Maintaining Program Understanding -
Issues, Tools, and Future Directions

Thomas Vestdam and Kurt Ngrmark

Department of Computer Science,
Aalborg University,
Denmark
{odin,normark}@cs.aau.dk
http://dopu.cs.aau.dk

Abstract. The understanding of a program is a key aspect of software
development. The understanding is a prerequisite for the initial develop-
ment efforts. This paper is concerned with the challenge of maintaining
the program understanding with the purpose of supporting later phases
in the program life time.

One approach to maintaining program understanding is to document de-
cision and rationales behind a program as informal textual explanations—
internal documentation. The starting point of this paper is a particular
paradigm for program documentation program called Elucidative Pro-
gramming. As the first contribution of this paper, three key documen-
tation issues are identified on the basis of the experience with Elucida-
tive Programming. Documentation motifs represent thematic elements of
software, which typically transverse the structure of the source program
files. Documentation proximity characterizes the distance between the
documentation and the program. Documentation occasions are tempo-
rally situations for capturing and formulating the understanding of the
program.

During the years a large number of documentation tools have been de-
veloped. As the second contribution of the paper, a number of contem-
porary documentation tools are reviewed. The tools are selected on basis
of relevance for the key documentation issues, and relative to the com-
mon attention and interest of the particular tool in the documentation
communities.

As the final contribution, and as a conclusion of the paper, a number of
future directions and challenges are outlined.

1 Introduction

It is widely acknowledged that any kind of software development is based on a
deep and comprehensive understanding of both the problem and the programmed
solution. Kristen Nygaard, the founder of object-oriented programming, is often
quoted for stating this briefly as “To program is to understand”.

For newly developed software, many analysis and design activities can be seen
as means to establish the understanding which is necessary for an initial imple-
mentation of the solution. For the purpose of maintaining existing software, the



2 Thomas Vestdam and Kurt Ngrmark

understanding is often regained by costly studies of the source code. Typically,
no written program understanding has been maintained, and the initial analysis
and design documents are inconsistent with the current state of the software. It
may, in fact be the case that the initial program understanding already has been
forgotten and regained several times.

Our work the last few years has been oriented towards a documentation
approach called Elucidative Programming (EP) [TI2I3/4)5]. Using EP, textual
documentation can be connected to existing source programs and presented
side-by-side with the source programs in a web browser. EP takes the stand
of maintaining the program understanding as written documentation which is
associated with normal program source files. EP is in several respects inspired
by Literate Programming (LP) [0]. Using LP it is necessary to organizes pieces
of program source files as constituents of the documentation. In contrast, EP
can connect documentation to existing source files. In today’s landscape of pro-
gramming languages and development tools it seems unrealistic to ask for major
reorganization of the main software artifacts due to documentation concerns.

Written program documentation can be seen as an investment, which is in-
tended to be paid back during the life time of the program. In case the invest-
ment is very large, due to creation of large amounts of program documentation,
chances are that the investment never pays back. If no documentation invest-
ment is done at all, the cost of regaining the program understanding is most
likely to increase dramatically. Little is known about the most optimal invest-
ment strategy.

The maintaining of the program understanding is complicated by the fact
that changes of the program leads to changes in the understanding of the pro-
gram. Thus, the program understanding is by no means static during the life time
of the program. It may be costly to keep the program understanding up-to-date
with the most recent version of the program. It is not clear if it is worthwhile
to invest in keeping the program understanding up-to-date. According to [7] the
original document seems to be valuable, even under circumstances where it does
not reflect the exact status of the program.

It may be the case that the understanding of the program development his-
tory is as important as the understanding of a given version of the program. In
the initial phase of program development, it is natural to focus of the under-
standing of the first version of the program. Later on, the focus may be shifted
towards and understanding of the way the program is changing in contrast to an
understanding of the most recent version of the program. The design decisions
made during program development help programmers to understand the current
state of a program. Even abandoned design ideas can be helpful for programmers
who attempt to gain an understanding of a program [g].

The dream of researchers in the area of program comprehension and program
documentation is of course to invent a technique that once and for all solves the
“maintenance of program understanding problem”. We are well aware that such
a breakthrough may be a “fata morgana”, but we still find it worthwhile to
do work in this area. Due to the large amount of money involved in software



Maintaining Program Understanding - Issues, Tools, and Future Directions 3

maintenance, even modest contributions and improvements will be well worth
the efforts.

In section [2] of the paper we will first present some key issues regarding
maintenance of program understanding. The issues have been important in our
work on Elucidative Programming. We will argue that the issues are central in
any work on program documentation.

A number of contemporary documentation tools have emerged on the scene
in the recent years. Some of these tools have not yet been described and discussed
academically. In section [3| we will characterize some of these tools, and we will
relate them to the key issues raised in section |2} The tools to be addressed are
Web/PAS, Doxygen, a Theme-based Literate Programming tool, and LEO. We
will, in addition, compare these tools with Literate and Elucidative Programming
tools.

Finally, based on both the discussions of key issues and contemporary tools,
we will attempt to set the scene for future work in the area of program docu-
mentation.

2 Key Documentation Issues

The area of program documentation is broad and multifaceted. With the purpose
of contracting rather than spreading the discussion we will present three key
documentation issues in this section.

The issues are conceptualized as documentation motifs, documentation prox-
imity, and documentation occasions. In the subsections below we will explain
and discuss these issues. In addition we will argue why we find that these issues
are of particular importance for the area.

2.1 Documentation Motifs

We define a documentation motifﬂ as the formulated understanding of a thematic
element of a piece of software. This meaning and phrasing of the term clearly
emphasizes the metaphoric impact from music and art. A documentation motif
may or may not be manifest in the source program, but typically it is not.

A documentation motif may represent a holistic understanding of scattered
parts of the program which add and contribute to a single concept in the pro-
gram. As an example, an abstract datatype represented as scattered fragments
of a C program may be represented as a documentation motif.

A documentation motif may also represent an understanding of certain rela-
tionships among parts of a program. A chain of procedure calls, which is crucial
for some algorithmic aspect of a program, may serve as an example of such a
documentation motif. Instances of design pattern represent another such exam-
ple of documentation motifs. It has been argued that there is a need to explicitly

! From Merriam-Webster dictionary: motif 1: a usually recurring salient thematic
element (as in the arts); especially : a dominant idea or central theme 2: a single or
repeated design or color.



4 Thomas Vestdam and Kurt Ngrmark

maintain design decisions by recording and documenting instantiations of design
patterns [9]. Traces may also be seen as documentation motifs. Traces, or trace-
ability links, connect elements of requirements, design, other subsequent models,
and source code [TOITT].

A documentation motif may also represent the understanding, observations
and arguments behind certain qualities of a program, which are affected by
several fragments throughout several modules. For instance, the understanding
of an important or critical efficiency aspect can be elevated to a documentation
motif. Also, a program often adheres to a specific set of requirements. Each
of these requirements can be considered as documentation motifs that most
likely have a direct impact on the program at several locations. Similarly, the
understanding of a re-usability concern which is scattered on several different
pieces of a large program can be seen as a documentation motif.

Our notion of a documentation motif mainly refers to non-local thematic
elements that involves program code that is spread across of a piece of software.
As such, documentation motifs can be seen as an informal way of representing an
aspect-oriented program (AOP) [12]. The use of documentation motifs for such
purposes may in particular be useful when programs are written in ordinary,
non-AOP languages.

A documentation motif can be used to maintain an understanding of a spe-
cific application domain concept. Rajlich and Wilde have presented an overview
of the role of such concepts in program comprehension [I3]. We see documenta-
tion motifs as a more general notation than Rajlich and Wilde’s documentation
concepts. Rajlich and Wilde’s vision of the role of concepts is mainly oriented
towards mapping domain concepts onto relevant fragments of the program. Doc-
umentation motifs may include other kinds of knowledge about a program than
domain concepts, and documentation motifs are oriented towards explaining a
program or parts of it.

The overall ideal of preserving the understanding of a program is commonly
accepted, but it is frequently unclear which parts of the understanding should
actually be documented. In other words, the question is often which kind of in-
sight to incorporate in the documentation. It is not realistic, nor desirable, that
the documentation should explain every aspect or detail of a program. We rec-
ommend that a relatively small number of documentation motifs are selected,
and that these documentation motifs make up the bulk of the total program
documentation. Documentation in terms of a few, well-selected documentation
motifs may represent essential insights about the program from a number of dif-
ferent and maybe overlapping perspectives. By boosting documentation motifs,
the documentation will by and large be oriented towards transverse program
understanding that cannot be directly deducted from the program code.

A literate program can be seen as one particular sequence of documentation
motifs, where each motif represents knowledge about a named group of program
statements. The original ideas behind Literate Programming do not allow for
multi themed understandings which are mutually overlapping. More recently,
Theme based Literate Programming has been proposed to remedy this limitation



Maintaining Program Understanding - Issues, Tools, and Future Directions 5

[14]. A theme-based Literate Programming tool is discussed in section [3.2] of this
paper.

Elucidative Programming is—almost by conception—well-suited to support
documentation motifs. The programmer is free to structure the documentation
according to selected motifs. A documentation motif is represented by one of
more paragraphs, which typically—as a matter of writing style—includes a num-
ber of links as natural constituents of the individual sentences. Seen from the
program side, an elucidative program also holds information about the docu-
mentation motifs to which the abstractions (such as classes and methods) are
contributing.

2.2 Documentation Proximity

The value of documented program understanding critically depends on the avail-
ability of the documentation in relation to the program source files. The issue of
documentation proximityEI characterizes the distance between the documentation
and the documented entities. The documentation proximity affects

— the ease of finding relevant documentation of a given program part,

— the updating of the documentation if the program is changed, and

— the qualities of both documentation and program development tools.

The distance between the documentation and the program fragments is a
metric which can be measured in several different ways. In order to enhance the
value and the availability of the documentation, we usually seek an arrangement
where the documentation and the program source files stay in close prozimity.

Physical documentation proximity denotes the situation where the documen-
tation is weaved together with, and kept close to the relevant parts of the pro-
gram source files. With physical proximity the documentation can be represented
as comments in the source code. This may lead to the style of self-documenting
code, as described by Brooks [I5]. The main rationale behind physical documen-
tation proximity is the expectation that documentation is available whenever
needed by the programmer, simply because it is in plain view. Evenly impor-
tant, it is usually hypothesized that documentation nearby the relevant program
fragments is more likely to be updated whenever the program is updated.

Large amounts of textual comments in physical proximity with the source
program can easily lead to illegible programs [I6]. This problem may deteriorate
if diagrams and graphical elements are allowed as annotations of the source
program [I6/T7]. More importantly, as stated in section the documentation
motifs that are important to programmers often pertain to relationships among
the different program units. Code comments are local to a specific point in the
program and are not suitable to explain relationships across a program.

Literate Programming relies on physical documentation proximity. Compared
with the notion of self-documenting code, Literate Programming reverses the

2 From Merriam-Webster dictionary: prozimity the quality or state of being proximate
prozimate 1: immediately preceding or following 2: very near.



6 Thomas Vestdam and Kurt Ngrmark

roles of comments and programs. This leads to an arrangement where program
fragments are located as constituents of the program explanations. Due to use
of a programming language, a documentation language, and some notation for
separating the two of these, the illegibility problem in Literate Programming is
profound. This particular aspect of Literate Programming is often referred to as
the three syntax problem [14].

Documentation of program libraries—interface documentation—in the style
of JavaDoc [I819] also relies on physical documentation proximity. Elements of
interface documentation are in close proximity with the documented abstrac-
tions. The interface documentation is usually arranged in program comments,
and it is typically written with use of a special-purpose markup vocabulary.

It is difficult to combine physical documentation proximity with multiple
documentation motifs. Literate Programming, as coined by Knuth [6] and sup-
ported by different web systems, is strictly oriented toward a sequence of overall
documentation motifs (together forming the essay about the program). There is
only one psychological ordering [14] of source code fragments and textual expla-
nations, chosen by the author, and this order can only be changed by rearranging
and rewriting large portions of the literate program.

Navigational proximity represents a situation where the documentation and
the program are located in different documents, connected by navigational mea-
sures. With navigational proximity, the distance between documentation and
program units is measured in terms of the interaction steps involved in the nav-
igation between the units. Navigational proximity calls for special support from
both development tools and browsing tools. As a consequence, the updating of
the documented program understanding is a particular concern.

Navigational proximity can more easily coexist with multiple documentation
motifs than physical proximity. Each documentation motif can form a documen-
tation unit, which is linked together with the relevant program fragments. The
mentioned links are used as the navigational basis that forms the proximity. The
good match between multiple documentation motifs and navigational proximity
has been a driving force in our promotion of Elucidative Programming [2/[5].

With use of non-physical proximity it is therefore important to augment the
tools in the programming environment. This makes it realistic to locate relevant
documentation and possible to remind programmers of the existence of relevant
documentation.

2.3 Documentation Occasions

A documentation occasz'mﬂ is defined as a situation at which a programmer has
gained some understanding of the program that potentially is relevant to main-
tain. For every programming task there are a number of occasions for writing

3 From Merriam-Webster dictionary: occasion 1 : a favorable opportunity or circum-
stance 2 a : a state of affairs that provides a ground or reason b : an occurrence or
condition that brings something about 3 : a need arising from a particular circum-
stance.



Maintaining Program Understanding - Issues, Tools, and Future Directions 7

documentation, or for updating existing documentation. Stated roughly, these
occasions are before, during or after a given programming task has been per-
formed.

Ideally, writing documentation should be considered as a cycle starting be-
fore code is written and concluded after the code has been written [8]. This is
obviously not the common approach. Studies also show that documentation is
seldom changed when the program is changed [7J20/21].

Documentation written before, during, and after programming contribute to
the maintained program understanding in different ways. Documentation written
before coding includes sketches of code design and descriptions of the context of
the part of a program that is to be written (i.e. the programming task at hand).
For example, the problem to solve, requirements or the conditions under witch
the program part is to work. When documentation is written on beforehand,
the programmer is forced to think more carefully about the code that is about
to be written [6]. This helps ensuring the correctness of the chosen solution,
and can even affect code quality such as performance and flexibility. This is
often claimed by programmers adhering to Literate Programming, although the
evidence is still anecdotal [22].

Programmers using eXtreme Programming [23] aim at ensuring the correct-
ness of the chosen solution by writing units tests before any program code is
written. Such tests can be seen as a representation of the specification and un-
derstanding of a given programming task. In a similar way, design by contract
[24] can also be seen as a way to specify and preserve an understanding of the
program.

Some programming tasks are best done by doing. However, by writing doc-
umentation during coding the programmer can ensure that existing documen-
tation reflects the current program and not previous versions. In addition, by
switching from programming to writing documentation the programmer is forced
to think more carefully about the current programming task, hereby keeping the
program on the right track.

Some aspects of a program are first really understood after a programming
task has been completed. Hence, the real and final understanding cannot be es-
tablished before or even while performing the programming task. Many solutions
to a problem are first well understood after the programming is done. Through
an after rationale the programmer is able to produce a good explanation of the
solution and to present the reasons behind the solution. Writing documenta-
tion after the fact requires that the programmer carefully reviews the new code
in order to ensure that important implications and decisions are not forgotten.
When programmers have lived with a program for a long time they tend to take
decisions and rationales for granted [25].

Legacy software often lacks proper documentation. Maintenance of such pro-
grams therefore involves a costly and error-prone reestablishment of the program
understanding. The process of writing documentation after a program has been
completed is often termed re-documentation [26]. The goal of re-documenting a



8 Thomas Vestdam and Kurt Ngrmark

program is to recover program understanding and hereby to make future main-
tenance easier.

It can also be argued that the need for documentation of specific parts of
a program can be user-driven [27] and prompted by needs. This documentation
occasion is the extreme variant of “after documentation”. Programmers may,
for instance, via the Internet ask questions about some program code. Devel-
opers, or other programmers, who have an answer to the question update the
documentation according to the question. It has be argued that this approach
will work particular well in open-source projects [27]. We conjecture that the
user-driven documentation demands will be able to work just as well in larger
teams of programmers who collaborate on longterm software projects. In general,
documentation by need pushes the occasions for writing documentation until a
concrete question about the program is asked, or until programmers start de-
bating the actual source code.

Based on a survey among programmers, Forward and Lethbridge have found
that there might be a need in real world software development for tools that
support lightweight documentation [20]. Lightweight documentation is every-
day documentation that should be easy to create rather than easy to maintain.
Lightweight technologies should enable quick and efficient means to communi-
cate ideas (e.g. pictures of a whiteboard session taken by digital camera), enable
reader feedback, and should be simple to use. Reader feedback is also an impor-
tant issue in [27].

As mentioned in the introduction, another temporal aspect of documentation
of program understanding is the history of the program. Neither Literate- nor
Elucidative Programming tools directly provide means for maintaining the pro-
gram history. It may be possible to maintain a kind of differential documentation
that describes the changes made to the program, and the rationales behind the
changes. It is, however, difficult to re-establish a particular version of both the
program and the documentation without support from a version control system.

3 Contemporary Documentation Tools

Documentation tools support and assist programmers with the handling of doc-
umentation. Some documentation tools are integrated with the program devel-
opment environment, and others are separated from the program development
tools. A number of documentation tools produce documentation which is sup-
posed to be accessed as a World-Wide Web resource.

The support of documentation motifs put specific requirements on docu-
mentation tools. It must be possible to annotate specific parts of a program or
somehow group explanations and relevant fragments of a program together. Doc-
umentation approaches based on navigational proximity call for special support
of the documentation tools. In particular, the updating of the documentation
following some program changes is only realistic if it is supported by the doc-
umentation tool. Furthermore, documentation tools should not restrain when



Maintaining Program Understanding - Issues, Tools, and Future Directions 9

documentation should be written. Hence, documentation tools must support
writing documentation at different occasions as needed.

Literate Programming tools in the web family are in almost all cases non-
interactive (batch-oriented) and separate from other program development tools
(non-integrated). However, there are exceptions such as the Literate Program-
ming environment for introductory programming made by Cockbrun and Churcher
[28]. The first generation of Elucidative Programming tools for Scheme [29J3] and
Java [2] has characteristics similar to the original Literate Programming tools.
More recently, the elements of Elucidative Programming have been implemented
and integrated in TogetherJ [30], which is an integrated development environ-
ment for Java.

In this paper we do not cover the overall landscape of documentation tools.
Tools for documentation of the early software development phases, such as UML
and other modeling related tools, are not considered in this work.

In the forthcoming sections we focus on documentation tools in two differ-
ent categories: (1) Tools which seem to be popular and in widespread use, but
not yet addressed in an academic context. (2) Tools which are of particular in-
terest relative to the three documentation issues, which we raised in section [2}
We structure the discussions in tools for interface documentation and tools for
internal documentation.

3.1 Interface Documentation Tools

Interface documentation aims at describing the conditions and restrictions for
interaction with a program unit. Beyond documentation of a general explana-
tory nature of a program unit, interface documentation fulfills the need for very
precise documentation which spells out the way that the program unit may be
used by clients [31].

Interface documentation is essentially a separate resource, either maintained
manually or generated automatically from the source program code. The devel-
opers of the Eiffel libraries [32J3T] made use of automatic extraction of interface
documentation from the Eiffel classes [32]. The interface documentation of the
Eiffel libraries was intended as printable resources. With the advent of Java,
interface documentation made by the JavaDoc tool [I9II8I33] became an on-line
resource that allows easy global sharing [27]. Today, there are numerous variants
of documentation tools—all with their own unique features for automatically
generating documentation.

Doxygen. Doxygen [34] is one of the many interface documentation tools that
have appeared in the programming community since the advent of JavaDoc
[I8/19]. Doxygen differs from JavaDoc as it is a more general documentation
tool that offers many highly configurable features. Doxygen also supports many
different programming languages such as C++, C, Java, Objective-C, IDL, and
there exits add-ons for a range of additional languages. Furthermore, Doxygen
can produce both web-documents and printable documents. The printable docu-
ments that can be generated are latex and RTF documents as well as man-pages.



10 Thomas Vestdam and Kurt Ngrmark

This implies that Doxygen allows embedded LaTeX formulas in code comments
(documentation blocks). Doxygen can also produce XML documents which en-
able programmers to define their own resulting output by using XSL-stylesheets.
The web-documents are HTML files that are structured in a similar fashion as
JavaDoc (i.e. a page is generated for each class which includes documentation
of class members).

The components of a program that can be documented are the major abstrac-
tions, such as fields (and global variables in C), methods/functions, and classes
(and enumerations and structs in C). Documentation is embedded in the pro-
gram as code comments and structure using special documentation tags. Code
comments that are internal to a given component body can also be selected for
inclusion in the documentation of the component.

Doxygen allows grouping components together to create “module” structures
in the documentation, even though these structures are not present in the source
code. It is also possible to group members of a class or file, such as fields and
methods. As an example, it is possible to group together all get and set methods
in a class. Both kinds of groups can be associated with a name. As Doxygen
provides the option of linking to any defined name in either program or docu-
mentation, grouping can be used in order to form documentation motifs, and
even form documentation motifs that transverse the program structure.

As a speciality, Doxygen can extract, pretty print and present source code in
the resulting documentation. Defined names in the source code are marked and
linked to the relevant documentation of the particular component. Furthermore,
Doxygen can even inter-operate with a graph drawing tool in order to generate
inheritance diagrams.

The main occasion for writing interface documentation is at the time a class
or a member (e.g. function, field or method) is defined. However, besides from
producing interface documentation with rich features Doxygen can also be used
to extract the code-structure from source code that has not been documented
with Doxygen. This means that Doxygen can be used as an outline tool that can
help programmers to get an overview of a program. Following, Doxygen can be
used to re-document a program in order to maintain a reestablished understand-
ing of a program. Hence, Doxygen can be used to perform re-documentation in
the same manner as Web/PAS (see below).

As the documentation is embedded in the source code the two entities are
in physically proximity of each other. However, there is a price to pay if using
the grouping feature mentioned above. The syntax for grouping can become too
voluminous and render the source code illegible.

Re-documentation using Web/PAS. Partitioned Annotations of Software
(PAS) [26] is a hypertext based notebook in which programmers record their un-
derstanding of a program. This understanding stems from the programmers work
with and observations of an existing program. Hence, PAS supports program-
mers in incremental re-documenting programs. The resulting documentation is
studied in a web-browser.



Maintaining Program Understanding - Issues, Tools, and Future Directions 11

PAS divides a program into components (i.e. classes, functions, dependencies,
and function arguments). Each component is associated with an annotation that
explains that particular component. Each, annotation is divided into a number
partitions. The partitions for classes are for example, domain annotation, class
dependencies, dependency annotation, authors comments, and member func-
tions. Other partitions can be created as needed. The division of a program into
components and partitions is automatically generated. The job of the program-
mers is then to fill the partitions and annotations with explaining text.

The components of a program are presented as nodes in a tree. From the
root all annotations of classes span as child nodes. The actual source code is
represented as child nodes of these annotations. When browsing, programmers
can move up and down in this hierarchy which follows the hierarchical structures
of the program.

There is no option for documenting motifs that transverse the program struc-
ture. The structure of the documentation strictly follows the program structure.
In addition, the browsing facilities do not include source code or the option of
navigating from source code to relevant documentation. Hence, documentation
and program are physically separated. As a consequence the documentation be-
comes a secondary product in danger of being forgotten after some time.

The intended occasion for writing documentation is potentially a long time
after the program has been completed. PAS is not well suited for writing doc-
umentation before or during programming. However, the parsing tool of PAS
(HMS) offers support for adding and deleting annotations and partitions as the
program changes, but program components must be defined before any docu-
mentation can be written.

3.2 Internal Documentation Tools

Internal Documentation is a commonly used term for documentation aimed at
maintaining the understanding of the actual program code. Usually, internal
documentation involves writing about the program with the intent to explain
the details of the program in order to maintain an understanding of why and
how the program works.

There are many different internal documentation tools around today. Lit-
erate Programming, represented by the web family of tools, is still the most
radical approach to internal documentation. Literate Programming and the set
of supporting tools has inspired many tool developers. Many programmers con-
sider the original ideas of Literate Programming as unfit for modern software
development [2/T4]. However, the idea of writing about the program is still fun-
damental to many modern tools for internal documentation. A few selected tools
has been mentioned in the previous sections, and in the next couple of section
we will describe two additional tools, each of which represents a novel approach
to internal documentation.

Theme-Based Literate Programming. Theme-based Literate Programming
(TBLP) [14] has been introduced as a means for creating different paths through



12 Thomas Vestdam and Kurt Ngrmark

the chunks of a literate program. These paths through the chunks are called
themes. Themes allow creating several sequences of documentation motifs, for
example for different audiences or different purposes such as transverse program
understanding (e.g. explaining patterns, aspects, or concepts). As such, each
path corresponds to a weave operation, and the current TBLP tool provides the
theme author with several options for configuring the resulting presentation. In
addition, the tangled program is considered a theme.

In contrast to traditional Literate Programming [6], chunks are not limited to
code or documentation. New chunk types can be defined as needed (e.g. chunks
for figures, diagrams, or unit tests). As an additional contrast, all chunk types
can be nested in TBLP.

Theme-based literate programs are explored and created in a special tool.
The tool provides a facility for browsing themes and for editing the contents
of the individual chunks of a given theme. All available chunks are stored in a
common repository, and from the repository chunks can be assigned to relevant
themes. Hence, an occurrence of a given chunk in any theme is a reference to
the stored chunk in the repository. Furthermore, the tool contains an integrated
version control system allowing themes to refer to specific versions of chunks.

Program and documentation are in close physical proximity, although the
chunks that make up a theme are actually references to chunks in the repository.
The presentation of a theme contains physically interleaved documentation and
source code, just like a traditional literate program. The explanations and source
code that make up a chunk must be able to fit into different contexts (themes).
Hence, the chunk must be “self-contained” and “self-explanatory”. However, this
kind of explanations can be difficult to produce, and the situation becomes worse
the smaller the chunks are [35].

As TBLP essentially supports literate programming, the occasions at which
programmers ideally should write documentation is before coding. At least chunks
must be created before coding, as chunks will hold the actual source code.

Leo: Literate Editor with Outlines. Leo is a tool that supports Literate
Programming in a pragmatic fashion [36]. Leo is in part operated a graphical
user interface. In Leo a literate program is outlined as a tree of nodes. Each
node represents a section (i.e. a chunk) and displays the chunk name. Sub-nodes
contain the body of chunk names which are defined in a parent node. In this
way Leo outlines provides an overview of the literate program.

Leo allows cloning nodes. A cloned node is a copy of the node and its entire
sub-tree of nodes. If any clone is changed (e.g. node contents are edited, nodes are
added, deleted or moved) this change is mirrored in every clone. Hence, it is for
example possible to create a documentation motif that transverse the program
structure by adding relevant clones to a node containing an explanation of the
documentation motif.

Leo provides a vast range of convenience features for structuring and man-
aging outlines. The GUI allows moving nodes around in outlines in a natural
way using drag-and-drop, and Leo also provides a number of commands for re-



Maintaining Program Understanding - Issues, Tools, and Future Directions 13

structuring outlines. In addition, Leo provides support for many programming
languages in form of syntax highlighting.

Program and documentation is in close and physical proximity relative to
each other. In addition, Leo provides an “tangle” and “untangle” command
which exports all defined files and vice versa. Exported files contain redundant
information (as code comments) that enables Leo to import files again even if
they have been modified in another tool. This means that programmers are not
restricted to the limited programming environment that Leo provides.

Leo does not put any specific temporal requirements on writing documenta-
tion. At any occasion documentation can be written, but code chunks, in form
of nodes, must still be created prior to coding.

4 Future Directions and Challenges

Our own efforts the last few years have been oriented toward the evolution and
investigation of Elucidative Programming. As an overall conclusion of our work
so far we have identified three key issues, which we find of particular importance
for the maintenance of program understanding. In the first part of this paper we
have characterized and discussed these issues.

As argued in section [2:2] navigational proximity can more easily coexist with
multiple documentation motifs than physical proximity. Due to this observa-
tion, we continue to advocate Elucidative Programming as an alternative to the
approaches where documentation and program are physically intertwined.

As it appears from the discussion in section [3] language independent tools
play an important role in the area of program documentation. Language inde-
pendence is important because many programmers do not limit their work to
a single programming language, but also because many software projects in-
volve more than one programming language. Due to the nature of Elucidative
Programming we are required to have some knowledge about the programming
language. A future challenge in the area of Elucidative Programming is therefore
to develop an approach that enables an addressing of programs in a fashion that
is uniform across programming languages. As a first step, it will be attractive to
provide a generalized markup of programming languages, in the style of srcML
[37].

Only little work has been done to integrate version control mechanisms in
documentation tools. As argued in section [I] and knowledge about the pro-
gram evolution is an important documentation aspect. As a future challenge,
we will like to investigate how to support maintenance of the understanding
of both the current program and previous versions of the program. The major
goal of involving older program versions is to enable a documentation of the
program evolution. In Elucidative Programming this may call for versioning of
the relations between the documentation and the program source code. It is
known from the area of hypertext that versioning of links and relationships is a
particular tricky and difficult area [38]. As part a versioning support, tools are
needed for management a given version scheme and for appropriate presenta-



14 Thomas Vestdam and Kurt Ngrmark

tions of the versioning information to help programmers comprehend this level
of information.

Documentation tools should in general support different documentation oc-
casions. We should definitively provide tools that help programmers in writ-
ing documentation during or after programming. As pointed out in section [2.3
documentation created much latter, by need or for re-documentation purposes,
should also within the scope of our documentation tools. However, documenta-
tion written late in the development process is likely to lack important infor-
mation because programmers, with time, forget decisions and rationales. Even
if documentation is written during the programming process, programmers may
have problems with identifying aspects that are relevant for maintaining the pro-
gram understanding. As a remedy, and as a future challenge, more effort should
be put into identifying and describing abstract documentation motifs, much in
line of documentation patterns [§]. To go even further, more efforts could be
put into investigating options for automatic generation of templates based upon
knowledge of abstract documentation motifs. This involves an identification pro-
cess that most likely is very difficult to realize as a fully automatic process. By
use of semi-automatic approaches, involving some input from the programmer,
there might be some unexplored options for future documentation support.

References

1. Ngrmark, K.: Requirements for an Elucidative Programming environment. In:
Eight International Workshop on Program Comprehension, IEEE (2000)

2. Ngrmark, K., Andersen, M., Christensen, C., Kumar, V., Staun-Pedersen, S.,
Sgrensen, K.: Elucidative Programming in Java. In: Proceedings on the eigh-
teenth annual international conference on Computer documentation (SIGDOC),
IEEE Educational Activities Department (2000) 483-495

3. Ngrmark, K.: Elucidative Programming. Nordic Journal of Computing 7 (2000)
87-105

4. Ngrmark, K.: The Elucidative Programming Home Page (1999)

Available via http://www.cs.auc.dk/~normark/elucidative-programming/.

5. Vestdam, T., Ngrmark, K.: Aspects of internal program documentation - an elu-
cidative perspective. In: 10th International Workshop on Program Comprehension,
IEEE (2002) 289 — 292

6. Knuth, D.E.: Literate programming. The Computer Journal 27 (1984) 97-111

7. Lethbridge, T., Singer, J., Forward, A.: How software engineers use documentation:
The state of the practice. IEEE Software 20 (2003) 35-39

8. Vestdam, T.: Writing internal documentation. In: EuroPLoP 2001 - Proceedings
of the 6th European Conference on Pattern Languages of Programs 2001, Univer-
sittsverlag Konstanz (2001)

9. Odenthal, G., Quibeldey-Cirkel, K.: Using patterns for design and documentation.
In: Proceedings of ECOOP’97, LNCS 1241, Springer-Verlag (1997) 511-529

10. Riebisch, M., Philippow, I.: Evolution of product lines using traceability. In:
Proceedings of Workshop on Engineering Complex Object-Oriented Systems for
Evolution at OOPSLA 2001. (2001)

Published online at: http://www.dsg.cs.tcd.ie/ecoose/oopsla2001 /papers.shtml.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Maintaining Program Understanding - Issues, Tools, and Future Directions 15

Sametinger, J., Riebisch, M.: Evolution support by homogeneously documenting
patterns, aspects and traces. In: Proceedings of the 6th European Conference on
Software Maintenance and Reengineering. (2002)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proceedings of European Conference
for Object-Oriented Programming, Springer-Verlag (1997) 220-242

Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Pro-
ceeding of the 10th International Workshop on International Workshop on Program
Comprehension, IEEE (2002) 271-278

Kacofegitis, A., Churcher, N.: Theme-based literate programming. In: Proceed-
ings of the Ninth Asia-Pacific Software Engineering Conference, IEEE Computer
Society (2002) 549 557

Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley (1995) Twentieth Anniversary Edition.

Sametinger, J., Pomberger, G.: A hypertext system for literate c++ programming.
Journal of Object-Oriented Programming 4 (1992) 24-29

Tilley, S., Miiller, H.: Info: a simple document annotation facility. In: Proceedings
of the 9th annual international conference on Systems documentation, ACM Press
(1991) 30-36

Friendly, L.: The design of distributed hyperlinked programming documentation.
In Frass, S., Garzotto, F., Isakowitz, T., Nanard, J., Nanard, M., eds.: Proceedings
of the International Workshop on Hypermedia Design (IWHD’95), Montpellier,
France. (1995)

Sun Microsystems: JavaDoc tool home page (sun microsystems).

Available from http://java.sun.com/products/jdk/javadoc/index.html (2004)
Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools and
technologies: a survey. In: Proceedings of the 2002 ACM symposium on Document
engineering, ACM Press (2002) 26-33

Kajko-Mattsson, M., et al.: The state of documentation practice within correc-
tive maintenance. In: Proceedings of IEEE International Conference on Software
Maintenance, ACM Press (2001) 354-363

Hamer, J.: Literate programming: A software engineering perspective. In: Pro-
ceedings of the Software Education Conference (SRIG-ET 94), University of Otago,
Dunedin, New Zealand, IEEE Computer Society Press (1994) 282-288

Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley
Publishing Company (1999)

Meyer, B.: Object-oriented software construction, second edition. Prentice Hall
(1997)

Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Transactions On Software Engineering 12 (1986) 251-257

Rajlich, V.: Incremental redocumentation using the web. IEEE Software 17 (2000)
102-106

Berglund, E.: Library Communication Among Programmers Worldwide. PhD
thesis, Linkoping University (2002) Linképing Studies in Science and Technology,
Dissertation no. 758.

Cockburn, A., Churcher, N.: Towards literate tools for novice programmers. In:
Proceedings of the second Australasian conference on Computer science education,
ACM Press (1996) 107-116

Ngrmark, K.: An Elucidative Programming environment for Scheme. In: Mughal
and Opdahl (editors), Proceedings of NWPER’2000 - Nordic Workshop on Pro-
gramming Environment Research. (2000) 109-126



16

30.

31.

32.

33.

34.

35.

36.

37.

38.

Thomas Vestdam and Kurt Ngrmark

Vestdam, T.: Elucidative Programming in open integrated development environ-
ments for Java. In: Proceedings of the 2nd International Conference on the Prin-
ciples and Practice of Programming in Java. (2003) 49-54

Meyer, B.: Lessons from the design of the Eiffel libraries. Communications of the
ACM 33 (1990) 68-88

Meyer, B.: Reusable Software. Prentice-Hall (1990)

Kramer, D.: API documentation from source code comments: a case study of
JavaDoc. In: Proceedings on the seventeenth annual international conference on
Computer documentation. (1999) 147-153

van Heesch, D.: Doxygen. http://www.doxygen.org (2004)

Vestdam, T.: Documentation threads - presentation of fragmented documentation.
Nordic Journal of Computing 7 (2000) 106126

Ream, E.K.: Leo - outlining editor. http://webpages.charter.net/edreamleo/front.html
(2004)

Maletic, J., Collard, M., Marcus, A.: Source code files as structured documents.
In: 10th International Workshop on Program Comprehension, IEEE (2002) 289 —
292

Osterbye, K.: Structural and cognitive problems in providing version control for
hypertext. In: Proceedings of the ACM conference on Hypertext, ACM Press
(1992) 33-42



