents. To cope with this, easy means of supplying
hyperlinks to both textual and imagery elements are provided in Frontpage. Furthermore are
wizards provided for simple development of every complex HTML construct (such as tables,
forms and frames). Apart from the above mentioned traditional HTML elements Frontpage
includes support for a few active elements, this being among other things scrolling text, hit

29

counters, search forms, hover buttons and video clips. Future alterations of all developed
HTML elements are uncomplicated performed by the edition of a given elements properties.
In summarization Frontpage offers a WYSIWIG editor for the creation of individual Web
pages, along with a site manager capable of controlling whole site structures consisting of a
vast number of underlying Web pages.

Evaluation

Tools based on structure editors are not very convenient, when larger Web systems are being
developed. Of course the development process of specific pages are eased by the source code
clarification provided by the indention and colouring of different structural content and by
additional incorporated functionality, such as buttons, macros and wizards. But constructing
larger Web systems consisting of a vast number of pages and with high probability of being
subjected to extensive future updating would present an enormous task, if performed with
tools upholding this single-paged focus. When talking minor Web systems most people
(especially those with less experience in the field of programming) are reluctant to use this
kind of tool anyway, as a certain amount of knowledge of the HTML language is required
from the user.

Desirable for most people is therefore a WYSIWYG interface like the one implemented in
Frontpage, which conceils the underlying HTML code from the user. But apart from the
differences in viewing and editing, both of the tested tools share some similarities. The
extensive use of Wizards and automated markup insertion functions is a trademark of both
tools. Quick reference to often used HTML elements trough buttons, menu items or macros is
applicable for everybody. Wizards on the contrary tend to both move the complexity from the
HTML language along to the tool implementation and decrease the user's control of detailed
aspects of the given HTML construct. These issues are mostly ignored by users with little
programming skills, who still find the Wizard implementation easier to learn than HTML
code. In our opinion both tool types are fairly easy to learn and simple pages may be
developed pretty fast even by newcomers. But as briefly stated before we are seeking a tool,
which offers facilities for larger Web systems and handles more than just single pages. The
structured editor we examined (CoffeCup HTML Editor ++) was purely minded for
developing pages one at the time, while the examined version of Frontpage did include a site
level manager.

Frontpage's site manager helps in making and maintaining the tree structure of a Web site,
with its pages and link relations. Referential integrity is automatically assured within the site
and only outgoing hyperlinks needs to be tested for legality. To help perform this procedure
Frontpage can deliver a list of all outgoing links with current status. When building a larger
Web site a coherent look of all included pages may be needed. The Frontpage Themes are
included for this purpose and they present a simple mechanism of altering the look of the
entire site. No relations exist between similar content on the different pages and updates
throughout the site must still be done manually for each page. Eventhough Frontpage is
excellent for authoring-in-the-small (single pages or smaller Web systems) and contains some
means of authoring-in-the-large , we find the following flaw to be of outmost importance. To
encompass the use of Themes and active elements Frontpage produces a proprietary version of
HTML, which includes elements not known from the HTML specification. This causes

30

confusion with the Netscape Navigator Browser and renders pages impossible to be contained
on UNIX servers.

2.2.2 Conversion Tools

A conversion tool is any application or application feature that allows content in a different
format (proprietary or not) to be converted automatically into a particular markup language.
This includes stand-alone software whose primary function is to convert documents to a
particular target language as well as non-markup applications with “save-as-HTML” features.
This category of tools is bound to distance the developer from the Web domain, as the future
Web content is produced in an alien format. The actual conversion process is then typically
performed automatically, being it by a command-line program or by a built-in converter of a
higher level application, and it is therefore beyond the influence of the developer.

Examples

The most noteworthy stand-alone program for conversion of text to HTML based Web pages
is LaTeX2HTML, as described in [Drakos, 93] and [Drakos, 94]. In accordance with its name
LaTeX2HTML performs an automatic conversion of documents written in LaTeX to HTML.
The primary mechanism in this conversion is a translation of the inherent document topology
consisting of chapters, sections, subsections, table of content, index list and others into a
HTML counterpart. Most striking in a LaTeX2HTML translation is the conversion of the top
most document structures (typically chapters) into individual physical HTML pages, which
apart from the actual textual content are provided with a navigation bar. The navigation bar in
turn offers hyperlinks to other parts of the original document (typically to the previous and
next chapters along with connections to the table of contents and index). To accomodate
mathemathical equations (which is a prime asset in LaTeX, but has little support in HTML)
and other incompatible structures LaTeX2HTML images are produced and inserted
accordingly in the HTML target. Other workarounds include macros for generating some of
HTML more testing capabilities (forms, image-maps, etc.) by putting raw HTML in the
LaTeX source. Most beneficial for users endorsing the approach taking with LaTeX2HTML is
the easy and reliable updating, where alterations in the document source promises to preserve
the integrity of hyperlinks in the HTML target files (opposite a manual editing of several
HTML pages, which would prove a severe and error prone task). Alternative versions of the
same document are also simple to produce by altering the target descriptions in LaTeX2HTML
(of course the document is from birth already available both as a normal text document and as
Web pages). These benefits along with the low number of available authoring tools and
inexperience with a new language made LaTeX2HTML quite popular in the early days of the
Web. For authoring material directly for the Web people have turned to the kind of authoring
tools described in the previous section.

Most of the modern word processors (we have chosen Microsoft Word as our example) have
the ability to save document files in the HTML format, which renders the need of an in-
between converter program obsolete. Contrary to document splitting performed in
LaTeX2HTML the content of a Microsoft Word document is translated to a single page. A few
tests of Microsoft Word worked alright, as long as the document consisted simply of text,

31

images and minor tables. HTML pages with more complex content were hard or sometimes
even impossible to construct.

Evaluation

Making simple Web pages with the above mentioned tools is fully automatic and saves the
user the efforts of learning HTML. Pages of a more complex nature are however seldom
conversed with an acceptable result. The most important obstacles are the inherent
dissimilarities between the two media, as also stated in [Drakos, 94], namely the presentation
information in the word-processors that cannot be reproduced in HTML and the inflexible
conversion process, which does not take full advantage of HTML's powers. LaTeX2HTML
tried to accomodate for the missing parallel in LaTeX to some of HTML higher level
constructs by allowing HTML code to be inserted in the text document (the alternative is to
post process the HTML code delivered by LaTeX2HTML). These workarounds tend to nullify
most of the advantages gained in the first place. Surely the primary intention with programs of
this nature is to obtain an easy conversion of content already existent in another format, while
not being optimized for actual HTML authoring. Web developers will always be handicapped
if using converters, as to many of HTML's high level structures will be not directly available
in the alien environment. In conclusion we believe conversion tools, as the pair mentioned
above, are not very applicable in Web systems development, especially as we intend to build
larger Web systems.

2.2.3 Generation Tools

A generation tool is a program or script that produces markup automatically by following a
template or a given set of rules. When developing with generation tools user actions may
range from interacting sporadically with very advanced applications to performing actual
programming in languages biased to generate certain textual content.

When working in the Web domain the generation may be performed on either the server or
client side. [Neormark, 99a] divides the existing possibilities of producing Web pages in the
following three categories: generated, calculated and dynamic. Dynamic represents pages or
page content which are calculated on the client side due to some user interaction. This
calculation is either performed in Java applets or by some scripting language (such as
VBscript or Javascript). Calculated pages are generated on the server side according to user
input delivered back from the client-side browser trough the Common Gateway Interface
(CGI). Server located scripts, coded in an arbitrary programming language capable of reading
and interpreting the encoded CGlI-stream passed to the standard input, then generates and
delivers an appropriate answer in the shape of a HTML page on standard output. This
resulting HTML page is then transferred back to the browser by the CGl-interface. Pages of
the generated category denotes HTML pages constructed according to some higher level
description in any given format, which upon execution expands to ordinary HTML code.
Generated HTML pages are not the product of interaction from the end-user, but are instead
pre-compiled static pages (it is of course possible for these static pages to contain applets or
point to CGI-scripts). In our attempts to build larger Web systems we mainly focus on the
generated category and sporadically touch the calculated category, as we feel Java-applets and
inline scripting languages are beyond the scope of optimizing Web page authoring.

32

Examples

Our selection of examples on generation tools ranges from high level wizards that produce
complete HTML documents on the basis of a series of user preferences to template use in
environments again ranging from advanced GUIs down to almost programming language
level. The chosen examples all share a scientific approach, as they are experimental
prototypes only used for research purposes or locally related work. No commercial generation
tools for HTML are to our knowledge visible on the market of today, as it is almost entirely
occupied by authoring tools (some authoring may have generation like features (such as high
level wizards), but none would be categorized overall as a generation tool).

A common target area for generation tools is larger Web sites and especially Web sites with a
high degree of redundant content. Isolating these redundancies in abstracted structures
(templates) then offers a platform on which to obtain a significant level of automation in the
authoring process (and very importantly in future document maintenance). Both [Owen, 97]
and [Thimbleby, 97] strongly argue for the need of automated solutions contrary to the "page-
at-a-time" behaviour of existing commercial tools. Evidently simple pages or sites without
common page layout schemes gain very little from this approach. Many of the tools presented
have been developed especially for generating online course material, which contain highly
redundant material (e.g. literature references, exercises and exercise solutions for every
lecture). The sequential nature of course lectures also invites the use of standard sequential
linkage between lecture pages.

A program for automating development of complete hypermedia courses, HTML Course
Creator (HCC), 1s presented in [Curtis, 96]. HCC operates on a very high level, where
knowledge of the HTML language is entirely irrelevant. Users only need to present the
program with a few preferences stating preliminary variables such as compilation directory
and different course information. Next and last step for the user is to plot in the media to be
contained on the different course pages using an easy to use GUIL. HCC then compiles the
entered information and generates HTML pages according to some predefined HTML
templates, while upholding the sequential course structure with automatically produced link
mechanisms. The authoring process becomes very easy and fast with HCC and no
programming capabilities or knowledge HTML are necessary. A major drawback is however
the lack of flexibility of the program, because only course material may be produced and this
only according to two slightly different pre-defined templates.

Another developer program operating on a high level is the W3DT Web-Designer described in
[Bichler, 96]. Unlike HCC does W3DT Web-Designer not limit itself to only constructing
courseware. A graphical user interface allows users to construct the hierarchical structure of
any type of Web site (very similar to the one incorporated in the Frontpage Explorer). Efforts
have also been made in [Bichler, 96] to encompass calculated pages by means of CGI-scripts
capable of querying databases. Curiously enough have design primitives for depicting
dynamic content in the graphical representation of the site structure been named templates in
[Bichler, 96]. By setting preferences on header, footer and other attributes the user may create
a layout scheme to be used uniformly troughout the site. Compilating the hierarchical site
structure along with the desired layout settings yields a site skeleton consisting of Web pages
for every node in the site tree structure with navigational content to accomodate any node

33

relations. The different pages in the site skeleton will have to be pre-processed in a HTML-
editor in order to add actual page content. No doubt this pre-processing hampers future
alterations, due to the fact that structural changes would require a new compilation of the site,
thereby overwriting the editions made on the old site skeleton.

The work discussed in [Kesseler, 95] resembles the approach just presented, but it delivers a
more refined tool, partly because some of the important shortcommings of the W3DT Web-
Designer have been avoided. The implemented program Hypertext Structure Description
Language (HSDL) covered in [Kesseler, 95] also adhere to a graphical interface for
development of site structures. In HSDL a class schema is created to model the different
objects existing in the target domain and the relationships between them. This class schema
then acts as a template for creating an instance schema of all instances of the different classes
defined in the class schema. Again referential integrity is a priority when compiling the
instance schemas to the target domain of Web pages, with link instances inducing ordered
collections made traversable on multiple sequential paths by previous/next links. So upon
compilation HSDL produces a Web site skeleton like the W3DT Web-Designer does. The
HSDL skeleton is however provided with page content by filling the empty instances in the
instance schema. This renders any pre-processing unnecessary, as content and site structure
will be compiled together. Besides is HSDL the more flexible tool, because the author may
create new or alter existing schemas according to individual needs. [Kesseler, 95] refers to
this as schema evolution, for which a wide area of operations are possible on classes,
instances and link classes. The target domain appearance of instances are also fullly
customizable. Customizing is done by redefining the so called expanders, which perform the
translation of instances to the target language HTML. The expanders in HSDL is written in
the functional programming language Scheme, indicating that defining a individual page
layout requires programming skills in this language (refer to figure 2.7 for a sample view of a
scheme expander). People without these skills would have to settle with the default expanders
built into the system.

(define (title node)
(emit "<H1 ALIGN=CENTER>"
(name (class node)) ": "' (name (instance node))
"</H1>))

Figure 2.7: An example of an expander written in Scheme (adopted from [Kesseler, 95]). The depicted expander
is the default one for generating the title of a HTML node. The function emit writes all arguments to the HTML
document currently being built. Arguments are strings representing HTML snippets together with strings
extracted by the name function _from both the nodes class and instance.

Another template based approach, Gentler, is discussed in [Thimbleby, 97]. Like the
preceding examples does Gentler provide a simple mean of outlining Web site structures,
which upon execution produces a site skeleton with inserted navigational mechanisms. A
basic text-oriented HTML editor is provided for actual content editing. Any number of style
specifications, which controls the target domain appearance, are supported in Gentler.
Developers may create individual layout styles by intervening with Gentlers page design
language, which is a basic macro language (see figure 2.8 for an example on the use of this
macro language).

ehomepage? epagebody Conditional pointing to pagebody, which just copies the current body to a
standard page, if current page is the root page.

34

e'homepage? Points to every other page than root page.
[emenubar
<p>
ehas text? Include next code snippet if page has textual content

[<table><tr>
<td valign = top> emacro? [logo image file]</td>
<td valign = top> esection? <h1> etitle </h1>
esubsection? <h2> etitle </h2>
<hr> epagebody </td>
<ftr></table>]

1.

Figure 2.8: A sample use of Gentlers page design language (adopted from [Thimbleby, 97]). We have added a
few explanatory remarks in italics to clarify the use of conditionals in the macro language. Notable is the
intertwined use of macros and HTML codes.

Gentler posseses a wide range of pre-fabricated macros, but developers are free to create
custom ones for individual needs. Several useful features have been implemented in Gentler,
for instance an awareness of page edition, which allows for automatically generated and
annotated "What's New" pages. Extra careful attention have been paid to links in Gentler as
described in section 3.3 of [Thimbleby, 97]. Navigational links are as mentioned before
maintained automatically and need not concern authors. The authoring process is also
improved by the ability to follow navigational links between every page in Gentlers document
database, while editing page content. Index and index entries for documents are created
automatically if the author only flags pages, words or phrases as indexable. In addition a
summary page may be constructed showing relevant information on every external link
existing in a site. The summary page is in HTML format allowing authors to easily check the
reliability of outgoing links.

A system for managing and delivering distance courseware is presented in [Johnson, 96]. The
paper adresses many issues regarding network usage, but our focus is on the special authoring
language developed to facilitate the generation of the systems Web pages. Page templates are
defined in the ANDES Text Markup Language (ATML), which extends HTML with a new set
of special-tags (see figure 2.9 for examplification).

<@template>

<@type=open-exam>

<@title=Exam 1>

<@workshop=1A>

<(@duration=60mins>

<@text=Exam on the first five lectures of the course. You have one hour to complete this exam.>
<@aquestions=Describe the special effects that can be used in film making....>

<@template>

Figure 2.9: A femplate written in ATML (extracted from [Johnson, 96]). This example shows the template of
type open-exam with a collection of field entries listed.

Processing the above template yields a page of type open-exam generated on account of the
specified attributes and corresponding values. One Web page implementation of the open-
exam template might consist of the title, the elaborating text, the exam questions, text forms
for typing answers and a submit button, as well as a built-in timer set to lock the page after an

35

one hour duration. Source descriptions are permitted to include both 4ATML tags and ordinary
HTML-code.

[Owen, 97] considers an approach similar to ATML, where templates are defined on language
level rather than upholding a high level object description. Keeping template descriptions on
this low level is definite to avoid the application specific approach to site level authoring
employed in high level object tools. The implementation considered in [Owen, 97] allows
templates to be defined in the Automatic Site Markup Language (ASML), which consist of a
set of tags supplementary to HTML. The elements of ASML contains both translations of
existing HTML elements (e.g. the img element), different high level elements performing
advanced functionality (e.g. index and search elements, which will be discussed further
below) and elements for describing additional templates. An illustrative example of the use of
ASML 1s presented in figure 2.10.

{-- Sample ASML File --}
{base system="/user/konge/asmlpages" server="/asmlpages"}

{define name="top"} { -- top of page template --}
<htmI>

<head><title> {title} </title></head>

<body bgcolor ="black">

{/define}

{define name="bottom"} { -- bottom of page template --}
</body></htmI>
{/define}

{ -- Generate a page -- }
{page file="index.html"}
{top title="My page"}
<p>Content of page</p>
{bottom}

{/page}

{ -- Generate a second page -- }
{page file="index2.html"}

{top title="My page 2"}
<p>Content of second page</p>
{bottom}

{/page}

Figure 2.10: Sample ASML source file (extracted from [Owen, 97]). The given source file actually generates two
HTML pages, which share a common page header and footer defined in the top and bottom templates. Notice the
mixture of ASML and HTML content in the source file and the syntactical resemblance of ASML and HTML
tags.

As clarified in the example above are new templates easily constructed using the {define} tag.
Template variables are inserted enclosed in braces and are later assigned values by means of
an attribute in the calling form (see the {fop} template in figure 2.10). A basic set of tags are
predefined in ASML. This set includes the {page/! tag, which may be used to write content to
an external file with the file attribute delivering the chosen filename. The {base} tag also used
above ensures location independence, as generated Web sites may be produced at or relocated
to any location in the file system. Strong capabilities for indexing content on Web sites are

36

provided, which may automatically generate a table of content for either the entire site, a
group of pages or just a single page. Consequently is it possible to incorporate ASML's built-
in search engine, which performs its searches based on a site index file built on generation
time, for every page in the site. A highlighting function then allow search terms to appear
highlighted on the locations of their disclosure. Other significant functions perform iterations
and conditionals (foreach, if, else and elseif), while an import function makes the inclusion of
content contained in an external format possible on a Web page (currently only Rich Text
Format (rtf) is supported in ASML). Another interesting property of ASML is the ability to act
as a CGI language. ASML source files may act as a traditional Unix script, by using the #!-
notation to point to the path of the ASML executable (e.g. #!/usr/local/bin/asml). Conditional
content delivered through HTML's form construct are automatically converted to templates in
ASML, thereby enabling further processing by interacting with the textual value of these
templates. [Owen, 97] claims to have made a tool with great flexibility and a high degree of
automation, without requiring users to rely on strictly programmed solutions. We find the
visions behind the tool excellent, but tend to disagree that users are not programming, when
extending the template set and performing iterations and conditional checks.

Evaluation

Given that tools of the generating kind are suitable for larger Web systems, where a high
degree of automation is often required, we intend to focus our further work on this area of
tools. Generation tools should also prove be the area most in need of research, since almost
every widely used Web-builder is an authoring tool or a conversion tool. The relatively sparse
usage of generation tools have been proved by the examples discussed in this section, which
have all been of experimental nature and have only been used in a local and minor educational
community.

As we learned from the above set of examples do this category of tool range from highly
specialized tools, which only needs a few user preferences to construct a site of related Web
pages, to very flexible tools operating almost on programming language level. We experience
a trade-off between flexibility of the tool and involvement of the Web designer. At one
extreme we have a tool like HTML Course Creator from [Curtis, 96], where the users work is
very limited and quickly done. The drawback is however the single area of use and the
predefined appearance. Opposite we have tools like the Automatic Site Markup Language
presented in [Owen, 97], which may produce every kind of Web application with any
individual layout scheme applied. Of course this approach forces the user to both define
templates for the given application and the desired appearance of such.

Seeking a flexible tool our investigation is bound to follow the path of language level tools
such as ATML and ASML. The primary aim of ATML was not automating the constructing of
large Web systems, it was merely seeking an appropriate way to deliver page information,
which could for instance be used to provide additional functionality (such as the time duration
put on an examination page). Contrary ASML presents an attractive way to automate
generation processes, with a few conditional and iterative elements present in the language
and unlimited abstraction powers offered by the ability to define new templates. But we do
not totally agree with [Owen, 97], when they suggest no programming is required for building
Web pages with ASML. We believe the work processes in ASML is indeed very similar to
programming. Therefore should our future intentions be to take Web engineering one step

37

further to programming language level. This should give a purer language than ASML, where
the mingling of control structures, HTML translated elements and higher level elements
would be avoided. Besides would control structures be directly available instead of being
accessed through element tags, while aritmethic operations and variables global for whole
sites should be easily accessible. The idea of generating Web pages from ordinary
programming language sources are discussed in further detail in the next section.

2.3 Programming Oriented HTML Page Generation

The idea of developing Web pages by means of programming duplicates the basic thoughts
behind generation tools. In programming terms the abstraction powers are obtained through
definitions of functions or procedures, which are analogous to the template creation of
generation tools. This method of making abstractions corresponds to the concept of internal
languages put forward in [Rosenberg, 98], where extensibility in hypertext systems may be
provided by means of a programming language operating on a higher level. Programming
languages are excellent to perform the automation of routine tasks, which promises a heavily
reduced authoring and maintenance time of large Web systems. The possibilities of
abstraction and automation are essential in the authoring process, as firmly stated in
[Nermark, 99], [Nermark, 99a], [Owen, 97] and [Thimbleby, 97]. While programming
languages inherently handles such mechanisms perfectly other advantages exist too. Non-
trivial Web page content may be developed with programmed solutions, which makes heavily
use of aritmethic operations or other programmical properties (e.g. an automatically generated
page containing statistics of content hosted on different pages in a site). Noticing that Web
pages today does not only consist of HTML code, but also scripts, applets, stylesheets and
CGI scripts, we will make an effort to encompass as many as possible of these Web languages
in our authoring language. We act fast however to discard script languages and Java-applets,
because of the relative complexity of the involved languages. Making our abstracted language
act as a CGl-script is probably a simpler task, as illustrated by the CGI support of ASML.
Besides we intend to check whether anything is gained from incorporating both HTML and
the Cascading Style Sheet (CSS) in our language.

Continuing with the programming oriented solution, the next major step is choosing a
programming paradigm and a language suitable for an implementation. The only widely used
paradigm for generating HTML pages is the imperative, which is the paradigm of the
preferred CGI languages per/ and c. Besides we stumbled on the functional programming
language Scheme, when discussing the expanders (the actual HTML producers) of HSDL.
The popular object oriented paradigm is also a logical contender. In chapter 4 we will study
these three programming language paradigms in order to find the one most applicable for the
job.

Our thoughts for both an internal language for generating Web pages and CSS and CGI-
support of the same are summed up and explained in the next chapter. The problems we tend
to solve towards these systems are identified and narrowed down by the formulation of a
couple of hypothesisses. Our hypothesisses denote solutions to specific problem areas, which
we then try to investigate and prove correct in the forthcoming implementation chapters.

39

3. Formulation of Problem

In the introduction we argued for the need of tool support in Web engineering and specifically
for the need of authoring tools with some degree of automation available. The analysis
investigated several alternative solutions for minimizing the work efforts needed for
developing and maintaining larger Web systems. Early on the idea of replacing HTML with a
more advanced language was discarded and consequently different types of Web tools were
subjected to intense scrutiny in order to find the area most suitable for further research. Below
we summarize the most important properties of the analysed tool types.

e Authoring Tools: Enjoys extensive commercial success due to the popularity of
WYSIWIG tools, which practically render knowledge of HTML unnecessary. Some
inflexibility may however be experienced, when control of the underlying HTML code
is handed to the authoring tool (some tools are even guilty of generating proprietary
HTML code only viewable by certain browsers). And eventhough means of site
management have been included in most recent tools, we find the lack of support for
automated solutions apparent in this category of tools.

e Conversion Tools: Had a considerable following in the early days of the World Wide
Web, but have later almost exclusively been used in word processors in order to save
uncomplicated textual documents as HTML files. Although converters usually
present the user with a fully automatic process the exploitation rate of HTML's
abilities is extremely low. Converters may come in handy when quick translation of
already existing textual content to HTML is required, but using them for building
complex Web systems would in the light of their poor utilization of HTML's powers
prove to be a mistake.

e Generation Tools: No widely used or commercial HTML tool is currently of this
category, they are almost exclusively used internally on scientific institutes or
subjected to on-going research. Generators may range from stand-alone programs,
which generates whole Web systems on the basis of a few user set preferences, to
pure programming, where even basic structures should be defined and manipulated
(the trade-off between user effort and system flexibility is instantly revealed). The
variety of different kinds of generators were all discovered to hold excellent means
for automation.

Based on the above listed observations, it seemed an obvious choice to implement a
generation tool for the building of complex Web applications. The analysis further argued for
keeping the Web construction on a programming language level, i.e. conforming to the
mechanisms of an internal language, in order to utilize full flexibility of the HTML language.
Considering this we decided to slightly rewrite the first two hypothesises from [Hellegaard,
99] (basically they mean the same):

40

e Hypothesisl: Automated tools are needed in order to properly build and
maintain large Web systems. By encapsulating common content in abstracted
structures and performing an appropriate automating function upon them, we obtain
material which is both consistent and easy to update. In comparison with a manual
solution, where overall alterations is to be made by hand throughout a whole site, the
automatic solutions would only require a slight update in the automating function and
a snap recompilation.

e Hypothesis2: Highest level of flexibility is obtained by developing Web page
systems with a programming language. Having a programming language working
on top of HTML ensures both abstraction and automation powers through the inherent
programming language abilities, while at the same time keeping at close hand every
aspect of the HTML language.

In [Hellegaard, 99] we delivered a hypothesis regarding the programming paradigm of the
internal language, which we also preserve (again in a slightly rewritten form). Before and now
we believe that the function oriented paradigm would be an excellent choice and this seems
partly justified by the use of the functional programming language Scheme in the HTML
expanders of HSDL as described in [Kesseler, 95]. In chapter 4 we intend to take a closer look
and compare the imperative, object oriented and function oriented programming paradigms in
order to identify the one best suited to implement an internal language for a markup language.
This investigation should provide us with enough knowledge to prove or disprove the
hypothesis presented below:

e Hypothesis3: A function oriented programming language should provide an
attractive solution as an internal language for a markup language. At first thought
the function oriented paradigm seems to suit markup languages pretty well, as
function calls holds a similarity to the tag applications of markup languages. And by
defining functions to correspond to different markup elements, it also transpires that
the tree structure of markup documents appears to be handled implicitly by the nesting
of first-class functions.

The previous report [Hellegaard, 99] suggested a co-operation between the implemented
authoring language and XML, which was the reason behind two more hypothesises, but since
we discarded the XML angle in this report, we no longer consider these. The desire to add
additional language support to our authoring language has instead prompted the definition of
another hypothesis. We have decided to investigate the possibilities for incorporating CSS
and CGI in our language. These two languages are very different in nature and application. To
use our language for CGI-scripts we should first of all be able to run a server side command-
line interpreter of the language that we end up implementing our system in. Secondly should
functionality for extracting and decoding the data structures send from the CGl-interface be
build, whereupon the resulting HTML pages can be generated and send back to the client side
browser. This is fairly speaking quite simple tasks, which can be carried out and checked for
validity, when the authoring language is defined. CSS is another story entirely, because it
concerns the whole authoring process. The fact that CSS statements may appear within
HTML elements prompted our desire to encompass both HTML and CSS in the authoring
language. This constellation might then prove to be a benefit for the developer, partly because
he/she only needs to know one language (the authoring language) and partly because

41

structures with an integrated use of HTML and CSS could be build and trusted to uphold a
very strict appearance. The fourth hypothesis was duly based on this speculation:

e Hypothesis4: An integrated authoring language encompassing both HTML and
CSS might deliver additional benefits for the developer. The obvious advantage of
having HTML and CSS available in a similar syntax should not be underestimated.
But the real benefit could surface when using HTML and CSS in a combined manner,
where very presentational strict structures may be developed.

The following chapters contain the proposed evaluation of the three most natural
programming paradigms for implementing the authoring language, as well as the design,
implementation and evaluation of the same authoring language. During the evaluations we
engage in discussions regarding the truthfullness of the formulated hypothesises.

43

4. Choosing a Programming Paradigm

In this chapter we intend to specify the programming paradigm and programming language
most suitable for the implementation of an authoring language targetting the markup domain.
In order to obtain a firm grasp of the target domain we first engulf in an examination of the
specific properties of markup languages. Initially we present the terminology of markup
languages, which later provides a solid foundation for a comparison of the most fundamental
characteristics of markup languages and customary programming languages. Equipped with
this knowledge we proceed to investigate the three main programming paradigms (imperative,
object oriented and function oriented) for compliance with the markup language domain.
Following three sections devoted to the research of each of the suggested paradigms we
conclude this chapter with a partial conclusion stating our decision on the matter and the
reasoning behind.

4.1 Markup Language Properties

In order to pinpoint the most important properties of markup languages we investigate the
different language components and syntactical features of this family of languages. Having
established this specific type of language composition we intend to compare it to that of
ordinary programming languages, which should ultimately offer suggestions for the task of
modelling markup languages in a programming language.

4.1.1 Markup Language Terminology

As previously stated in [Coombs, 87] several different types of markup languages exist, but
this investigation will be confined to only considering the descriptive kind. This somewhat
restrictive selection policy is fully justified by the markup languages currently being used in
the network domain and for general information storing (HTML, XML and SGML), which all
belong to the descriptive type of markup languages. The superiority of descriptive markup
systems over other types of markup systems was firmly established in [Coombs, 87].
Descriptive markup allows certain parts of a textual document to be specified by kind and
optional knowledge of further functionality in a declarative manner, whereas other kinds of
markup merely place system dependent coding for appearance and formatting issues at
appropriate locations in the text sources.

In the markup languages recently enjoying widespread usage, e.g. HTML, textual elements
are marked up with the use of tags (tag elements are distinguished in textual sources by
applying angle brackets around the tag names, e.g. <sometag>). Most tags act as containers,
where the desired textual content is surrounded by the easily distinguishable start- and end-
tag. To serve as an example we consider the HTML element p, which denotes a paragraph in
the text. Everything between the start-tag <p> and the corresponding end-tag </p> indicates a

44

single paragraph. Not all tags are containers though, as stand-alone elements may occur.
Stand-alone elements only consist of the start-tag and accordingly do not hold any content,
but merely indicate placement of specific elements in certain locations of a document source.
A telling example from the HTML domain is the image (img) element, which denotes
placement of graphical content at a specific point in the text. Both stand-alone and container
elements may enhance their descriptive powers further by the appliance of certain optional
attributes. Every element has a precise defined set of legal attributes and others are prohibited
or take no effect (according to the given language implementation). Typically attributes are
accompanied by a related value, but specific implementations may permit the use of
minimized attributes (attributes with no value), as is the case with HTML but not with XML.
Syntactically attributes reside within the angle bracket boundaries of the tags (in the case of
container elements attributes belong within the start-tag), as the following example clarifies.
To insert an image in a HTML document the source attribute of the img element requires a
value of type URL (Uniform Resource Locater) to be set, as sketched below:

Having described the basic components of markup languages we proceed to mention a few
important properties of complete markup documents. Every markup document is obliged to
have a single root element containing the rest of the document elements (HTML sources are
commited to having the Atml element as the root element). Furthermore are tag elements
expected to nest properly, i.e. elements cannot be allowed to overlap each other. For
examplification consider the code snippet depicted below, which delivers an improper syntax:

<deceased-dictator>Adolf<last-name>Hitler</deceased-dictator></last-name>
The legal interpretation of the above code snippet should read:
<deceased-dictator>Adolf<last-name>Hitler</last-name></deceased-dictator>

Conforming documents to these regulations essentially makes the overall structure of a
markup document correspond to a tree structure. For conviction we give the XML document
(containing information of a collection of video cassettes) below, which corresponds to the
tree structure depicted in figure 3.1.

<videos>
<owner>Carsten Hellegaard</owner>
<science_fiction>
<video director="Ridley Scott">Alien</video>
<video director="James Cameroun">Aliens</video>
<video director="David Fincher">Alien 3</video>
</science_fiction>
<horror>
<video director="Brian de Palma”’>Carrie</video>
<video>The Excorcist</video>
</horror>
</videos>

45

Figure 3.1: Tree structure of an XML document. The root element (videos) of the XML document becomes the
root of the corresponding tree structure. The different elements nested within the root element of the XML
document duly match the branches ramifying from the root of the tree.

4.1.2 Markup Languages versus Programming Languages

A natural starting point of our comparison of markup languages and programming languages
is the lexical composition of the source documents of the two different language types, as
presented in [Nermark, 99a]. Markup documents are very much text based, while the textual
content of programming language sources are limited to value types such as characters and
text strings. Often text manipulation is reduced to play only a minor role in a programmed
solution, because strings make up just a small part of the overall picture.

As may be deduced from the discussion in the previous section are markup documents
basically a text string with certain inserted tokens. Some kind of processing of the document
is later required in order to obtain a meaningful interpretation of these inserted markup
elements. In other words we understand the markup language sources to be textual documents
hosting the different markup elements. The lexical composition of program language sources,
1.e. programs, is significantly different. Every part of a program is well-known, as they consist
entirely of well-defined tokens, such as command, procedure or function names, operators,
variables and values of a specifically defined type. Programming languages constrain pure
textual content to characters or text strings, which are value types enclosed in quotation
marks. Focusing on the text management of programming languages we therefore express fext
strings to be hosted within programs along with other value types. This proves an important
discovery, when we come to considering the task of generating markup documents with
programming languages. Accomplishing this would effectively mean the construction of one
large text string (being the whole markup document) through extensive text string
manipulations in the programming language of choice. Later we should discover whether the
different handling of textual content in the two types of languages would have any importance
in the string handling of our authoring language implementation.

Whereas programs must conform very strictly to well-defined syntactic and semantic rules of
a given programming language, this is not always the case with markup languages. Markup
tags are defined on the syntactical level through the Document Type Definition (DTD)
mentioned before in the analysis, but the degree of strictness may vary. The DTD of HTML,

46

which is hardcoded into the well-known Internet browsers, may accept incorrect HTML code
by simply ignoring ill-formed code or even by trying to display it anyway. With the
emergence of XML it suddenly becomes possible to custom design and apply different DTDs,
which put strict demands on the validness of XML documents, but still XML documents may
pass as being well-formed if they oblige only certain minor syntactical rules. For viewing
purposes, e.g. on the Web or on paper, different stylesheets for different presentations of the
same document may also be defined. To summarize the above we find markup documents
allow for very different processing by external instances, while programs holds very strict
uniformly processed content.

To end this prior investigation of the two types of languages we find it appropriate to once
again mention the main difference and the reason why we seek a programming paradigm for a
authoring language in the first place. Markup languages offers none of the programming
capabilities seen in full-fledged programming languages. Consult the analysis of chapter 2 for
the discussions on how to incorporate algorithmic functionality in markup systems, as initially
suggested by [Rosenberg, 98].

4.2 The Imperative Paradigm

The imperative paradigm provides a rich inheritance and it has long been viewed as the
"traditional" model of computation. Further evidence of the early supremacy of the imperative
paradigm is provided by the long list of heavily used imperative languages, such as
FORTRAN, COMAL, BASIC, Pascal and C. The imperative model of computation closely
resembles that performed by the computer on the underlying hardware. Most modern
computers conform to the von Neumann model, where values are collected from a memory
store to be manipulated by a processing unit, with the new calculated value being taken back
and stored in the memory. A program on this low machine level represents a sequential
pattern of instructions, which all alters a part of the memory. Following the computation of
the instruction set the desired solutions is some or all of the calculated values now residing in
the memory.

Imperative programming languages build upon this low level model. Higher abstracted
datastructures (e.g. records and arrays) and value types (e.g. strings, reals and booleans)
typically exist on top of the single numerical value experienced on machine level. Another
abstraction very much associated with imperative programming is the variable. Variables are
identifiers holding the value of a given data type, with this value being prone to extensive
modification over time. The imperative style is in fact easily recognizable by the endless
incremental transformation of state (memorized values) and the corresponding time aspect
(changes performed over time). Initially imperative languages closely resembled the
sequential program structure seen at machine level, as programs were made up of a series of
commands, from which the most notable are variable assignments and control flow
constructs, such as loops (either while loops or for loops) and conditionals (typically an if -
then constellation). Later the imperative model was extended with modularization means for
building and reusing chunks of often used code, such constructs are widely known as
procedures and functions.

47

In recent years new and different ways of envisioning the computation task have been
introduced (we address the two most important ones in the forthcomming sections) to
accommodate a rising disbelief with the imperative languages. Negative voices were raised
largely because of the close match between the imperative paradigm and the actual executions
performed by the computer on the most fundamental level. At first this togetherness would
appear as an advantage, but the way of thinking employed in the imperative languages is not
particular reminiscent of the way human beings intuitively solve problems. Formulating
problem solutions in an imperative style might therefore prove a quite difficult task, and with
a difficulty prone to increase dramatically as the complexity of the problem rises.

Returning to the task of producing markup code we find the need to build a single text string
representing a markup document from some high level structures in an imperative language.
To illustrate how this may be done we have constructed a simple example, which generates
the small HTML document depicted below:

<HTML>
<HEAD><TITLE>HOME of GALACTIC TOURS</TITLE></HEAD>
<BODY>
<H1>GALACTIC TOURS offers you:</H1>

MARS
NEPTUNE

</BODY>
</HTML>

We have chosen to construct the example in the imperative language Per/, which have been
widely used to generate HTML code, especially for CGI purposes. The language Perl holds
many similarities with C, but its functionality have been specifically biased towards string
manipulation by the addition of several strong string mechanisms, while other advanced C
functionality, such as pointers and user-defined types have been excluded. The experience
from languages like Perl shows that string building in imperative languages is often a matter
of continuous use of print statements (in the case of CGI programming are the HTML
documents build by printing a coherent set of strings to the standard output, from where it is
delivered to the client side browser). Our intentions with the Perl example were to utilize a
higher degree of modularization, where re-usable units delivering markup code for different
ad-hoc structures should be defined through the use of procedures. Analogous should
procedures be constructed to cope with the basis elements of the target language in order to
grasp the full expressive power of the target domain. A Perl program generating the HTML
document presented before is given below:

&top ("HOME of GALACTIC TOURS");

&HTMLelement ("H1", " GALACTIC TOURS offers you:");
&ULlisting ("MARS","NEPTUNE");

printf ("</BODY></HTML>");

48

subroutines

top takes one argument: title
sub top

printf ("<HTML><HEAD><TITLE>");
printf ($_[0]);
printf ("</TITLE></HEAD>"),

}

HTMLelement takes two arguments: the element name and the content
sub HTMLelement

{
printf (II<II,$_[O],II>II ;
printf ($_[1]);
printf (ll</ll’$_[0],ll>ll ;
}
ULlisting takes a series of list items as arguments
sub ULlisting
{
printf ("");
for ($i=0;$i<@_;i++)
{
printf ("",$_[$i],"");
}
printf ("");
}

The example portrayed is of course simplified, e.g. are the attributes of HTML elements not
yet supported and no distinction is made between container and stand-alone elements. But the
primary objective of constructing different higher level functions is obtained, which the top
and ULlisting subroutines witness. While this example is probably not complex enough to
fully appreciate these abstraction powers, we stress again that the advantage gains in
momentum as the complexity rises.

The presented example and the extensive use of imperative languages for CGI purposes
suggest that imperative languages may be useful as authoring languages. But considering the
frequent use of print statements and the slight incompability between imperative languages
and markup documents, we feel obliged to continue our investigation and discover whether
another programming paradigm would constitute a better solution.

49

4.3 The Object Oriented Paradigm

The principles and techniques of the object oriented programming paradigm was originally
conceived in order to better model problem areas. Solving potential problems in a more
human like manner, where the problem area is modelled as objects instead of the computer
hardware emulating approach of the imperative paradigm, should ensure better handling of
complex problems, improve the quality of programs, increase the degree of re-usability and
reduce efforts required for maintenance. The object oriented approach made its first important
appearance with the Smalltalk language, but later widely used object oriented languages such
as C++ and Java have surfaced.

The basic object oriented concepts, which we try to clarify below, are partly deduced from
[Mathiassen, 93]. The fundamental principles of object oriented programming are abstraction
and encapsulation. All important entities of the problem area and their related states and
behavior are encapsulated by an object. By state we refer to the attributes and properties of an
object at a given time, whereas an objects behavior describes the possible actions it can
perform. When all essential parts of a problem domain have been modelled by appropriate
objects, these objects may interact with each other. Interactions are performed through well-
defined interfaces and may for instance be the reading of an objects present state or the
triggering of an object method (methods present the possible actions an object can perform).
Making any outside contact adhere to the rules of the object interfaces ensures that objects are
treated like black boxes. This preserves the independence of the objects in the overall system,
as changes within an object remain isolated from the the rest of the system, which only see
and interact with the applied interface. Besides is the object structure persistent, as only states
may undergo changes, while the overall object identity remains the same.

An important notation in the object oriented paradigm is that of classes. Objects with the same
properties and behavior belong to the same class. An object belonging to a certain class is said
to be an instance of that class. In order to allow objects to reuse definitions of properties and
behavior of other objects it is possible to organize classes in hierarchies, where classes may
inherit the functionality of its parent (some languages restrict classes to inherit only from a
single parent class, while others allow for inheritance from multiple parent classes).
Depending on the point of view inheritance between classes are understood to be either
specializations or generalizations of each other. Furthermore may objects be related through
aggregation or association. Aggregations emerge when a superior object are related to a
number of inferior objects, which can all be viewed as parts of the superior object.
Associations represent a connection between two objects of equal stand.

The above discussed characteristics of object oriented systems are very helpful in terms of
simplifying the design processes. Humans find the transition from problem domain to a
potential design solution to be simpler and more tangible with the modelling of related objects
in the problem area, instead of the more distant and less natural solution models experienced
with other methodologies. The more intuitive modelling of the problem domain through
objects also provides a sounder basis for coping with a potential increase of complexity in the
system. The problems of maintenance have become less complicated too, as some changes
can be done within the isolated parts of the objects without interfering with the overall

50

system. Likewise do the self-contained object abstractions provide for excellent re-usability
not just through inheritance but also across different systems.

To show some of the possibilities for generating HTML documents with object oriented
languages, we provide the following small program in the popular Java programming
language, which produces the HTML document known from the example in the previous
section:

class myPage extends Page {
public static void main (String args|]) {

myPage m = new myPage();

m.top("HOME of GALACTIC TOURS");

e = new htmlElement ("H1", "GALATIC TOURS offers you:");
e.expand();

u = new ullisting();

u.expand ("MARS", "NEPTUNE");

m.bottom();
}
}
class Page {
void top(String title) {
System.out.printin ("<HTML><HEAD><TITLE>" +
title + "</TITLE></HEAD>");
}
void bottom() {
System.out.println ("</BODY></HTML>");
}
}

class htmlElement {

String name;
String content;

htmlElement (String n, String c¢) {
name = n;
content = c;

}

void expand() {
System.out.println ("<" + name + ">" + content + "</" + name ">");

}

51

/I Overriding method for direct access
void expand(String nam, String cont) {
System.out.println ("<" + nam + ">" + cont + "</" + nam ">");

}
}

class ullisting {

void expand(String[] listing) {
System.out.printin ("");
inti;
for (i=0; i < listing.length; i++)

System.out.printin ("" + listing[i] + "");
System.out.printin "");
}
}

Again it is a minimal and uncomplicated program example, where not all of HTML's
functionality is supported. But the basic ideas are apparent and we see that the object oriented
paradigm offers plenty of functionality for upholding abstracted representations of descriptive
markup documents. In the more advanced case we would probably ensure that every available
tag element of the target language was defined as a class in the object oriented language,
instead of the minimal htmlElement class from the given example (which doesn't cope with
attributes or distinguish between container and stand-alone elements). For ideal deployment
should this collection of classes inherit basic functionality, such as methods for performing
the actual HTML generation, from a parent class. Different related markup elements may
even be further specialized through another common class, e.g. could the phrase definitions
(such as em, strong and cite) of HTML share a superclass holding the properties of their
common set of available attributes. Another obvious division of common behaviour through
inheritance is the case of container versus stand-alone elements. With the basis of the target
language defined by classes, every tagged element of a document source should be
represented by object instances of these classes.

Certain ad-hoc functionality may be quite practical at times as the ullisting class shows in the
above example. But the real advantages of object oriented languages are first fully utilized,
when the crafty object mechanisms are exploited. The powerful means of object connectivity
provided by object oriented systems presents a convenient way of describing structural
relations of the target documents. Developing new higher level structures is also made easy by
object aggregation of already existing objects, which may both be the basis element emulating
objects or other aggregated objects. An illustration of this powerful mechanism is provided in
the Java example, where the actual page generating class myPage inherits the methods of its
superclass Page. In the above example myPage makes use of the inherited methods fop and
bottom.

To summarize we believe the object oriented paradigm could provide an attractive solution
for the authoring language and it undoubtless offers more advanced functionality than the
imperative paradigm. Some degree of consideration should however be put in the choice of

52

language. With limited syntactical flexibility it might soon become practically inapplicable to
use certain languages. The Java example of above helps to support this view with for instance
the many instantiations needed.

4.4 The Function Oriented Paradigm

The principal idea behind the function oriented paradigm is the construction of a program
notation reminiscent of mathematical expressions. Making programs follow known
mathematical concepts presents the function oriented programmer with a huge amount of
proven manipulation techniques. Naturally function oriented programming offers the most
when working with problems of a formal character. This may be the reason why traditional
program development have concentrated on imperative and lately object oriented languages,
while the function oriented languages have enjoyed its highest popularity in scholarly
environments. Originally LISP started the function oriented trend several decades ago and
LISP related languages still exist (e.g. CommonLisp and Scheme). But recently languages
such as ML, Haskell and Miranda have earned themselves a worldwide reputation.

The function oriented paradigm has a range of fundamental characteristics, which separates it
considerably from the two paradigms discussed prior to this section. As we briefly mentioned
above are computation in the function oriented paradigm performed by applying functions to
values analogous to a mathematical expression. Repetitive use of functions is commonplace
with additional functions applied to the result generated by a prior function. The whole
concept of values is quite different to the "traditional" one employed in the imperative and
object oriented paradigms. Assignment of values to variables capable of later mutation is
generally prohibited in function oriented languages. It is possible to have identifiers denoting
specific values, but once created it is impossible to later modify its value. So instead of
performing incremental changes on existing structures, the function oriented paradigm
transforms existing values into new values, which will exist independently of the original
from then on (this mechanism is usually referred to as "single assignment form"). If we for
example were to add a single value to a relatively large list (one of the most important data
structures of function oriented languages is the list for which they normally contain
comprehensive and powerful manipulative mechanisms) it would result in a whole new list,
rather than a slightly modificated version of the original list.

Also the notion of "time" is very different in function oriented programming compared to the
two before mentioned computation paradigms. Functional programs do not uphold the strict
sequential nature of imperative programs, nor do they treat values as states being modified
over time. Instead are functional programs said to be atemporal, i.e. without time. Being
independent of time indicates that the execution of functions may occur in any sequence.
Special for function oriented languages is the freedom applied to the order of evaluation,
where strict semantics signifies that functions are not allowed to be applied before the
required arguments are available (as a direct consequence are other functions dependent on
the outcome of this particular calculation obliged to wait for a result). Lenient semantics on
the contrary permits functions to have one or more undefined arguments. Some modern
function oriented languages also provides lazy evaluation, which makes it possible to reduce
calculation time of large functions by only calculating identical expressions once. Regardless

53

of any time aspect may the function oriented programmer rest assured, that a function
delivered with the same set of arguments will always produce the exact same result.

Another strong mechanism included in most function oriented languages is the possibility of
considering functions as first-class data values. For a function to be regarded as first-class it
should be able to be assigned to identifiers, to be passed on as argument and to be returned as
the result of an execution of another function. Needless to say that first-class functions
provides the function oriented programmer with a high degreee of flexibility.

For languages conforming purely to the function oriented paradigm some problems involving
the imperative nature of the surrounding computer environment are almost certain to arise.
For instance could providing a pure function oriented language with means for basic file input
and output prove to be a quite complicated affair. This inherent frailty of the function oriented
paradigm have lead to the development of function oriented languages containing a certain
amount of imperative means supporting assignment, mutable data structures and input/output
functionality. The benefits of this multi-paradigmatic approach, where the function oriented
mechanisms are still in charge and only supplemented by a few alien commands, often
outweigh the loss of paradigmatic purity.

We now proceed to considering the task of modelling markup documents in a function
oriented language. Below we have constructed a program in a LISP-like language, which

generates the HTML document of the previous examples.

;; Top level function

"

(page "HOME of GALACTIC TOURS"
(string-append
(htmlelement "H1" "GALACTIC TOURS offers you:")
(ullisting (list "MARS" "NEPTUNE"))))

;; Sub functionality

(define (page title body)
(string-append
"<HTML><HEAD><TITLE>"
title
"</TITLE></HEAD>"
body
"</BODY></HTML>"))

(define (htmlelement name content)
(string-append
ll<ll name ||>|l
content
ll</ll name ll>ll))

(define (ullisting li-list)
(string-append

54

IIII
(process-list li-list "")
llll))

(define (process-list Ist res-str)
(cond ((null? Ist) res-str)
(else (string-append
res-str
(process-list (cdr Ist)
(string-append "" (car Ist) "</LI")))))

This example resembles the procedure of the imperative and object oriented implementations,
but we have obtained a more flexibel syntax. A deciding characteristic of function oriented
language is however due to dictate some improvements to this approach. Because of the
unique first-class functions supported in function oriented languages it is possible to use a
syntactic composure more alike the one of markup documents. As a basis level we should
construct a total mapping of the available markup elements of the target domain. Having
functions, which correspond to the respective elements of the target markup language,
generate markup tags and attribute-lists if necessary, offers a sound foundation on which to
perform further computation (construct abstracted elements and perform automation tasks).
The sample code depicted below reveals a certain similarity between tag application in a
markup language and the first-class functional expressions as experienced in a function
oriented programming language:

HTML: <center>Hello world</center>
LISP: (center (strong "Hello world”))

Notice how the above LISP statement is possible because function center takes function
strong as argument. The center and strong elements of HTML both have an associated
function in LISP, which generates the markup code particularly needed for their respective
element. Because LISP evaluates the innermost function first (to accomodate the inherent
functional rule of not executing a function until its arguments are available) is the function
strong first executed with argument "Hello World". In turn this calculation should return the
string "Hello world" as argument to function center, which will conclude
the transformation to the correct HTML code.

Upon closer examination of this example we deduce that functional expressions match the
hierarchical structure of markup documents very well. The nesting of elements in markup
documents are duplicated by the nested activations of functions in an expression. Besides
getting the structural part covered in a very natural way, we also notice the very similar
syntactical composition. A future stumbling block could however be the addition of element
attributes, which would require some sort of parameter identification by the involved
functions in order to distinguish content from attributes (a further discussion on the subject is
presented in section 5.1.2). But overall does the function oriented paradigm offer an elegant
solution, because of the markup resemblance and free syntax.

95

4.5 The Motivated Choice

Going through the three possible programming paradigms for our Web authoring language we
found the imperative paradigm to be the least attractive alternative. Imperative languages have
limitations compared to both the object oriented and the function oriented languages. They
haven't got the object connectivity of the object oriented paradigm or the proper nesting
characteristics of function calls as experienced in the function oriented paradigm. The object
oriented might offer an acceptable solution, but we are determined to concentrate on the
function oriented paradigm. The motivation behind this decision is the syntactical advantages
of functional languages and the already portrayed similarities between markup document
structure and functional expressions.

Secondly, are the unique syntactical properties of function oriented languages especially
fitting for our purposes. Because we are dealing with syntaxes of few constraints is it
extremely easy to implement further functionality to the already existing language basis. A
very high degree of extensibility is obtained with mechanisms for syntactical abstraction,
where new functions are just added to the pool of existing functions. As a consequence will
our Web authoring language end up being an actual programming language extended with
functions for generating markup elements (functions generating code for higher abstracted
elements and functions performing other programmed calculations are also just extensions to
an existing language). Obtaining such a degree of flexibility in an object oriented system
would present an overwhelming task with most languages. In the end does this intermingling
of functionality mean that the high level source descriptions of Web pages are actually
programs. The advantage of this approach is having the programming capabilities of the
language working directly together with the markup components (both abstracted and basis
elements). Compare this method with the mix of HTML code and advanced functionality
being employed in ASML, as we described in section 2.2.3 (or refer to [Owen, 97]). ASML
sources must first be parsed in order to extract ASML code for further processing and no
actual programmability is free at hand in the ASML tags.

For the actual implementation we have chosen the language Scheme, which is a member of
the LISP-family. Scheme is small in the sence that it lacks several characteristic but complex
LISP functionalities. It is however still a quite powerful language. Scheme is a multi-
paradigm language, thus with the main paradigm being the function oriented. The strong
support of function oriented programming in Scheme is supplemented with some traditional
imperative means. Scheme is common to languages in the LISP-family endorsing the
parenthesized prefix notation. We partly choose Scheme because of its simplicity and partly
because of the prior employment of Scheme in this area by [Kesseler, 95] and [Nermark, 99].

The next chapter presents the Scheme implementation of an authoring language along with
some developed examples of applications and thoughts concerning additional language
support for CSS and CGL

o7

5. Lisp Abstracted Markup Language

This chapter covers the design and implementation of our new language for generating HTML
based Web pages; Lisp Abstracted Markup Language (LAML). First a few general design
criterias are presented. Then following a minor examination of the structural appearance of
HTML, we investigate schemes for the syntactical composition of LAML, which provides the
basis for a decision on the matter. Inherent indifferences between markup languages and
programming languages are subject of a few headaches, among which the implicit nesting of
strings in HTML requiring special care in Scheme presents the dominant one. Accordingly
one possible solution regarding this particular problem is given. Next the basic parts of the
LAML language, consisting of a complete translation of existing HTML elements to Scheme
counterparts alongside several minor libraries handling time issues, file operations and other
often used functionality, will be presented. We proceed to explain the use of application
specific document styles, while showcasing several developed styles with accompaning
examples of generated Web systems. Another important aspect of the implementation phase
was the incorporation of Cascading Style Sheets (CSS) support. CSS language properties are
examined and a LAML translation is constructed. Characteristics of LAML's duality, while
encompassing both HTML and CSS, are discussed and experiments are conducted for further
examination. Finally we argue in favour of also using LAML for CGI purposes.

5.1 Design

This section first describe a few design criteria we formulated for LAML. These design
criteria are partly based upon the solution model drawn up in the problem chapter. Next we
present the different components of the LAML system together with the implementation
choices we made for the respective parts.

5.1.1 Design Criteria

One of our most important design criteria was the desire to use a function oriented
programming language to implement LAML, which we established in the previous chapter.
The function oriented language of our choice became Scheme, a very pure and simple dialect
of LISP. Other members of the LISP family (e.g. Common LISP) posses considerable high
level functionality, most of which have been stripped away in Scheme. However, Scheme
does not suffer much from this lack, as it is still a very powerful language. Notably Scheme
honours the concept of first class functions, meaning that functions can be assigned to
identifiers, passed as argument to other functions and be returned as result from another
function. This property makes Scheme a very flexible language.

58

A second fundamental issue was the desire to uphold a language level similarity with HTML.
Developers already familiar with HTML would easier cope with the transition to LAML. This
is beared in mind when the syntactical appearance of LAML is decided upon.

Another important design criteria for us was the flexibility of the language. LAML should
cope easily with future extensions or updates to the HTML language. A future adoption to
support generation of content in another target language than HTML would also benefit
significantly from such flexibility (e.g. a future task of constructing a tool for XML could for
instance be simplified).

A minor design criteria for LAML was the readability of our target code. Viewing the HTML
source code (e.g. in a browser) is practically impossible without some means of pretty
printing in our target code, because the source otherwise consist of a single line of compound
text. Finally we wanted the LAML language to express meaningful descriptions of occuring
errors, in order to ease eventual debugging tasks for the Web page developer.

5.1.2 LAML Syntax

The first issue coming to mind during the implementation of a new language is the syntactical
appearance. As we have earlier pointed out are function oriented languages excellent to
represent the different markup elements of HTML. As sketched below are the tag braces of
HTML (< and >) and the corresponding ones of ATML (<@ and >) and ASML ({ and })
substituted with parenthesisses in LAML. Note also the absence of closing elements in
LAML.

HTML: <center>Hello world!</center>
Scheme: (center (strong”Hello world!”))

However, a stumbling block is soon experienced by the addition of element attributes, which
in HTML reside inside the tag of stand-alone elements and inside the start-tag of container
elements, as is depicted below:

<tag-name attribute1="value1” attribute2="value2’ ...>
or
<tag-name attribute1="value1” attribute2="value2’ ...>content</tag-name>

Some programming languages allow such attributes to simply correspond to keyword
parameters, but these are unfortunately not supported in Scheme. Some other mean of
handling attributes is therefore necessary in the present case. Exploring this issue further
quickly yields a simple approach when dealing with single tagged elements. Since single
tagged elements never contain anything, only attributes and their corresponding values may
be expected. So passing attributes and values in an optional property list to the appropriate
Scheme functions are a plausible solution:

59

(function "attribute1 value1 ’attribute2 value2 ...)

Turning our attention to the case of container elements and their probable content, we realise
that we need some way to separate content from the attributes and their values, when passing
it all to an n-ary Scheme function. The following three issues can be identified as central to
the syntactical variations of possible constitutions of LAML statements [Nermark, 99a]:

The sequencing between content and attributes
To mirror HTML best, attributes should come before content

Explicit listing of attributes
Uniting all attributes and values in a list ensures easy access by the function

Explicit string concatenation of content
Uniting all content to one string ensures easy access by the function

As we adressed in the summation of our required design criteria the ideal LAML statement
would preserve the HTML sequencing of content and attributes, while implicitly handling the
attribute and content contributions. The syntactical variant of LAML adhering to these
principles would read as the following:

LAML calling form: (tag a1 v1’a2 v2 "text1” " text2")
Scheme definition: (define (tag . parameters) ...)

While this variant keeps attributes before content and needs no explicit handling of either
attributes or content, it places the responsibility of identifying each of the actual parameters to
the Scheme functions in question. One possible way of accomplishing this constraints the
developer to a somewhat strict use of parameter types. Having attributes and content conform
to the Scheme types of literal and string respectively paves the way for a quick recognition of
the different constituents of a parameter list.

An alternative using explicit attribute listing is given below:
LAML calling form: (tag (list’a1 v1 ’a2 v2) "text1” " text2”)
Scheme definition: (define (tag attributes . contents) ...)

Again we have attributes appearing before content, but the explicit listing of attributes is
necessary in order to only pass one parameter for all attributes and values to the Scheme
function. Eventhough the Scheme functions have the required knowledge of its given
parameters the explicit listing seem unfortunate, mainly because of the additonal workload of
the developer while listing attribute pairs (code clarity may also suffer from this approach).
The minimal case of double tags without attributes presents another obstacle in this approach,
as it would require either an empty attribute list to be sent along to avoid mistaking the first
textual parameter for an attribute list or more sensible methods in the Scheme functions for
determining the abscence of the attribute list.

60

Instead we try a third alternative, which is explicit string concatenation. Notice that this
approach forces the content to appear before attributes in order to take advantage of the
Scheme dot-notation.

LAML calling form: (tag (string-append ”text1” text2’)’a1 v1’a2 v2)
Scheme definition: (define (tag content . attributes) ...)

This syntactical variant also provides Scheme functions with easy access to all parameters,
but as mentioned it does suffer from both explicit string concatenation and wrong sequencing
of attributes and content. Besides we must have in mind double tagged elements without
content, as we in the previous alternative should account for elements with no attributes.
Speaking in favour of explicit string concatenation is however the fact that double tags
without content seldom occur and these rare cases would only have be met by passing the
empty string as the first parameter, contrary to providing an empty list. Keeping in mind that
LAML requires explicit string concatenation anyway, as we will elaborate on in section 5.1.3,
we only feel obliged to address the sequencing problem further.

Our concern for the positioning of the attributes compared to the content may seem a bit
exaggerated. But Web designers, who are already experienced in programming HTML would
probably find the shifted positions akward. And more importantly do functions containing
content with deeper nested elements have an irritating side-effect when attributes are present.
The following table might clarify this problem (The Scheme functions in the example below
are mirrors of the corresponding HTML elements. The Scheme mirrors are discussed in
furtner detail in section 5.1.4):

(html:table
(html:tr
(string-append
(html:td " Player”)
(html:td " Team”)
(html:td " Goals”)
(html:td ” Assists”))) 'bgcolor 'green 'border 0)

It may look rather confusing that the attributes of the function html:table are located so far
from its possesor (it would look even more confusing if attributes for html:tr were included,
as they would reside just prior to those of html:table), contrary to HTML where attributes are
kept close to their respective owners. So solving this problem has become a priority. A little
manipulation with the powerful list mechanisms of Scheme is however enough to do the trick.
We end up with the following syntactical appearance of LAML statements:

LAML calling form: (tag’a1 v1’a2 v2 (string-append "text1” text2"))
Scheme definition: (define (tag contribution1 . contribution2) ...)
Knowing that the content will always be the last item in a joint list of contributionl (which

naturally contains the literal ‘a/) and contribution2 (which is a list of v/, ‘a2, 'v2 and the
combined string of all content), we only need to extract this last item from this list and both

61

the content and the attribute list are easily accessible by the Scheme functions. To obtain the
content from the end of the joint contribution list, we engage in a simple but somewhat time
consuming list operation. By reversing the joint list, grabbing the first item and then reversing
the remaining list again we manage to obtain the content and the correctly ordered attribute
list. Eventhough the reverse function may not be the most time effective, we justify our
simple solution by the fact that attribute lists may seldom be very long, thereby making the
list operations fairly fast. The suggested algorithm is of course also correct in the axiom case
of no attributes.

Should the time issue become the highest priority, another approach could be used at this
important juncture of very central functionality, which is bound to be executed often. One
method would be to expect developers to use a strict form of typing on the different
parameters, as attribute-list and content could then be identified by their type (attributes as
literals with an optional type following and content as a string). This approach would require
only one loop through the whole parameter list, contrary to the extensive list manipulation
carried out in the current version of LAML.

The attribute list

Having chosen a general syntactic appearance for LAML statements, we had some additional
thoughts concerning the attribute lists. As mentioned earlier we expect the optional attributes
to be ordered in a property-list, meaning they should occur in pairs with the attribute name
first and the value second. An example:

(html:td 'colspan 3 (html:font 'size 2 ’color 'green ”Killroy was here!”))

A potential concern was the legality of minimized attributes in HTML (notice that they are in
fact illegal in XML). Minimized attributes do not necessarily have an associated value and
examples from HTML include nowrap and noscroll. Attribute names with no assigned value
would of course cause havoc in an LAML attribute list, as names and values would be mixed
(the property list could also suffer by an uneven number of elements causing the content to be
mistaken for an attribute value). Where we to include the nowrap attribute in the example
from above, it would read:

(html:td 'nowrap ’'colspan 3 (html:font ’size 2 'color 'green " Killroy was here!”))

This is of course false, as the attribute named nowrap has the value colspan and the attribute
named 3 has no value. The conclusion being that minimized attributes should be obliged to
have a value. Noticing that HTML accepts the empty string as a value for minimized
attributes, we might conform the example from before to the following correct form:

(html:td 'nowrap ”” ’
here!”))

colspan 3 (html:font ’size 2 ’color 'green ”Killroy was

When the attribute lists are formed, the attribute names are looked up for legality checks
according to a list containing the different elements and their respective available attributes.
Currently this list is deduced and edited manually from the most recent version of HTML,
whereas a future version of LAML might be able to automatically detract this information

62

directly from a given language-DTD. Another issue for a later and enhanced version of
LAML could be the inclusion of typechecking of the attribute values. This is not included in
the current implementation, mainly due to some attributes ability to occur in different contexts
with different elements.

As a last note on attributes, we decided to enclose attribute values in double qoutes (this is
optional in HTML). We partly did this of aesthetic reasons and partly because it will become
a necessity for the attributes of the forthcoming language XML.

5.1.3 Explicit String Concatenation in LAML statements

As we faintly discussed above will explicit string concatenation be needed in LAML. This
inherent problem is due to the nature of LISP, which of course is somewhat different from a
markup language. Markup languages handle string concatenation implicit contrary to most
programming languages. This phenomenon is tried clarified below:

<center>Something very exciting is written here!</center>
This HTML snippet would be expressed as follows in LAML:
(html:center” Something very (html:strong ” exciting”) is written here!”)

This is however wrong. The html:center function expects the embedded function html:strong
to be evaluated to a string and concatenated with the other string snippets. But Scheme does
not accept the string “exciting” to be nested within the overall string. When the function
html:center traverses its content for other Scheme expressions to evaluate it reads the
following:

The string "Something very (strong ”
The symbol exciting
The string ”) is written here!”

Having the start- and end-qoutes differ or using different sets qoutation marks for nested
strings (see example below) could maybe solve the problem.

(html:center” Something very (html:strong ’exciting’) is written here!”)

This solution is not very useful either, as nested strings within the nested string would need
yet another par of different qoutes. Besides does both solutions suffer from the need to alter
the Scheme interpreter to understand the use of other quotation marks.

Instead we chose to perform string concatenation explicit, on the expense of simplicity
compared to HTML. But this seems to be a small price to pay for the full programmability of
LAML. Besides we deemed it the best approach in the discussion of section 5.1.2. Correcting
the example from above would read as follows:

63

(html:center
(string-append ” Something very” (html:strong " exciting”)” is written here!”))

5.1.4 The LAML Language Basis

The inner core of the LAML language consist of a series of functions translated from the
HTML element set and a few basic libraries. Most of the LAML language basis presented
below have been derived from Kurt Nermark's initial work on LAML. Especially the
translation of HTML to LAML is largely inspired by Kurt's earlier version of LAML, but also
the time and input-output libraries rely heavily on his prior makings.

HTML Element Mirrors

We decided to mirror every HTML element to a Scheme function. This allows developers to
freely insert ordinary elements every in the source, contrary to only using ad-hoc produced
functions. Having functions for every element also delivers a fine platform for performing
attribute and attribute type checking, as this can take place in the compilation process of a
given element.

To ensure flexibility of our language we started by building a routine that maps listings of
HTML elements to Scheme functions. Different types of HTML elements exist as stated in
section 3.1, namely elements that only contain a single tag, elements with an optional end-tag
and elements, which requires both a start-tag and a end-tag. We chose to order the different
types in two lists with the first containing single tag elements and the second containing
double tag elements (the tags with optional end-tag was placed in the list for double tagged
elements). Should new elements be invented or should old ones vanish, we only have to
update and recompile these lists. Experiments have been made to generate the mirrored
functions automatically by parsing the specification (Document Type Definition) of a SGML
compliant language (refer to Kurt Nermarks online LAML pages on
htttp://www.cs.auc.dk/~normark/laml for details and further developments).

We decided to add the front "html:’ to all elements in order to avoid any namespace problems.
In fact Scheme and HTML already share the map function/element. When we later make
Scheme functions to give CSS support for all HTML elements, we greatly appreciate the
avoided collision of namespaces. Eventhough function names may become bigger we believe
abstracted elements will ensure minimum use of these low level functions, besides is the
readability of the LAML source code enhanced. The problem of colliding namespaces is
known from practically all programming languages, where reserved words are not to be used
to refer to e.g. classes, methods or variable names. Especially when working with macro
languages, where implicit expansion is normal, are namespace difficulties common. Here
conflicts require extensive use of escape characters in order to prevent inadvertent macro
expansions.

We now have a corresponding Scheme function for every HTML element, which itself
represent a function (either generate-html-tags-single or generate-html-tags-double) called
with the element’s name as the only parameter, as can be seen below:

64

(define html:img (generate-html-tags-single "img"))
(define html:font (generate-html-tags-double "font"))

The generate-html-tag-functions yet again return a new function, which is capable of taking
an additional parameter list. The function for single tagged elements takes the parameter
attributes, which contains the optional attribute list, see below:

(define (generate-html-tags-single tag-name)
(lambda attributes
(make-tag-single tag-name attributes)))

The function for double tagged elements is naturally a bit more complex. Contributionl and
contribution2 are manipulated in order to separately obtain the content alongside the attribute
list. The make-tag-double function is then called with tag-name, content and the optional
attribute. Remember that the seldom occuring double tags without content should provide the
empty string as last parameter, or else will the last item in the attribute list be taken as the
content.

(define (generate-html-tags-double tag-name)
(lambda (contribution1 . contribution2)
(let ((joint-list (reverse (cons contribution1 contribution2))))
(make-tag-double tag-name (car joint-list) (reverse (cdr joint-list))))))

The make-tag-double is listed below (make-tag-single is similar). First is the attribute list
checked for elements, if none is present then will the content, encapsulated by start- and end-
tags with the given tag name, be returned. With an attribute list present the function will call
the function attribute-handler, which recursively traverses the list and builds a HTML
attribute chain (given that the attributes verify as legal!). HTML tags are later build with the
attributes occuring in the start-tag.

(define (make-tag-double name contents attributes)
(if (null? attributes)
(string-append "<" (as-string name) ">"
(as-string contents)
"</" name ">"
(let ((html-attributes (attribute-handler attributes name)))
(string-append "<" (as-string name) " " html-attributes ">"
(as-string contents)
"</" name ">"
(as-string #\newline)))))

Some simple means for pretty printing of the HTML destination files are obtained with
newlines inserted after each element carrying attributes (experiments suggested this gave a
nice spread of text). Omitting these newlines would make the HTML source consist of one
single line, which is hardly very readable with for instance the 'view->Page Source’
command in the Netscape browser.

65

LAML Basic Libraries

Three libraries provide LAML with some basic capabilities (all three may be viewed or
downloaded from [POWER, 99] and be found in the CH-source/lib directory of the software
CD present with this report). First we consider the time library, which provides LAML with
functions to determine date, time and weekday. This library is mostly used for automatically
generating time of updates, but may also be used to control time dependent content. The time
library and most of the input-output library are largely derived from Kurt Nermarks initial
work. The input-output library contain functionality necessary for writing to and reading from
files. Writes are always needed when HTML target files are being created. Read operations
may for instance be used to import foreign material from external files. Several string
operations have also been added to the input-output library in order to supplement Schemes
string handling capabilities. The last of the basic libraries is the laml-lib, which contains a
wide range of useful functionality. Scheme's set of list operations are enhanced with a handful
and a few ad-hoc functions, e.g. a hyperlink creator, are included. Common page content,
such as the head, title, body and style sheet elements or linkage, can be applied by a set of
similar functions, which builds the header and footer that encapsulates the content meant to
reside within the HTML body element. Different types and layouts for update notes are
available through another series of functions. Finally a bunch of table constructs are provided
(example pages using these table constructs may also be found both at [POWER, 99] and on
the software CD).

5.1.5 Obtaining a higher level of functionality

Given the basic LAML constituents we are able to produce any HTML system. Assistance in
the authoring process is however not at a premium at present, when all we possess is a
mapping of HTML elements and a few essential helping functions. The real powers of LAML
only surface, when some higher degree of abstraction is achieved. Providing a collection of
coherent functions for a specific application type allow developers to shift focus from low
level elements to higher level components of a given application. The related set of functions,
which encapsulate and hide underlying details, will be referred to as document styles.

Intervening with the abstractions obtained in document styles provide great means of re-
usability, as the common functionality may be used exhaustively. They also present an
excellent platform for automating routine tasks, which is as stated earlier highly desirable in
the authoring process. Document styles typically end up consisting of both abstracted
elements of the given document class and programmatic content manipulating the abstractions
or calculating additonal content. To illustrate the use of document styles the forthcoming
section presents different examples of developed Web applications.

5.2 Example LAML Applications

Source codes and resulting Web pages of all of the below presented examples of implemented
LAML document styles may be found online [POWER, 99] or on the CD accompaning this
report. We strongly recommend the reader to take a closer look at these examples and

66

especially the LAML source programs generating them. The discussion of the programming
oriented method in the next chapter will duly evaluate the most important advantages of these
sample LAML applications.

Inclusion of the CD DB and chess-lib examples in the document styles definiton could maybe
seem a bit confusing, as CD_DB reads and processes an external text file describing a set of
CDs and chess-lib provides only addtional library functions for constructing and processing
advanced chess tournament elements. So the implemented LAML applications span both what
we understand to be document styles and other application specific functionality.

5.2.1 Simple Style

The simple document style is, alas the name, the most simple style developed. Primary
content of the simple style are two similar functions for building a single HTML page.
Evidence of the similarities of the two functions are presented below in the depicted function
heads. Only the additonal parameter update in the second function differs the two. The update
parameter may be used to specifically identify a desired form of update notation (currently
possible options confine to pure text, text and LAML image, text and LAML animation or no
update), e.g. would a page generated with the simple-page-update function and with the
parameter update set to anim include an update notation with both text and animation. The
simple-page function offers no update notation.

(define (simple-page title fname html-body . css-body) ...)
(define (simple-page-update title fname update html-body . css-body) ...)

Common for both functions is the generation of a HTML page with filename fname, title title
and consisting of the Atml-body. The optional css-body may consist of both ordinary css-
statements and elements linking to external stylesheets. Because linking elements are obliged
to appear prior to ordinary css-statements, functionality for processing the css-body is
provided. In itself this style may seem rather low key and it does not confront the "page-at-
time" approach, which we so eagerly try to render superfluous. But authors having a
consistent use of authoring tools would probably develop single pages using LAML too.
Besides is the simple style likely to be utilized by more advanced styles in their need for
actually generating different underlying pages.

5.2.2 Website Style

The Website style allows the developer to create a series of related pages with a coherent
layout scheme. Within the bounds of this style we regard a Website to consist of pages with
identical layout and a common navigation part, which by means of hyperlinking refer to all or
a subset of the involved pages. Referential integrity, which is a big issue in Web engineering
(as suggested in [Lennon, 96]), will always be preserved in the navigation bar linkage by
consequence of the automatic generation. The functions in the Website style controlling the
generation of navigation links recognizes and handles both imagery and textual links.

67

By setting an internal style parameter the Website style may deliver pages with different
structures. Currently four different schemes for page building are provided, where the first
one represents a traditional frame based approach. The navigation content will reside in a
small frame on the left of the screen in this case and the different pages of a given site will be
displayed in the adjacent frame. This classic frame approach have been widely used on the
Web, but opinions has ever since the creation of frames been varied (frames have been
heavily discussed, but some of their main disadvantages is their relative complexity and the
inability to link to subpages of a site). To accomodate the people dissatisfied with frames, we
offer methods of site generation based on tables. Common for all table based sites and their
biggest disadvantage is the need for the navigation part to be incorporated on every sub page.
This of course increases both page size and server workload, because the navigation bar has to
be loaded again with every page retrievel. This is contrary to the frame based approach, where
the navigation bar is always present in its own frame, with only the underlying pages needing
to be retrieved from the server. With sensible built navigation bars the extra overhead should
not amount to much, so the table based approach may still prove to be an excellent solution.

The table based approaches currently amount to three, where the first resembles the classical
frame look, with the navigation bar on the left and page content filling the right side of the
screen. The others are a little more complex with multiple tables, where one is for the
navigation bar, one is for the actual page content and the rest are used for layout purposes
(e.g. different colouring, indention or images). Sample pages of all styles have been
developed and they may be found both online at [POWER, 99] and on this reports
accompaning CD (in the CH-source/website/ directory). Figure 5.1 below sketches the
appearance of different page systems generated with the existing layout schemes of the
website style.

The POWER Page

The POWER P:
| : " [Lam |

% Main O + Main
* LAM libraries * LAM libraries
* LAML examples * LAML cxamples

* KNs LAML page
* KNs LAML
software page

* KNs LAML page
* KNs LAML
Software page

Power Power_noframe SkakDM Ragout

Figure 5.1: Outlines of the four different types of Website styvles developed until now. Power illustrates the
traditional frame based approach incorporated in the initial version of the POWER page. Later a table based
equivalent of power was conceived, namely power_noframe, which constitutes one table for navigation purposes
and one for projection of the actual page content. More advanced layout mechanisms were employed in the
cases of SkakDM and Ragout, where a page consists of several tables. The style used for constructing SkakDM
places images, navigation bar and content in different tables for visual effects. The same applies to the fourth
website style employed in the Ragout example, but this style also uses colouring (the area specific colours may
easily be altered) of the different tables to obtain a paper-like look. Besides does the Ragout example utilize the
option to use image buttons instead of text in the navigation bar.

68

Having several available schemes for building the Web pages enables site content to be
formatted to multiple targets. A single source file may compile to different looking Web sites
only by altering the desired style. In our case, with only four somewhat different styles
available, some content may not suit every style, but our examples showed, that shifting
between the similar frame based approach and the 2 columns table approach worked very
satisfactory.

5.2.3 Sport Results Style

Different kinds of sports tournaments may get online versions of result related information,
such as league tables and team performance charts, generated automatically with the sport-
results style. LAML sources using the sport results style merely need to contain initializing
information of compiling directories (where to locate target files and where to locate image
and/or css files) and different league data (e.g. a list of participating teams, number of rounds
played and which type of sport we deal with) and the results of the rounds played so far. On
account of this a page is build for every participating team containing the teams performance
chart (a graph picturing league positions for every played round) along with a result list of the
team in question. Continuous pages containing the league tables of every round and results of
the current round are also generated. Because the rounds played have a sequential nature
navigation mechanisms for traversing these pages are included. Dependent on the round of the
current league table arrows allow navigation to the first, previous, next and last table, e.g. the
page of the last round contains no arrows for next and last page. Besides is linkage provided
from team names in the league tables to the teams individual pages and back to league tables
of different rounds from the result list present on the team pages. Finally an index page is
built, where access to the pages of every team and every round's league table are provided.
For an illustration of the properties of the sport_results style just mentioned we provide the
sketch presented below in figure 5.2. Two actual Web systems have been developed using the
sport_results style and they may duly be found online at [POWER, 99] or on the software CD
in the directory CH-source/sport_results/.

As in the case of the Website style is referential integrity preserved of these automatically
generated internal links. Updates to the system are handled very efficient, as new results are
just entered in the source and after a recompilation new pages are generated and changes will
automatically propagate around the site and alter the existing pages.

Currently the sport-results style supports three different kinds of sport, namely football,
handball and chess. Several variables (such as points for won game and number of
relegations) are set according to the type of sport, whose results need processing. Another
team sorting algorithm is also assigned for chess league tables, as points scored takes
precedence on match points contrary to the scheme being employed with football and
handball. Later versions of sport-results may be extended to include goalscorers (point scorers
in chess!), yellow and red cards (not used in the chess world, yet!) and match grades for each
player. This additonal information should be used to automatically generate topscoring lists,
card lists (with flags indicating match suspensions) and player statistics on grades and other.

69

Index Page

Superligaen 99/00

Team Performance Charts

Aab AB AGF
Brondby Esbjerg FCK
Herfolge Lyngby OB
Silkeborg Vejle Viborg

Round Results & Tables

Round 1 Round 2 Round 3

Round 4 Round 5 Round 6
Round 7 Round 8 Round 9
Round 10 Round 11 Round 12
ﬁ/ Superligaen 99/00 \ﬁ Superligaen 99/00
Performance chart for Aab
- Results of round 6
Aab - AB 3.1
Brondby - Esbjerg 2-3
Place Silkeborg - OB~ 0-1
Viborg - Vejle 11
1 AGF - Hetfolge 1-1
2 FCK - Lyngby 12
3
4
5 League Table after round 6
6
s = Rounds M WDL FAP
P —
< a e e
Results of Aab -
Result of round 1 Result of round 2 Result of round 31 » =
Aab 5-0 Brondby| |Viborg 7-2 Aab | |Aab 5-0 Lyngby » -
Result of round 4 Result of round 5 Result of round 6 - T ZIZ s
Aab 1-0 AGE Vejle 22 Aab Aab 3-1 AB
Result of round 7 —— <4 > P
— FCK 0-0 Aab e
h— |

Figure 5.2: The different constituents of Web systems generated with the sport_results style and their mutual
relationships. The several pages constructed by this style amounts to an index page, a page for every
participating team and a page for each round of played action. Extensive linking exists between these pages, as
depicted on the figure by arrows.

5.2.4 CD Web Base

We mentioned earlier that the CD DB utility is not a regular document style. Unlike the first
three examples LAML sources are not intervening with application specific functionality,
instead CD_DB processes an external text consisting of a CD set listing. To conform with our
implementation CD listings must at least be of the following minimal form, consisting of
artist, title, genre, year of publication and personal rating (a scale from 0 to 10 is used) :

("Slayer" "Reign in Blood" "Speed Metal" 1986 10)

70

Additional details may be listed randomly afterwards, as in the case presented below.
("Rammstein" "Live aus Berlin" "Techno Metal" 1999 8 "x2" "Live")

A simple boolean variable controls whether details are wanted or not, if not they are just
ignored. Besides determines a detail-list which detail categories to process and in which order.
And only details fitting this list will be processed, while others are again ignored.

From the CD listing three HTML pages are generated. The first one contains a listing of all
CDs sorted under the beginning letter of the artist name. Only used letters are being used,
meaning if no artist begins with a K the letter K will not not be included. For every used letter
a table is formed consisting of the corresponding CDs, which are primarily sorted
alphabetically on artist names and secondary on publication year. An index, built of the used
letters, is placed on the top of the page. An analogous page is made, where CD's are located
according to their respective music genre. In accordance with the approach on the page of the
alphabetical sorting the used genres are collected and formatted to represent a top page index.
Cross references on genres and artist names exist between these two pages, and linkage is
provided to the third page generated, which contains statistics on the processed CD list. The
aritmethic powers of the programming language enables us to calcute these statistics, which
currently consist of a total count of CDs (maybe not the most demanding calculation),
percentage of included genres and average ratings for the albums of a particular artist.

Building this system with an ordinary authoring tool might be possible with a little patience,
but performing updates would be a nightmare. For every new CD added to the list, its data
will have to be included on both the alphabetical and genre sorted pages and maybe even a
new artist starting letter or a new genre is encountered, which would require an alteration of
the index. These updates are however nothing compared to the ones needed on the statistics
page, as every probability would have to be re-calculated according to the changed CD set
and re-entered. Such a manual update would take ages and be highly error-prone, whereas an
CD addition in the CD list and a recompilation with the LAML CD DB utility would
generate a correct Web system in seconds.

5.2.5 Chess Library

The chess-lib isn't quite a document style either, it merely extends LAML with advanced
functionality for producing online chess tournament material. Acknowledged table plans are
encoded in the library for round robin tournaments of 8 or 10 players (the most common
tournament schemes). Support for monrad tournaments, where future opponents are found
based on prior performances, is also included. How to build a tournament table using the
chess-lib is shown below:

(tournament_rr10
"Aars IM-group 1999"
(list
(list "John Arni Nilssen" "FAI" 2326 01 .51110.50)
(list "Jimmy Andersen" "DEN" 200000 .50.5.500 .5)
(list "IM Alexei Bezgodov" "BLR" 2576 10.51111.51)

71

(list "IM Vladimir Poley" "BLR" 23770.5.50.50.51 1)

(list "Jargen Juul Kristensen" "DEN" 23100.5000.500 .5)
(list "David Bekker Jensen" "DEN" 226411 .50001 .50)
(list "FM Erik Hedmann" "SWE" 23481 .5.5.5.50110)
(list "Carsten Hellegaard" "DEN" 2267 0.511.5.50.5.5)
(list "IM Igor Yagupov" "RUS" 244911 .5111111)

(list "Bent Christensen" "DEN" 211310 .5.50.5 .50 .5)))

This function builds a tournament table with assigned player number, points, placement and
in the future it will be extended with routines for calculating new player ratings based on the
tournament results. Unlike the sports results style where every round of results will have to
be entered together, unplayed matches represents no problems with the chess-lib (placing the
escape notation ("-") instead will suffice). To add clarity to tournament tables formatting
schemes allow different style sheet settings for table cells of delivered match results as
opposed to cells for undetermined match result (to see for yourself consult the examples on
[POWER, 99] or on the software CD attached to this report). The style sheet handling of the
chess _lib will be discussed in greater detail in the section on CSS experiments. Entering
results for monrad tournaments (characterized by the matching of opponents according to
prior results) requires additional data, as is sketched below:

(tournament_monrad
"Aars EMT Group1 1999" 5
(list
(list "Hardy Jespersen" "Aars" 1858 'B2 .5 'W5 0 'B4 1 'W3 0 ‘W8 0)
(list "Irina Tetenkina" "Minsk" 2141 'W1 .5'B3 0 'B8 1 'W6 1 'W5 0)
(list "Rene Rasmussen" "ASF" 1889 'B4 .5 'W2 1'B50'B1 1 'W7 0)

)

First of all we need to deliver the number of rounds in the tournament, which equals 5 in this
case. Besides must every result have a literal prior to it stating color and opponent for the next
match. In the example above player number one, Hardy Jespersen, must play black against
opponent number 2 in the first round.

To supplement the tournament table production the chess lib supports generation of a
common leaderboard consisting of leaders from every implicated tournament. Customizability
of the leaderboard includes layout settings and the number of leaders from every tournament
wanted. To examplify the use of chess_[lib we first implemented a single page containing both
four tournament tables and an extensive leaderboard, and later we generated separate pages
for every tournament and an index page with the accompaning leaderboard linking to the
respective tournament pages (may also be found at [POWER, 99] and on the CD in CH-
source/chess/).

5.3 Support for Cascading Style Sheets

As we established in the analysis is it highly desirable to keep document structure and
presentational data stored separately. Following the mix-up of content and layout in the early
versions of HTML, this has later been acknowledged by the World Wide Web Consortium,

72

who are responsible for the Web relevant language specifications. The currently
recommended specification of HTML (version 4.0) has been incorporated with support for
style sheets. It is possible to use almost any style sheet language together with HTML, but the
W3C have themselves delivered specifications for one: Cascading Style Sheets [CSS, 99].

It is our intension to include means of CSS in LAML in order to embrace the full powers of
the current HTML recommendation. It is an attractive idea to hold expression powers of both
Web languages (HTML and CSS) in LAML. Apart from given full control over both
languages in their own right, e.g. when making external CSS style sheets in LAML to be
imported in HTML-pages also written in LAML, the unification of both languages in LAML
could possibly offer further advantages when used in a combined manner. Several ways of
using these unified powers in LAML will be presented through experiments and evaluated in
section 5.4.

Because of the newly invented opportunities for inclusion of style sheets in HTML, several
old HTML tags and some elements attributes, solely used for layout purposes, are made
obsolete. Others, whose functions can now be done more methodical with the use of style
sheets, are stamped deprecated by the W3C. Elements in this last category are still part of the
HTML-language, but developers are urged to stop using them and turn to style sheets instead.
Future HTML specifications might render elements currently stamped as deprecated for
obsolete. Together with support for the style sheet language CSS, LAML still contain
mappings of the deprecated HTML-tags. This inclusion is made to accomodate developers,
who are used to write Web-pages without the use of style sheets and cannot part with some
older and well known tags or attributes.

5.3.1 CSS components

The language CSS is quite unlike HTML, which consists of a fixed set of elements with very
similar behaviour (only difference is the distinction between single and double tagged
elements). CSS on the contrary consists of several different components, which behave
differently. Below we sketch the different components of CSS and the corresponding
implementation of them in LAML.

Basic selectors

The simplest selector in CSS is a HTML element followed by a list of properties and their
desired values:

h1 { font-style: italic; font-size: 18pt }
h2 { font-style: normal; font-size: 16pt; color: red }

The CSS specification [CSS, 99] formally defines 5 categories of properties, which constitute
font, color/background color, text, box and classification. Each category consist of several
related properties, each with an accompaning set of possible values. An example is the text-
align property of the text category, which may be set to either of the following values: left,
right, center and justify.

73

The LAML implementation of the basic selectors constitute a mapping of every HTML tag to
a corresponding CSS element. The above listed CSS-statements would read as follow in their
LAML counterpart:

(css:h1 ’font-style ’italic 'font-size '18pt)
(css:h2 ’font-style 'normal ‘font-size '16pt 'color 'red)

The procedure is analogous of the mapping of HTML-elements to LAML, and furthermore
are the properties checked for validity in a similar manner as the attribute checking in pure
LAML.

To accomodate often used style properties we decided to include capabilities for constructing
and using predefined lists of properties. The CSS statements of LAML are able to take lists
mixed with ordinary property/value pairs of properties (naturally single properties must be
ordered correctly in the statement with the accompaning value directly following the
property), as sketched:

(define font-properties (list ‘font-family 'times 'font-style 'normal 'color 'black))
(define text-properties (list 'text-decoration 'underline ’text-align ’center))

(css:h1 font-properties 'font-weight 'bolder text-properties)
(css:h2 ’text-align 'center font-properties)

This method of handling element properties is of course available to all the different kinds of
CSS selectors.

We thought of using a similar scheme with the attribute lists in the LAML statements, but we
didn’t find it necessary as very few HTML elements would be having the same attributes. The
more frequent use of higher level abstractions in LAML also limits this need considerably.

Class selectors

The different HTML elements can have several classes, thus allowing each element to use
many different styles. Classes can both be defined to only validate for a specific element or
they may be defined as a generic class available for all elements, as is sketched below:

p.header { color: blue }
p.special { color: black }
.note { font-size: small; color: purple }

This example offers two classes specific for the paragraph element (header and special) and
one for all elements (note), including p. The class styles are later applied in HTML using the
CLASS-attribute:

<p class="header’ >Mating life of the Rhinoceros</p>
<p class="note” >Remember to buy beers for the weekend</p>

74

When representing class selectors in LAML we make the distinguishment between associated
and unassociated classes in the first parameter. Given the first parameter equals the name of a
HTML element we expect the next parameter to hold name of the desired class for the HTML
element. On condition the first parameter does not coorespond to a HTML element a generic
class is created. The classes shown before would read as follows in their LAML counterpart:

(class-selector 'p ’header ’color ’'blue)

(class-selector 'p ’special "color ’black)

(class-selector 'note 'font-size "small 'color ’purple)
ID selectors
The ID selectors works very similar to unassociated classes, as we can define properties for a
given ID and apply them to HTML elements with the ID attribute. The CSS definition looks
like this (notice the #-character):

#owen10 { font-weight: bolder }
This is simply accomplished in LAML as follows:

(id-selector ’'owen10 ’font-weight 'bolder)
Contextual selectors
Contextual selectors offer a way to assign style to nested elements by listing elements in
context separated by white spaces and followed by the desired properties and values. The
cascading rules of CSS then gives contextual selectors precedence over simple selectors. To
enlight this we provide the example below:

p em { background: white; color: blue }
This CSS statement means that emphasized text within a paragraph should be written in a
blue color on a white background. Emphasized text within other block-elements than p are not
affected. And due to the cascading nature of CSS will styles selected just for p and em be

ignored, when they appear in the given context.

The LAML construct for contextual selectors requires a list of HTML elements as its first
argument to perform the equivalent of the CSS statement:

(contextual-selector (list ’p 'em) ’background 'white ’color 'blue)
Grouping
The grouping function is included to avoid repetitious statements in the style sheets. If several
elements are to be assigned identical style declarations, the time saving grouping looks as

follows:

h1, h2, p { font-family: times; color: black }

75

The LAML equivalent is implemented similarly to the LAML contextual-selector construct:
(grouping (list 'h1 ’h2 ’p) font-family times ’color ’black)
Pseudo Classes

Three pseudo classes are present in the CSS language to give a wider range of control over
anchors. The three pesudo classes are listed below, together with confirmation that they can
can be used in contextual selectors and in combination with normal classes:

a:link { color: red }

a.visited {color: blue }

a:active { color: lime }

a:link img { border: solidred} -contextual

a.myclass:link { color: brown } -in combination with myclass

Pesudo classes do not behave completely like ordinary classes, meaning that user agents must
handle anchor presentation automatically opposed to the manually inserted class attributes.
The anchor element of class /ink in the example below will have no style effect, because /ink
is no real class (the anchor then follows prior style settings for anchor elements).

a:link { color: red }
some anchor

We have included these anchor pseudo classes in LAML, by mapping them as were they
ordinary elements (like br or table). The only possibility of combining pseudo classes with
normal classes in LAML is therefore to invent the classes like .myclass:link, but as we believe
these constructs will seldom appear in practical use, we find this approach satisfactory.

Pseudo Elements

CSS also includes two pseudo elements, which can be applied to all block elements, namely
first-line and first-letter. Examples are given below:

p:first-letter { font-size 150%; color: green }
p:first-line { color: black }

Because we attach little relevance to the pseudo elements and because only a limited set of
properties apply to them, pseudo elements have not been implementet in LAML. Assigning
special style to the first letter or the first line may besides be attained by the use of inline
styles (see next subsection) or classes.

Inlining Style

Style sheets can also be applied inline using the style attribute, which applies to all HTML
elements. An example is given below:

76

<p style="color: red; font-size: 125%">A sample use of inline styles </p>

The HTML statement presented above can easily be constructed in pure LAML, given the
developer knows the syntax of CSS property lists:

(html:p ’style " color: red; font-size: 125%” ” A sample use of inline styles”)

A more sensible solution is provided, as we find it desirable to relieve the developer of the
task of producing the potentially many style properties in pure string form. The original intent
was also to let LAML cover both HTML and CSS, so the developer would not be restricted
by not knowing the CSS language. Since routines to handle style properties was already
developed in the CSS2LAML library for controlling the properties of ordinary CSS statements,
the following function offers a simple method for inline style property handling:

(define (style-inline-handler . properties)
(let ((inline-properties (property-handler properties "")))
(prettify inline-properties)))

Purely aesthetic reasons is behind the decision to prettify the output of the property-handler
function (in fact only the last character (an empty space) of the returned string is removed).
The ideas behind the property-handler function was presented in the section above covering
the basic selectors. This new approach to inline styles in LAML is examplified below, where
a paragraph with content "Pollefar" will be displayed according to both the predefined font-
properties and the left alignment:

(define font-properties (list 'color 'white "font-family ’courier))

(Html:p 'style (style-inline-handler font-properties 'text-align 'left) "Pollefar"))

Analogous with the mirroring of the HTML elements we now possess a LAML translation of
CSS (if only of the important parts). But as was also the case with the HTML mirroring not
much is gained from a mere translation, the actual benefits will only surface when usage have
attained a higher level. Different schemes for utilizing the joint powers of CSS and HTML in
LAML will be investigated and discussed in the next chapter.

5.4 Experiments on LAML and CSS

Prior to conducting the actual experiments we investigated the different available methods for
incorporating CSS in HTML. Following this investigation we pinpointed two approaches, one
based on inline use of CSS and one based on external CSS files, which were to be subjected
to further experimentation. Upon evaluation of the experiments we take special notice
whether the combination of both HTML and CSS in LAML offers any additional advantages
compared to the commonly used separation of the two languages.

7

5.4.1 CSS Containment in HTML

For style sheets to take effect on the presentation, awareness of their presence is required. To
accomodate this need the HTML specification was extended to include ways of linking to
external style sheets and methods for inserting CSS statements in HTML. The HTML code
listed below shows how style sheets may be inserted in HTML.

<HTML>
<HEAD>
<TITLE>Providing style sheets in HTML</TITLE>
1. <LINK rel="stylesheet" type="text/css" href="black.css">
2. <STYLE type="text/css">

H1 { font-size: 20pt; color: green; }
P { font-style: italic; color: lightblue; }
</STYLE>
</HEAD>
<BODY>
<H1>Green Heading</H1>
<P>Lightblue writing in italics</P>
3. <P style="font-style: normal; color: blue">Blue writing, no italics</P>
</BODY>
</HTML>

The three possible ways of combining styles and HTML may be identified in the code above
(indicated by the numbers 1 to 3). CSS statements are allowed to occur either within the
STYLE element located in the HEAD or inlined within the style attribute of ordinary HTML
elements. Loading external CSS files are done using the LINK element (notice that HTML
may easily import other types of style sheets than CSS, given that user agents supports
additional style sheet languages). The HTML specification actually also allow external style
sheets to be referred to by the @import command, which resides inside the STYLE element
before any additonal CSS statements. But because the @import command works very similar
to the LINK element and the major browsers, Netscape Navigator and MS Internet Explorer,
do not yet support this command, we decided to concentrate on the remaining three
possiblities for delivering CSS in HTML.

An important aspect of CSS is the cascading (hence the name) nature of the styles. The
cascading refer to the order of precedence of applied styles, as it cascades from the outher
most level (external style sheets), which have lowest precedence, across CSS statements
located in the STYLE element with a higher precedence, to the inner most level of inline
styles, which takes highest precedens. Looking back to the sample HTML code above a
consequence experienced on behalf of the cascading, would be the CSS statement of the
HTML element HI overriding a possible CSS statement on the same element located in the
external black.css file. In the same vain is the inline use of styles on the second paragraph due
to override the style settings put on the element P in the STYLE element. Special attention is
however necessary regarding the overriding of style settings, because they function on
property level and not on statement level. Meaning that a CSS statement does not override an
entire statement of lower precedence, but only the properties explicitly given in the overriding
statement. To illustrate we yet again return to the HTML code presented above, where an

78

additional property defined on element P in the style section, e.g. setting text-decoration to
underline, would also render the P element using inline style underlined, unless the text-
decoration property is explicitly set to another value in the inline statement.

5.4.2 Inline and External Use of CSS

Upon experimentation we divided the methods of providing CSS in HTML into the two
categories: inline and external. This distinction was made because of the fact that external
style sheets and CSS statements listed in the top element STYLE are essentially the same, as
both mechanisms uphold layout information external to the affected elements contrary to the
inline use of CSS.

Supplying HTML elements with styles using the inline approach contradicts the reasons put
forward in the first place for employing style sheets, i.e. the divided keeping of content and
layout descriptions. Inclusion of inline style usage in our experiments is however justified by
the programmic evasion of the primary concern for mixing content and layout. Recall that
alterations in documents consisting of such mixtures was time consuming and error prone,
while only a simple intervention with the separately kept formatting information would
otherwise be necessary. Equipped with the programming powers of LAML this problem may
be solved by defining a layout specification at some point in the source and then let a
programmed solution propagate the layout information to the relevant elements in the source.

Experiments

In order to get a concrete foundation for comparison we decided to implement two versions of
the chess library (see section 5.2.5), with one using inline styles and the second being
formatted according to an external style sheet. Different applications were then generated with
each copy of the chess library for easy comparison, some of which may be found on the
software CD in the directory CH-source/CSS _testing.

The tournament tables generated by the chess library is like most complex HTML elements
made up of tables, which in this case prompted different formatting for table caption, table
header cells, ordinary table cells and an alternative table cell, used when different formatting
of cells containing confirmed results is desired. Applying the formatting by means of CSS
would ensure a homogeneous look of a tournament table (same size and colouring) regardless
of the surrounding environment, i.e. the parent page being conformed to another style sheet.

In both versions of the chess library the four formatting lists are defined only one place,
namely in the top of the source file. Clearly the inline version caused the most overhead in the
source document, when the formatting information was to propagate as parameters through
the different table generating functions. In the version based on an external style sheet the
four formatting lists are defined as CSS classes and written to an external CSS file. Minimal
overhead is experienced between the generating functions, as only the four class names will
need to be assigned at their respective generation function. The main disadvantage compared
to the inline version is the need to extend existing style sheets of parent pages with the newly
defined series of classes. Two sensible solution models exist however. First may LAML
automatically update an existing CSS file with the extension set of classes (this approach has

79

been succesfully applied within the chess library, as the optional leaderboard extend the
existing class set with a few more of its own) or second may we exploit the fact that HTML
pages are permitted to link to several external style sheet by adding an extra LINK element on
the parent page pointing to the newly created CSS file.

Experimentation showed very similar behaviour of the two versions. Both had the same ease
of altering page formatting, and both suffered from casual use of formatting on general table
elements such as 7D and TH, which distorts the cell formatting, unless unreasonable many
properties are set for every class or inline element (this is due to the property overriding not
happening on statement level). The most important difference between the two versions was
the size of the target language files. When using only approximately three properties (e.g.
background colour, font colour and font size) for each cell class, we experienced almost
double sized target files of the inline version compared to the external style sheet version (this
proportion would undoubtful rise with the addition of further properties). Besides did we
register a minor difference in the browsers page loading time, with the pages displayed
according to external style sheets being processed a little bit faster than their inline
counterparts. We don't attach too much significance to this phenomenon, however (the slight
difference might perhaps only have been a side-effect of the larger file sizes of inline style
documents).

Learning from these first series of experiments we intend to only use inline styles for smaller
constructions, where the size of target files are unlikely be significantly affected. Besides is
the use of external style sheets not entirely justified, when working with smaller elements, as
manipulation of existing style sheets may seem a bit exaggerated if only for including one or
two new classes. Furthermore we developed a series of different update constructions varying
from pure text to text and animations. The desired uniform look was satisfactory attained
using inline styles.

For larger constructions, such as complex tables, we duly settled on using external style sheets
for delivering the formatting information. The primary reason being the somewhat smaller
HTML files generated, but also because LAML source programming becomes a simpler task
due to a lesser amount of formatting information manipulation. Apart from the external style
sheet version of the chess library we made extensive use of this approach when constructing
the sport results style. Being made almost exclusively by tables this style uses in the region of
20 classes to control different table cell formatting. On a general note we might add that style
sheets are being used exhaustively in our Web development, not only for controlling complex
structures but also for commonly used HTML elements (such as H1 and anchors A, A:active,
A:link and A:visited).

5.4.3 Evaluation

First lesson learned from our experiments was the considerable advantages gained when using
external style sheets for large constructions. In these cases inline use of style may seem
justified when speaking of keeping format information in one place for easier alteration
(delivered by the programming abilities of LAML). But the resulting HTML files are
magnified in size compared to the corresponding HTML files made with use of external style
sheets. The sole reason behind this is the high level of rendundant formatting information

80

used in e.g. tables, which in the case of external style sheets only requires a class name
contrary to inline styles or the formerly used FONT element, where a complete property list
must be delivered on every occasion. The LAML applications delivered so far have proven
the sense of using inline styles only for smaller constructs, while external style sheets are
clearly best suited for construction of larger elements.

Determining whether the merging of HTML and CSS in LAML offers an extra dimension in
Web engineering is less clear-cut. There is no question that we are convinced about the
usability of style sheets, which our previous developed LAML applications may witness. So
having a LAML translation of CSS must always prove a benefit, as we have the CSS
components ready at hand in a syntax similar to ordinary LAML. In the bigger picture we
especially notice the resemblance between LAML constructs formatted according to a set of
CSS classes and XML elements formatted in correspondence with rules written in the style
language XSL. Newly constructed XML elements require accompaning formatting rules to be
defined in XSL, before content may be displayed. Similarly in LAML we define a set of
classes to cover different parts of a larger construction and then we write a style sheet in CSS
to control formatting of the involved classes. This goes a long way to show that the
abstraction powers of LAML emulate those of XML very satisfactory.

5.5 Support for CGI

Back in section 2.2.3 when discussing generation tools we presented three different
possibilities for generating Web pages. Calculated pages were defined as pages generated on
the server in accordance with data derived from an user interaction performed in a client-side
browser. The information travelling back and forth between client and server are exchanged
through the Common Gateway Interface (CGI). In order for server-side applications to
produce a response to user selections they must be able to interpret and process an encoded
CGl-stream being passed from the client-side browser. The calculated result obtained upon
processing of the input CGI-stream amounts to a HTML page, which is subsequently shipped
back to the user's browser for display.

An arbitrary programming language capable of reading a text string from standard input and
delivering one back to the standard output may be used to create a HTML page based on the
information encoded in the CGI-stream. Typically CGI programming purposes have been
handled by compiled programs written in languages such as C and C++ or by scripts written
in languages like Perl. Perl is a language similar to C, but without certain high level
mechanisms such as pointers and user defined types. Instead is Perl enhanced to better cope
with string manipulation, which makes it more applicable for scripting purposes. Noticing that
these often used CGI solutions adhere to the imperative way of thinking, we found it very
interesting to try and utilize LAML in the area of CGI, too.

As it turns out is LAML excellently suitable for CGI purposes. This should come as no
greater surprise, as the essence of CGI programming is the construction of HTML pages
according to input received from the users browser. This formula also fits the basic reasoning
of functional languages and thereby also the nature of LAML, where an output is calculated
based on any given input. Several advantages are apparent when using LAML for CGI
purposes: first of all are the general authoring powers of LAML available for the writer of

81

CGI content, which again substitutes the less suitable imperative means of the traditional
approaches, as was the case in ordinary Web development. Secondly will developers most
certainly welcome an united authoring language for generating both static and dynamic
content on Web pages. Using one language for both issues has its obvious advantages in terms
of the knowledge and experience of the developer towards the language. Binding the
generated and calculated categories closer together with a common language may also have
further benefits, as integrated solutions become easier to develop.

Kurt Nermark has among other things created a system for online education purposes, which
makes extensive use of dynamical content by means of CGI programming in LAMLS. Staying
with the examples described in this report we should point out the CD DB of section 5.2.4,
where an integration with dynamic content would be especially useful. Construction of a
browser user interface for adding, deleting or editing the entries of a CD base, along with
control functions at CD base level, would provide the user of the CD_DB with easy online
handling of a set of CD bases. Apart from making large integrated custom applications one
could also imagine a host of libraries with functionality for commonly used CGI
constructions, such as search forms, guestbooks, email forms and customizable
questionnaires.

In order to utilize LAML for CGI purposes we need to address certain problem areas. How do
we for instance execute a server located LAML program working as a CGI script? This is
simply done the same way as most other scripts are executed on a Unix system, by using the
#! notation. The #! notation resides on the first line of the CGI file pencilled in for execution
and it indicates the location of the interpreter program, which is supposed to process the file.
In the case of LAML we require a Scheme system to be installed on the server and the top of
the file notation should be pointing to the location of the Scheme system executable, as
depicted below:

#!/pack/scm/bin/scm

The notation just given informs the system that the rest of the file being read should be
processed by the scm program located in pack/scm/bin. The remainder of the CGI file should
now contain a Scheme program, which the primitive program given below is an example of:

#!/pack/scm/bin/scm

(define writeln
(lambda args
(for-each display args)
(newline)))

(writeln "Content-type: text/html")
(writeln "")

(writeln "Data have been registered")
(writeln "</body>")

(writeln "</htmI>")

(exit)

S Further details may be acquired at http://www.cs.auc.dk/~normark/laml

82

This sample CGI file returns a HTML page with the writing "Data have been registered" no
matter what input it may receive (The phrase "Content-type: text/html" is to start every
HTML page returned through CGI and the final exit statement halts execution and shuts down
the Scheme system after processing). Such a CGI program is of course of limited value and
LAML is in fact not even utilized in this example, as only pure Scheme functionality is used.
In order to process input from the user, we must be able to extract information from the
encoded CGI stream delivered from the browser. Fortunately has Scheme got excellent
parsing abilities and decoding libraries may duly be built. Once again Kurt Nermark is the
pioneer in the field and he has built such libraries to extract data from a stream and deliver
them as Scheme friendly association-lists’. A more advanced, but hypothetical example is
given below, where several libraries are loaded in order to deliver CGI-decoding and LAML
functionality:

#!/pack/scm/bin/scm

(load "lib/cgi.scm") ; CGl functionality
(load "lib/LAML2HTML.scm") ; HTML mirros
(load "lib/laml-lib.scm") ; Additional LAML functionality
(write-page
"CGl-result"
(con

(html:h1 "You entered the following:")
(table-plain O (process-list (get-form-list)))))
(exit)

The presented CGI file makes use of the hypothetical function get-form-list from the CGI
library, which should be able to extract all information from a CGI-stream and present it as an
association-list. Running this list through the also non-existent function process-list should
offer us a list of lists applicable for the table-plain function. Eventhough this example may be
somewhat thought up, it shows the rich potential of using LAML as a CGI language.

LAML and its possibilities have now been presented and the next chapter will compare these
discoveries with the properties of existing Web authoring tools.

7 These libraries may be found in Kurt Normark's LAML distribution both given on the CD attached to this
report or online at http://www.cs.auc.dk/~normark/laml

83

6. Programming Oriented Web Engineering

In this chapter we intend to prove the idea of Programming Oriented Web EngineeRing
(POWER) as legitimate. We hope to obtain this goal by reflecting on the sample LAML
applications and experiments performed in the previous chapter. By a comparison of the
experiences gathered on LAML in chapter 5 with the characteristics of existing tools we plan
to indicate the potential impact of POWER on the Web authoring community. The primary
source of comparison from the existing collection of widely used Web authoring tools will be
Microsoft Frontpage, which seems to be at the forefront of the development at the moment.
Frontpage is also a WYSIWIG tool and it represent the group labelled as authoring tools in
the analysis, which is the most popular type of tool currently in use. It makes good sense to
compare our invention with the at present mostly used tool.

The section below starts with a comparison of the most notable of LAMLs charateristics with
the corresponding or missing ones of traditional Web tools (in this case mostly Frontpage).
This is of course the most important part in the evaluation of LAML and its capacilities, but
subsequently we engage in an investigation of the increasing demands put on a LAML Web
systems developer. Next a subsection is devoted to a discussion of the different perceptions of
a research tool and a commercial product already enjoying widespread use. This chapter is
concluded with an estimation of the worth and usability of POWER.

6.1 LAML compared with traditional Web tools

The most important subsection of this comparison of LAML and Frontpage constitutes a
comparative discussion of the most notable characteristics of LAML, which are extracted
from the sample LAML applications presented in section 5.2 and the conducted experiments
on CSS, as described in section 5.4. Next we stress the increased responsibilities and
capability needs of a developer converting from a WYSIWIG tool to a program oriented tool
like LAML. The common mistake of putting research and scientific work on equal terms with
existing commercial products is elaborated in the final subsection.

6.1.1 LAML Characteristics

The single most important feature of LAML is of course the possibility to develop Web
systems with a high degree of automatically generated content. This simplifies the
development and especially the maintenance of large Web systems, which consists of multiple
pages with similar layout schemes applied. Just recall the applications described in section
5.2, where automation playes a key role. The CD DB automatically generates several pages
of information based on a CD-set described in an external file, where the actual build of the
specific pages is determined by the entries of the CD-set (a top index-list and the actual
content tables are formatted according to existing entries, which are divided by the beginning

84

letter of the artists or the music categories). Besides are statistical data calculated and
displayed according to the constituents of the CD-set and the range of CD details for
processing may be switched off or modelled according to the developers pleasure. The
sport_results style manipulates a rich amount of data, e.g. teams, team performances and
match results. For every participating team there is generated a page with individual
performance chart and result list. And for every round of match play there is constructed a
page with the current rounds league table and results. Extensive hyper linking exist between
these pages in order to secure the user of easy navigation through the pages. Analogous to the
CD_DB are automated routines used extensively in the sport results style and to a smaller
extent by the chess library and the website style.

These applications rely heavily on automatic tasks, which would prove difficult to implement
in Frontpage. The systems mentioned above could of course be built in Frontpage, but manual
editing of every page would be necessary. Producing a page skeleton might ease this task, but
real complications are certain to arise when maintaining the system becomes relevant.
Applications built with CD_DB and the sport results style are due to evolve considerably
when the input quantity changes, because the changed or additional information propagate to
almost every page in the system. With LAML these changes are automatically updated in the
proper places, while Frontpage would require the user to manually edit every page affected by
the changes. Professional systems of this kind could never be considered developed in a
WYSIWIG tool. Instead would server constellations of databases and a dynamic front-end
language such as ASP or PHP be preferred. So in LAML we hold the expression powers to
both emulate such professional database constellations and create ordinary Web pages.

Web systems consisting of many pages are likely to contain a host of hyperlinks within the
site hierarchy. Such system internal links are normally created automatically in LAML and
referential integrity will definitely be preserved within the system and only linkage to remote
sites should be an issue (the main danger being dangling or incorrect links). All of the
developed LAML applications we mentioned in the previous chapter contain lots of site
internal linking, which LAML generates automatically and error-free. Managing the overall
structure and the internal linking is made simple in Frontpage by means of the explorer part,
which is in fact a GUI site level editor. Page relations are automatically deducted from the site
manager and links are duly inserted on the pages in question. Eventhough the inserted links
follows a standard procedure (making it less flexibel than its LAML counterpart) they do
simplify site management and allow fast prototyping. When links to remote pages are inserted
on a page they may be placed on a list of remote links for later status checking. This clever
feature is also included in Gentler, as described in [Thimbleby, 97], and we have implemented
similar functionality in the Website style, where external links may be gathered and displayed
in a sample HTML page for enhanced overview and easy status verification.

Users of Frontpage may choose from 6 different prefabricated site skeletons ranging from
personal homepages to corporate Web systems. The site structure and layout schemes applied
on the pages may of course be altered according to the developers preferences. These few
albeit frequently used applications may be extended by user developed site skeletons, which
in turn might rival the endless amount of possible LAML applications.

Frontpage offer only moderate support for CSS, as directly typed CSS statements placed
within the /ead element are the only possible way to use them. Instead Frontpage uses a

85

unique and implementation dependent scheme called themes. Themes defines a coherent page
layout by altering colour and appearence of common page constituents, such as buttons,
banners and headings. Using a different theme on a Web site constructed in Frontpage is
analogous to applying new CSS classes for certain structures in LAML. The CSS usage in
LAML is however superior to the themes employed in Frontpage. Firstly because not only
common content like buttons and heading, but also large abstracted structures, such as the
tournament tables implemented in the chess [ib (as described in section 5.2.5), may be
assigned to a set of CSS classes. Secondly because CSS is an open and non-proprietary
language unlike the Microsoft dependent themes.

Another issue related to the overall layout alterations just discussed is the possibility with
LAML of obtaining multiple views of the same source. We mentioned this property earlier
when reporting about the Website style, where the POWER pages were generated according
to both a frame based and a table based approach. Kurt Nermark has likewise developed
document styles that offer both a Web version and a version more suitable for printing on
paper of the same sources files®. This multiple target view of page content cannot be carried
out in Frontpage (naturally may different page systems holding the same content can be
manually created in Frontpage, but the benefits are sparse).

Dynamic content is another issue easily compatible with LAML, but harder to utilize in
Frontpage. Frontpage offers a few dynamic gadgets known as active elements. Examples are
counters and search forms, but again there is a limited number of elements available and they
uphold a proprietary nature. As explained in section 5.5 may LAML be used directly as a
CGl-scripting language, which opens for further possibilities of building Web systems with
dynamic content.

Eventhough Frontpage doesn't have any real automation functionality, where site structure
edition and site level layout themes presents the only system wide manipulation schemes, one
would agree to its dominance when dealing with certain kinds of applications. While LAML
is clearly best suited for the construction of large and complex Web systems, we believe
Frontpage would be the obvious choice for making single pages or lesser Web systems,
because of its relative simplicity and fast prototyping. Having obtained a lot of experience
with one tool might however persuade some users to develop every kind of application with
the preferred tool. An experienced LAML developer would probably not revert to Frontpage
just for the case of single pages, but instead rely on the functionality best known by him and
vice versa.

6.1.2 User Acquirements

Users developing Web systems with LAML are required to be considerable more skillful than
developers using WY SIWIG tools. The most apparent need is programming capabilities and
in this case preferably knowledge of functional programming. In order to utilize the full
flexibility offered by LAML, users should also have a certain degree of knowledge of the
underlying languages, i.e. HTML and CSS. The actual developer of a document style should
certainly know HTML, while other people may later make use of this document style without

® Further information available on http://www.cs.auc.dk/~normark/lam]

86

knowing all of the underlying functionality. But as a consequence they lose control of the
appearance of the generated pages.

Knowing HTML is not a criteria when making Web material with Frontpage. Only in
advanced cases is it necessary to edit the HTML code produced by Frontpage, e.g. for
insertion of alien code, such as java-scripts or code snippets generated by external programs.
A vital user acquirement in the case of Frontpage, is of course knowledge of the tool at hand.
But mastering or at least being able to use a program closely related in functionality and
appearance with other Microsoft Windows applications is considerable easier for most people
than programming and needing to understanding HTML.

6.1.3 It's not a Popularity Contest

A common confusion in the computer society is the (maybe unconscious) distinction between
research programs and commercial products, as also discussed in [Thimbleby, 97]. It is hardly
fair to directly compare attractive commercial program packages developed by large teams of
programmers and given intensive marketing with research programs conducted by single or
few scholars. Impressive looking commercial products may only be superior in limited ways
and they might have specific problems or lack vital functionality, which could prove
interesting areas for closer investigation through research.

So without being blinded by the popularity and impressive appearance of commercial giants
like Frontpage, we ventured the domain of Web authoring without prejudice. As it turned out
we discovered an apparent lack of automation functionality in widely used Web tools. But
eventhough we have produced a prototype of a tool, which handles complex Web systems
significantly better than ordinary WYSIWIG tools, we hold no false illusions for tools of
LAMLs kind gaining any real commercial succes. The substantial knowledge required by a
LAML Web developer, as discussed in the previous subsection, is bound to discourage the
majority of people. But LAML should be able to obtain a reasonable high popularity in
educational environments and at Web minded corporations.

There is no denying the qualities of programming oriented Web authoring, so another
possibility of utilizing some of the explored authoring issues could very reasonable be an
incorporation of automation functionality in a WYSIWIG tool. A possible unification could
utilize LAML like powers to construct site skeleton and page dependencies, while WYSIWIG
editing would later be used to fill in the actual page content.

6.2 Conclusion

Programming oriented Web engineering is definetely a method to be reckoned with. The
automation processes that are so important for large system development are present at a
premium in LAML, which no other known Web tool can rival. The sample LAML
applications we have implemented along with the contributions of Kurt Nermark’ have
clearly shown the potentiel of the programming oriented approach. There is no doubt that

° His entire range of LAML applications may be found at http://www.cs.auc.dk/~normark/laml

87

LAML provides developers with excellent capabilities in areas, where Frontpage and other
widely used Web tools are less adequate.

The spreading of LAML is however deemed to be hampered by its extensive demands to the
user. Only people with a solid background in programming and knowledge of HTML and
CSS will be able to harvest the benefits of LAML, which probably restricts usage to
educational institutes and Web-minded corporations. Later incorporation with WYSIWIG
tools might however open for a broader audience.

But as we stated in the previous section is popularity not the only criteria for success. While
looking at the Web applications made possible to implement in a sensible manner in LAML,
we acknowledge the legitimacy of such an authoring tool. The next chapter will evaluate the
collected work efforts of this report and shortly discuss the future perspectives of the
programming oriented method for developing Web systems.

89

7. Evaluation

Originating from the problems formulated in chapter 3, we engaged in a investigation of three
possible programming paradigms for our authoring language in chapter 4. Later in chapter 5
the design, implementation and usage of the Lisp Abstracted Markup Language was presented
together with explanation and experimentation on the added support for CSS. Finally we put
the whole idea of Programming Oriented Web EngineeRing under scrutiny in chapter 6 by
comparing the most apparent characteristics of LAML with those of widely used Web tools.

In this chapter we start by evaluating the truthfulness of the hypothesises formulated before in
chapter 3. The succeeding section deals with the future perspectives of POWER and LAML,
as we discuss both their possible impact on the Web authoring world and prospects for future
enhancement and refinement. In the final section we conclude on the result of the work
carried out and presented in this report.

7.1 Hypothesises

We devote this section to a confirmation or otherwise of the four hypothesises formulated in
chapter 3. Common for the statements of all four hypothesises is an ambigous nature, which
makes any assumption on their correctness quite subjective. Hypothesises 1, 2 and 4 belong
together, as they share a direct relation with the efficiency and usability of the developed tool.
These three hypothesises should therefore be evaluated according to the impact of the
invented tool.

While lacking scientific methods for obtaining clear and unambigous proof of the merits of
our tool, we must engage in a process of empirical testing under different circumstances. A
thorough empirical evalutation might very well present a long and tiresome task, but we
believe, based on our experiences with using and experimenting with the system, that we have
the ability to access the correctness of the stated hypothesises within an acceptable
probability. This means that the assesments given below of these specific hypothesises are
deducted from the content of chapters 5 and 6.

Regarding hypothesis 3, which focuses on the programming paradigm of the authoring
language, we find an evaluation even harder to give. In order to obtain a meaningful
comparison with other programming paradigms, we would have to experiment with actual
implementations in other paradigms. As such implementations are not available to us, we
limit our evaluation to only comprehend the conclusions of chapter 4 and the workability of
our implemented authoring language.

Hypothesisl1:

Automated tools are needed in order to properly build and maintain large Web
Systems.

90

If we emphatize the word /arge or extend the meaning of the statement to also include
complex Web systems, we regard this hypothesis as confirmed. Some of the examples
portrayed in chapter 4 are of a pretty complex nature and in chapter 5, we established the
inferiority of prevailing Web tools in this area, as some of our developed LAML applications
might not easily be made with other tools. As also concluded in chapter 5 would simpler
pages or page systems gain significantly less from our approach, they might in fact be
developed quicker and easier with other tools. But concerning large or complex Web systems
we have firm proof that some kind of automation is necessary. Summarization of some of the
most apparent advantages would be: Future updating and adjusting may be handled
considerable faster and less error prone, when not relying on manual editing. The availability
of mathemathical content, which may be calculated automatically by the algorithmic
capabilities of programming languages. Time dependent content. Dynamic content through
CGl-scripting. Extraction of data from external files.

The concepts of abstraction and automation is in fact very central to the whole art of
programming, where they present the main advantages in most programmed solution in all
spectres of computer science. The conclusions of our own investigations and these general
programming principles forms the basis for regarding hypothesis 1 as a truism.

Hypothesis2:

Highest level of flexibility is obtained by developing Web page systems with a
programming language.

The complete translation of HTMLs elements ensures that we have the full expressive power
of HTML available. And because the functions representing these basis elements may be
inserted freely in higher abstracted functions, we obtain a very high level of flexibility. Easy
access to both higher level structures and the lowest level functions, together with the problem
free intermingling, provides the developer with a vast number of opportunities. Developers
are not restricted to merely interact with a wizard or some other sense of programmed notion
on top of HTML, which hides the underlying code and thereby limits the developers control
of the implemented structures. We established in chapter 6, that LAML is more flexibel than
any of the other known Web authoring tool. This prompts us to consider hypothesis 2 as
confirmed.

But as was also discussed in chapter 6 is full flexibility not entirely positive for an authoring
tool. Typically there is a trade-off between flexibility and usability/simplicity. Some would
undoubtedly prefer a WYSIWIG environment with cleverly designed wizards for constructing
advanced structures as opposed to needing programming skills and HTML knowledge in
order to utilize full flexibility. We went for flexibility, while sacrificing simple usage in the
process, and as a result we believe that hypothesis 2 is satisfied.

Hypothesis3:

A functional programming language should provide an attractive solution as an
internal language for a markup language.

91

Determining whether the functional paradigm is actually the best suited for the
implementation of an authoring language is made considerable more difficult by the abscence
of implementations of the other relevant paradigms, which could otherwise serve as sources
for direct comparison. Instead we rely on the conclusions made in chapter 4, where the
imperative paradigm was soon dismissed as a serious candidate. Both the object oriented and
the functional paradigm seemed to contain functionality, which could reasonable well portray
markup languages. But different syntactical properties made the functional languages seem
better suited. Our implementation of LAML appears to support this point of view. It is
therefore our belief that this hypothesis is confirmed as well (in the end we only asked for an
attractive solution!), thus an object oriented implementation might prove a close rival.

Hypothesis4:

An integrated authoring language encompassing both HTML and CSS might
deliver additional benefits for the developer.

Again for this hypothesis an evaluation is not too straigthforward. But if we look at CSS for
instance, it's legitimacy is well documented, as we clearly stated in the analysis when
discussing generic coding (i.e. the separate keeping of content and layout information). See
[Coombs, 87] and [CSS, 99] for further conviction. Following this endorsement of CSS, it is
only natural to support it in LAML. At least having HTML and CSS in a similar syntax in
LAML simplifies the developers task. Furthermore did our experiments with the combination
of HTML and CSS yield a positive result. Building larger HTML structures with CSS classes
adhering to some external stylesheet proved an excellent choice, while minor constructions
were occasionally better handled by using inline styles. In fact did this integration of HTML
and CSS resemble the mechanisms employed by XML and it's style language XSL, as we
discussed in chapter 5. But whether any given developer experiences better conditions for
Web system constructing with this integration, as opposed to just writing external stylesheets
on the side (and insert correct inlined CSS statements on their own) is not easily answered
without a larger empirical investigation. Therefore we regard this hypothesis as partially
confirmed.

The hypothesises have mostly been regarded as confirmed, so the idea of programming
oriented Web engineering has proven its worth and we recommend further work in this area.

In the following section we discuss the perspectives of continued use and research of
POWER.

7.2 Future Perspectives of POWER

The sample LAML applications described in chapter 5 and the reflections on POWER
presented in chapter 6 all support the justification of programming oriented Web
development. We concluded in chapter 6, that LAML or similar Web tools are unlikely to
ever acquire any real commercial success, because of the user's need to have programming
abilities. But eventhough our product would never be accepted by the majority of people, it
still deserves its place, because ot its apparent advantages. Certain aspects of LAML may
however still be enhanced and refined in order to obtain a more mature product. A constant

92

improvement of our authoring language would of course strengthen the Web developers
impression of LAML as a genuine possibility for a Web authoring tool.

Overall versatility would increase with the construction of the basic language elements by
means of an automatically parsing of the target languages SGML compliant Document Type
Definition. Directly building the LAML basis for a given language with both available
elements, attributes and attribute types according to the language definiton in question ensures
faster and less error prone translations, as well as easy adaption for future updates. Different
versions of LAML may also be constructed in order to accomodate other languages than
HTML. A future connection with the new Web language XML could be an interesting
possibility prospering from this. Kurt Nermark have done some experimentation on this
approach and have so far automatically created a working version of LAML based on the
DTD of a late version of HTML'?,

Another area worthy of more intensive work is the creation of dynamic content. The
implementation work carried out simultaneous with writing this report have neglected the area
of dynamically created pages. But the possibilities for creating dynamic content through CGI-
scripting exist in LAML, as formerly stated in section 5.5. Also concerning dynamic pages
have Kurt Nermark made the initial explorations and he now uses CGl-scripting through
LAML extensively, for instance in his distance education system and with his very matured
course ware system''. The steps required for using LAML as a CGl-script language was
previously explained in chapter 5.5, but additionally should LAML be expanded with a CGI-
library, which conveniently offers the developer the most used mechanisms for including
dynamic content in a Web system. Prefabricated functionality for adding the most frequently
used dynamic structures, such as search fields, order forms and mail histories, to your Web
site might also be developed for easy adaption to any LAML application.

Future work may also include the building of a huge library set with document styles for
many frequently used application types, which might invitate in a few more Web developers.
By asking the developer to only interact with the interface of a document styles we obtain an
imitation of the generation systems described in section 2.2.3, e.g. the HTML Course Creator
and ATML. Users with less or no programming experience might be able to construct Web
systems with predefined document styles, but of course they have lost the flexibility and
possibility for major alterations of the end product.

7.3 Conclusion

The four proposed hypothesises were to a certain extent all confirmed. Hypothesis 1 were
proven by some of the complex applications portrayed in chapter 5, which according to the
conclusions put forward in chapter 6 would present a overwhelming task to implement in
WYSIWIGs or other tools. Specific applications may be handled very effective with dynamic
languages acting as a front-end for a database, but LAML also cover this category in
acceptable fashion along with other application types, where databases offers little help. Very

' Readers may follow this work on Kurts LAML page at http://www.cs.auc.dk/~normark/laml
""" Again consult http://www.cs.auc.dk/~normark/laml for details

93

predictable was also hypothesis 2 confirmed, as the flexibility level is at its highest on the
lowest level of human interaction. We understood there existed a trade-off between flexibility
and usability and we went for a tool with a high degree of flexibility on the account of losing
Web developers without a certain level of programming knowledge. Hypothesis 3 was also
confirmed, eventhough we had no tools of the other relevant paradigms available for a direct
comparison.

Relying on the credibility of the developed LAML language and our investigation in chapter 4
we however felt in a position to confirm it as well. The relatively few experiments carried out
with the incorporated CSS support allowed us to only partly acknowledge hypothesis 4. It
makes sense to extend LAML with CSS, but whether additional benefits is obtained is not so
easily answered. But the performed experiments provided some encouraging results of the
combined powers of HTML and CSS. With the overall confirmation of the stated
hypothesises and with the conclusions of chapter 6 in mind we believe, that there is without a
doubt a place for the programming oriented idea of Web authoring and languages like LAML.

Literature

[Bichler, 96]

[Bosak, 97]

[CSS, 99]

[Coombs, 87]

[Curtis, 96]

[Drakos, 93]

[Drakos, 94]

[Hellegaard, 99]

[Heinemann, 98]

[HTML, 98]

95

Martin Bichler and Stefan Nusser
"Developing Structured WWW-Sites with W3DT’
Proceedings of AACE WebNet 96, 1996

Jon Bosak

XML, Java, and the future of the Web’
http://sunsite.unc.edu/pub/sun-
info/standards/xml/why/xmlapps.html, 1997

World Wide Web Consortium
‘Cascading Style Sheets, level 1’
http://www.w3.0rg/TR/1999/REC-CSS1199990111

James H. Coombs, Allen H. Renear, and Steven J. DeRose

"Markup Systems and the Future of Scholarly text Processing’
Communications of ACM 30, pp. 933-947, 1987

Curtis A. Carver and Clark Ray
"Automating Hypermedia Course Creation and Maintenance’
Proceedings of AACE WebNet 96, 1996

Nikos Drakos
"Text to Hypertext Conversion with LaTeX2HTML’
Baskerville, 3(2), pp. 13-15, 1993

Nikos Drakos

"’From Text to Hypertext: A Post-Hoc Rationalisation of
LaTeX2HTML’

Computer Networks and ISDN Systems, 27(2), pp. 215-224, 1994

Carsten Hellegaard
"WAT - Web Application Tools’
Department of Computer Science, Aalborg University, 1999

Charles Heinemann
"Let's Go to the Tape: Q&A with a Microsoft XML Guru’
http://www.microsoft.com/xml/articles/xml051198.asp, 1998

World Wide Web Consortium
"HTML 4.0 Specification’
http://www.w3.0rg/TR/1998/REC-html40-19980424

96

[Johnson, 96]

[Kesseler, 95]

1995

[Lennon, 96]

[Mathiassen, 93]

[MS, 98]

[Nermark, 99]

[Nermark, 99a]

[Owen, 97]

[POWER, 99]

[Rosenberg, 98]

W. Lewis Johnson, Tyler Blake and Erin Shaw
"Automated Management and Delivery of Distance Courseware’
Proceedings of AACE WebNet *96, 1996

Marcus Kesseler
"A Schema Based Apfroach to HTML Authoring’
Proceedings of the 4™ International World Wide Web Conference,

Jennifer Lennon and Herman Maurer
‘Aspects of Large World Wide Web Systems’
Proceedings of AACE WebNet *96, 1996

Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen and
Jan Stage

'‘Objektorienteret Analyse’
Forlaget Marko Aps, 1993

Microsoft Corporation
"XML: Enabling Next-Generation Web Applications’
http://www.microsoft.com/xml/articles/xmlwp2.asp, 1998

Kurt Nermark

"Programming World Wide Web Pages in Scheme’
http://www.cs.auc.dk/~normark/laml/papers/
programming www_scheme.ps, 1999

Kurt Nermark
"Using Lisp as a Markup Language The LAML Approach’
http://www.cs.auc.dk/~normark/laml/papers/lugm laml.ps, 1999

Charles B. Owen, Fillia Makedon, Glen Frank and Micael Kenyon
"ASML: Automatic Site Markup Language 1.03°

Technical Report, Dartmouth College, Computer Science, Number
TR97-308, 1997

Carsten Hellegaard
'The POWER page'
htttp://www.cs.auc.dk/~konge/POWER

Jim Rosenberg

"Locus Looks at the Turing Play: Hypertextuality vs. Full
Programmability’

Proceedings of the ninth ACM conference on Hypertext and
Hypermedia: links, objects, time and structure in hypermedia
systems, pp. 152-160, 1998

97

[Springer, 89]

[Thimbleby, 97]

[XML, 98]

George Springer and Daniel P.Friedman
‘Scheme and the Art of Programming’
The MIT Press, 1989

Harold Thimbleby

‘Gentler: a tool for systematic web authoring’

International Journal of Human-Computer Studies, 47(1), pp. 139-
168, 1997

World Wide Web Consortium
"Extensible Markup Language (XML) 1.0 Specification’
http://www.w3.org/TR/REC-xml, 1998

Filnavn: main.doc

Bibliotek: D:\Projekt\Rapport\Samlet
Skabelon: D:\Microsoft Office\Skabeloner\Normal.dot
Titel: Table of Contents
Emne:
Forfatter: Carsten Hellegaard
Neogleord:
Kommentarer:
Oprettelsesdato: 31-01-00 15:57
Versionsnummer: 40
Senest gemt: 03-07-00 23:36
Senest gemt af: Carsten Hellegaard
Redigeringstid: 162 minutter
Senest udskrevet: 03-07-00 23:46
Ved seneste fulde udskrift

Sider: 97

Ord: 34.785 (ca.)

Tegn: 198.276 (ca.)

