
MIDI Programming in Scheme

Supported by an Emacs Environment

Kurt Nørmark
Department of Computer Science

Aalborg University
Denmark

normark@cs.aau.dk

ABSTRACT
A Scheme representation of Standard MIDI Files is pro-
posed. The Scheme expressions are defined and constrained
by an XML-language, which in the starting point is inspired
by a MIDI XML event language made by the MIDI Manu-
factures Association. The representation of Standard MIDI
Files in Scheme makes it possible to carry out systematic
modifications and transformations of MIDI contents with
use of pure functional programming. Side by side with
the XML-inspired MIDI language, the paper describes an
Emacs-based, textual programming environment that sup-
ports the MIDI programming process. The programming
environment also supports a variety of interactive features
- similar to MIDI sequencers - but restricted to a textual
representation of the music. The main contributions of the
work are considered to be (1) An accumulated MIDI func-
tion library, which can transform MIDI files in many non-
trivial ways; (2) A proposed working process alternating be-
tween creative mode and programmatic editing mode within
a MIDI programming environment; and (3) A textual MIDI
programming environment with embedded support of many
interactive, MIDI-related functionalities.

Categories and Subject Descriptors
D.1.1 [Applicative (Functional) Programming]: Lisp,
Scheme; H.5.5 [Sound and Music Computing]: Systems;
I.7.2 [Document Preparation]: Markup Languages

1. INTRODUCTION
This paper is about MIDI programming in the functional
programming paradigm [11]. More specifically, MIDI pro-
grams are expressed in Scheme [12], which is a language
in the Lisp [19] family. As such, the paper deals with a
programmatic approach to creation and modification of se-
quences of MIDI messages via use of pure functions. The
paper specializes to a situation where a MIDI sequence is
represented as a piece of program - rendered from a MIDI
file, or authored in the Scheme programming language. The

practical handling of MIDI programs in Scheme is supported
by a comprehensive MIDI programming environment, pro-
grammed in Emacs Lisp, for use in the GNU Emacs text
editor [18]. The proposed music representation language is
conceptually close to the MIDI language. The MIDI music
language is defined and constrained as an XML language [22]
which is brought into the programming language via LAML
[14] (a software package programmed by the author of this
paper).

There exists a very large and diverse amount of software for
handling of music. Each such piece of software is envisioned
to support a musician in some specific way, and in a specific
application context. The application context of the software
described in this paper is the following:

The music is basically created and captured via
a MIDI instrument (a keyboard). The music we
have in mind is mainly traditional, western pop-
ular music. The MIDI programming facilities
are supposed to facilitate systematic modification
of the results recorded on the MIDI instrument.
Typically, a song is transferred back and forth
from the keyboard to the textual programming en-
vironment several times before it is finished.

The software described in this paper is geared towards pro-
grammatic manipulation of Standard MIDI files (format zero
and one). It seems to be the case that no fixed set of existing
tools is sufficient for editing of MIDI files. In other words,
there seems to be an endless need of modifications of MIDI
contents, each of which calls for a new piece of effectuating
program. Our work is based on a general-purpose, high-
level programming language which represents and accesses
the MIDI information in a flexible way. Our approach is flex-
ible enough for relatively easy and smooth development of
the necessary transformation functions, and efficient enough
for handling of real music.

The paper contributes in the following areas:

1. Representation of standard MIDI files as expressions
in a functional programming language, as constrained
and defined by an XML language (by way of an XML
Document Type Definition - a DTD).

2. Programmatic augmentation of MIDI files for the sake

1

of doing systematic transformations of MIDI event se-
quences.

3. Programmatic creation of small MIDI pieces which can
be added as constituents of more complex MIDI files.

4. A textual, operational environment which supports the
MIDI programming process. In addition, the environ-
ment supports interactive editing operations on the
textually represented MIDI events.

A paper like this can be written from a computer science
perspective, from a music perspective, or from a combined
perspective. This paper is angled from the area of computer
science (especially from interests in functional programming
in Lisp languages). The paper describes the work - and the
results - of uniting a professional approach to programming
with a leisure approach to production of music.

2. BACKGROUND
In this section we will - in a concise way - provide back-
ground information on technologies and languages that are
important to our work.

2.1 MIDI
MIDI1 (Musical Instrument Digital Interface) is a protocol
for exchange of musical events. MIDI emphasizes the se-
quencing of messages - not the audio contents as such. The
most central messages are NoteOn (characterized by note
value, the assigned channel, and a velocity) and NoteOff

which, respectively, denote the start and the end of a note.
In addition, a variety of other messages (such as messages
for selection of instruments, key pressure, volume, panning,
and pitch bend) control different aspects of the music.

The MIDI contents - a piece of music - can be represented
in a compact, binary format called standard midi files. A
format 0 standard midi file consists of a header and a single
track. A format 1 standard midi file may have more than
one track. Each message in a standard midi file has a time
stamp which denotes the delta time relative to the previous
message in the track (or to the beginning of the track if no
previous message exists).

In this work, we have developed an alternative representa-
tion of standard MIDI files in terms of expressions from a
functional programming language, and closely related to a
MIDI XML language.

2.2 MIDI Programming
The term“MIDI Programming” is used with several different
meanings. In a loose sense, the term is used for activities
that manipulate the individual parameters of MIDI mes-
sages (as a contrast to manipulating renderings at a higher
level of abstraction). In a more strict interpretation, the

1The official documentation of the MIDI protocol and
Standard MIDI Files comes from the MIDI Manufac-
turers Organization, www.midi.org. Unfortunately, the
standard documents are not freely available on the in-
ternet, and they are distributed in print only. Fortu-
nately, there exists excellent alternative descriptions of
MIDI on the internet, such as the resources located at
http://home.roadrunner.com/∼jgglatt/.

term is used for writing programs, with use of a program-
ming language, which manipulate a collection of MIDI mes-
sages. In this paper we use the latter interpretation.

We identify two different working modes when a musician
deals with a piece of MIDI music. The first of these is cre-
ative mode, where the musician plays a piece of music using
an electronic instrument. The performance of the musician
is captured as a (long) linear sequence of MIDI messages.
The other mode is editing mode where the musician modi-
fies or creates single or multiple MIDI messages in a MIDI
Sequencing Tool - on the instrument or on a computer. In
principle, any piece of music can be created in editing mode,
but the process is foreign to most musicians, and the out-
come tends to be monotonous and “machine-like”.

In editing mode it is possible to create or modify MIDI mes-
sages individually. In some situations this is sufficient, for
instance for corrections of minor playing errors. In other
situations, it is very difficult to reach the desired result by
means of editing of individual MIDI messages. In order to
obtain the desired modifications it is typically necessary to
create or modify hundreds or thousands of messages. Need-
less to say, it is almost impossible to carry out such a compli-
cated process manually without loosing control, or without
ruining the music.

As a consequence of these observations it is desirable that
the editing mode supports creation and modification at a
more coarse grained level than that of the individual MIDI
messages. A given MIDI sequencer may (or may not) sup-
port a fixed number of such editing tasks. The most pow-
erful and complete solution in editing mode is, however, to
allow for systematic manipulation of MIDI contents via a
full-fledged (and Turing complete) programming language.
In such a setup, it is possible to prescribe any systematic
modification of a piece of music via a piece of program, which
is activated on the MIDI contents. This will be the meaning
of MIDI programming in this paper.

In systems such as Haskore [10] the source of the music is
a Haskell expression at a relatively high abstraction level.
When the expression is executed, an equivalent low-level rep-
resentation, such as a MIDI sequence, is derived. When an
editing need arises, the high-level representation of the music
is modified. As already mentioned in the introduction, the
work proposed in this paper supports another working pro-
cess. The music is, in the starting point, captured (recorded)
as a sequence of MIDI messages using an electronic MIDI
instrument in creative mode. The MIDI program manipu-
lates a representation of the music, which is relative close
to MIDI level (in editing mode, at a computer external to
the MIDI instrument). Typically, the music is passed back
and forth between the instrument and the programming en-
vironment. This working process prevents solutions which
raises the level of abstraction to a level much higher than
that of MIDI. The intended working process is illustrated in
Figure 1.

2.3 Functional Programming and Scheme
A functional program consists of an expression which can be
evaluated to a value. The evaluation of the expression has
no effect on any variable, and it has no side-effects (such as

2

Midi

Programming

Environment

MIDI File

MIDI File

Expressions at

MIDI-level affected

by programmed

functions

Figure 1: An iterative working process alternating between
creative mode at the left and editing mode at the right.

output to the screen, or to files). Functions - the primary
abstractions - are pure mappings of input to output. As
we will see in Section 2.2 of this paper, we will represent a
song as a single expression. The value of the expression can
be thought of as a sequence of MIDI messages. (In reality
the value of the expression is an intermediate tree structure,
from which the MIDI messages can be derived). Functions
may transform one or more MIDI messages to sequences of
other MIDI messages - without affecting or mutating the
input messages as such. Iteration is governed by recursive
processing of composite data structures (typically lists). Re-
cursive patterns, such as mapping and filtering functions, are
captured via higher-order functions - functions which accept
functions as parameters and/or return functions as results.

Functional programming stands as a contrast to imperative
programming, which is characterized by assignments to vari-
ables, side-effects, use of iterative control structures, and
procedures that mutate the state of the program. Func-
tional programming is usually considered as programming at
a higher level, as more abstract, and mathematically more
clean than imperative programming.

Scheme [12] - a Lisp dialect - is a relatively small, power-
ful, and elegant language for list processing. Syntactically,
a Scheme program is a nested and fully parenthesized list
structure. In addition, lists are the primary data structure
supported by Scheme. Besides a strong support of func-
tional programming, Scheme also supports imperative pro-
gramming, and it is strong enough to embrace some of the
key ideas in object-oriented programming.

2.4 XML and LAML
XML [22] is a meta language, and as such it can be used
to establish new languages that share a common “HTML-
like syntactical basis”. XML is the meta language behind
important WEB languages such as XHTML, SVG, and XSL.
The grammar of an XML language (described in either a
DTD or an XML Schema) prescribes a number of elements,
and a number of attributes per element.

It is possible to rephrase many existing languages as XML
languages. MIDI is no exception. The MIDI Manufacturers

Association have defined XML languages2 for various as-
pects of the MIDI standard, of which the MIDI XML event
language has been used as the starting point of our work.
MusicXML [6] is another XML format for music, primarily
intended as an interchange format between computer music
tools. Figure 2 shows a small excerpt of some MIDI mes-
sages represented in a MIDI XML language.

LAML [14] offers a systematic way to embed an XML lan-
guage in Scheme. Each element of the XML language is
mapped to a function in Scheme. With use of LAML, it is
natural to integrate the declarative and descriptive aspects
of XML with the processing power of a full-fledged, func-
tional programming language. Thus, with use of LAML,
the expressiveness of the programming language is available
at any point in the XML document, and at any time of the
development process that leads to the final document. In
conventional XML documents, such power must be brought
in from the outside via tools that process the XML docu-
ment. By way of LAML, an XML language is represented as
a library of mirror functions in Scheme, and an XML doc-
ument is represented as a Scheme expression which applies
these functions. In this setup, the processing power comes
from inside the document itself. The mirror functions gen-
erate an internal representation of the XML document (an
abstract syntax tree). In addition, the mirror function can
validate the XML document relative to the grammar (DTD)
when they are called.

LAML has been used to handle and support several main-
stream XML languages in Scheme. This includes XHTML
and SVG [16]. In addition, a number of new XML languages
have been defined and turned into Scheme libraries, for in-
stance the lecture note language called LENO [15]. Figure 3
shows the LAML representation of the XML fragment from
Figure 2. This paper describes how Scheme and LAML are
used for transformation and editing of MIDI files via pro-
grammatic solutions.

3. MIDI PROGRAMMING IN SCHEME
In this section we will describe how we support a functional
approach to MIDI programming in Scheme. Together with
Section 4 this is the main part of the paper.

A MIDI file can be converted to a MIDI LAML file. This
conversion consists of a parsing process of the binary MIDI
data, followed by a transformation process to either absolute
time or delta time mode (see Section 3.1 below). Figure
3 shows a delta time MIDI LAML file with a sequence of
notes from C3 to C4. A MIDI LAML file is represented
as a Scheme expression - and as such it is a (functional)
program. Most MIDI LAML files, which represent a real
piece of music, are much longer (typically 1 MB of text,
corresponding to a few thousand MIDI events). Most of the
attributes (such as note, channel, velocity) have direct
MIDI counterparts.

The StandardMidiFile form is the root of a single Scheme
expression. The value of this expression - an abstract syn-
tax tree - represents the song as such. The abstract syntax
tree can be rendered in various ways by the MIDI program-

2http://www.midi.org/dtds/midi xml.php

3

<StandardMidiFile>
<MidiHeader format="0" numberOfTracks="1" pulsesPerQuarterNote="480" />
<MidiTrack>

<ControlChange deltaTime="0" channel="1" control="0" value="0" />
<ControlChange deltaTime="0" channel="1" control="32" value="0" />
<ProgramChange deltaTime="0" channel="1" number="1" />
<Meta deltaTime="0" type="81"> 0B 71 B0</Meta>
<NoteOn deltaTime="480" channel="1" note="60" velocity="88" duration="202" />
<NoteOn deltaTime="119" channel="1" note="61" velocity="114" duration="292" />
<NoteOn deltaTime="131" channel="1" note="62" velocity="87" duration="201" />
<NoteOn deltaTime="119" channel="1" note="63" velocity="114" duration="290" />
<NoteOn deltaTime="131" channel="1" note="64" velocity="114" duration="290" />
<NoteOn deltaTime="131" channel="1" note="65" velocity="87" duration="199" />
<NoteOn deltaTime="119" channel="1" note="66" velocity="114" duration="289" />
<NoteOn deltaTime="130" channel="1" note="67" velocity="113" duration="288" />
<NoteOn deltaTime="130" channel="1" note="68" velocity="86" duration="197" />
<NoteOn deltaTime="118" channel="1" note="69" velocity="86" duration="196" />
<NoteOn deltaTime="118" channel="1" note="70" velocity="86" duration="196" />
<NoteOn deltaTime="118" channel="1" note="71" velocity="85" duration="195" />
<NoteOn deltaTime="118" channel="1" note="72" velocity="85" duration="194" />
<Meta deltaTime="1920" type="0"></Meta>

</MidiTrack>
</StandardMidiFile>

Figure 2: A Standard Midi file represented in a MIDI XML language.

(StandardMidiFile
(MidiHeader ’format "0" ’numberOfTracks "1" ’pulsesPerQuarterNote "480" ’mode "deltaTime")
(MidiTrack

(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select MSB" ’channel "1" ’control "0" ’value "0")
(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select LSB" ’channel "1" ’control "32" ’value "0")
(ProgramChange ’deltaTime "0" ’info "0:0:0 **GM Piano: Bright Acoustic Piano" ’channel "1" ’number "1")
(Meta ’deltaTime "0" ’info "0:0:0 Tempo: 80 BPM." ’type "81" "0B 71 B0")
(NoteOn ’deltaTime "480" ’info "0:1:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "202")
(NoteOn ’deltaTime "119" ’info "0:1:119 C#3" ’channel "1" ’note "61" ’velocity "114" ’duration "292")
(NoteOn ’deltaTime "131" ’info "0:1:250 D3" ’channel "1" ’note "62" ’velocity "87" ’duration "201")
(NoteOn ’deltaTime "119" ’info "0:1:369 D#3" ’channel "1" ’note "63" ’velocity "114" ’duration "290")
(NoteOn ’deltaTime "131" ’info "0:2:20 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "290")
(NoteOn ’deltaTime "131" ’info "0:2:151 F3" ’channel "1" ’note "65" ’velocity "87" ’duration "199")
(NoteOn ’deltaTime "119" ’info "0:2:270 F#3" ’channel "1" ’note "66" ’velocity "114" ’duration "289")
(NoteOn ’deltaTime "130" ’info "0:2:400 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "288")
(NoteOn ’deltaTime "130" ’info "0:3:50 G#3" ’channel "1" ’note "68" ’velocity "86" ’duration "197")
(NoteOn ’deltaTime "118" ’info "0:3:168 A3" ’channel "1" ’note "69" ’velocity "86" ’duration "196")
(NoteOn ’deltaTime "118" ’info "0:3:286 A#3" ’channel "1" ’note "70" ’velocity "86" ’duration "196")
(NoteOn ’deltaTime "118" ’info "0:3:404 B3" ’channel "1" ’note "71" ’velocity "85" ’duration "195")
(NoteOn ’deltaTime "118" ’info "1:0:42 C4" ’channel "1" ’note "72" ’velocity "85" ’duration "194")
(Meta ’deltaTime "1920" ’info "2:0:42 Sequence number" ’type "0")

)
)

Figure 3: A Standard MIDI file represented as a Scheme and LAML expression. The info attributes (presentation only)
are intended to aid the human understanding of individual MIDI messages. In this example, the info attributes decode and
explain the deltaTime and note attributes.

ming environment (see Section 4), for instance as a MIDI
file which will be played upon evaluation of the expression.
A so-called action procedure of the top-level StandardMidi-
File form grasps the AST, and delivers it to some kind of
additional processing. The default action (under control of
the MIDI programming environment) is to play the music.

3.1 Time Modes
In Standard MIDI files, each event is timed relative to the
previous event (or to the start of the track if the event is
the first in a sequence). This timing mode, called delta-
Time, is supported in MIDI LAML. In addition we support

an absTime mode, where each event is timed relative to the
beginning of a song. The mode is established as an attribute
in the MidiHeader. In both modes, a NoteOn event is im-
plicitly paired with the corresponding MIDI NoteOff event
by introduction of an XML duration attribute.

In absTime mode it is possible to insert a sequence of delta-
Timed midi events, which will be timed relative to the pre-
vious event in absTime mode. AbsTime phrases are good
for entire and completed songs, which under normal circum-
stances should keep their rhythmic structure. DeltaTimed
phrases are useful for smaller pieces of music (phrases) which

4

eventually should be inserted into, or derived to, a song in
absTime mode. The operational environment (see Section
4) allows for smooth shifting between the two time modes.

A normalized MIDI LAML file is expressed entirely with use
of the XML mirror functions of the MIDI XML language. In
absTime mode, a normalized MIDI LAML file additionally
maintains the invariant that the messages in a MIDI track
have non-decreasing time values. The program in Figure 3
is normalized; The programs in the Figure 4 and Figure 6
are not, because they call (non-mirror) functions from the
MIDI function library.

3.2 The Function Library
During the last couple of years we have developed a library
of Scheme functions which implement many useful trans-
formations of MIDI music. But as noticed already in the
introduction, new needs seem to appear over and over, and
therefore it is important that the system allows for easy
programming of new transformations. The most useful and
versatile of such functions are organized and documented in
the MIDI LAML library for convenient reuse.

The functions in the existing MIDI LAML library can be
categorized (non-exhaustively) in the following way:

1. MIDI message list functions which transform a list of
MIDI messages.

2. MIDI message factory functions that generate a single
midi message (or a small, constant number of MIDI
messages).

3. Functions that address and transform given bars or
given named sections of a MIDL LAML file.

4. Functions that transform an entire standard MIDI file.

5. Predicates which identify a certain subset of MIDI
messages.

6. Functions that extract attributes of a single MIDI event.

7. Channel-related functions that copy, join, or delete cer-
tain messages that belong to a given channel.

The MIDI message list functions of category 1 are the“bread
and butter functions” of the library. We illustrate applica-
tions of two such functions in Figure 4, namely quantize and
scale-attribute. The quantize function regularizes the
value of the deltaTime attribute to 16’th notes (correspond-
ing to values such as 0, 120, 240, 360, 480, etc. for songs with
the resolution of 480 pulses per quarter note). The scale-

attribute function, as applied in Figure 4, scales the val-
ues of the velocity attributes with a function constructed
by make-scale-function-by-xy-points. The scaling func-
tion, shown in Figure 5, scales the velocities of the affected
NoteOn messages from (113, 86, 86, 86, 85) to (102, 69,
53, 37, 21). The domain of all scaling functions is the real
numbers in the interval [0...1]. Both quantize and scale-

attribute return a list of transformed notes, which together
with other contextual notes are passed as parameters to the
MidiTrack function. By way of the LAML parameter pass-
ing rules [14] these lists are (recursively) spliced together to a

single flat list. The automatic “flattening”of XML elements,
done by LAML is a major, is a major practical asset.

In Figure 4 the function quantize is applied on one region
of MIDI content, say r1, and the function scale-attribute

is applied on another region, say r2. In figure 4 the regions
r1 and r2 are disjoint. A subtle overlapping regions problem
occurs if the regions r1 and r2 overlaps - without one of
them being included in the other. It would - in general - be
awkward to program a functional solution to this problem.
We outline an “environmental solution”when we discuss the
MIDI LAML stack in Section 4.

On some occasions, the value of an attribute in one MIDI
message should depend on attributes in contextual messages.
As an example, we may want one NoteOn message to last (via
adjustment of the duration attribute) until some other spe-
cific NoteOn message starts. In simulating guitar playing, we
may want the sound generated from touching a given string
to last until the string is touched again. Such contextual
dependencies must necessarily by resolved in a two-phased
evaluation process, because the actual evaluation order in a
functional program execution is unknown. In the first phase,
the entire abstract syntax tree must be established, and in
the second phase the missing attributes must be calculated
based on some contextual tree traversal.

In LAML, one or more missing attributes (or content ele-
ments) can be represented by a so-called delayed procedural
content item. A delayed procedural content item is a func-
tion, which is stored as part of the AST, and which contains
an expression that calculates the context-dependent infor-
mation from given parameters. The function is called au-
tomatically in a second evaluation phase. Upon activation
of the function, the nearest enclosing AST node and the
AST document root node are passed as actual parameters.
The function is supposed to return a list of attribute/value
pairs. Figure 6 illustrates the idea by a simple concrete
example. The expression (duration-to-next d) returns a
function, which measures the duration to the next similar
NoteOn message, or d in case no such message exists. The

1

1

0.80.8

0.4

0.25

Figure 5: The scaling function used in Figure 4. It is
produced by the expression (make-scale-function-by-xy-

points (from-percent-points ’((0 100) (40 80) (100

25)))).

5

(StandardMidiFile
(MidiHeader ’format "0" ’numberOfTracks "1" ’pulsesPerQuarterNote "480" ’mode "deltaTime")
(MidiTrack

(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select MSB" ’channel "1" ’control "0" ’value "0")
(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select LSB" ’channel "1" ’control "32" ’value "0")
(ProgramChange ’deltaTime "0" ’info "0:0:0 **GM Piano: Bright Acoustic Piano" ’channel "1" ’number "1")
(Meta ’deltaTime "0" ’info "0:0:0 Tempo 80 BPM." ’type "81" "0B 71 B0")
(NoteOn ’deltaTime "480" ’info "0:1:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "202")
(quantize 1 16 480
(NoteOn ’deltaTime "119" ’info "0:1:119 C#3" ’channel "1" ’note "61" ’velocity "114" ’duration "292") ; r1:
(NoteOn ’deltaTime "131" ’info "0:1:250 D3" ’channel "1" ’note "62" ’velocity "87" ’duration "201")
(NoteOn ’deltaTime "119" ’info "0:1:369 D#3" ’channel "1" ’note "63" ’velocity "114" ’duration "290")
(NoteOn ’deltaTime "131" ’info "0:2:20 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "290")
(NoteOn ’deltaTime "131" ’info "0:2:151 F3" ’channel "1" ’note "65" ’velocity "87" ’duration "199")

)
(NoteOn ’deltaTime "119" ’info "0:2:270 F#3" ’channel "1" ’note "66" ’velocity "114" ’duration "289")
(scale-attribute ’velocity
(make-scale-function-by-xy-points (from-percent-points ’((0 100) (40 80) (100 25))))
(NoteOn ’deltaTime "130" ’info "0:2:400 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "288") ; r2:
(NoteOn ’deltaTime "130" ’info "0:3:50 G#3" ’channel "1" ’note "68" ’velocity "86" ’duration "197")
(NoteOn ’deltaTime "118" ’info "0:3:168 A3" ’channel "1" ’note "69" ’velocity "86" ’duration "196")
(NoteOn ’deltaTime "118" ’info "0:3:286 A#3" ’channel "1" ’note "70" ’velocity "86" ’duration "196")
(NoteOn ’deltaTime "118" ’info "0:3:404 B3" ’channel "1" ’note "71" ’velocity "85" ’duration "195")

)
(NoteOn ’deltaTime "118" ’info "1:0:42 C4" ’channel "1" ’note "72" ’velocity "85" ’duration "194")
(Meta ’deltaTime "1920" ’info "2:0:42 Sequence number" ’type "0")

)
)

Figure 4: Sample use of two MIDI message lists functions, quantize and scale-attribute, on two disjoint regions (r1 and
r2) of MIDI messages.

function duration-to-next is part of the MIDI LAML li-
brary.

3.3 Typical Tasks
The previous section described technical aspects of the ex-
isting function library. In this section we will enumerate a
number of typical musical transformation tasks that we have
carried out by use of functions from the library.

1. Quantification or randomization of notes to/from stan-
dard units with the purpose of either constraining or
loosening of the timing of a piece of music.

2. Systematic modification of a selected MIDI event at-
tribute. This may, for instance, be stretching or dis-
placing the time attributes, or scaling of the velocity
attribute. Both scaling by constant factors, and scal-
ing by use of scaling functions (such as shown in Figure
5) are supported.

3. Joining events in two channels to a single channel,
or (more challenging), splitting the events of a single
channels to two channels. The channel splitting can
be controlled by a predicate, which may be allowed to
exercise the context of a candidate MIDI message.

4. Generation of pitch bend change lists (a list of Pitch-
BendChange MIDI messages) from a scaling function
with a range of [-1 .. 1].

5. Addition of drum fills. The drum fills are added by
substituting designated bars in given channels (con-
taining the ordinary drum phrase) with MIDI phrases

that interrupts or breaks the ordinary drum rhythm.
It may be tricky to arrange for such variations inter-
actively while playing. It is even more difficult to add
them by simple, interactive editing of the MIDI event
list.

6. Automatic introduction of markers (see Section 3.4)
based on an analysis of a song. The analysis may be
based on the density of NoteOn messages in a given
(and fixed) period of time.

Some of the tasks mentioned above are widely supported by
hardware or software sequencers. Most of the tasks, how-
ever, are so specialized that it only is realistic to support
them through a piece of program, written in a full-fledged
programming language. This observation is the raison d’etre
of the MIDI LAML system.

3.4 Imposing Structure on MIDI Contents
In contrast to most hand-written Scheme programs, a MIDI
LAML program is poor with respect to structure. A long
sequence of MIDI event is in the starting point automatically
turned into a long list of XML elements of a MIDI LAML
program. The introduction of a better structure is a key
- and in many cases a prerequisite - to making interesting
and useful programmatic changes to a song. Without such a
structure it is difficult to navigate the song, and it is difficult
to identify the MIDI events which we want to transform.
The following structuring mechanisms are provided for MIDI
LAML:

• Use of MIDI format 1, which divides the MIDI contents

6

(StandardMidiFile
(MidiHeader ’format "0" ’numberOfTracks "1" ’pulsesPerQuarterNote "480" ’mode "deltaTime")
(MidiTrack

(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select MSB" ’channel "1" ’control "0" ’value "0")
(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select LSB" ’channel "1" ’control "32" ’value "0")
(ProgramChange ’deltaTime "0" ’info "0:0:0 **GM Piano: Bright Acoustic Piano" ’channel "1" ’number "1")
(Meta ’deltaTime "0" ’info "0:0:0 Tempo 20 BPM." ’type "81" "2D C6 C0")
(NoteOn ’deltaTime "480" ’info "0:1:0 C3" ’channel "1" ’note "60" ’velocity "88" (duration-to-next 30))
(NoteOn ’deltaTime "120" ’info "0:1:120 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "30")
(NoteOn ’deltaTime "120" ’info "0:1:240 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "30")
(NoteOn ’deltaTime "120" ’info "0:1:360 C3" ’channel "1" ’note "60" ’velocity "88" (duration-to-next 30))
(NoteOn ’deltaTime "120" ’info "0:2:0 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "30")
(NoteOn ’deltaTime "120" ’info "0:2:120 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "30")
(NoteOn ’deltaTime "120" ’info "0:2:240 C3" ’channel "1" ’note "60" ’velocity "88" (duration-to-next 30))
(NoteOn ’deltaTime "120" ’info "0:2:360 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "30")
(NoteOn ’deltaTime "120" ’info "0:3:0 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "30")
(Meta ’deltaTime "1920" ’info "1:3:0 Sequence number" ’type "0")

)
)

Figure 6: A few C3-E3-G3 notes, where all C3 notes are requested to play until the next C3 note (or 30 ticks if no C3
follows).”

into tracks.

• Use of the delimitations of bars and beats in the MIDI
contents.

• Introduction of markers (represented as meta events),
and, by means of these, named sections of the MIDI
contents.

The bar structure is visualized by the info attributes, which
can be seen in Figures 3, 4, and 6. In addition, the envi-
ronment makes it possible to visualize the bars explicitly
in the source program by means of distinguished program
comments, called bar comments, see Figure 7.

The use of Meta events allows us to mark, and to name con-
stituents of a song, be it parts (such as A and B parts of
a song), verses, or song lines. This is very useful, because
many transformations address such substructures of a song.
The programming environment supports a marker browser,
which provides an overview of a MIDI LAML song. In addi-
tion, the environment prescribes a specific technique for the
introducing and inserting markers into a song. In Section 4
we will describe how this is accomplished.

4. A MIDI ENVIRONMENT
In this section we will describe the practical use of the MIDI
LAML language in a MIDI Programming Environment. The
environment includes a number of interactive features which
makes it possible to listen to selected parts of the music
(ranging from an entire song to a single note).

MIDI LAML programs can, in principle, be handled from an
interactive shell - in the style of the UNIX environment. We
have, alternatively, decided to handle MIDI LAML programs
from a text editing environment, namely GNU Emacs [18].
This turns out to be flexible, powerful, and natural because
a MIDI LAML program is indeed a textual representation of
MIDI contents. The Emacs text editor provides easy access
to the operations of the environment via pull-down menus.

Most operations in the MIDI LAML environment are or-
ganized in such menus. In addition, the operations in the
environment can be reached via keyboard shortcuts and/or
function keys.

4.1 Basic MIDI Programming Support
The primary aim of the environment is to support the pro-
grammatic refinement of a piece of music. As described in
Section 2.2, the starting point is a MIDI LAML file, like the
one shown in Figure 3, typically parsed up from a standard
MIDI file. The programmer inserts pieces of programs such
as shown in Figure 4 and 6. Typically, the programmer calls
one or more functions from the MIDI LAML library on se-
lected sequences of MIDI events. During this process the
programmer is supported by an interactive help system, and
by automatic completion of names. Smooth help during pro-
gramming - including name completion - can be activated on
any XML form, on any XML attribute, and on any function
from the library, just by hitting the TAB key. This kind of
help is similar to intellisense, as used in Visual Studio.

As discussed in Section 3.4, the emphasis on the source pro-
gram structure is crucial for the programmer. The environ-
ment can help emphasize the bar structure of a piece of music
by inserting a distinguished source program comment in be-
tween every bar, see Figure 7. In addition, it is possible to
ask for generation of score comments in the right-hand side
of an editing window. A collection of score comments shows
a (primitive) vertical rendering of the notes in sheet music
form (shown vertically). This is also illustrated in Figure
7. The score comments are kept up-to-date if the music is
edited interactively, see Section 4.4.

In principle, the source program may serve as the primary
representation of the music during the rest of the music’s life
time. That would imply that any subsequent modification -
programmatic or interactive - should take place in the source
program, such as shown in Figures 3, 4, 6, and 7. This is
not the approach we have taken. It is possible to normalize
- and straighten out - the effect of the programmatic mod-

7

(StandardMidiFile

(MidiHeader ’format "0" ’numberOfTracks "1" ’pulsesPerQuarterNote "480" ’mode "deltaTime")

(MidiTrack

(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select MSB" ’channel "1" ’control "0" ’value "0")

(ControlChange ’deltaTime "0" ’info "0:0:0 Bank select LSB" ’channel "1" ’control "32" ’value "0")

(ProgramChange ’deltaTime "0" ’info "0:0:0 **GM Piano: Bright Acoustic Piano" ’channel "1" ’number "1")

(Meta ’deltaTime "0" ’info "0:0:0 Tempo:20 BPM." ’type "81" "2D C6 C0")

(NoteOn ’deltaTime "960" ’info "0:2:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "600") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "0:2:240 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "0:3:0 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

(NoteOn ’deltaTime "240" ’info "0:3:240 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "404") ; . . . o | | | | . . .

; 1 ---

(NoteOn ’deltaTime "240" ’info "1:0:0 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "1:0:240 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

(NoteOn ’deltaTime "240" ’info "1:1:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "404") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "1:1:240 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "1:2:0 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

(NoteOn ’deltaTime "240" ’info "1:2:240 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "600") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "1:3:0 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "1:3:240 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

; 2 ---

(NoteOn ’deltaTime "240" ’info "2:0:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "404") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "2:0:240 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "2:1:0 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

(NoteOn ’deltaTime "240" ’info "2:1:240 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "404") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "2:2:0 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

(NoteOn ’deltaTime "240" ’info "2:2:240 G3" ’channel "1" ’note "67" ’velocity "113" ’duration "576") ; . . . | | o | | . . .

(NoteOn ’deltaTime "240" ’info "2:3:0 C3" ’channel "1" ’note "60" ’velocity "88" ’duration "600") ; . . . o | | | | . . .

(NoteOn ’deltaTime "240" ’info "2:3:240 E3" ’channel "1" ’note "64" ’velocity "114" ’duration "580") ; . . . | o | | | . . .

; 3 ---

(Meta ’deltaTime "480" ’info "3:0:240 Sequence number" ’type "0")

)

)

Figure 7: Illustration of bar comments (horizontal rules) and primitive vertical score comments (to the right). Both have
the status of semicolon prefixed ’end-of-line comments’ in Scheme.

ifications by regenerating the underlying MIDI file, and by
reestablishing a fresh MIDI LAML file that subsumes the
modifications. (Normalization has been described in Sec-
tion Section 3.1). Normalization is necessary in order to use
most interactive features of the Emacs MIDI environment,
see Section 4.4. Equally important, it is possible to bring
a normalized MIDI LAML file out of the environment for
external editing - for instance in creative mode of a MIDI
instrument - and to bring it back again to programmatic
editing. This working process is supported and organized
via use of the MIDI LAML Stack, which is described next.

4.2 The MIDI LAML Stack
The MIDI LAML Stack is a stack of MIDI LAML source
programs. When a new entry is pushed on the stack, the
MIDI LAML program is evaluated, rendered as a MIDI file,
and re-processed from the MIDI file to a new and fresh MIDI
LAML file which is pushed on the stack. Such a push op-
eration normalizes the MIDI LAML program, in the sense
defined in Section 3.1.

The MIDI LAML stack offers an “environmental solution”
to the overlapping region problem, which we introduced in
Section 3.2. Using the MIDI LAML stack, the effect of the
first transformation is programmed on the first region (r1),
and a normalized a MIDI LAML program is pushed onto the
stack. On the normalized MIDI LAML program, the second
transformation can be carried out on the second region (r2).
Thus, the two transformations on the overlapping regions
r1 and r2 are carried out in two evaluation stages which are
organized and kept together on the stack.

A number of push variations exist. In one variation, a tran-
sition is taken from absTime to deltaTime mode (or vice
versa). In another, it is possible just to push a replication of
a stack entry to the top of the stack. An external MIDI file
(for instance brought back from an instrument) can also be
pushed onto the stack. In that way, the MIDI LAML stack

is used to keep a evolution of MIDI file versions together in
a single unit.

When the stack is popped, the discarded stack entry be-
comes a ghost entry. Ghost entries can be recovered by
the pop undo operation. With this organization it is pos-
sible reel back and forth through the stack entries. The
ghost entries are lost, however, if a push operation is carried
out, without first undoing pop operations of ghost entries.
The loss of ghost elements may be a problem, because in
a staged evaluation process, several valuable program con-
tributions may occur exclusively in the ghost entries of the
stack. Therefore, just before a push operation, the essen-
tial program contributions can be extracted from the ghost
entries. These contributions are made available to the pro-
grammer in a special ghost fragment browser.

4.3 The Section Browser
In Section 3.4 we discussed the importance of imposing struc-
ture on a MIDI file. Using a functional MIDI programming
approach, a function is applied on a sublist of the MIDI
messages that makes up a song. In a very long lists of MIDI
messages, it is not easy to identify the appropriate sublist.

Sections of a song (song verses, song lines, or other mean-
ingful structures) can be delimited by a pair of markers.
Individual markers are represented by MIDI Meta messages
(of type 6 - marker events). As such, the markers survive
a round trip between editing mode and creative mode (cf.
Figure 1). The markers are most conveniently captured in
creative mode at the MIDI instrument - recording the mark-
ers as notes in a distinguished channel. Different notes (C,
D, E, ... H) denote markers at up to 7 levels. As a pos-
sible convention, each song verse may be marked by note
D, and each song line may be marked by note C. These
notes, in the distinguished channel, can subsequently be
transformed to Meta messages by applying the library func-
tion marker-channel in a normalizing push operation on the

8

MIDI LAML stack.

It is possible to activate a tool which provides an overview
of the markers in a given MIDI track - a marker section
browser. A number of useful actions - such as playing, mov-
ing, deleting, and nesting of a marked region in certain func-
tion forms - can be activated from the marker browser. In
addition, it is possible to embed an informal comment into
a marker.

4.4 The Interactive Features
Although the main emphasis of the MIDI Programming en-
vironment is to support programmatic editing of MIDI LAML
files, the environment also supports various interactive oper-
ations on normalized MIDI LAML source files. In many re-
spects a MIDI LAML file resembles the detailed MIDI views
in many existing MIDI tools and environments (sequencers).
Therefore it is attractive to support some of the interactive
operations known from such systems.

The most important category is the MIDI playing and MIDI
navigation operations. It is possible to play (listen to) the
whole song, a marked region of a song (delimited by mark-
ers, see Section 4.3), one or more bars of a song, the current
selection of the song, all notes visible in an Emacs window,
or the currently selected note. Convenient keyboard short-
cuts - using arrow UP and arrow DOWN keys together with
various shifting keys (Ctrl and Alt) - provide flexible access
to the playing operations. Via use of function keys it is
possible to control the playing tempo, and to select the the
MIDI channels of interest. Channel selection affects both
navigation and playing.

As a text editor, Emacs is not by itself able to play MIDI
messages. Therefore the playing is delegated to an external
MIDI player. With use of a command line player it is pos-
sible to emulate3 rather smooth MIDI playing from Emacs.
This includes a “moving cursor” which shows the note cur-
rently being played.

Attribute editing is supported via use of the arrow LEFT
and arrow RIGHT keys (together with the Ctrl and Alt shift-
ing keys). A given XML attribute - such as note, velocity
or absTime - can be selected for editing. If the note attribute
value is edited, the info attribute and the score comment (if
present) is also affected. If the absTime attribute value is
edited, the NoteOn form is automatically repositioned rela-
tive to sibling NoteOn forms. This maintain the MIDI LAML
file normalization invariant (for absTime mode), as defined
in Section 3.1. If the deltaTime attribute value is edited (in
“compensating mode”), the delta times of neighbor MIDI
events are modified as well, such that the rhythmic struc-
ture of music is maintained (like in absTime mode). All
taken together, the attribute editing operations maintain a
consistent view on the MIDI data.

3The emulation of smooth MIDI playing from Emacs in-
volves two independent processes: The MIDI playing (done
by the command line player) and the cusor moving (done by
Emacs). On smaller sections of the music, and with moder-
ate tempo, it is possible to keep these processes in sync with
each other. It is also possible, interactively, to stop both
processes at an arbitrary point in time (typically if some
music-related error is revealed during the playing process).

In addition to the operations mentioned above, there are
operations that interface external music programs, such as
sheet music notation programs, and programs that catalyze
concise note input (ABC).

4.5 Other features
The MIDI LAML programming environment includes a num-
ber of tools which are specific to a single MIDI instrument
(keyboard), or to a family of instruments. This includes
voices browsers, and browsers of very large collections of
MIDI phrases (arpeggios and fragments of style4 files). It is
possible to activate the voices and MIDI phrases from the
browser, on a selected instrument.

The voice and MIDI phrase browsers rely on an represen-
tations of the voices and the phrases that include various
meta data (such as categorization and quantitative mea-
sures). Based on these meta data it is possible to zoom into
and filter the collections, in search for some musical means
of expression. On top of this, the textual nature of the envi-
ronment makes it possible to do plain text searching, which
typically is out of reach in more structured environments
that rely on graphical user interfaces.

5. RELATED WORK
As mentioned in the beginning of the paper, there exists a
very large body of MIDI software. In this section we will
review some selected software which we are aware of, and
which - for various reasons - are related to our approach (one
reason being that the software is based on either Common
Lisp og Scheme). We structure the discussion according to
the programming paradigm being used.

5.1 Functional approaches.
Haskore [10], which we discussed already in Section 2.2, is a
high-level music notation system, expressed directly in the
functional programming language Haskell [9]. The start-
ing point of the Haskore work was some observations about
structural and algorithmic weaknesses in traditional music
notation (common practice notation, sheet music notation).
In Haskore, the remedy of these weaknesses is a set of Haskell
datatypes and functions which can used to represent musical
concepts at a high level of abstraction. The main concepts
captured in the Haskore work are Note, Line (a sequence of
notes), Music (a sequence of lines), as well as scaling, trans-
position, and sequential and parallel composition of Music.
Representation of chords is also discussed in the Haskore
paper. The high-level musical object, expressed as Haskell
expressions, can be transformed to lower-level (MIDI-like)
representation by means of a so-called performance.

The Haskore work represents a theoretical approach to Mu-
sic notation, which emphasizes equivalence relations between
pieces of Haskore music, algebraic properties, and math-
ematical proofs of musical properties. In contrast, MIDI
LAML represents a practical approach, at a lower level of
abstraction (similar to the performance level of Haskore),
which emphasizes “real-life” transformation needs of music
at the MIDI level. Due to the fact that both Scheme and

4In this context, a style is collection of MIDI phrases that,
taken together, controls the automatic accompaniment of an
‘arranger keyboard’.

9

Haskell are functional programming languages, it would be
relatively easy to support high-level abstractions, similar of
the Haskore ideas, on top of MIDI LAML. However, this has
not yet been a focus area in our work with MIDI LAML.

Q-Midi [8, 7] is a MIDI system, based on the functional pro-
gramming language Q and MidiShare [5] (a MIDI“operating
system”). In Q-Midi the MIDI elements are provided as a
set of datatypes. The Q-Midi datatypes are similar to the
MIDI XML mirror functions, as provided in MIDI LAML.
Q-Midi interfaces to MidiShare, and hereby real-time MIDI
programming becomes possible via functional programming
in Q. This provides for programming of MIDI sequencing
programs, such as MIDI players and recorders, in Midi-Q.
In MIDI LAML we emulate real-time MIDI capabilities with
much simpler means.

5.2 Imperative approaches.
The Cakewalk Application Language (CAL) [21] is an im-
perative programming (scripting) language which is embed-
ded in the commercial Calkewalk and Sonar products. These
products represent Digital Audio Workstations (DAWs) and
MIDI Sequencers. As a superficial similarity to our work,
CAL is based on parenthesized prefix syntax - Lisp syn-
tax - in the same way as Scheme. CAL and MIDI LAML
are intended to solve the same kinds of problems, but in
two different ways. CAL is based on commands and control
structures, which mutate constituents of the MIDI contents,
as represented in the MIDI sequencer program. In contrast,
MIDI LAML is based on functions which return a modi-
fied copy of its input, in terms of an AST. The resulting
AST can, for instance, be pushed onto the MIDI LAML
stack as the starting point for additional processing. As a
derived difference, CAL targets MIDI messages which are
selected interactively in the surrounding MIDI sequencing
environment. MIDI LAML functions do physically embed
the target messages - as actual parameter expressions - in
the activations of the functions.

5.3 Object-oriented approaches.
jMusic5 [4] is a Java package for music composition. It sup-
ports both MIDI and synthesized audio. jMusic is an exam-
ple of a system that represents an object-oriented approach
to MIDI programming. Object-oriented programming is at-
tractive in relation to MIDI programming because the struc-
turing mechanism of object-oriented programming (special-
ization and aggregation) can used for a natural organization
of MIDI concepts. The different types of MIDI events are
represented by classes in jMusic, such as NoteOn, NoteOff,
PChange, CChange, and SysEx. Common MIDI event proper-
ties are represented by an interface, VoiceEvt, as opposed to
an organization in a class inheritance hierarchy. At a higher
level of abstraction, the Note class captures a single note in
a more elaborate and richer way than a pair of NoteOn and
NoteOff MIDI messages. The Rest class is a natural sibling
to the Note class. Sequences of notes are organized hier-
archically in Phrases, Parts, and Scores container classes.
On top of theses classes, jMusic supports a rich landscape of
Java packages that facilitate the need of music tool makers.

The scope of jMusic is much broader than MIDI LAML.

5http://jmusic.ci.qut.edu.au/

jMusic includes support of concepts at the MIDI level, sim-
ilar to our work. In addition, it supports higher level orga-
nizations in the realm of Haskore, which we have described
in Section 5.1. Beyond these aspects, jMusic supports audio
programming as well as graphical concepts, which can be
used a constituents of computer music tools.

The original version of Common Music [20] was an object-
oriented music composition environment based on Common
Lisp and CLOS. In Common Music it is possible to work on
music at the Lisp level, at a command interpreter level, and
at the level of a graphical user interface (on selected plat-
forms). Common Music supports a variety of music struc-
tures, somehow similar to Haskore. In addition, Common
Music is intended as a platform for algorithmic composi-
tion. In a more recent version6 (version 3) Common Music
has been oriented towards Scheme instead of Common Lisp
and CLOS. As an addendum to Common Music, Common
Music Notation7 is a system that can produce non-trivial
music scores based on specification written in Lisp list no-
tation.

5.4 Visual approaches.
Musicians are seldom programmers, and therefore it may be
hard for a musician to solve music-related problems with use
of a traditional programming language. Visual programming
uses graphical rather than textual means of expression. Con-
sequently, it is interesting to support music-related problem
solving with use of a visual programming language. In this
section we will briefly review OpenMusic [1, 3] and related
environments, which represent a visual approach to MIDI
programming as well as audio programming.

The graphical part of OpenMusic draws on Mikael Laurson’s
system PatchWork [2]. PatchWork is rooted in the domain
of music software, but part of it relates to visual program-
ming in general. PWGL [13] represents the most recent de-
velopment of the PatchWork environment. OpenMusic and
PWGL have refined the basic ideas in PatchWork to the
Common Lisp Object System (CLOS), and thus moved the
foundation underneath the visual language to the object-
oriented paradigm. Besides the graphical syntax of CLOS,
OpenMusic and PWGL support a large variety of editors,
which represents a library of music related components and
applications (contributed by users of Open Music). In re-
lation to MIDI programming, OpenMusic lends it self to
MidiShare in a similar way as Q-Midi, see Section 5.1. As the
name suggest, OpenMusic is basically situated in the open
source community. However, the system relies to a large de-
gree on commercial implementations of Common Lisp. In
addition, some applications/editors in OpenMusic are not
covered by open source licenses.

In relation to MIDI LAML, it is interesting to notice that
the roots of OpenMusic and MIDI LAML belong in the func-
tional programming paradigm. Both systems are based on
dialects of Lisp. OpenMusic has appealed to real-world us-
age, most likely because of the graphical approach to pro-
gramming, and due to the integration of existing non-trivial
tools.

6http://commonmusic.sourceforge.net/
7https://ccrma.stanford.edu/software/cmn/cmn/cmn.html

10

6. CONCLUSIONS
In this paper we have discussed a representation of Stan-
dard MIDI files, which is both inspired by functional Lisp
programming and by XML. The result is, on one hand, an
attractive and well-known data representation which is easy
to construct, validate, and transform due to the similarities
with other XML document formats. On the other hand the
result is a bulky textual notation, which is far away from
common, high-level graphical music notation. Most impor-
tant, we have found the representation is a flexible basis
for high-level functional MIDI programming, and a realistic
representation of real music (as opposed to more academic
toy music) as created from MIDI files delivered by modern
electronic instruments.

The MIDI LAML system is not a mainstream tool for MIDI
work. It is a system which allows arbitrary changes of MIDI
files, controlled by a functional program written in Scheme.
Users of the MIDI LAML systems therefore need to be in-
clined to functional programming, and to master program-
ming in the Scheme programming language. From a op-
erational point of view, LAML MIDI files are handled in
the Emacs text editor. As described in Section 4, the en-
vironment offers relatively broad support - including inter-
active listening/playing features. This calls for users who
feel at home in the Emacs text editor. On top of this, the
system relies on a number of separate programs (Cygwin,
MIDI players, ABC software, in addition to GNU Emacs
and MzScheme (PLT Scheme)) which must be configured
relative to each other in the MIDI LAML system. Due to
these observations and complications, the user-base of the
MIDI LAML system is envisioned to be rather limited. At
the time of finishing this paper, the author is the only user
of the system.

LAML and MIDI LAML is available as free, GPL-licensed
software which can be downloade via the MIDI LAML home-
page [17].

7. REFERENCES
[1] Carlos Agon, Jean Bresson, and Gérard Assayag.

Openmusic: Design and implementation aspects of a
visual programming language.
http://recherche.ircam.fr/equipes/repmus/-

bresson/docs/agon-els08.pdf, 2008. Presented at
the 1st European Lisp Symposium ELS’08, Bordeaux,
France, 2008.

[2] Gérard Assayag, Camilo Rueda, Mikael Laurson,
Carlos Agon, and Oliver Delerue. Computer-assisted
composition at IRCAM: From patchwork to
openmusic. Computer Music Journal, 23(3):59–72,
1999.

[3] Jean Bresson, Carlos Agon, and Gérard Assayag.
Openmusic 5: A cross-platform release of the
computer-assisted composition environment. In Proc.
10th Brazilian Symposium on Computer Music, Belo
Horizonte, Brazil, 2005.
http://articles.ircam.fr/textes/Bresson05b/.

[4] Andrew R. Brown. Making music with Java. lulu.com,
2009.

[5] D. Fober, Y. Orlarey, and S. Letz. Midishare joins the
open source softwares. In ICMA, editor, Proceedings of

the International Computer Music Conference, pages
311–313, 1999.

[6] M. Good. MusicXML in practice: Issues in translation
and analysis. In Proceedings of the First International
Conference MAX 2002: Musical Application Using
XML, pages 47 – 54, September 2002.
http://www.recordare.com/good/max2002.html.

[7] Albert Gräf. Q: A functional programming language
for multimedia. In LAC2005 Proceedings, 3rd
International Linux Audio Conference, pages 21–28.
Zentrum für Kunst und Medientechnologie, Karlsruhe,
Germany, April 2005.

[8] Albert Gräf. Q-midi: A midishare interface for the Q
programming language. http://q-
lang.sourceforge.net/lac05/q-lac05.pdf, March
2005.

[9] Paul Hudak and Joseph H. Fasel. A gentle
introduction to Haskell. ACM Sigplan Notices, 27(5),
May 1992.

[10] Paul Hudak, Tom Makucevich, Syam Gadde, and
Bo Whong. Haskore music notation - an algebra of
music. Journal of Functional Programming, 6:465–483,
1995.

[11] J. Hughes. Why functional programming matters.
Computer Journal, 32(2):98–107, 1989.

[12] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–105,
August 1998.

[13] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo.
An overview of PWGL, a visual programming
environment for music. Computer Music Journal,
33(1):19–31, 2009.

[14] Kurt Nørmark. Web programming in Scheme with
LAML. Journal of Functional Programming,
15(1):53–65, January 2005.

[15] Kurt Nørmark. Deriving a comprehensive document
from a concise document - document engineering in
scheme. In Danny Dubé, editor, The 8th Workshop on
Scheme and Function Programming. Départment
D’Informatique et de Génie Logiciel, Université Laval,
Canada. Technical Report DIUL-RT-0701, September
2007.

[16] Kurt Nørmark. A graph library extension of SVG. In
Proceedings of SVG Open 2007, Tokyo, Japan,
September 2007.

[17] Kurt Nørmark. The MIDI LAML home page, 2010.
http://www.cs.aau.dk/∼normark/midi-laml/.

[18] R.M. Stallman. Emacs: The extensible, customizable,
self-documenting display editor. In D.R. Barstow,
H.E. Shrobe, and E. Sandewall, editors, Interactive
Programming Environments, pages 300–325.
McGraw-Hill, 1984.

[19] Guy L. Steele. Common Lisp, the language, 2nd
Edition. Digital Press, 1990.

[20] Heirich Taube. An introduction to common music.
Computer Music Journal, pages 29–34, 1997.

[21] Ton Valkenburgh. Cakewalk application language
programming guide, May 2009.
http://members.ziggo.nl/t.valkenburgh/-

indexmidi.html?/t.valkenburgh/CAL.html.

11

[22] W3C. Extensible markup language (XML) 1.0 (fifth
edition), November 2008.
http://www.w3.org/TR/REC-xml.

12

