
Scheme Program Documentation Tools

Kurt Nørmark
Department of Computer Science

Aalborg University
Denmark

normark@cs.aau.dk

Abstract

This paper describes and discusses two different Scheme documen-
tation tools. The first is SchemeDoc, which is intended for docu-
mentation of the interfaces of Scheme libraries (APIs). The second
is the Scheme Elucidator, which is for internal documentation of
Scheme programs. Although the tools are separate and intended
for different documentation purposes they are related to each other
in several ways. Both tools are based on XML languages for tool
setup and for documentation authoring. In addition, both tools rely
on the LAML framework which—in a systematic way—makes an
XML language available as a set of functions in Scheme. Finally,
the Scheme Elucidator is able to integrate SchemeDoc resources as
part of an internal documentation resource.

1 Introduction

Program documentation tools are important for all kinds of non-
trivial programming tasks. In a general sense, program documen-
tation tools make it possible to produce important information for
programmers who apply a program library, and for future devel-
opers of a program. In this paper we are concerned with program
documentation for Scheme developers. End user documentation is
not an issue in this paper.

We discuss two documentation tools for Scheme. The first,
SchemeDoc, is a tool for documenting library interfaces—also
known as application programmers interfaces (APIs). The docu-
mentation produced by SchemeDoc is intended for Scheme pro-
grammers who apply the documented Scheme library. The sec-
ond, the Scheme Elucidator, is a tool for documentation of the in-
ternal details of a Scheme program. The documentation produced
by the Scheme Elucidator—called an elucidative program—is typ-
ically intended for future maintainers of the program. Elucidative
Scheme programs may, however, be targeted towards any reader
with an interest in understanding the program. As such, the Scheme
Elucidator can be used whenever there is a need towrite abouta
Scheme program, for educational, tutorial, or scientific purposes.

Permission to make digital or hard copies, to republish, to post on servers orto redis-
tribute to lists all or part of this work is granted without fee provided thatcopies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Kurt Nørmark.

SchemeDoc and the Scheme Elucidator share a number of proper-
ties. The input formats of both tools are defined as XML languages,
with use of XML DTDs (Document Type Definitions) [1]. In simple
cases, the input formats are relatively small setup files that hold a
number of processing attributes, whereas in other cases, substantial
amounts of documentation is authored within the XML documents.
Both tools are part of LAML (see Section 2) and as such the full
expressiveness of Scheme can be used in the XML-related parts of
both SchemeDoc documentation and in elucidative programs. Fi-
nally, both tools generate web output, in terms of XHTML files.

In this paper we give overall and concise descriptions of the tools.
More detailed descriptions can be found on the web [16, 20]. As
part of the discussions we point out relevant details in the imple-
mentation of the tools. In addition we compare the tools with other
similar documentation tools for Scheme.

The paper is structured as follows. In Section 2 we summarize the
most basic properties of LAML, which is the common underlying
platform of both tools. In Section 3 we discuss SchemeDoc. This
includes a discussion of similar tools for documentation of Scheme
libraries. In Section 4 we discuss the Scheme Elucidator. The main
contributions and the conclusions are summarized in Section 5. It
is possible to skip Section 3 in case the reader is only interested in
documentation of internal programs aspects with the Scheme Elu-
cidator. The programs and documentation that are discussed in this
paper are all available as web resources [21].

2 LAML Background

Both tools described in this paper rely on LAML (Lisp Abstracted
Markup Language), and we will therefore in this section provide
a brief summary of LAML. For more information about LAML
please consult the paperWeb Programming in Scheme with LAML
[17] and the LAML home page [18].

From an overall perspective, LAML attempts to come up with nat-
ural Scheme-based counterparts to the most important aspects of
XML. The main purpose of LAML is to make XML languages
available as sets of Scheme functions. With this, an XML docu-
ment becomes a Scheme expression. As a consequence, the power
of Scheme is available anywhere in a document, and at any time
during the authoring process. We refer to this situation asprogram-
matic authoring [15].

The set of Scheme functions that corresponds to the elements of an
XML languageL is called amirror of L in Scheme. Each element
of an XML language is represented as a Scheme function. When
applied, these functions generate an internal format (ASTs repre-



sented as lists) and they carry out a comprehensive documentation
validation at run time (document processing time).

LAML provides an XML DTD parser and a mirror generation
tool. These tools have been used to generate validating mirrors of
XHTML, SVG and a number of more specialized XML languages
(such as the SchemeDoc language and the Elucidator language dis-
cussed in this paper).

Web authoring with LAML is supported by a set of convenient
Emacs editor commands. No specialized lexical Scheme conven-
tions are used. As an example, the sample XML fragment

<book id = "sicp">
<title>Structure and Interpretation

of Computer Programs</title>
<authors>
<author>Abelson</author>
<author>Sussman</author>

</authors>
</book>

can be written as the Scheme expression

(book ’id "sicp"
(title "Structure and Interpretation

of Computer Programs")
(authors (author "Abelson") (author "Sussman"))

)

provided that the mirror of the book description language is loaded
on beforehand.

The parameters to each mirror function are interpreted relative to
theLAML parameter passing rules [17], which can be summarized
as follows: An attribute is a symbol; an attribute value is the string
following a symbol; other strings represent textual element content
items; lists are recursively unfolded. If relevant, white space is al-
ways provided in between element content items unless explicitly
suppressed by a distinguished value (#f usually bound to the vari-
able named). As a consequence of the list unfolding rule, the
expression

(authors (map author (list "Abelson" "Sussman")))

is equivalent to

(authors (author "Abelson") (author "Sussman"))

The definition of XML languages, and their mirrors in Scheme, can
be seen as alinguistic abstraction process. With use of the higher-
order functionxml-in-laml-abstraction it is, in addition, pos-
sible for the author to define functions that use LAML parameter
passing rules. Seen in contrast to the linguistic abstractions, such
functions are calledad hoc abstractions.

LAML works on a variety of different Scheme Systems on Unix
and Windows. Therefore the documentation tools discussed in this
paper can be used together with many different Scheme systems on
both platforms.

3 SchemeDoc

As stated in the introduction, SchemeDoc is a tool for creation
of web documentation of programmatic interfaces of Scheme pro-
grams, most notable the interfaces of program libraries. Many pro-
grammers are familiar with web documentation of programmatic

interfaces from the success of Javadoc [2, 29]. As Javadoc, Scheme-
Doc supports extraction of documentation from distinguisheddoc-
umentation comments in source programs. In addition, SchemeDoc
allows manual authoring of the documentation, and documentation
of XML mirror functions in Scheme. In the section 3.1 below we
describe these possibilities.

3.1 SchemeDoc operational modes

SchemeDoc can be used in four operational modes:

• Source Extraction mode.
The documentation is extracted from distinguished documen-
tation comments in a Scheme source program.

• Manual mode.
The documentation is authored manually, in an XML format
with use of LAML.

• XML DTD mode.
The documentation is extracted from a parsed XML DTD,
typically with the purpose of documenting the mirror of the
XML language in Scheme.

• Augmented XML DTD mode.
A mixture of the XML DTD mode and the manual mode.
Documentation, which is not present in the DTD is authored
manually and merged with the extracted DTD documentation.

The Source Extraction mode relies on the concepts of comment
blocks and documentation comments. Acomment block is a se-
quence of consecutive Scheme comment lines (each of which is
initiated with a semicolon). Adocumentation comment is a com-
ment block which, by means of a given commenting style, is set
apart from “ordinary comments”.

Documentation comments are classified as either definition com-
ments, documentation sections, or documentation abstracts. Adef-
inition comment precedes and documents a Scheme definition. A
documentation section describes common properties of the set of
definitions that follows the section comment. Adocumentation ab-
stract gives an initial and overall description of a Scheme source
file.

SchemeDoc supports two differentcommenting styles for identi-
fication of documentation comments: multi-semicolon style and
documentation-mark style. Usingmulti-semicolon style, each doc-
umentation comment line is initiated with two, three or four semi-
colons, supporting definition comments, documentation sections,
and documentation abstracts respectively. Usingdocumentation-
mark style, a documentation comment is identified with occurrences
of a distinguished character (per default ’!’) at the start of the first
comment line in a comment block. Definition comments use a sin-
gle mark, documentation sections use two marks, and documen-
tation abstracts use three exclamation marks. Until recently, all
LAML software has been documented using multi-semicolon style.

Within documentation comments, alittle markup language is used
to provide additional structure. SchemeDoc uses dot-initiated doc-
umentation keywords together with a line-oriented organization.
These elements of SchemeDoc are, to a large degree, modelled di-
rectly after similar systems, such as Javadoc [2, 29] and Doxygen
[30].

As a concrete illustration of SchemeDoc in Source Extraction mode
with use of multi-semicolon documentation comments, the Scheme



;;;; .title SchemeDoc Demo
;;;; .author Kurt Normark
;;;; .affiliation Aalborg University, Denmark
;;;; This is a brief example of a Scheme
;;;; program with multi-semicolon SchemeDoc comments.

; This comment is not extracted.

;;; Factorials.
;;; .section-id fac-stuff
;;; This section demonstrates a plain function.

;; The factorial function. Also known as n!
;; .parameter n An integer
;; .pre-condition n >= 0
;; .returns n * (n-1) * ... * 1
(define (fac n)
(if (= n 0) 1 (* n (fac (- n 1)))))

;;; List selection functions.
;;; .section-id list-stuff
;;; This section demonstrates two aliased functions.

;; An alias of car.
;; .returns The first component of a cons cell
;; .form (head pair)
;; .parameter pair A cons cell
(define head car)

;; An alias of cdr.
;; .returns The second component of a cons cell
;; .form (tail pair)
;; .parameter pair A cons cell
(define tail cdr)

Figure 1:A Scheme program with documentation comments in
multi-semicolon style.

Program in Figure 1 gives rise to the extracted documentation,
shown partially in Figure 2. (The same example is shown with use
of documentation-mark style at the web resource page [21] of this
paper). The figure illustrates a single documentation abstract, two
documentation sections, and three definition comments. Scheme-
Doc ignores one-semicolon comments. In Figure 1 we illustrate
the title, author, andaffiliation tags in the documentation
abstract. In the section comments, we illustrate thesection-id
tag, which is used for generation of an anchor name in HTML.
In the definition comments, we illustrate theform, parameter,
pre-condition, andreturns tags. Theform tag is used in situa-
tions where the actual calling form does not appear as a constituent
of the definition.

SchemeDoc can deal with nested documentation comments. More
specifically, definition comments and documentation sections are
extracted from the definitions, which are documented by means of
definition comments. In the current version of SchemeDoc, we only
handle two levels of nested documentation comments.

XML DTD mode can, in general, be used for documentation of an
XML DTD, which has been parsed with the LAML DTD parser
[18]. The documentation of an XML DTD presents the DTD af-
ter full expansion of the parameter entities [1] (textual macros in
the DTD). Use of parameter entities is convenient in order to re-
duce the complexity of the DTD authoring process, but they make

Figure 2:A partial presentation of the SchemeDoc documentation
from Figure 1.

it difficult to read the DTD. Activation of SchemeDoc on the parsed
XML DTD file leads to a straightforward presentation of the XML
elements, primarily in terms of the XML content model and infor-
mation about the attributes. The presentation of content models pro-
vides for easy navigation to constituent elements, and to elements in
which the current element appears as a constituent. The XML DTD
mode of SchemeDoc is of particular importance for documentation
of the major and well-known XML languages, such as the different
versions of XHTML and SVG, for which LAML provides mirrors
in Scheme.

The augmented XML DTD mode makes it possible to combine
manually authored contributions with the documentation extracted
from the XML DTD. In that respect, this mode is a mixture of the
Manual mode and the XML DTD mode, as described above. More
specifically, SchemeDoc is able generate an initial documentation
file (in the format used in Manual mode). By filling in the con-



Figure 3:The frame layout of a SchemeDoc index.

tents of element and attribute descriptions, the intuitive meaning of
the elements can be documented. It is, in addition, often helpful
to add some sectioning to provide for better structure and overview.
At SchemeDoc processing time, the manually authored documenta-
tion is added to the information from the parsed XML DTD. In this
way, the information from the parsed XML DTD always controls
the final documentation. All substantial LAML document styles,
including SchemeDoc and the Scheme Elucidator (see Section 4)
are documented by use of SchemeDoc in Augmented XML DTD
mode. Examples of such documentation can be seen via the LAML
home page [18].

3.2 SchemeDoc Indexing

A collection of SchemeDoc manuals can be indexed and organized
with use of the SchemeDoc Indexing tool. Based on an enumer-
ation of a number of SchemeDoc manuals, this tool produces a
browser with three frames (see Figure 3). The browser is made
available as a frameset in XHTML. The Manual frame lists the in-
volved SchemeDoc manuals. The Name frame shows a sorted list
of the defined names from a selected manual, or from all the man-
uals taken together. The SchemeDoc frame shows selected details
from the selected manual.

The SchemeDoc indexing tool is also able to produce a useful in-
dex of the Scheme Report [6] (either R4RS or R5RS). The list
of Scheme procedures and syntactic forms can either be shown
separately, or it can be merged with the names from the involved
SchemeDoc manuals.

3.3 Tool Support

The SchemeDoc tool can be used in several different ways. The
primary way is to execute a LAML script, which parameterizes
SchemeDoc appropriately. The LAML script, which extracts and
creates the documentation in Figure 2 from the Scheme source pro-
gram in Figure 1, is shown here:

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/manual/manual")

(manual
(manual-front-matters
’css-prestylesheet "compact"
’css-stylesheet "original"
’laml-resource "true"
’documentation-commenting-style "multi-semicolon"

)

(manual-from-scheme-file ’src "../prog1.scm")
)

Figure 4:The decomposition of the SchemeDoc tool.

The LAML script can be executed via the operating system shell,
from a Scheme read-eval-print loop, or via an Emacs command.
Following the loading oflaml.scm (first line) and the SchemeDoc
manual stuff (second line) themanual clause contains tool setup
parameters (themanual-front-matters clause) and specification
of tool functionality (themanual-from-scheme-file clause). In
this particular example, the elementmanual-from-scheme-file
causes SchemeDoc to be used in Source Extraction mode. Typi-
cally, we organize LAML scripts, like the one shown above, in a
man subdirectory of the Scheme source file directory.

SchemeDoc can also be used without LAML scripts. As one al-
ternative, it is possible to activate aschemedoc procedure from a
(LAML-enabled) Scheme read-eval-print loop. Another alterna-
tive is to activate SchemeDoc on a Scheme source file by use of
the schemedoc command from Emacs. This can be done byM-x
schemedoc, or via the menu attached to Scheme mode in Emacs.
In these cases, themanual-front-matters attributes can be given
in the documentation abstract comment. In that way, the Scheme-
Doc setup parameters (processing options) can be given as part of
the Scheme source program.

3.4 Implementation Issues

The Source Extraction mode of SchemeDoc is implemented as
documentation extraction followed by documentation presentation,
both of which are managed by a documentation control layer. This
architecture is illustrated in Figure 4. The top-level control part, the
documentation extraction part, and the documentation presentation
part are physically separated in the LAML software package. All
parts are written in Scheme.

The documentation control layer manages the LAML authoring for-
mat (the mirror of the XML SchemeDoc language in Scheme). As
it appears in Figure 4, the documentation extraction layer is sub-
divided in a source file pre-processing part and a proper extrac-
tion part. In the source file pre-processing part, lexical comments
are transformed to syntactic comments. As an example, the lex-
ical comment;This is a comment is transformed to a list like
(comment 1 "This is a comment"). The second element of the
list represents the categorization of the comment (here 1-semicolon
comment).

With this pre-processing it is a matter of simple Lisp parsing
(reading) to access the documentation comments in other parts of
SchemeDoc. The proper extraction and parsing part examines the
comment forms and parses the comment strings relative to the doc-
umentation markup language. The documentation extraction phase
delivers an internal representation in terms of a list of association



lists. As an example, the contribution from thefac function in Fig-
ure 1 is the (slightly elided) association list

((kind "manual-page")
(parameters (parameter "n" "An integer."))
(description "The factorial function...")
(pre-condition "n >= 0.")
(returns "n * (n-1) * ... * 1")
(title "fac")
(form (fac n))

)

The documentation presentation part generates an XHTML docu-
ment (with use of CSS styling) from the information in the list of
association lists. The internal manual representation is written to
an auxiliary file with extension ‘manlsp’ such that other tools eas-
ily can access the details of a SchemeDoc manual. This information
is essential for the SchemeDoc indexing tool (see Section 3.2). The
Scheme Elucidator (see Section 4) does also make use of the inter-
nal manual representation.

3.5 Similar work

There exists a number of tools which are similar to SchemeDoc.
Schematics SchemeDoc [26] is work in progress, primarily oriented
towards PLT Scheme, and only scarcely documented. As a novel
aspect, this tool uses Scheme lists for markup purposes within doc-
umentation comments. Documentation comments are initiated with
an exclamation mark. The following slightly elided example (from
the web site of Schematics SchemeDoc) illustrates this:

;;!
;; (function map
;; (form (map fn list) -> list)
;; (contract ... -> ...)
;; (example (map (lambda (elt) ...) ...))
;;
;; Apply fn to every element of list.
(define (map fn list) ...)

Scmdoc [27], which is a contribution to Bigloo, uses documentation
comments distinguished by an exclamation mark after the semi-
colons of each comment line. Scmdoc is documented clearly and
concisely. Directives within a Scmdoc documentation comment are
prefixed with ’@’. The following example is from the Scmdoc doc-
umentation:

;! @description
;! The documentation generation function.
;! @param iport The input port.
;! @param oport The output port.
;! @return Returns <CODE>#f</CODE>.
(define (scm->html iport oport) ...)

Docscm [3] is another similar system, which generates DocBook
XML. Docscm is implemented in the Chicken Scheme system.
Here is an example, which illustrates that ’@’ is used to distinguish
documentation comments from other comments.

;;@
;; Returns <varname> arg <varname> * 2
(define (double arg) (* arg 2))

In addition, Docscm supports a number of directives prefixed with
’@’, and it supports a notion of documentation sections.

It should be noticed that the documentation-mark style in source ex-
traction mode of LAML SchemeDoc is similar to the commenting

conventions supported by Schematics SchemeDoc and Docscm.

Finally, Schmooz [4] is a Texinfo markup language embedded in
Scheme comments. Schmooz works with Jaffer’s SCM, and it is
used to extract documentation from Scheme source files for subse-
quent Texinfo processing. Schmooz has been used for documenta-
tion of SLIB [5].

4 The Scheme Elucidator

The Scheme Elucidator can be used towrite abouta program. Doc-
umentation generated by the Scheme Elucidator typically addresses
the internal program details, as a contrast to SchemeDoc documen-
tation of the external interface. Elucidative programs are related
to literate programs [9], at least in the sense that both can be con-
sidered asprogram essays. Whereas a literate program organizes
program fragments as constituents of the documentation, programs
and documentation are represented separately in an elucidative pro-
gram.

4.1 The basic approach

An elucidative program relies on relations between the documen-
tation and the program. The relations are represented in the doc-
umentation, but presented as links from the documentation to the
programs as well as the other way around. The initial conception
of Elucidative Programming, and its relations to Literate Program-
ming, is described in a requirements paper [14]. The paperElu-
cidative Programming[13] gives additional descriptions, including
details about the original version of the Scheme Elucidator. The
Java Elucidator [22] is a tool inspired by the original Scheme Elu-
cidator.

This paper addresses the Scheme Elucidator 2, which uses an XML
language as the front-end format, and XHTML (with CSS) in the
back-end. The actual documentation can either be written in the
special purpose markup language of the original elucidator [13] or
by use of an XML documentation language (via LAML expres-
sions in Scheme). The latter approach is recommended, because it
is aligned with the approach of SchemeDoc and other XML lan-
guages in LAML, but not least because of the power ofprogram-
matic authoring [15]. In this paper we will stick to documentation
authored via the XML language, used via LAML.

The Scheme Elucidator can handle a single documentation file and
an arbitrary number of Scheme source files. Together, these files
form adocumentation bundle. In addition, an arbitrary number of
SchemeDoc manuals can be taken into account. If a procedurep,
documented by SchemeDoc, is applied in a program or mentioned
in the documentation, there will be links to the interface documen-
tation of p from the places wherep is called or mentioned. In
addition, all applications of R4RS/R5RS procedures and syntactic
forms are linked the to appropriate locations in the Scheme Report
[6].

An elucidative program is presented as a collection of frames in
a web browser, using the layout shown in Figure 5. The basic
and novel idea related to the presentation of an elucidative pro-
gram is themutual navigation between the Documentation frame
and the Program frame. Given some documentationd shown in the
Documentation frame, a program fragment described ind may be
scrolled into view in the Program frame. Symmetrically, given a
program abstractionp shown in the Program frame, a section of
documentation which mentions or explainsp may be scrolled into



Figure 5:The Scheme Elucidator frame layout.

view in the Documentation frame. The Menu frame provides for
selection of source programs in a documentation bundle, and the
Control frame holds the main navigational icons as well as a struc-
tural index of the documentation.

4.2 An example

As a concrete illustration of the Scheme Elucidator 2 we show
a small demo of an elucidative Scheme program. The demo in-
cludes a single LAML documentation file and two Scheme source
files, namelyprog1.scm from Figure 1 and another program,
prog2.scm, with a few simple, higher-order Scheme functions. The
entire documentation source file is shown in Appendix A. A snap-
shot of the elucidative program, which makes use of the frame lay-
out shown in Figure 5, can be seen in Figure 6.1 Notice that only a
few links are underlined in the two large frames of Figure 6.

The documentation frame of Figure 6 contains a large number of
references to abstractions inprog1.scm andprog2.scm. There are
links from the documentation to the definitions of the Scheme pro-
grams. The other way around, the documented definitions in the
program frame are decorated with links to the documentation sec-
tions with relevant explanations. (These links are anchored in the
small icons shown just above thedefine forms). Applied names
are linked to their definitions in the Scheme source programs. Re-
versely, the definitions are, via cross reference tables, linked to the
abstractions that apply the definitions. To provide for a natural
source-like appearance of the Scheme programs, the links are not
underlined, and they are shown in selected dark colors.

The small colored circles, calledsource markers, denote details
within a Scheme abstraction. Source markers are used for identi-
fication of program details, which are discussed in the documenta-
tion. In a Scheme source program the source markers are written as,
for instance, ‘@a’ in a comment. Pairs of similar source markers (in
the documentation and in a source program file) provide for a visual
correspondence, but they are also navigatable in both directions.

The elucidative program source in Appendix A shows an
elucidative-front-matters clause and the documentation in-
tro, sections, and entries in between(begin-documentation)
and (end-documentation). The source-files clause in
elucidative-front-matters enumerates the Scheme source
programs of the documentation bundle and the Scheme-
Doc files that should be taken into consideration. The
color-scheme clause defines the background colors which are
used to group related source files to each other in a visual
way. Thedocumentation-intro, documentation-section, and

1For better viewing and color presentation please bring up Fig-
ure 6 in your own Internet browser using the link on the web re-
source page [21] of this paper.

documentation-entry clauses represent the actual documenta-
tion, and they hold the references to the abstractions of the Scheme
programs.

Within the documentation it is possible to address a Scheme defini-
tion via the name of the definition, both with and without source file
qualifications. The XML element mirror functionsweak-prog-ref
andstrong-prog-ref are used for this purpose. A strong program
reference is intended as a reference to a Scheme definition from a
context, which explains the definition. A weak program reference
is used when a definition is mentioned in other contexts. It should
be noticed that a source marker in the documentation is implicitly
related to the closest preceding strong program reference. The dis-
tinction between weak and strong program references is not always
objective.

Due to the many occurrences of weak and strong program refer-
ences, the author may choose to introduce “flexible abstractions” on
top of these, either ordinary Scheme functions or XML-in-LAML
abstractions (see Section 2).

The bodies of documentation entries and sections are typically
HTML paragraphs. At the most detailed level, textual content is
represented as string constants. As a consequence of the LAML
parameter passing rules discussed in Section 2, there is white space
in between element content items, unless suppressed by the under-
score symbol.

4.3 Tool Support

The Scheme Elucidator tool processes a documentation bundle, as
defined in Section 4.1. The result of the processing is a collection
of HTML files, which can be presented and explored in an Internet
browser.

During program development, it is important to support elucida-
tive programming in the programming environment. Without tool
support it is difficult and error prone to manage the linking process
between the documentation and the abstractions in the source pro-
grams. We have developed Emacs tools that support Elucidative
Scheme programming. The tools support the creation of links and
they make it possible to follow links within the editing environment.

If the programming is done in an integrated development environ-
ment (IDE) it is attractive to integrate Elucidative Programming
(development as well as browsing) in the IDE. It is a non-trivial
task to come up with a good integration. The integration of the Java
Elucidator and the TogetherJ IDE shows how this can be done [32].

4.4 Implementation issues

Like the SchemeDoc tool, the Scheme Elucidator is implemented
in Scheme. The most challenging aspect of the implementation is
the rendering and the linking of the Scheme source programs, i.e.,
the creation of the program frames. The rendering is done by a si-
multaneous traversal of the textual Scheme program and the parsed
Scheme program. Thus, the Scheme Elucidator processes both the
textual and the structural representation of the program. The source
program text holds the information about the program layout. The
parsed Scheme program makes it convenient to look ahead, for in-
stance into the actual definition following a definition comment.
The handling of quotations and quasiquotations calls for particular
attention during the traversals, because of differences between the
textual and the structural representations.



Figure 6:A snapshot of an elucidative Scheme program.

The current version of Scheme Elucidator is not aware of name
binding effects caused by use of syntactic abstractions (macros).
However, the Scheme Elucidator is aware of the syntactic forms
that introduce local name bindings (define, lambda, let, let*,
andletrec).

4.5 Limitations and extensions

We have a number of ideas of future improvements of the Scheme
Elucidator, some of which remedy weaknesses of the current ver-
sion of the tool.

As noticed in Section 4.4, the Scheme Elucidator does not expand
macros during the processing of Scheme source programs. It im-
plies, for instance, that the Scheme Elucidator does not take defi-
nitions into account which are caused by macro expansion. As a
remedy, it has been proposed that the Scheme Elucidator can be

told about macros that expand into definitions, and how to extract
the names defined by applications of such macros [24].

The Scheme Elucidator can refer to a particular version of a Scheme
source file, typically the most recent version. During a long pro-
gram development process it will often be useful to address the
way the program is evolving, more specifically the differences be-
tween an early version and the current version of a program. We
have clearly felt the need for such facilities in the Elucidative Pro-
gram that documents the Scheme Elucidator itself (accessible via
the accompanying web resource page [21]). Due to this reasoning,
it would be relevant to include some support of versioning, at least
in a way such that an early version of a program source file can be
accessed in a flexible way.

The addressing scheme, realized as a relation between the entities
of the documentation and the definitions in the source programs, is



not perfect. In the current tool, it is only possible to address top
level entities in the source programs. It would be desirable to be
able to address local name bindings as well. The main price to be
paid for this would be a more complicated addressing mechanism,
and a potential additional burden on the documentation writer.

The Scheme Elucidator uses mutual navigation between the Docu-
mentation frame and the Program frame (see Figure 5) based on a
bidirectional linking scheme. A literate program [9] presents pro-
gram fragments within sections of the documentation. In a future
development of the Scheme Elucidator we wish, as a supplemen-
tary means, to be able to extract program fragments from the source
program and to inline these in the documentation. Such a facility is
already supported by the Java Elucidator [31], and it resembles the
extraction idea of L2T [23], which we briefly review in Section 4.6
of this paper.

The Scheme Elucidator supports a single monolithic documentation
node, with two levels of sectioning (sections, and subsections which
are called entries). As a minor and relatively easy extension, some
programmers call for a more general hypertextual structuring of the
documentation in multiple nodes. The Java Elucidator [22] supports
multiple documentation nodes.

4.6 Similar work

A variety of work has been done for Scheme, which loosely can
be categorized under the umbrella of Literate Programming. Most
of this work is oriented towards printed output, typically via use of
LaTeX.

SchemeWEB [25] is characterized as “a Unix filter that allows you
to generate both Lisp and LaTeX code from one source file”. As
the novel aspect, SchemeWEB is able to identify Scheme (Lisp)
expressions in a LaTeX text. A Scheme expression starts with a ’(’
at the beginning of a line, and it ends with the matching ’)’. The
text outside Scheme expressions is considered as documentation.
The SchemeWEB tool provides for simple weaving, tangling, and
untangling in the web sense [10] of these words.

STOL [11] is tool for presenting a Scheme Program as a LaTeX
document. STOL is described as a Literate Programming Tool, and
it uses specialized markup as well as LaTeX markup in ordinary
Scheme comments. During processing, Scheme code is outputted
unaltered, whereas the Scheme comments are transformed relative
to specialized markup rules. STOL cannot control the orderinging
of the program explanations relative to the ordering of the program
constituents, and it is therefore somewhat misleading to call it a
literate programming tool. STOL is like a SchemeDoc tool which
presents the full source code.

L2T (Lisp to Tex) [23] is a literate programming tool created by
Christian Queinnec. L2T is able to extract program fragments from
Scheme source files and to insert them in a TeX context, which
serves as a program essay. L2T allows the source programs and
the documentation to be represented separately. Program fragments
are extracted and inserted in the TeX document upon preprocessing
of the TeX document with the Lisp2TeX tool. L2T has been used
extensively by its author (and by others) for books and papers about
Scheme programs.

Mole [12] is Kirill Lisovsky’s system for analyzing, repositing, and
presenting Scheme source programs. Mole recognizes chapters,
sections and units of Scheme definitions. The analysis leads to

an SXML [8, 7] representation of a Scheme program. A variety
of different queries and extracts can easily be made on the basis
of the SXML representation. The presentation, which is currently
supported by Mole, is targeted at HTML. The presentation makes
use of outlining for presentation of the programs and the program
comments at various levels of abstraction.

5 Conclusions

A tool with the properties of SchemeDoc is essential for commu-
nication of library interfaces. LAML SchemeDoc supports ex-
traction of distinguished documentation comments from Scheme
source programs, and presentation of these as HTML documents.
The separate SchemeDoc Indexing tool supports the indexing and
organization of a set of SchemeDoc manuals in a 3-framed browser.
As the most novel contribution, SchemeDoc is able to document
XML DTDs. Due to the difficulties of reading many XML DTDs
this is a valuable facility in its own right. However, the documenta-
tion of XML DTDs is of particular importance for LAML, because
XML languages are represented as libraries of Scheme functions in
LAML.

There is no common agreement on the conventions, formats, and
the markup of documentation comments in Scheme. This has lead
to a number of mutually incompatible tools, as discussed in Sec-
tion 3.5. Based on this observation it might be worthwhile for the
Scheme community to come up with a recommended format for
documentation comments in Scheme source programs.

Seen from the standpoint of traditional program documentation, and
in comparison with SchemeDoc, the Scheme Elucidator is a tool for
documentation of internal aspects of a Scheme program. From a
more open minded point of view, the Scheme Elucidator is a tool for
program exploration. The exploration can be done within a single
source file, between program source files (following chains of name
usages both forward and backward), between the program files and
the authored documentation, between a program and SchemeDoc
interface documentation, and between the program and the Scheme
Reference Manual. We find that the Scheme Elucidator is a valu-
able contribution whenever there is a need to write about Scheme
programs, for tutorial, educational or scientific reasons.

Both LAML SchemeDoc and the Scheme Elucidator are bound to
the LAML software package. Both tools make use of particular
XML front-end languages, as well as XHTML in the back-end.
All involved XML languages are represented as mirrors in Scheme.
Due to the LAML connection, both tools can be used on all the
platforms and Scheme Systems where LAML is running. Thus, in
contrast to many similar tools (see Section 3.5 and 4.6) the tools dis-
cussed in this paper are not bound to any particular Scheme system.
Whereas some other similar systems, such as Scribe [28], support
multiple back-ends (and thus multiple target formats) our documen-
tations tools can only generate HTML files.

LAML SchemeDoc has been indispensable for the documentation
of LAML libraries (including the mirrors of XML languages in
Scheme). The Scheme Elucidator 2 has been used by the author
for writing a comprehensive LAML tutorial [19] which currently
consists of seven elucidative program parts. The original Scheme
Elucidator has also had external users.2

2See Anton van Straaten’s documentation of “An Executable
Implementation of the Denotational Semantics for Scheme” at
http://www.appsolutions.com/SchemeDS/ds.html.



The Scheme documentation tools discussed in this paper can be
downloaded as free software from the LAML home page [18]. The
details reflected in this paper pertain to LAML version 25.10.

Acknowledgements

I wish to thank the reviewers for useful comments on the initial
version of this paper.

6 References

[1] World Wide Web Consortium. Extensible markup language
(XML) 1.0, February 1998. http://www.w3.org/TR/-
REC-xml.

[2] Lisa Friendly. The design of distributed hyperlinked program-
ming documentation. In Sylvain Frass, Franca Garzotto, Toms
Isakowitz, Jocelyne Nanard, and Marc Nanard, editors,Pro-
ceedings of the International Workshop on Hypermedia De-
sign (IWHD’95), Montpellier, France, 1995.

[3] Tony Garnock-Jones. Docscm documentation: ver-
sion 0.1. Available viahttp://homepages.kcbbs.gen.-
nz/∼tonyg/chicken/, September 2002.

[4] Aubrey Jaffer. Schmooz. http://swissnet.ai.mit.-
edu/∼jaffer/Docupage/schmooz.html, 2002.

[5] Aubrey Jaffer. SLIB - the portable Scheme library ver-
sion 2d3. http://www-swiss.ai.mit.edu/∼jaffer/-
slib.pdf, 2002.

[6] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.Higher-
Order and Symbolic Computation, 11(1):7–105, August 1998.

[7] Oleg Kiselyov. SXML specification. Sigplan Notices,
37(6):52–58, June 2002. Also available fromhttp://-
okmij.org/ftp/papers/SXML-paper.pdf.

[8] Oleg Kiselyov and Kirill Lisovsky. XML, XPath, XSLT im-
plementations as SXML, SXPath, and SXSLT. 2002. Pre-
sented on International Lisp Conference 2002 (ILC 2002).
Available fromhttp://okmij.org/ftp/papers/SXs.pdf.

[9] Donald E. Knuth. Literate programming.The Computer Jour-
nal, May 1984.

[10] Donald E. Knuth and Silvio Levy.The CWEB System of Struc-
tured Documentation, Version 3.0. Addison Wesley, 1993.

[11] Daniel Kobler and Daniel Herńandez. STOL—literate pro-
gramming in Scheme.Lisp Pointers, 5(4):21–30, October-
December 1992.

[12] Kirill Lisovsky. Scheme program source code as a semistruc-
tured data. In2nd Workshop on Scheme and Functional Pro-
gramming, September 2001.http://kaolin.unice.fr/-
Scheme2001/article/lisovsky.ps.

[13] Kurt Nørmark. Elucidative Programming.Nordic Journal of
Computing, 7(2):87–105, 2000.

[14] Kurt Nørmark. Requirements for an elucidative program-
ming environment. InEight International Workshop on Pro-
gram Comprehension, pages 119–128. IEEE, June 2000. Also
available via [16].

[15] Kurt Nørmark. Programmatic WWW authoring using Scheme
and LAML. In The proceedings of the Eleventh International
World Wide Web Conference - The web engineering track,

May 2002. ISBN 1-880672-20-0. Available fromhttp://-
www2002.org/CDROM/alternate/296/.

[16] Kurt Nørmark. The Elucidative Programming home
page, 2003. http://www.cs.auc.dk/∼normark/-
elucidative-programming/.

[17] Kurt Nørmark. Web programming in Scheme with LAML.
To appear in Journal of Functional Programming, April 2003.
Available via [18].

[18] Kurt Nørmark. The LAML home page, 2004.http://www.-
cs.auc.dk/∼normark/laml/.

[19] Kurt Nørmark. The LAML tutorial. Part of the LAML system,
April 2004. Available via [18].

[20] Kurt Nørmark. The SchemeDoc home page, 2004.http:-
//www.cs.auc.dk/∼normark/schemedoc/.

[21] Kurt Nørmark. Web resources of the current pa-
per, August 2004. http://www.cs.auc.dk/-
∼normark/scheme/examples/elucidator-2/-
scheme-documentation-tools.

[22] Kurt Nørmark, Max Rydahl Andersen, Claus Nyhus Chris-
tensen, Vathanan Kumar, Søren Staun-Pedersen, and Kris-
tian Lykkegaard Sørensen. Elucidative programming in Java.
In The Proceedings on the eighteenth annual international
conference on Computer documentation (SIGDOC). ACM,
September 2000.

[23] Christian Queinnec. L2T: a literate programming tool.
Available via http://www-spi.lip6.fr/∼queinnec/-
WWW/l2t.html.

[24] Matthias Radestock. Use of the Scheme Elucidator with SISC.
personal correspondence, July 2003.

[25] John Ramsell. SchemeWEB.http://www.tug.org/-
tex-archive/web/schemeweb/.

[26] Schematics SchemeDoc. http://schematics.-
sourceforge.net/schemedoc.html.

[27] A Scheme documentation generator. Contained inftp://-
ftp-sop.inria.fr/mimosa/fp/Bigloo/contribs/-
scmdoc.tar.gz, 1998.

[28] Manuel Serrano and Erick Gallesio. This is Scribe! Pre-
sented at the ‘Third Workshop on Scheme and Functional Pro-
gramming’, October 2002.http://www-sop.inria.fr/-
mimosa/fp/Scribe/doc/scribe.html.

[29] Sun Microsystems. Javadoc tool home page (sun microsys-
tems). Available fromhttp://java.sun.com/products/-
jdk/javadoc/index.html, 2004.

[30] Dimitri van Heesch. Doxygen.http://www.doxygen.org,
2004.

[31] Thomas Vestdam. Generating consistent program tu-
torials. In Proceedings of NWPER’2002 - Nordic
Workshop on on Programming and Software Develop-
ment Tools and Techniques, 2002. Available via
http://dopu.cs.auc.dk/publications/.

[32] Thomas Vestdam. Elucidative Programming in open inte-
grated development environments for Java. InProceedings of
the 2nd International Conference on the Principles and Prac-
tice of Programming in Java, pages 49–54, June 2003. Avail-
able viahttp://dopu.cs.auc.dk/publications/.



A The elucidative program source

In this appendix we show the LAML source of the elucidative demo program, which we discussed in Section 4, and illustrated in Figure 6.

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/elucidator/elucidator")

(elucidator-front-matters

’laml-resource "true"
’scheme-report-version "r5rs"

; OVERALL attributes
’table-of-contents "shallow" ; detailed or shallow
’shallow-table-of-contents-columns "3"
’detailed-table-of-contents-columns "2"
’source-marker-presentation "image" ; image, text, colored-text
’source-marker-char "@"
’browser-pixel-width "1100"
’control-frame-pixel-height "120"

; INDEX attributes
’cross-reference-index "aggregated" ; per-letter, aggregated
’defined-name-index "aggregated" ; per-letter, aggregated

; PROGRAM attributes
’initial-program-frame "blank" ; blank, first-source-file
’large-font-source-file "true"
’small-font-source-file "true"
’default-source-file-font-size "small" ; small or large
’program-menu "separate-frame" ; inline-table, none, separate-frame
’processing-mode "verbose"

(color-scheme
(color-entry ’group "doc" (predefined-color "documentation-background-color"))
(color-entry ’group "index" (predefined-color "documentation-background-color"))
(color-entry ’group "core" (predefined-color "program-background-color-1"))
(color-entry ’group "others" (predefined-color "program-background-color-2"))

)

(source-files
(program-source ’key "prog1"

’file-path "../../manual-xml-in-laml/scheme-documentation-tools/prog1.scm"
’group "core" ’process "true")

(program-source ’key "prog2" ’file-path "src/prog2.scm"
’group "others" ’process "true")

(manual-source ’key "laml-lib"
’file-path "../../../lib/man/general"
’url "../../../lib/man/general.html")

(manual-source ’key "prog1-man"
’file-path "../../manual-xml-in-laml/scheme-documentation-tools/man/prog1"
’url "../../../manual-xml-in-laml/scheme-documentation-tools/man/prog1.html")

)
)

(begin-documentation)

(documentation-intro
(doc-title "Elucidator Demo")
(doc-author "Kurt Normark")
(doc-affiliation "Aalborg University, Denmark")
(doc-email "normark@cs.auc.dk")
(doc-abstract

(p "This is a brief demo example of an Elucidative Program")))



(documentation-section
’id "overview-sect"
(section-title "Overview")
(section-body
(p "This Elucidative program consists of two tiny source programs:"

(weak-prog-ref ’file "prog1")"and" (weak-prog-ref ’file "prog2") _ "."
"The first of these was used for illustration of SchemeDoc, in terms of"
(weak-prog-ref ’file "prog1-man" "a prog1 interface manual")_ "." )

)
)

(documentation-entry
’id "intro"
(entry-title "Introduction")
(entry-body
(p (strong-prog-ref ’file "prog1" "prog1.scm") "contains the factorial function"

(weak-prog-ref ’name "fac")_ "," "and the two functions" (weak-prog-ref ’name "head") "and"
(weak-prog-ref ’name "tail")_ "," "which are aliases of" (weak-prog-ref ’name "car") "and"
(weak-prog-ref ’name "cdr")_ "." )

(p (strong-prog-ref ’file "prog2" "prog2.scm")
"shows a collection of classical higher-order functions," (weak-prog-ref ’name "compose") _
"," (weak-prog-ref ’name "filter") _ "," "and" (weak-prog-ref ’name "zip") _ "." )

)
)

(documentation-section
’id "higher-order-sec"
(section-title "Higher-order functions")
(section-body
(p "In this section we explain some details of the higher-order functions, namely"

(weak-prog-ref ’name "filter")"and" (weak-prog-ref ’name "compose") _ "."
"We do not go into the details of" (weak-prog-ref ’name "zip") _ "," "however." )

)
)

(documentation-entry
’id "filtering"
(entry-title "Filtering")
(entry-body
(p "The function" (strong-prog-ref ’name "filter") "makes use of the tail-recursive function,"

(strong-prog-ref ’name "filter-help")_ ","
"which iteratively carries out the filtering. Due to use of iterative processing in"
(weak-prog-ref ’name "filter-help")_ "," "we need to reverse the result in" (strong-prog-ref ’name "filter") _ ","
(source-marker ’name "a")_ "." )

)
)

(documentation-entry
’id "composing"
(entry-title "Function composition")
(entry-body
(p "Composition of two or more functions can be done by the function"

(strong-prog-ref ’name "compose")_ "."
"The function handles two special cases first, namely the trivial composition of a single
function" (source-marker ’name "b") _ ","
"the typical composition of two functions" (source-marker ’name "c") _ ","
"and composition of more than two functions" (source-marker ’name "d") _ "." )

)
)

(end-documentation)


