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1 Introduction
Many of today’s problems in computer science are no longer concerned with programs that transform data
and then terminate, but with non-terminating systems that have to interact with a possibly antagonistic
environment. An example is the controller regulating the anti-lock brake in a car. It receives a constant
input stream of sensor readings like the wheel speed of each wheel and selectively applies the brakes on
each wheel to maintain a uniform wheel speed. In such a setting, we are not interested in a controller
terminates that and generates some output, but we need the controller to run forever (which over-
approximates an arbitrary long car ride) and control the wheel speed in a manner that avoids locking
brakes, amongst other requirements.

The emergence of so-called reactive systems requires new approaches to verification and synthesis.
Over the course of the last fifty years it turned out to be very fruitful to model and analyze reactive
systems in a game-theoretic framework, which captures the antagonistic and strategic nature of the
interaction between the system and its environment.

This approach can be traced back to work on the synthesis problem for boolean circuits, nowadays
known as Church’s problem: given a requirement on the input-output behavior of circuits expressed
in some suitable formalism, find a circuit that satisfies the given requirement (or determine that there
is no such circuit). This problem can be interpreted as a game between two agents: an environment
generating an infinite stream of input bits, each of which is answered by an output bit generated by the
circuit. The requirement on the input-output behavior determines the winner of each execution: if the
pair of bitstreams satisfies the requirement, then the circuit wins, otherwise the environment wins. In
this view, Church’s problem boils down to finding a finitely represented rule which prescribes for every
finite sequence of input bits an output bit such that every input stream is answered by an output stream
in a way that the pair of streams satisfies the given requirement.

As an example, consider the conjunction of the following three requirements:

1. Whenever the input bit is 1, then the output bit is 1, too.

2. At least one out of every three consecutive output bits is a 1.

3. If there are infinitely many 0’s in the input stream, then there are infinitely many 0’s in the output
stream.

Note that the first two requirements are satisfied by always outputting a 1, a strategy that is spoiled
by the third requirement. However, the following strategy satisfies all three requirements: if the input
bit is a 0, answer with a 0, unless the last two output bits were already 0, in this case output a 1. On
the other hand, every 1 in the input stream is answered by a 1. This strategy is implemented by the
following automaton with output where the label 1/1 stands for “process a 1 and output a 1”.

s0 s1 s2

1/1
0/0

1/1

0/0

1/1

0/1

An example run of the automaton is given in the following.

state s0 s1 s2 s0 s1 s0 s0 s1 s2 s0 s1 s2 · · ·
input 0 0 0 0 1 1 0 0 0 0 0 · · ·

output 0 0 1 0 1 1 0 0 1 0 0 · · ·

In this course we model such a synthesis problem as a two-player game and learn how to compute a
finite-state representation of a strategy satisfying the requirements, if one exists. To model the general
synthesis problem for reactive systems, another level of abstraction is added to the game described above:
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an infinite, graph-based, two-player game is played in a graph without dead ends whose set of vertices
is partitioned into the positions of Player 0 and the positions of Player 1. The players construct a play,
an infinite path through the graph, according to the following rule: a token is placed at an initial vertex
and whenever the token is at a position of Player i, she has to move the token to some successor. After
ω moves, the winning condition of the game, a subset of the plays of the graph, determines the winner
of the play. A strategy for Player i in such a game is a mapping prescribing a legal move for every play
prefix ending in a position of Player i. A strategy is winning from a given vertex, if every play that starts
in this vertex and is played according to the strategy is won by Player i. A game is determined, if from
each vertex, one of the players has a winning strategy.

The following game models the example from above: in the graphical representation, Player 0’s
vertices are drawn as cycles and Player 1’s as rectangle. Furthermore, dashed edges model picking a 0
while solid edges model picking a 1. Finally, the winning condition is the set of paths that never visit the
red vertex (marked by r) and if they visit infinitely many blue vertices (marked by b), then also infinitely
many green ones (marked by g). Note that the third conjunct is captured by the winning condition while
the first two conjuncts of the requirement are captured by the structure of the graph. In particular, the
upper chain of vertices counts the number of zeros picked by Player 0 while ever answering a 1 with a 0
leads to the red sink vertex.

b g b g b

r

Player 0 wins this game from the initial vertex by never moving the token to the red sink vertex and
by always moving from a blue vertex to a green one whenever possible. If infinitely many blue vertices are
visited, then this strategy visits infinitely many green ones too, as the only blue vertex without a green
successor is only reachable via a green vertex. Furthermore, Player 1 is never able to force the token to
the red sink vertex, as only edges from Player 0 vertices lead to the sink. From all these vertices, she has
the choice to move the token to the initial vertex.

Note that the input-output behavior encoded by this strategy is the one given by the automaton
above. Even more so, one can derive the automaton from the game graph and the strategy described
above by merging vertices. Thus, by determining a winning strategy for this game, we obtain a solution
to our instance of Church’s problem.

In the framework of infinite games, the seminal Büchi-Landweber Theorem, which solves Church’s
problem as special case, reads as follows: every infinite game in a finite graph with ω-regular winning
condition is determined and finite-state strategies – strategies implemented by finite automata with
output – suffice to win these games and can be computed effectively. Ever since, this result was extended
along different dimensions, e.g., the number of players, the type of graph the game is played in, the type
of winning condition, the nature of the interaction between the players (alternation or concurrency), the
presence or absence of probabilistic influences, and complete or incomplete information for the players
about the evolution of the play.

The synthesis problem for reactive systems can be solved as follows: we model the system and its
environment by a finite graph whose edge relation describes the interaction between the environment and
the system; the requirement on the system is expressed as ω-regular winning condition. Applying the
Büchi-Landweber Theorem yields an automaton with output so that every execution that is controlled
by the automaton satisfies the requirement (or it yields a strategy for the environment witnessing that
the requirement cannot be satisfied).

1.1 Course Overview
This course is divided into five chapters, each dealing with one aspect of infinite games.
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In the first chapter, we give all necessary definitions to reason about infinite games, i.e., arenas, the
graphs infinite games are played in and strategies.

In the second chapter, we introduce basic winning conditions derived on acceptance conditions for
automata on infinite objects: reachability and safety, Büchi and co-Büchi, and parity. The results proved
for these games are the building blocks for the advanced results we prove in the latter chapters.

In the third chapter, we consider games with finite-state strategies, strategies implemented by finite-
automata with output. The Büchi-Landweber Theorem states that such strategies suffice for all games
with ω-regular winning conditions. Furthermore, we discuss the tight relation between finite-state strate-
gies and game reductions, the classical way to compute finite-state strategies.

In the fourth chapter, we consider infinite games played on infinite graphs. Since we still want to solve
them algorithmically, we need infinite graphs that can be represented finitely: we show how to determine
the winner and winning strategies for games played on the configuration graphs of pushdown automata.
These automata can model recursive programs with finite data domains, using the pushdown stack to
model the stack of function calls.

In the fifth chapter, we consider an application of infinite games to logics: Rabin’s theorem states
that monadic second-order logic over the binary tree is decidable, i.e., there is an algorithm that given a
sentence ϕ decides whether it is satisfiable or not. We introduce monadic second-order logic and parity
tree automata, which we show to be equally expressive. Infinite games are used to prove that such
automata are closed under negation (which is one step we need to take when proving the equivalence of
automata and logic) and to solve the emptiness problem for tree automata. Thus, given a formula ϕ, one
translates it into an equivalent automaton, which is non-empty if, and only if, ϕ is satisfiable.
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2 The Foundations
In this introductory chapter, we introduce infinite games and all necessary concepts to work with them.
Then, we consider games with basic winning conditions derived from acceptance conditions for automata
on infinite words.

In these notes, we only consider two-player games between Player 0 and Player 1. To avoid writing
“Player 0” and “Player 1” again and again, we assume Player 0 to be female and Player 1 to be male
and refer to them by their personal pronouns. Oftentimes, we present definitions or arguments that hold
for both players. Here, we use the indeterminate player “Player i” and the opponent “Player 1− i”, for
i ∈ {0, 1}. Here, we agree that Player i is female and Player 1 is male.

2.1 Arenas, Games, and Strategies

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 2.1: An arena.

First we define the main component of a game: its arena. It
describes the rules the two players have to follow and the order
in which the players make their moves. Figure 2.1 depicts an
arena. In drawings, the round vertices are owned by Player 0,
the rectangular ones by Player 1. The edges in between describe
the moves the players can perform.

In general, an arena is a directed graph consisting of vertices
and edges. Each vertex is assigned to one of the players. A play
in such an arena proceeds as follows: A token is placed at some
arbitrary initial vertex and then the players move it through
the arena. If the vertex is owned by Player 0, she has to move
the token, otherwise Player 1 has to move it. The next vertex
the token can be moved to, is then given by the edges, where, if
a vertex has multiple outgoing edges, the corresponding player
owning that vertex must choose one of them. Finally, since we
want to play infinitely long, we only consider arenas that have
at least one outgoing edge for each vertex. This way, we ensure
that the token does not end up in a deadlock.
Definition 2.1 (Arena). An arena A = (V, V0, V1, E) consists of

• a finite set V of vertices,

• disjoint subsets V0, V1 ⊆ V with V = V0 ∪ V1 denoting the vertices of Player 0 and Player 1
respectively, and

• a set E ⊆ V × V of (directed) edges such that every vertex has at least one outgoing edge, i.e.,
{v′ | (v, v′) ∈ E} is non-empty for every v ∈ V .

The size of A, denoted by |A|, is defined to be |V |.

v4 v5

v7 v8

Figure 2.2: A sub-arena of the arena from
Figure 2.1.

Sometimes, we need to restrict our attention to some part
of an arena, e.g., in Figure 2.1 on the part consisting of the
vertices v4, v5, v7, and v8, and the edges between these vertices
(see Figure 2.2). Such a structure is a sub-arena of the original
arena. As in the example, a sub-arena is always induced by a
subset of the vertices and contains all edges between them.

Note that we have to ensure that the resulting sub-arena is
valid, i.e., that it has an outgoing edge for each vertex. The
sub-arena in Figure 2.2 satisfies this property, while the set of
vertices {v7, v8} does not induce a valid sub-arena of the one
depicted in Figure 2.1, since v8 has no successor in this set.
Thus, v8 would be a terminal vertex, which is not allowed by
our definition of an arena.
Definition 2.2 (Sub-Arena). Let A = (V, V0, V1, E) be an arena and V ′ ⊆ V be such that every vertex
in V ′ has a successor vertex in V ′. The sub-arena of A induced by V ′, denoted by A�V ′, is defined as

A�V ′ = (V ∩ V ′, V0 ∩ V ′, V1 ∩ V ′, E ∩ (V ′ × V ′)).
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We already explained that the players play in such an arena by moving a token through it. After
infinitely many moves, the players have produced an infinite path. We call such a path a play in the
arena. An example for a play in the example arena is given in Figure 2.3.

v3 v4 v8 v5 v7 v6 · · ·

Figure 2.3: A play prefix in the arena of Figure 2.1 starting in v3.

Definition 2.3 (Play). A play in an arena A = (V, V0, V1, E) is an infinite sequence ρ = ρ0ρ1ρ2 · · · ∈ V ω
such that (ρn, ρn+1) ∈ E holds for every n ∈ N. We say ρ starts in the vertex ρ0. The set of plays in
A is denoted by Plays(A), the set of all plays starting in v by Plays(A, v), and we define Plays(A, V ′) =⋃
v∈V ′ Plays(A, v) for every V ′ ⊆ V .

The most important aspect of a game are its strategies. In an infinite game, the strategy prescribes
how to move the token through the arena. On the one hand, this decision depends on the structure of
the arena, which describes the possible moves. On the other hand, it may also depend on the decisions
made in the past, i.e., on the vertices already visited. Thus, the choice of the next move may depend on
the play prefix produced thus far. Formally, a strategy is a function mapping play prefixes to a successor
of their last vertex.
Definition 2.4 (Strategy). A strategy for Player i ∈ {0, 1} in an arena (V, V0, V1, E) is a function
σ : V ∗Vi → V such that σ(wv) = v′ implies (v, v′) ∈ E for every w ∈ V ∗ and every v ∈ Vi.

By convention, we denote strategies for Player 0 by σ and strategies for Player 1 by τ . Oftentimes,
we reason about an arbitrary player and its opponent, i.e., about Player i ∈ {0, 1} and its opponent
Player 1− i. In this situation, we denote strategies for Player i by σ and strategies for Player 1− i by τ .

If a play results from applying the strategy, then it is consistent with the strategy.
Definition 2.5 (Consistent Play). A play ρ0ρ1ρ2 · · · in an arena A = (V, V0, V1, E) is consistent with a
strategy σ for Player i in A if, ρn+1 = σ(ρ0 · · · ρn) for every n ∈ N with ρn ∈ Vi. Given a vertex v, we
denote the set of plays that are consistent with σ and start in v with Plays(A, v, σ). Finally, we define
Plays(A, V ′, σ) for V ′ ⊆ V by Plays(A, V ′, σ)

⋃
v∈V ′ Plays(A, v, σ)

Consistency of a finite play prefix with a strategy is defined similarly and the following property holds:
a play ρ is consistent with a strategy σ if, and only if, every prefix of σ is consistent with σ.

Consider a strategy σ for Player 0 with σ(v3) = v4, σ(v3v4v8) = v5, and σ(v3v4v8v5v7) = v6. Then,
the play prefix depicted in Figure 2.3 is consistent with σ.

In general, multiple plays are consistent with a strategy for one player, as it only determines the
choices of this player. However, if we fix an initial vertex v and strategies σ and τ for Player 0 and
Player 1, then there is a unique play that is consistent with σ and τ and starts in v. We denote this play
by ρ(v, σ, τ), which is formally the unique element in Plays(A, v, σ) ∩ Plays(A, v, τ). Alternatively, we
can define ρ(v, σ, τ) = ρ0ρ1ρ2 · · · inductively as ρ0 = v and

ρn+1 =
{
σ(ρ0 · · · ρn) if ρn ∈ V0,
τ(ρ0 · · · ρn) if ρn ∈ V1.

Our definition of strategy is very general and not suitable for practical use, since it is an infinite
object. Accordingly, we are interested in some weaker representations. One of them is the class of
positional strategies. Here, the choice of the strategy is not allowed to depend on the whole play prefix,
but only on the vertex the token is currently at. Thus, every time the token is at some vertex, the
strategy prescribes the same successor. Later, we will introduce a more complex representation that
allows to store some finite information about the history.
Definition 2.6 (Positional Strategy). A strategy σ for Player i in an arena (V, V0, V1, E) is positional
if σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi.

As a positional strategy for a Player i is equivalent to a function σ : Vi → V we usually denote them
as such functions. Nevertheless, technically we still mean a strategy in the original sense, since otherwise
notions like consistency are not properly defined anymore.
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After introducing strategies we now explain how to determine the winner of a play. Similarly to the
definition of strategies, we start with a very general definition and restrict it later on: a winning condition
is a subset of the arenas plays. If a play is in the winning condition, then Player 0 wins, otherwise Player 1
wins. Combining an arena with a winning condition yields a game.
Definition 2.7 (Game). A game G = (A,Win) consists of an arena A with vertex set V and a set of
winning sequences Win ⊆ V ω. We call a sequence ρ winning for Player 0 if, and only if, ρ ∈ Win and
winning for Player 1 otherwise.

Note that Win is defined as a subset of V ω, not of Plays(A). Thus, sequences that are not plays may
be winning as well.

As an example consider the game Ge = (A,Win) where A = (V, V0, V1, E) is the arena depicted in
Figure 2.1 and the winning condition is defined as Win = {ρ ∈ V ω | Occ(ρ) 6= V }. 1 A play is winning
for Player 0 in this game if, and only if, at least one of the vertices of the arena is not visited. Hence,
the play (v0v1)ω obtained by alternating between v0 and v1 is winning for Player 0 while a play with the
prefix v4v7v8v5v1v2v1v0v3v6 is winning for Player 1

When playing a game, both players are trying to guarantee a win against any possible moves of their
opponent. This is formalized by the notion of a winning strategy.
Definition 2.8 (Winning Strategy). Let G = (A,Win) be a game with A = (V, V0, V1, E). A strategy σ
for Player i in A is a winning strategy from a vertex v ∈ V if every play that is consistent with σ and
starts in v is winning for Player i, i.e., if Plays(A, v, σ) ⊆Win for i = 0 and Plays(A, v, σ) ⊆ V ω \Win
for i = 1.

We collect the vertices from which Player i can win a game G in her winning region.
Definition 2.9 (Winning Region). The winning region Wi(G) of Player i in a game G is the set of
vertices from which Player i has a winning strategy.

If G is clear from the context we just write Wi instead of Wi(G). Regarding our example game Ge
given above, Player 0 has a winning strategy from all vertices. From vertex v1 she always moves to v0,
from v3 always to v4, and from v7 always to v8. This way she avoids visiting the vertices v2 and v6
when starting from any other vertex. When starting at one of these vertices, at least the other one is
never reached, when playing consistently with this strategy. Consequently, Ge has the following winning
regions: W0 = V and W1 = ∅. Furthermore, note that the winning strategy for Player 0 described above
is positional and winning from every vertex.
Lemma 2.1. We have W0(G) ∩W1(G) = ∅ for every game G.

Proof. Let G = (A,Win). Towards a contradiction, assume there exists a vertex v ∈ W0(G) ∩W1(G).
Then, both players have a winning strategy from v; call them σ and τ . Let ρ = ρ(v, σ, τ), i.e., we let the
players both use their winning strategy against each other.

Then, ρ ∈ Win, as σ is a winning strategy for Player 0, and ρ /∈ Win, as τ is a winning strategy for
Player 1. Hence, we have derived the desired contradiction.

Thus, the winning regions of the two players are always disjoint. Another interesting question is
whether it is possible that a vertex is in neither of the two winning regions, i.e., are there vertices from
which no player has a winning strategy? We return to this question later on. If there is no such vertex,
then every vertex is in one of the winning regions and we say the game is determined.
Definition 2.10 (Determinacy, Positional Determinacy). Let G be a game with vertex set V . We say
that G is determined if W0(G) ∪W1(G) = V . Furthermore, we say that G is positionally determined if,
from every vertex v ∈ V one of the players has a positional winning strategy.

Note that in the definition of positional determinacy, we allow the positional winning strategies to
depend on the initial vertex v, i.e., Player i may use different positional strategies for different initial
vertices. In contrast, a uniform positional winning strategy has to be winning from every vertex in the
winning region.
Definition 2.11 (Uniform Positional Winning Strategy). Let the game G = (A,Win). A strategy σ for
Player i is a uniform positional winning strategy if it is positional and winning from every vertex in
Wi(G).

1Occ(ρ) denotes the set of vertices occurring in ρ. See the appendix for a formal definition.
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The strategy for Player 0 in Ge described above is a uniform positional winning strategy.
To conclude, we introduce some general results about infinite games that are applied in proofs through-

out these lecture notes.
First, we introduce the notion of a trap for Player i, which is a region of an arena which Player i

cannot leave without the help of Player 1 − i. For example, consider the set T = {v6, v7} in the arena
from Figure 2.1: from v6, Player 1 has to move to v7, and from v7, Player 0 can choose to move back to
v6. Thus, T is a trap for Player 1, i.e., Player 0 has a strategy to keep the token in T , if the play starts
in T .
Definition 2.12 (Trap). Let A = (V, V0, V1, E) be an arena and let T ⊆ V . Then, T is a trap for
Player i, if

• every vertex v ∈ T ∩ Vi of Player i in T has only successors in T , i.e., (v, v′) ∈ E implies v′ ∈ T ,
and

• every vertex v ∈ T ∩ V1−i of Player 1− i in T there is a successor in T , i.e., there is some v′ ∈ T
with (v, v′) ∈ E.

The following remark is a straightforward consequence of the definition of a trap.
Remark 2.1. Let T be a trap for Player i in an arena with vertex set V . Then, Player 1 − i has
a positional strategy τ that traps the token in T , provided the play starts in T . Formally, τ satisfies
Plays(A, T, τ) ⊆ Tω.

We call a strategy τ as above a trapping strategy. The following lemma lists several useful properties
of traps.
Lemma 2.2. Let T be a trap for Player i in an arena A.

1. The restriction A�T of A to T is a valid sub-arena.

2. If T ′ is a trap for Player i in A�T , then it is also a trap for Player i in A.

Proof. Exercise 2.3.

Next, we introduce an important class of winning condition, so-called prefix-independent ones, and
show that winning regions in games with such winning conditions are traps. Intuitively, a winning
condition is prefix independent, if adding a finite prefix to a play or removing a finite prefix from a play
does not change the winner of the play.
Definition 2.13 (Prefix-independence). A winning condition Win ⊆ V ω is prefix-independent , if ρ ∈
Win⇔ w · ρ ∈Win for all ρ ∈ V ω and all w ∈ V ∗.

Note that a winning condition is prefix-independent if, and only if, its complement is prefix-independent.
Lemma 2.3. Let G = (A,Win) be a game with prefix-independent winning condition Win. Then, Wi(G)
is a trap for Player 1− i.

Proof. Exercise 2.4.

2.2 Exercises
Exercise 2.1. Consider the game G = (A,Win) with the arena A depicted below and the winning
condition Win = {ρ ∈ V ω | Occ(ρ) = V } , i.e., a play ρ is winning for Player 0 in G if all vertices are
visited during ρ.

v0

v1

v2

v3

v4

v5

v6
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1. Give at least one winning strategy from some vertex for each player. Argue why they are winning.

2. Determine the winning regions of the game.

3. Is the game positionally determined? Argue formally.

Exercise 2.2. Prove or disprove: If Player i has a positional winning strategy from each vertex v ∈Wi(G)
for some game G, then Player i has a uniform positional winning strategy for G.

Exercise 2.3. Prove Lemma 2.2.

Exercise 2.4. Prove Lemma 2.3.

Note: The result holds for undetermined games. Make sure that you do not assume determinacy.

Exercise 2.5. Let G = (A,Win) be a game with prefix-independent Win.

1. Let σ be a positional winning strategy for Player 0 in G from some vertex v. Now, let v′ be reachable
from v via some play ρ ∈ Plays(A, v, σ). Show that σ is winning for Player 0 from v′ in G.

2. Let V ′ be a subset of A’s vertices such that Player 0 has a positional winning strategy σv in G from
every vertex v ∈ V ′. Show that Player 0 has a positional winning strategy σ in G that is winning
from every v ∈ V ′.

Note: The order of quantification changes from ∀v ∃σv to ∃σ ∀v. Compare this to the statement of
Exercise 2.2.
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3 Reachability, Büchi, and Parity Games
We begin the study of infinite games by considering games with winning conditions derived from accep-
tance conditions for automata on infinite words. In both situations, one has to represent a language of
infinite words in a finite manner. In automata, this is the set of accepting runs while for games it is the
set of winning plays Win for Player 0. Our general definition imposes no restrictions on Win, i.e., Win
is an arbitrary subset of V ω. However, this is not practical: for modelling reasons and to be able to
represent games as input to algorithms, we need a finite representation.

In this section, we study various formalisms to represent the set of winning plays, namely reachability
and safety games, Büchi and co-Büchi games, and parity games.

3.1 Reachability Games
The set of winning plays for Player 0 in a reachability game is induced by a set R of vertices and consists
of all plays that visit R at least once. Thus, Player 0’s goal is to reach R and Player 1 tries to avoid
reaching R.
Definition 3.1 (Reachability Game). Let A = (V, V0, V1, E) be an arena and let R ⊆ V be a subset of
A’s vertices. Then, the reachability condition Reach(R) is defined as

Reach(R) := {ρ ∈ V ω | Occ(ρ) ∩R 6= ∅}.

We call a game G = (A,Reach(R)) a reachability game with reachability set R.
An example of a reachability game is given in Figure 3.1, where we depict the reachability set by

doubly-framed vertices. In this game, call it Gr, Player 0 has to reach either v4 or v5.

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 3.1: Example for a reachability game. We use
doubly-framed vertices to denote the reachability set.
Player 0’s winning region is blue, Player 1’s red.

Obviously, Player 0 has a winning strategy for
Gr from v4 or v5, as the initial vertex of each play
starting there is already in R. Now, consider the
vertex v3. From here, Player 0 can move the token
to v4, from where we have already argued that she
can enforce a winning play. In general, from every
vertex v of Player 0 that has a successor v′ from
where we know that she can enforce a win, she can
enforce a win as well by moving from v to v′. Be-
sides v3, this condition applies to v8 and therefore
by induction also for v7, as Player 0 can move from
v7 to v8 and then to v5. Note that the case of v7
requires two applications of the argument.

Now, consider the vertex v6, which is a Player 1
vertex. From v6, he can only move to v7, from
where we know that Player 0 can enforce a win.
Thus, she can enforce a win from v6 as well. In
general, if a vertex v of Player 1 only has successors
from which Player 0 can enforce a win, then she can enforce a win from v. In our example, this applies
only to v6. Note that we could only declare the status of v6 after having determined the status of v7,
which in turn depended on the status of v8.

Thus, Player 0 can enforce a win from every vertex in V ′ = {v3, v4, v5, v6, v7, v8}. For the remaining
vertices, i.e., for those in the set {v0, v1, v2}, our two rules do not apply: v1 has no successor in V \ V ′
and both v0 and v2 have at least one successor in V \V ′. Intuitively, Player 1 can use these edges to keep
the token in V \ V ′ and Player 0 cannot force the token out of V \ V ′. As R is a subset of V , this means
that the token never visits the reachability set, i.e., Player 1 can enforce a win by keeping the token in
V \ V ′.

Formalizing this intuition, we define the positional strategies σ for Player 0 and τ for Player 1 as
• σ(v1) = v0,

• σ(v3) = v4,

• σ(v7) = v8,

• σ(v8) = v5,

• τ(v0) = v1,

• τ(v2) = v1,

• τ(v4) = v8,

• τ(v5) = v7,

• τ(v6) = v7.

Both are uniform positional winning strategies for the winning regions W0(Gr) = V ′ and W1(Gr) = V \V ′
and that the values σ(v1), τ(v4), τ(v5), and , τ(v6) can be defined arbitrarily.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0
0({v4, v5}) =
{v4, v5}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr1
0({v4, v5}) =

{v4, v5} ∪ {v3, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr2
0({v4, v5}) =

{v3, v4, v5, v8} ∪ {v3, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr3
0({v4, v5}) =

{v3, v4, v5, v7, v8} ∪ {v3, v6, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr4
0({v4, v5}) =

{v3, v4, v5, v6, v7, v8}

Figure 3.2: Visual representation of the attractor construction for the game of Figure 3.1. The corresponding
attractor sets are denoted by the areas marked yellow.

In the following, we show that the intuitive reasoning above is sufficient in general. As V ′ contains
all vertices from where Player 0 can attract the token to R, it is called the 0-attractor of R. As already
mentioned above, the construction of the attractor is hierarchical, e.g., we have to add v8 to the attractor
before we can add v7. To keep the formal definition of the attractor as general as possible, we define it
for both players.
Construction 3.1 (Attractor). Let A = (V, V0, V1, E) be an arena, let R ⊆ V , and let i ∈ {0, 1}
determine a player.

The controlled predecessor CPrei(R) of R is defined as

CPrei(R) = {v ∈ Vi | v′ ∈ R for some successor v′ of v}∪
{v ∈ V1−i | v′ ∈ R for all successors v′ of v}.

The i-attractor Attri(R) of R in A is defined by inductively applying the controlled predecessor via

• Attr0
i (R) = R,

• Attrn+1
i (R) = Attrni (R) ∪ CPrei(Attrni (R)), and

• Attri(R) =
⋃
n∈N

Attrni (R).

The computation of the 0-attractor Attr0(R) for the game Gr from Figure 3.1 is depicted in Figure 3.2.
We have Attr3

0(R) = Attr4
0(R), i.e., no new vertex is added at that stage. Thus, it follows that Attrn0 (R) =

Attr3
0(R) for every n > 3. Hence, also the union over all stages is equal to the third stage, i.e., Attr0(R) =

Attr3
0(R).

In general, the attractor stages become stationary after at most |V | many steps, as the stages are
monotonic in the subset relation. Hence, to compute the attractor Attri(R), we only have to compute
Attr|V |i (R).
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Remark 3.1. Let A be an arena with vertex set V , let R ⊆ V , and let i ∈ {0, 1}. Then, there is an
m ≤ |V | such that

R = Attr0
i (R) ⊆ Attr1

i (R) ⊆ · · · ⊆ Attrmi (R) = Attrm+1
i (R) = Attri(R).

Next, we prove that the winning region of Player 0 in a reachability game is the 0-attractor of the
reachability set R and that the winning region of Player 1 is the complement of the attractor.
Lemma 3.1. Let G = (A,Reach(R)) with A = (V, V0, V1, E). Then, W0(G) = Attr0(R) and W1(G) =
V \Attr0(R).

Proof. We show Attr0(R) ⊆ W0(G) and V \ Attr0(R) ⊆ W1(G). As W0(G) and W1(G) are disjoint and
Attr0(R) and V \Attr0(R) partition V , we conclude Attr0(R) = W0(G) and V \Attr0(R) = W1(G).

We start with Player 0 by constructing a positional strategy σ that is winning from every vertex in
Attr0(R). Intuitively, the strategy moves the token closer and closer to R. To formalize this, we define
the distance between a vertex in Attr0(R) and R via

δ(v) = min{n ∈ N | v ∈ Attrn0 (R)}

where min ∅ =∞.
From the definition of the attractor, we can derive the following properties of the distance function.

1. δ(v) = 0 if, and only if, v ∈ R, which holds by definition of Attr0
0(R).

2. If v ∈ V0 satisfies 0 < δ(v) < ∞, then it has a successor v′ with δ(v′) < δ(v): such a v satisfies
v ∈ Attrδ(v)

0 (R) \Attrδ(v)−1
0 (R), hence it is in CPre0(Attrδ(v)−1

0 (R)). As v ∈ V0, v is in

{v ∈ V0 | v′ ∈ Attrδ(v)−1
0 (R) for some successor v′ of v},

which yields a successor v′ with the desired properties.

3. If v ∈ V1 satisfies 0 < δ(v) < ∞, then every successor v′ of v satisfies δ(v′) < δ(v): here, the
reasoning is dual to the previous case. We again have v ∈ Attrδ(v)

0 (R) \ Attrδ(v)−1
0 (R), hence it is

in CPre0(Attrδ(v)−1
0 (R)) and now in

{v ∈ V1 | v′ ∈ Attrδ(v)−1
0 (R) for all successors v′ of v}.

Thus, every successor v′ has the desired properties.

Using these properties, we define a positional strategy and show that it is winning from every v ∈
Attr0(R). If 0 < δ(v) < ∞ for some v ∈ V0, then we define σ(v) = v′ for some successor v′ of v with
δ(v′) < δ(v). Such a successor exists, as argued above. Otherwise, i.e., if δ(v) ∈ {0,∞} we define σ(v) to
be an arbitrary successor of v. This covers the case of vertices in R, where Player 0 has already won and
can therefore move arbitrarily, and the case of vertices in V \ Attr0(R). We will see that such vertices
are only encountered after visiting R, when starting in Attr0(R). Hence, Player 0 can move arbitrarily
from there, too.

It remains to prove that σ is indeed a winning strategy. Let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A,Attr0(R), σ)
be an arbitrary play that is consistent with σ and starting in Attr0(R). We show that there exists an
index m with ρm ∈ R by induction on δ(ρ0), which is not equal to ∞ by assumption.

For δ(ρ0) = 0, the claim follows immediately from property (1) above. Thus, assume we have 0 <
δ(ρ0) < ∞. Then, applying property 2 and the definition of σ in case ρ0 ∈ V0 or applying property 3
in case ρ0 ∈ V1, we obtain δ(ρ1) < δ(ρ0), i.e., ρ1 ∈ Attr0(R). Furthermore, as σ is positional, the
play ρ1ρ2ρ3 · · · is consistent with σ. Thus, the induction hypothesis is applicable to ρ1ρ2ρ3 · · · and yields
a position m with ρm ∈ R. Hence, the position m+1 of ρ0ρ1ρ2 · · · is in R, which concludes the induction
step.

Thus, σ is a positional winning strategy for Player 0 from each vertex in Attr0(R), i.e., Attr0(R) ⊆
W0(G).

Next, we show V \ Attr0(R) ⊆ W1(G). Let X = V \ Attr0(R). By analyzing Construction 3.1 we
obtain the following properties:

4. If v ∈ X, then v /∈ R, which holds by definition of the attractor.
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5. If v ∈ X ∩ V0, then every successor v′ of v is in X: if v had a successor v′ in V \ X = Attr0(R),
then v would be in Attr0(R) as well.

6. If v ∈ X∩V1, then there is a successor v′ of v in X: if every successor of v were in V \X = Attr0(R),
then v would be in Attr0(R) as well.

Using these properties, we define a positional strategy for Player 1 and show that it is winning from
every v ∈ X. For v ∈ X ∩ V1, we define τ(v) = v′ for some successor v′ of v with v′ ∈ X. Such a
vertex always exists due to property 6. In contrast, for v ∈ V1 \X we define τ(v) = v′ for some arbitrary
successor of v. This covers the vertices in Attr0(R), from which Player 0 has a winning strategy. Hence,
we only define τ for the sake of completeness on these vertices.

We show that τ is indeed a winning strategy from X, so let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A, X, τ) be an
arbitrary play starting in some vertex ρ0 ∈ X and consistent with τ . We show that all ρn are in X by
induction on n ∈ N. Thus, by property 4, ρn /∈ R. Hence, ρ is a winning play for Player 1.

The induction start is trivial, as we have ρ0 ∈ X by assumption. Thus, let n ≥ 0 with ρn ∈ X.
Applying Property 6 and the definition of τ in case ρn ∈ V1 and Property 5 in case ρn ∈ V0 yields
ρn+1 ∈ X as well. This concludes the induction step.

Hence, we have X = V \Attr0(R) ⊆W1(G), which concludes the proof as argued above.

A strategy σ as defined above is an attractor strategy, as it attracts to R. Dually, a strategy τ as
defined above traps the token in X. Hence, X is called a trap for Player 0, as she cannot escape X, if
Player 1 plays according to τ . Note that both strategies are uniform positional winning strategies for
their respective players.

Relying on Remark 3.1 and suitable data structures one can compute an attractor and corresponding
strategies in linear time.
Lemma 3.2. The attractor Attri(R) in an arena A with edges E can be computed in linear time in |E|.
Furthermore, one can simultaneously compute the strategies σ and τ from the proof of Lemma 3.1.

Proof. Exercise 3.3.

Solving a game G amounts to computing the winning regions and winning strategies for both players.
Our results on reachability games proved in Lemma 3.1 and Lemma 3.2 are summarized in the following
theorem.
Theorem 3.1. Reachability games are determined with uniform positional winning strategies and can be
solved in linear time in the number of edges of the underlying arena.

In the proof of Lemma 3.1 we have essentially argued that the complement of the 0-attractor of R is
a trap for Player 1. This is true in general.
Remark 3.2. The complement of an i-attractor is a trap for Player 1− i.

To conclude, we state an important consequence of the previous remark, which is useful for con-
structing algorithms by iteratively applying attractor computations: removing an attractor yields a valid
sub-arena, i.e., it does not introduce terminal vertices. The following corollary is obtained by combining
Lemma 1 and the previous remark.
Corollary 3.1. Let A be an arena with vertex set V , let R ⊆ V , and let i ∈ {0, 1}. Then, A�(V \Attri(R))
is a valid sub-arena.

3.2 Safety Games
The next type of winning condition we introduce is the so-called safety condition. Where for the reacha-
bility condition Player 0 has to reach a specific region R of the arena, in the safety condition Player 0 is
not allowed to leave a specific region S of safe vertices.

In this subsection, we introduce an important concept, that of duality. In a reachability game,
Player 1’s goal is to remain in the region V \R forever, i.e., he has a safety condition. Dually, in a safety
game, Player 1’s goal is to reach V \ S. Thus, by swapping the roles of the players (formally, we swap
V0 and V1) and replacing the set of winning plays by its complement, we turn a reachability game into a
safety game and vice versa.

Our analysis of safety games is based solely on this duality, which allows us to transfer all results
obtained for reachability games in the previous subsection to safety games.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 3.3: Example for a safety game. The doubly-framed vertices mark the safe region. Again, Player 0’s
winning region is blue, Player 1’s red.

Definition 3.2. Let A = (V, V0, V1, E) be an arena and let S ⊆ V be a subset of A’s vertices. Then, the
safety condition Safety(S) is defined as

Safety(S) := {ρ ∈ V ω | Occ(ρ) ⊆ S}.

We call a game G = (A,Safety(S)) a safety game with set S of safe vertices.
An example for such a game is given in Figure 3.3. Similarly to reachability games we mark the safe

region of the game with doubly-framed vertices. At v4, Player 1 can move to the unsafe vertex v0. In
contrast, from v3 Player 0 can only move to v6, which is unsafe, or to v4 from which we already have seen
that Player 1 can move to the unsafe region. Correspondingly, W1(G) ⊆ {v0, v3, v4, v6}. Note that we
have essentially constructed the 1-attractor of V \ S. Dually, we have W0(G) = {v1, v2, v5, v7, v8}, which
is witnessed by the positional strategy that moves from v1 to v2, from v7 to v8, and from v8 to v5.

To state the general result connecting safety and reachability games, we introduce the arena obtained
by swapping the vertices of the players.
Definition 3.3 (Duality). Let A = (V, V0, V1, E) be an arena. The dual arena A of A is defined as
A = (V, V1, V0, E).

Let G = (A,Win) be a game with vertex set V . Then, G = (A, V ω \Win) is the dual game of G.
Before we apply duality to solve safety games via dualization to reachability games, we prove a general

duality lemma that relates the winning regions in G and G.
Lemma 3.3. Let G be a game. Then, Wi(G) = W1−i(G) for i ∈ {0, 1}.

Proof. Follows immediately from Exercise 3.6.

We obtain our result about safety games as a simple corollary.
Corollary 3.2. Let A = (V, V0, V1, E) be an arena, let G = (A,Safety(S)) be a safety game with
S ⊆ V , and define the reachability game G′ = (A,Reach(V \ S)), which is the dual game of G. Then,
Wi(G) = W1−i(G′) for each i ∈ {0, 1}.

Thus, our main results about safety games directly follow from Theorem 3.1 and Corollary 3.2.
Theorem 3.2. Safety games are determined with uniform positional winning strategies and can be solved
in linear time in the number of edges of the underlying arena.

3.3 Büchi Games
In the previous subsections, we studied games where one player has a reachability condition, i.e., reach-
ability games and safety games. A play in such a game is essentially over as soon as the reachability set
is visited for the first time: the winner has been determined and all future moves are irrelevant.

In this subsection, we study games in which no play prefix determines the winner, i.e., the winner
depends on the complete infinite play. More formally, we require Player 0 to visit a given set F of vertices
infinitely often. In the terminology of automata on infinite words, this is the Büchi acceptance condition:
a run is accepting if infinitely many accepting states are visited. Consequently, the games we study here
are called Büchi games.
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Definition 3.4. Let A = (V, V0, V1, E) be an arena and let F ⊆ V be a subset of A’s vertices. Then, the
Büchi condition Büchi(F ) is defined as

Büchi(F ) := {ρ ∈ V ω | Inf(ρ) ∩ F 6= ∅}.

We call a game G = (A,Büchi(F )) a Büchi game with recurrence set F .
As an introductory example, consider the Büchi game G depicted in Figure 3.4, where the doubly-

framed vertices indicate the vertices in F . Hence, the goal of Player 0 is to visit F = {v4, v6} infinitely
often. Clearly, this is only possible from vertices in Attr0(F ): from all other vertices Player 1 can prevent
Player 0 from reaching F even once. Thus, we already conclude V \ Attr0(F ) = {v0, v1, v2, v5, v8} ⊆
W1(G).

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 3.4: A Büchi game. The recurrence set is de-
noted by doubly-framed vertices.

Now, consider the vertex v4, which is in F .
Thus, it is potentially desirable for Player 0 to
reach v4. However, it is a Player 1 vertex and has
a successor that is already determined to be in the
winning region of Player 1 (actually, this is the case
for both successors). Thus, from v4, Player 1 can
ensure that F is only visited once. Thus, reach-
ing v4 is not at all desirable for Player 0: we can
remove it from F . The situation for v6, the other
vertex in F , is different: it is a Player 1 vertex
and all its successors, i.e., the vertex v7, are not
yet known to be winning for Player 1. Hence, we
retain v6.

Now, we repeat our reasoning for the smaller
set F = {v6}: Player 1 wins from every vertex
from which Player 0 cannot attract to F . In par-
ticular, due to monotonicity of the attractor, this
includes all vertices we already determined to be
in W1(G), but now additionally v4. Hence, V \ Attr0({v6}) = {v0, v1, v2, v4, v5, v8} ⊆ W1(G). But even
now, all successors of v6 are not yet determined to be in Player 1’s winning region. Hence, we do not
remove it. Thus, we are in the same situation as before, i.e., our reasoning has reached a stationary
situation.

We have already argued that Player 1 has a winning strategy from {v0, v1, v2, v4, v5, v8}, which is even
positional: from v4 move to (say) v0 and then never visit v4 and v6 again. In contrast, Player 0 has a
winning strategy from every other vertex, i.e., from the set {v3, v6, v7}: attract to v6, which is possible by
construction and at v6 move back to some vertex in {v3, v6, v7}, which is possible as we have not removed
v6 from F .

The reasoning is summarized in Figure 3.5 and formalized in the following construction, which we
prove to solve Büchi games in general. Here, we inductively compute increasing under-approximations Wn

1
of Player 1’s winning region W1(G) as follows: Fn contains the vertices from F to which recurring visits
are still desirable for Player 0. Initially, we have F 0 = F , i.e., every vertex in F is potentially desirable.
Then, in each round we determine the vertices from which Player 1 can prevent reaching Fn at all. These
form the n-th under-approximation Wn

1 . Then, we remove all vertices from Fn from which Player 1 can
force to reach Wn

1 , as these just turned out to be undesirable: although they are in F , Player 1 can ensure
to reach his winning region in one step from there. Formally, we use the controlled predecessor defined in
Construction 3.1 here. The removal yields the set Fn+1 and we repeat the construction described above
until the under-approximations become stationary. We show that they yield the winning regions of both
players in this case.
Construction 3.2 (Recurrence). Let A = (V, V0, V1, E) be arena and let F ⊆ V . The recurrence
construction for Player i is defined inductively as

• F 0 = F ,

• Wn
1 = V \Attr0(Fn) for every n ≥ 0, and

• Fn+1 = F \ CPre1(Wn
1 ) for every n ≥ 0.

Figure 3.5 shows the execution of the recurrence construction for the example from Figure 3.4, con-
taining all attractor computations and the increasing under-approximations Wn

1 . After one step, the
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computation becomes stationary, i.e., we have F 2 = F 1 and therefore W 2
1 = W 1

1 . Note that the final
under-approximation W 1

1 is equal to the winning region of Player 1 as determined above (see Figure 3.4).
We show that this is the case in general.

First, we remark that the computation of the sets Fn gets stationary after a linear number of steps,
as they form a descending chain in the subset relation. This implies that the under-approximations Wn

1
get stationary, too.
Lemma 3.4. Let A be an arena with vertex set V of size n, let F ⊆ V , and let i ∈ {0, 1}. Then, there
is an m ≤ n such that

F = F 0 ⊇ F 1 ⊇ · · · ⊇ Fm = Fm+1

and
W 0

1 ⊆W 1
1 ⊆ · · · ⊆Wm

1 = Wm+1
1 .

Proof. These sets forming chains in the subset relation follows from an inductive application of the
following fact shown in Exercise 3.2: A ⊆ B implies CPrei(A) ⊆ CPrei(B) (and thus also implies
Attri(A) ⊆ Attri(B)).

Thus, the existence of an index m as above is guaranteed by the finiteness of the arena.

Now, we prove that the recurrence construction yields the winning regions in a Büchi game.
Lemma 3.5. Let G = (A,Büchi(F )) be a Büchi game. Then, W1(G) =

⋃
n∈NW

n
1 and W0(G) =

V \W1(G).

Proof. Let G = (A,Büchi(F )) be a Büchi game with A = (V, V0, V1, E) and define X = V \
⋃
n∈NW

n
1 .

We show X ⊆W0(G) and V \X ⊆W1(G). Then, Lemma 2.1 yields the desired equalities.
We begin with Player 0’s winning region. Lemma 3.4 yields an m with Fm = Fm+1 and Wm

1 = Wm+1
1 .

Hence,
⋃
n∈NW

n
1 = Wm

1 and X = Attr0(Fm).
First, we claim Fm ⊆ CPre0(X), i.e., from Fm Player 0 can ensure to reach X again. To show this let

v ∈ Fm be arbitrary. Then, by construction, v ∈ F \ CPre1(Wm
1 ) and correspondingly v /∈ CPre1(Wm

1 ).
We distinguish two cases:

1. If v ∈ V0, then v not being in CPre1(Wm
1 ) implies the existence of a successor v′ of v that is not in

Wm
1 . Hence, v′ is in X and thus v ∈ CPre0(X).

2. If v ∈ V1, then v not being in CPre1(Wm
1 ) implies that every successor v′ of v is not in Wm

1 . Hence,
every such v′ is in X and thus v ∈ CPre0(X).

Now, we use the attractor strategy σA associated with the attractor X = Attr0(Fm), i.e., from X,
σA moves the token to Fm ⊆ F . Using this strategy, we define a positonal strategy σ for Player 0 as

σ(v) =


σA(v) if v ∈ Attr0(Fm) \ Fm,
v′ if v ∈ Fm, for some successor v′ ∈ X of v,
v′′ otherwise, for some arbitrary successor v′′ of v.

The existence of a successor v′ as required in the second case is implied by v ∈ Fm ⊆ CPre0(X).
We show that σ is a winning strategy for Player 0 from X. Thus, let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A, X, σ)

be arbitrary. We first show that ρ never leaves X = Attr0(Fm), i.e., ρn ∈ X for all n. The induction
start follows from the assumption of ρ starting in X. Now, assume ρn ∈ X: if ρn ∈ Attr0(Fm) \ Fm,
then ρn+1 ∈ Attr0(Fm): Player 0 uses her attractor strategy in this case, which moves the token to some
successor in the attractor, and Player 1 cannot leave the attractor in this case. On the other hand, if
v ∈ Fm, then the definition of σ (in case ρn ∈ V0) respectively the fact that v is in CPre0(X) (in case
ρn ∈ V1) yields the desired result.

We need to show that the set F is visited infinitely often by ρ. Accordingly, let n ∈ N be arbitrary
and assume ρn /∈ F . Then, ρn ∈ Attr0(Fm)\F . As σ behaves like an attractor strategy on these vertices,
the token reaches Fm ⊆ F eventually. This already suffices, as ρ never leaves X. Hence, σ is indeed a
winning strategy for Player 0 from X, i.e., X ⊆W0(G).

Now, we consider Player 1, i.e., we show
⋃
n∈NW

n
1 = Wm

1 ⊆W1(G). To this end, we define a function
δ : Wm

1 → N via
δ(v) = min{n ∈ N | v ∈Wn

1 }
and show that Player 1 has a strategy that visits at most δ(v) many vertices in F from every vertex v in
Wm

1 . To this end, we show the following properties:
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Figure 3.5: Execution of the recurrence construction on the example from Figure 3.4. The essential parts of the
calculations of Fn, Attrn

i (R) and CPrei(F ) are highlighted by , and , respectively.
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1. δ(v) > 0 for all v ∈ Wm
1 ∩ F : we have W 0

1 = V \ Attr0(F ) by definition, i.e., W 0
1 does not contain

a vertex from F , which is a subset of Attr0(F ). Hence, v /∈ W 0
1 for every v ∈ F , i.e., δ(v) > 0 for

every such v.

2. δ(v) ≥ δ(v′) for all v ∈ Wm
1 ∩ V1 and some successor v′ of v and furthermore, if v ∈ F , then the

inequality is strict: For the sake of contradiction assume that no such v′ exists. Then, δ(v′) >
δ(v) for every successor v′ and accordingly v′ /∈ W

δ(v)
1 . It follows that all successors v′ are in

Attr0(F δ(v)), which implies v ∈ CPre0(Attr0(F δ(v))) = Attr0(F δ(v)), as the attractor is closed
under the application of the controlled predecessor. But this is a contradiction against v ∈W δ(v)

1 =
V \Attr0(F δ(v)).
Now, consider the case where v is additionally in F . Then, δ(v) > 0 due to property 1., i.e.,
v ∈ W

δ(v)
1 and v /∈ W

δ(v)−1
1 . It follows v ∈ V \ Attr0(F δ(v)) and accordingly v /∈ Attr0(F δ(v)).

By Construction 3.1 it follows also v /∈ F δ(v) and v /∈ F \ CPre1(W δ(v)−1
1 ). Hence, v ∈ F implies

v ∈ CPre1(W δ(v)−1
1 ). Accordingly by definition of CPre it follows that there exists a successor v′

of v with v′ ∈W δ(v)−1
1 . Accordingly δ(v′) ≤ δ(v)− 1 < δ(v).

3. δ(v) ≥ δ(v′) for all v ∈ Wm
1 ∩ V0 and all successors v′ of v and furthermore, if v ∈ F , then the

inequality is strict: the reasoning here is dual to the one for v ∈ V1 in the previous case.
Intuitively, these properties say that Player 1 can ensure that the δ-value of the current vertex along
a play does not increase and actually decreases with every visit to F . Hence, as the value is always
non-negative and finite at the initial vertex (provided the play starts in Wm

1 ), this implies that F is
visited only finitely often.

Relying on this intuition, we construct a strategy τ for Player 1 via

τ(v) =


v′ if v ∈Wm

1 ∩ F , for some successor v′ of v with δ(v) > δ(v′),
v′ if v ∈Wm

1 \ F , for some successor v′ of v with δ(v) ≥ δ(v′),
v′′ otherwise, for some arbitrary successor v′′ of v.

The existence of the successors v′ is guaranteed by the properties proven above.
It remains to show that τ is winning for Player 1 from Wm

1 . Let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A,Wm
1 , τ)

be arbitrary. By the definition of τ and by property 3. we have δ(ρn) ≥ δ(ρn+1) for every n ∈ N. Now
assume ρ is not winning for Player 1, so there are infinitely many different positions n0, n1, n2, . . . ∈ N with
ρnj
∈ F . By definition of τ and by property 3. we obtain δ(ρ0) > δ(ρn0+1) > δ(ρn1+1) > · · · such that

there must exist a j ∈ N with δ(ρnj ) = 0. But since ρnj ∈ F this is a contradiction against property 1.
Accordingly τ is winning for Player 1 for all plays starting in Wm

1 , i.e., τ witnesses Wm
1 ⊆W1(G).

Note that both strategies we defined are positional and winning from every vertex in the respective
winning region. Our results on Büchi games are summarized in the following lemma.
Theorem 3.3. Büchi games are determined with uniform positional winning strategies. They can be
solved in polynomial time in the number of edges of the underlying arena.

Proof. Positional determinacy with uniform winning strategies follows directly from the proof of Lemma 3.5.
The complexity result follows from turning the recurrence construction into an algorithm: Lemma 3.4
and the linear-time algorithm for computing the attractor (Lemma 3.2) yield the desired polynomial
upper bound on the running time.

3.4 Co-Büchi Games
Similarly to safety games being the dual of reachability games, co-Büchi games are the dual of Büchi
games, i.e., Player 0’s goal in a co-Büchi game is to only visit vertices from a given set C infinitely often,
i.e., vertices in V \C are only visited finitely often. Stated differently, from some point onwards only the
play has to be confined to C. Thus, the co-Büchi condition can be seen as a generalization of the safety
condition that allows a finite number of visits to unsafe vertices.
Definition 3.5. Let A = (V, V0, V1, E) be an arena and let C ⊆ V be a subset of A’s vertices. Then, the
co-Büchi condition coBüchi(C) is defined as

coBüchi(C) := {ρ ∈ V ω | Inf(ρ) ⊆ C}.
We call a game G = (A,coBüchi(C)) a co-Büchi game with persistence set C.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 3.6: Example for a co-Büchi game. The doubly-
framed vertices mark the persistence set.

Consider the example game in Figure 3.6 where
the doubly-framed vertices mark the persistence
set. Hence, Player 0 wins if v0, v1, and v3 are
visited only finitely often, otherwise Player 1 wins.

Player 0 wins from the vertices v6 and v7 by
always moving from v7 to v6, from where Player 1
has no other choice but to move back to v7 again.
Moreover, Player 0 wins from v3 by first moving to
v6 and then moving from v7 back to v6 ad infini-
tum. Hence, the token alternates between v6 and
v7, which are both in the persistence set. Thus,
the resulting plays are winning for Player 0. From
every other vertex, Player 1 wins by playing ac-
cording to the attractor strategy for v4 at the ver-
tices v3, v2, v5, and v8, and by moving positionally
from v4 to v0 and from v0 to v1. Thus, the ver-
tex v1, which is not in the persistence set is visited
infinitely often, i.e., such a play is winning for Player 1. Note that both winning strategies described
above are positional.

As expected, we solve co-Büchi game via dualization to Büchi games.
Lemma 3.6. Co-Büchi and Büchi games are dual.

As a consequence, we obtain the same results for co-Büchi games as for Büchi games (see Theorem 3.3).
Theorem 3.4. Co-Büchi games are determined with uniform positional winning strategies and can be
solved in polynomial time in the number of edges of the underlying arena.

3.5 Parity Games
After considering games in which Player 0’s goal is to reach a fixed set of vertices at least once respectively
infinitely often, we now consider parity games, which are a generalization of Büchi games. In a parity
game, the vertices of the arena are colored by natural numbers and the goal of Player 0 is to ensure that
the minimal color seen infinitely often on a play is even. Equivalently, Player i wins a play ρ if, and
only if, the minimal color seen infinitely often in ρ has parity i. Thus, the color of a vertex denotes its
importance (smaller colors are more important than larger ones) and its value for the players (vertices of
even color are desirable for Player 0 but undesirable for Player 1 and vice versa). Hence, the colors are
often called priorities.

Parity games play a central role in the theory of infinite games and have important applications in
logics and automata theory, some of which we explore in the following chapters and in exercises. In
particular, model-checking problems for fixed-point logics like the modal mu-calculus are expressible as
parity games and in the case of the modal mu-calculus even equivalent in a very strong sense. Even
more so, modern proofs of the decidability of monadic second-order logic over infinite trees rely heavily
on positional determinacy parity games. This result, known as Rabin’s theorem, is presented in the last
chapter of these notes. Furthermore, the emptiness of alternating automata and of tree automata can
naturally be expressed as a parity game and thereby solved.

Finally, the exact complexity of solving parity games is an intriguing open problem as well: we show
that the problem is in NP and Co-NP. Thus, elementary complexity theory results imply that the
problem being NP-complete or Co-NP-complete yields NP = Co-NP, which would be a breakthrough
result in complexity theory. On the other hand, despite considerable efforts during the last twenty years,
no polynomial-time algorithm is known.
Definition 3.6 (Parity Game). Let A = (V, V0, V1, E) be an arena and let Ω: V → N be a coloring of
A’s vertices. Then, the parity condition Parity(Ω) is defined as

Parity(Ω) := {ρ ∈ V ω | min Inf(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · ) is even}.

We call a game G = (A,Parity(Ω)) a parity game.

An example of a parity game together with the winning regions for both players is given in Figure 3.7.
The label of a vertex contains its name on the left- and its color on the right-hand side. Player 0 wins
this game from the vertices v3, v6 and v7 by cycling between the vertices v6 and v7, i.e., Player 0 moves
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from v7 to v6 and Player 1 has to move from v6 back to v7. From v3, Player 0 moves to v6, i.e., and then
enforces the previously described cycle. The minimal color visited infinitely often on this cycle is 2, i.e.,
even. Thus, every play that is consistent with this strategy is winning for Player 0.

v4/0

v1/3

v3/1 v5/1

v7/3

v0/4 v2/2

v6/2 v8/0

Figure 3.7: A parity game. The label of a vertex de-
notes its name v and its color Ω(v).

Player 1 wins from the remaining vertices. His
winning strategy is to move from v0 to v1 from
v2 to v5, from v5 to v1 and from v4 to v0. Every
play that is consistent with this strategy eventu-
ally reaches v1. From there, either Player 0 moves
to v0, from where Player 1 moves back to v1, or
Player 0 moves to v2 and the Player 1 moves back
to v1 via v5. On both of these cycles, the mini-
mal color is odd, i.e., either 3 on the former or 1
on the latter. Thus, every play that is consistent
with this strategy is winning for Player 1.

Note that both strategies described above are
uniform positional winning strategies. We show
that such strategies always exist for both players
in parity games.

To start, however, we characterize the parity
condition in terms of Büchi (and co-Büchi) condi-
tions.
Lemma 3.7. Every parity condition Parity(Ω) is a boolean combination of Büchi conditions (equiva-
lently, of co-Büchi conditions).

Proof. Exercise 3.9.

Dually, Büchi and co-Büchi games can straightforwardly be expressed as parity games with two colors,
e.g., assign color 0 to vertices in F and color 1 to all other vertices in the Büchi case, and assign color 2
to vertices in C and color 1 to all other vertices in the co-Büchi case. The resulting colorings witness the
following claim.
Remark 3.3.

1. Every Büchi condition Büchi(F ) is equal to a parity condition Parity(Ω) for some suitable color-
ing Ω.

2. Every co-Büchi condition coBüchi(C) is equal to a parity condition Parity(Ω) for some suitable
coloring Ω.

Furthermore, the parity condition is quite robust to changes, which turns out to be useful for appli-
cations and for designing solution algorithms. As defined above, every vertex of the arena is colored by
an arbitrary natural number and the minimal color seen infinitely often determines the winner. Hence,
this condition is sometimes called min-parity to distinguish it from the (equivalent) max-parity condition
defined below.

• Let A be an arena and let Ω be a coloring of A’s vertices. The max-parity condition is defined as

MaxParity(Ω) := {ρ ∈ V ω | max Inf(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · ) is even},

i.e., the parity of the maximal color seen infinitely often instead of the parity of the minimal one
seen infinitely often determines the winner.

• Let A be an arena with vertex set V and let Ω: V 99K N be a partial coloring such that every cycle
of A contains at least one vertex that is colored by Ω. We call such a partial coloring valid. If Ω is
valid, then every infinite play visits infinitely many colored vertices, i.e., Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · is an
infinite sequence. Thus, we can define the parity condition for a partial coloring Ω as before:

Parity(Ω) := {ρ ∈ V ω | min Inf(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · ) is even}.
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Lemma 3.8.

1. Every max-parity condition MaxParity(Ω) is equal to a parity condition Parity(Ω′) for some
suitable coloring Ω′.

2. Fix an arena A = (V, V0, V1, E). For every valid partial coloring Ω: V 99K N there is a complete
coloring Ω′ : V → V with ρ ∈ Parity(Ω′) if, and only if, ρ ∈ Parity(Ω) for every ρ ∈ Plays(A).2

3. For every coloring Ω: V → N there is an injective coloring Ω′ : V → N with Parity(Ω′) =
Parity(Ω).

4. For every coloring Ω: V → N there is a coloring Ω′ : V → N with Parity(Ω′) = Parity(Ω) and
Ω′(V ) ⊆ {0, 1, . . . , |V |}.

5. For every coloring Ω: V → N there is a coloring Ω′ : V → N with Parity(Ω′) = Parity(Ω) such
that Ω′(V ) ⊆ Ω(V ) and | |{c ∈ Ω′(V ) | c even}| − |{c ∈ Ω′(V ) | c odd}| | ≤ 1.

Proof. Exercise 3.10.

Our first result about parity games shows determinacy with uniform positional winning strategies and
proceeds via induction over the number of vertices of the arena. Let us remark that there are many other
proofs that proceed over the number of colors or over the number of edges.
Theorem 3.5. Parity games are determined with uniform positional winning strategies.

Proof. We prove the theorem by induction over the number n of vertices of the arena.
For the induction start n = 1, we have to consider a parity game G = (A,Parity(Ω)) in an arena A

with a single vertex v, which has a self-loop by assumption. Then, Player Par(Ω(v)) wins the only play vω
in A and thus wins G from v. Furthermore, every strategy in G is positional, as there is only a single
vertex. Hence, G is determined with uniform positional winning strategies.

For the induction step, fix a parity game (A,Parity(Ω)) with A = (V, V0, V1, E) such that |V | = n >
1. By induction hypothesis, every parity game with less vertices is determined with uniform positional
winning strategies. In particular, it applies to every parity game whose arena is a proper sub-arena of A.

Let d = min(Ω(V )) be the minimal color occurring in the game and define i = Par(d) to be the parity
of d. Hence, if a play visits vertices of color d infinitely often, then it is winning for Player i, as there is
no smaller color of parity 1− i. Thus, let D = {v ∈ V | Ω(v) = d} be the set of states colored with d and
A = Attri(D) 6= ∅. Finally, let σA be the associated attractor strategy forcing plays from A into D. The
situation is depicted in Figure 3.8

D = Ω−1(d)

A = Attri(D)

V \A

Figure 3.8: The structure of A in the inductive step: D is the set of vertices labeled by the minimal color d of
parity i, and A is the i-attractor of D.

We consider two cases:

Case 1. “A = V ”: In this case, the region right of the wavy line in Figure 3.8 is empty. Thus, Player i
can enforce a visit to D from every vertex. This enables her to visit D infinitely often by using her

2Note that we do not claim Parity(Ω′) = Parity(Ω)!
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attractor strategy again and again. This is winning for her as argued above. Formally, we define
the positional strategy σ for Player i via

σ(v) =
{
σA(v) if v ∈ A \D,
v′ if v ∈ D, for some arbitrary successor v′ of v.

To show that σ is a winning strategy from V , let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A, V, σ) be an arbitrary
play that is consistent with σ. By A = V it follows that every vertex ρj of ρ is in A. If ρj is not
in D, then ρ is consistent with the attractor strategy and therefore contains a vertex ρj′ ∈ D with
j′ > j. As this argument applies to every position j, we conclude that ρ visits D infinitely often.
As d is the smallest color in the arena, it is the smallest color visited infinitely often along ρ. Thus,
ρ is winning for Player i, as i is the parity of d. As ρ is an arbitrary play starting in an arbitrary
vertex, we have shown that σ is a winning strategy from every vertex. Thus, Player i has a uniform
positional winning strategy, which is winning from every vertex.

Case 2. “A 6= V ”: Consider the sub-arena A′ = A �(V \ A) inducing the game G′ = (A′,Parity(Ω′))
with Ω′(v) = Ω(v) for all v ∈ V \A. The arena and the game are well-defined due to Corollary 3.1.
Also, as A ⊇ D is non-empty, G′ has less vertices than G, i.e., the induction hypothesis is applicable:
G′ is positionally determined with uniform winning strategies σ′ for Player i and τ ′ for Player 1− i.
The situation is depicted in Figure 3.9.

D = Ω−1(d)

A = Attri(D)

Wi(G′)

W1−i(G′)

Figure 3.9: The structure of A in Case 2 of the inductive step: the set V \A induces the parity game G′, which
is determined by induction hypothesis.

To continue, we have to distinguish two subcases:

Subcase 1. “W1−i(G′) = ∅”: In this case, Player i wins G′ from every vertex, as W1−i(G′) is empty
(see Figure 3.10).

D = Ω−1(d)

A = Attri(D)

Wi(G′)

Figure 3.10: The structure of A in Subcase 1 of the inductive step: Player 1− i’s winning region in G′ is empty.

We show that Wi(G) = V by analyzing the following positional strategy σ for Player i.

σ(v) =


σ′(v) if v ∈Wi(G′),
σA(v) if v ∈ A \D,
v′ if v ∈ D for some arbitrary successor v′ of v.
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To show that σ is a winning strategy from V , ρ = ρ0ρ1ρ2 · · · ∈ Plays(A, V, σ) be an arbitrary
play that is consistent with σ. First, assume that there is a j ∈ N such that ρj′ ∈ V \ A for
every j′ ≥ j. Then, by definition of σ it follows that ρ′ = ρjρj+1ρj+2 · · · is consistent with σ′,
i.e., ρ′ ∈ Plays(A′, V \A, σ′). Thus, ρ′ is winning for Player i in G′. As the parity condition is
prefix independent and Ω and Ω′ coincide on V \A, we conclude that ρ is winning for Player i
as well.
Next assume that for all j ∈ N there exists a j′ ≥ j such that ρj′ ∈ A. Then, by definition of
σ, there is an infix ρj′ · · · ρj′′ that is consistent with σA which ends in a vertex from D. Thus,
the color d is visited infinitely often, which again implies that ρ is winning for Player i.
Hence, as ρ is picked arbitrarily, we conclude that σ is indeed a uniform positional winning
strategy for Player i from V .

Subcase 2. “W1−i(G′) 6= ∅”: In this subcase, which is the most involved one, we assume that
Player 1− i wins G′ from at least one vertex. Note that Player i won G from every vertex in
all other cases. In this last case, Player 1− i has a non-empty winning region in G at last.
Let B = Attr1−i(W1−i(G′)) 6= ∅ be the attractor of W1−i(G′) in the arena A. Then, the
sub-arena A′′ = A �(V \ B) induces the game G′′ = (A′′,Parity(Ω′′)) with Ω′′(v) = Ω(v)
for all v ∈ V \ B. Again this sub-arena and the game are well-defined due to Corollary 3.1.
Furthermore, the induction hypothesis is applicable: G′′ is determined with uniform positional
winning strategies σ′′ for Player i and τ ′′ for Player 1 − i. The situation is depicted in
Figure 3.11.

W1−i(G′)

B = Attr1−i(W1−i(G′))

W1−i(G′′)

Wi(G′′)

Figure 3.11: The structure of A in Subcase 2 of the inductive step: the complement V \B of the (1−i)-attractor
of W1−i(G′) induces a parity game G′′, which is determined by induction hypothesis.

We show Wi(G) = Wi(G′′) and W1−i(G) = W1−i(G′′) ∪ B by showing Wi(G′′) ⊆ Wi(G) and
W1−i(G′′) ∪B ⊆W1−i(G).
First, we show that the uniform positional winning strategy σ′′ obtained from the induction
hypothesis applied to G′′ is a positional winning strategy for Player i from Wi(G′′) in the
(larger) game G, which implies Wi(G′′) ⊆Wi(G).3

To this end, let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A,Wi(G′′), σ′′) be arbitrary. First, we claim that ρ
never leaves Wi(G′′): if ρj is in Wi(G′′) and in Vi, then ρj+1 = σ′′(ρj). As σ′′ is defined on
G′′, we already have that ρj+1 is a vertex of G′′. Towards a contradiction, assume we have
ρj+1 = σ′′(ρj) ∈ W1−i(G′t′): then, Player 1 − i has a winning strategy from ρj+1. Thus, he
also wins from ρj against σ′′, as the parity condition is prefix-independent. This contradicts
σ′′ being a winning strategy from ρj .
For dual reasons, we conclude ρj+1 ∈Wi(G′′) in case ρj ∈Wi(G′′) ∩ V1−i: Player 1− i cannot
move to W1−i(G′′), as the winning region Wi(G′′) is a trap for him. Also, he cannot move
into B, as B is an attractor and the complement of the attractor is also a trap for him (recall
Remark 3.2).
Hence, ρ ∈ Parity(Ω′′) for i = 0 and ρ /∈ Parity(Ω′′) for i = 1 and therefore ρ ∈ Parity(Ω)
for i = 0 and ρ /∈ Parity(Ω) for i = 1, as Ω and Ω′′ coincide on Wi(G′′).

3Technically, we have to extend σ′′ to A by picking arbitrary moves at vertices in Vi for which σ is undefined.
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It remains to show that there is a positional strategy τ for Player 1 − i that is winning from
W1−i(G′′) ∪B, which implies W1−i(G′′) ∪B ⊆W1−i(G). To this end, we define τ via

τ(v) =


τ ′′(v) if v ∈W1−i(G′′),
τB(v) if v ∈ B \W1−i(G′),
τ ′(v) if v ∈W1−i(G′),
v′ otherwise, for some arbitrary successor v′ of v.

Here, τB is an attractor strategy defined on B moving the token from B\W1−i(G′) to W1−i(G′).
We show that τ is indeed a winning strategy for Player 1− i from W1−1(G′′) ∪B.
Let the play ρ = ρ0ρ1ρ2 · · · ∈ Plays(A,W1−i(G′′)∪B, τ) be arbitrary. If there exists a position
j ∈ N with ρj ∈ W1−i(G′), then ρj′ ∈ W1−i(G′) for all j′ ≥ j, since W1−i(G′) is a trap
for Player i in A. This can be shown similarly to the claims above. Accordingly, the play
ρ′ = ρjρj+1ρj+2 · · · is in Plays(A′,W1−i(G′), τ ′) and therefore winning for Player 1 − i, i.e.,
ρ′ /∈ Parity(Ω′) if i = 0 and ρ′ ∈ Parity(Ω′) if i = 1. Correspondingly, also ρ /∈ Parity(Ω)
if i = 0 and ρ ∈ Parity(Ω) if i = 1, as the parity condition is prefix independent and Ω and
Ω′ coincide. Hence, ρ is winning for Player 1− i.
Thus, it remains to consider the case, where ρ starts in W1−i(G′′) and satisfies ρj /∈ B for every
j. By definition of τ , such a play is consistent with τ ′′ and therefore winning for Player 1− i
in G′′. Thus, it is also winning for Player 1− i in G.
Hence, we have shown that G is indeed determined and that both players have uniform posi-
tional winning strategies.

The inductive argument underlying the previous proof can be turned into a recursive algorithm solving
parity games which only needs to compute attractors, which can be done very efficiently. However, as
subcase 2 requires the solution of two parity games, i.e., G′ and G′′, the algorithm makes (in the worst
case) two recursive calls to solve one game. This yields an exponential upper bound on the running time
of the algorithm and there are examples where an exponential number of calls are necessary.

Before we introduce the small progress measure algorithm for parity games, we discuss another con-
sequence of positional determinacy of parity games: determining the winner from a given vertex is in
NP ∩Co-NP. Despite considerable effort, no polynomial-time algorithm for this problem is known. In
contrast, if the problem is complete for NP or Co-NP, then this implies NP = Co-NP.
Theorem 3.6. The following problem is in NP ∩Co-NP: Given a parity game G, a vertex v of G, and
i ∈ {0, 1}, is v ∈Wi(G)?

Proof. We prove the statement by giving a non-deterministic polynomial time algorithm and a universal
polynomial-time algorithm.

Given a positional strategy σ for Player i in a game G = (A,Win) with A = (V, V0, V1, E), we can
hardcode the moves prescribed by σ into the arena to obtain a one-player game, i.e., a game where only
one player has non-trivial moves. Formally, we define Aσ = (V, V0, V1, Eσ) with

Eσ = {(v, σ(v)) | v ∈ Vi} ∪ {(v, v′) ∈ E | v ∈ V1−i},

which is a subset of E: for every Player i vertex v, we remove all successors but the one picked by σ, for
Player 1− i vertices, we retain all successors. Thus, in Aσ, every Player i vertex has a unique successor,
i.e., only Player 1 − i has (potentially) several successors available at his vertices. We call a game with
such an arena a single-player game. The following algorithm is based on the fact that single-player parity
games can be solved in polynomial time and that σ is a winning strategy for Player i from a vertex v in
a parity game G if, and only if, v is in the winning region of Player i in the corresponding single-player
game (Aσ,Parity(Ω)) (see Exercise 3.12).

We show that the following algorithm determines the winner of a parity game in non-deterministic
polynomial time, which places the problem in NP: Given an input ((A,Parity(Ω)), v, i), guess a posi-
tional strategy σ for Player i in G and determine whether Player i wins the single-player game (Aσ,Parity(Ω))
from v. As argued above, the running time is indeed polynomial. It remains to prove correctness of the
algorithm

If Player i wins (A,Parity(Ω)) from v, then she also has a positional winning strategy due to
Theorem 3.5. Thus, as mentioned above, v is in Player i’s winning region in (Aσ,Parity(Ω)), i.e., the
algorithm accepts the input. In contrast, if the algorithm accepts the input, then there is a positional
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strategy σ such that v is in the winning region of Player i in (Aσ,Parity(Ω)). Again, as stated above,
this implies that σ is a winning strategy for Player i in (A,Parity(Ω)) from v.

Now, we show that the problem is in Co-NP by applying the self-duality of parity games and the
duality of NP and Co-NP. Due to positonal determinacy of parity games, Player i wins a parity game G
from a vertex v if, and only if Player 1 − i does not win G from v, i.e., if, and only if Player 1 − i does
not have a positional winning strategy for G from v. Thus, the following algorithm places the problem in
Co-NP: Given an input ((A,Parity(Ω)), v, i), verify that all positional strategies τ for Player 1 − i in
G result in a single-player game (Aτ ,Parity(Ω)) that is won by Player i from v. The correctness proof
is dual to the one above.

Another way to place the problem in Co-NP is via dualization: Player 1’s goal is to ensure that the
minimal color seen infinitely often is odd. By increasing every color by one, his goal is again a parity
condition as introduced above: ensure that the minimal color seen infinitely often is even. Thus, the dual
of the parity condition is again a parity condition: parity games are self-dual.

Remark 3.4. Let A be an arena with vertex set V and let Ω be a coloring of V . Then, V ω\Parity(Ω) =
Parity(Ω′), where Ω′(v) = Ω(v) + 1 for every v ∈ V .

As before for reachability and Büchi games, the determinacy proof for parity games can be turned
into an algorithm for solving such games. In the remainder of this section, we present another algorithm
to solve parity games, the so-called small progress measure algorithm. The algorithm is essentially a
fixed-point computation for a suitable operator and is asymmetric, i.e., it computes the winning region
and a uniform positional winning strategy for Player 0. To obtain a winning strategy for Player 1, one
has to apply the algorithm to the dual game.

For Player 0, odd colors are undesirable, smaller ones even more than larger ones, as they are harder
to counter. A positional winning strategy for Player 0 satisfies the following property: a play that is
consistent with σ does not traverse a loop whose minimal color is odd. If it would, then Player 1 could
traverse this loop ad infinitum and thereby win. Stated differently, such a play does not have nc + 1
occurrences of an odd color c without a smaller even color in between, where nc is the number of vertices
of color c. If Player 1 can enforce such a situation, the initial vertex is in his winning region.

These observations hint at counting the occurrences of odd colors to compute a witness of a vertex
being in Player 0’s winning region. Here, such a witness is a vector (s1, s3, . . . , sd), a so-called score sheet,
where d is the largest odd color of the game. Intuitively, sc represents that Player 1 can enforce at most
sc visits of color c before a smaller even one is encountered. Thus, the entry sc is bounded by nc, i.e.,
the score sheets are small. A progress measure is a labeling of the vertices by such a score sheet, subject
to some requirements that allow to construct a winning strategy for Player 0. The algorithm computes
such a small progress measure, which explains its name.

Informally, a progress measure is computed locally as follows: consider a vertex with some odd color c.
Then, the score sheet (s1, s3, . . . , sd) is initialized with sc = 1 and sc′ = 0 for all c′ 6= c as every play
starting in v encounters at least one occurrence of c. Vertices of even color are initialized with the zero
vector (0, . . . , 0). Now, consider an arbitrary vertex v. Player 0 tries to minimize the number of odd
colors encountered along a play, i.e., she prefers a successor whose score sheet has few occurrences of odd
colors, where occurrences of small colors weigh more than occurrences of larger colors (technically, we
order the score sheets by the lexicographic ordering). However, we also have to consider the effect of the
vertex v has on the play: thus, we take the smallest score sheet of the successors of v and increment the
entry with coordinate Ω(v), if Ω(v) is odd. If Ω(v) is even, then all entries sc with c > Ω(v) are reset to
zero, as Ω(v) is smaller than these colors. Dually, if it is Player 1’s turn at v, we have to consider the
largest successor, as he benefits from visiting odd colors.

One issue we have not yet dealt with is the situation where incrementing an entry sc exceeds the
bound b. To be able to apply fixed-point theory smoothly, the update has to be monotonic. This requires
us to increment the next incrementable entry, i.e., the entry sc′ for the largest c′ < c with sc′ < nc′ . If
there is no such entry, then we assign the special score sheet >, which is no longer updated. We will see
that this represents vertices from which Player 1 can enforce a win.

We begin by introducing score sheets as the data structure tracking the occurrences of odd colors.
Recall that [n] denotes the set {0, 1, . . . , n − 1}. Also, review Subsection A.4, where we introduce the
background on fixed-points we need to present the algorithm.

Definition 3.7 (Score Sheets). Let G = (A,Parity(Ω)) be a parity game with vertex set V . Furthermore,
let nc = |{v ∈ V | Ω(v) = c}| denote the number of vertices labeled by color c and let d = max{c ∈ Ω(V ) |
c odd} denote the largest odd color in G.
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A score sheet s of G is either the element > or a tuple

s = (s1, s3, . . . , sd−2, sd) ∈
∏

c∈{1,3,...,d}

[nc + 1].

The set of all score sheets of G is denoted by Sh(G).
Consider the parity game depicted in Figure 3.7, call it Ge. Here, we have d = 3 and n1 = n3 = 2.

Hence, Sh(Ge) = {0, 1, 2} × {0, 1, 2} ∪ {>}.
Definition 3.8 (Score Sheet Update). We define the update of a score sheet s by a color c, denoted by
s⊕ c, as >⊕ c = > and for s = (s1, s3, . . . , sd) as

s⊕ c =


(s1, . . . , sc−1, 0, . . . , 0) if c is even,
(s1, . . . , sc′−2, sc′ + 1, 0, . . . , 0) if c is odd and c′ = max{c∗ ≤ c | c∗ odd and sc∗ < nc∗}

is defined,
> otherwise.

In the first case of the definition, all entries with coordinates c′ > c are reset to zero. If s ⊕ c is
obtained by applying the second case with c′ < c or by applying the third case, then we say that an
overflow occurred.

Continuing the example from above, for s = (1, 1) we have s⊕ 3 = (1, 2), (s⊕ 3)⊕ 3 = (2, 0), i.e., an
overflow occurs, and (s⊕ 3)⊕ 2 = (1, 0).

Small odd colors are more undesirable for Player 0 than larger ones, as they are harder to counter.
Hence, we order score sheets lexicographically4 and add > as largest element, i.e., > ≥ s for every score
sheet s.

Our first technical result about score sheets shows that the update operation ⊕ is monotonic with
respect to this order.
Lemma 3.9. If s0 ≤ s1 for two score sheets s0 and s1, then s0 ⊕ c ≤ s1 ⊕ c for every color c.

Proof. We begin by considering some special cases.
• If s1 = >, then s1 ⊕ c = > ≥ s0 ⊕ c, independently of s0 and c, as > is maximal.

• If s0 = >, then also s1 = > due to s1 ≥ s0 = >, i.e., we can reason as in the case above.

• If s0 = s1, then also s0 ⊕ c = s1 ⊕ c and therefore s0 ⊕ c ≤ s1 ⊕ c.
Thus, the only case left to consider is the one where we have

s0 = (s0
1, s

0
3, . . . , s

0
d) < (s1

1, s
1
3, . . . , s

1
d) = s1.

Then, by definition of the lexicographic ordering, there exists a color c∗ such that s0
c∗ < s1

c∗ and s0
c′ = s1

c′

for all odd c′ < c∗.
First, we assume that c is even. Then, we have

s0 ⊕ c = (s0
1, s

0
3, . . . , s

0
c−1, 0, . . . , 0) and s1 ⊕ c = (s1

1, s
1
3, . . . , s

1
c−1, 0, . . . , 0).

If c < c∗, then we have s0 ⊕ c = s1 ⊕ c, as we have s0
c′ = s1

c′ for all c′ < c∗, which subsumes all entries
of s0 ⊕ c and s1 ⊕ c that are not reset. In contrast, if c > c∗ then the entries witnessing s0 < s1 are left
unchanged when updating with c. Hence, we also have s0 ⊕ c < s1 ⊕ c.

Thus, assume c is odd and let c0 = max{c′ ≤ c | c′ odd and s0
c′ < nc′} the position where s0 is

incremented to obtain s0⊕ c and similarly let c1 = max{c′ ≤ c | c′ odd and s1
c′ < nc′} the position where

s1 is incremented to obtain s1⊕c. Note that both c0 and c1 might be undefined, which implies s0⊕c = >
and s1 ⊕ c = >, respectively. Thus, if c1 is undefined, then we are done, as s1 ⊕ c = > is the maximal
element.

In contrast, if c0 is undefined, then also c1 is undefined: c0 being undefined implies s0
c′ = nc′ for every

c′ ≤ c. As we have nc∗ ≥ s1
c∗ > s0

c∗ we conclude c∗ > c (otherwise, we have s0
c∗ = nc∗ and therefore

nc∗ > nc∗). Thus, we have s1
c′ = s0

c′ = nc′ for every c′ ≤ c, i.e., c1 is indeed undefined. Thus, we are
again done in this case, as argued above.

After having ruled out all special cases mentioned above, we now conclude the proof by a final case
distinction in case s0 < s1 < >, c is odd, and c0 and c1 are both defined.

4Recall that the lexicographic order ≤ on tuples of length n is defined as (a0, a1, . . . , an−1) ≤ (b0, b1, . . . , bn−1) if, and
only if, there is a j < n such that aj ≤ bj and aj′ = bj′ for all j′ < j. This order is total, i.e., any two tuples are comparable.
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Case 1. “c < c∗”: In this case, the positions c0 and c1 are equal, as c is smaller than c∗. This implies
that both c0 and c1 are drawn from the common prefix of s0 and s1. Thus, we obtain

s0 ⊕ c = (s0
1, s

0
1, . . . , s

0
c0−2, s

0
c0

+ 1, 0 . . . , 0) = (s1
1, s

1
1, . . . , s

1
c1−2, s

1
c1

+ 1, 0 . . . , 0) = s1 ⊕ c.

Case 2. “c = c∗”: In this case, we have c0 = c∗, as s0
c∗ is strictly smaller than s1

c∗ , which in turn is at
most nc∗ . Also, we have c1 ≤ c∗ by definition.
If c1 is equal to c∗, then we have

s0 ⊕ c = (s0
1, s

0
3, . . . , s

0
c∗−2, s

0
c∗ + 1, 0, . . . , 0) < (s1

1, s
1
3, . . . , s

1
c∗−2, s

1
c∗ + 1, 0, . . . , 0) = s1 ⊕ c,

as s0
c′ = s1

c′ for all c′ < c∗ and s0
c∗ < s1

c∗ .
In contrast, if c1 is strictly smaller than c∗, then we have

s0 ⊕ c = (s0
1, s

0
3, . . . , s

0
c1
, . . . , s0

c∗−2, s
0
c∗ + 1, 0, . . . , 0) < (s1

1, s
1
3, . . . , s

1
c1

+ 1, 0, . . . , 0) = s1 ⊕ c,

as s0
c′ = s1

c′ for all c′ < c1, as c1 is at most c∗ − 2, and as s0
c1

= s1
c1

implies s0
c1

< s1
c1

+ 1,
where the equality is again due to c1 being strictly smaller than c∗. Thus, the entries with coordi-
nates 1, 3, . . . , c1 witness s0 ⊕ c < s1 ⊕ c.

Case 3. “c > c∗”: Here, we have c0 ≥ c∗, as s0
c∗ is strictly smaller than s1

c∗ , which in turn is at most
nc∗ . Thus, s0

c∗ is small enough to be incremented, but there might be other larger positions with
the same property, which take precedence.
If c0 is equal to c∗, then we have

s0 ⊕ c = (s0
1, s

0
3, . . . , s

0
c∗ + 1, 0, . . . , 0).

• If c1 < c∗ = c0, then s1 ⊕ c = (s1
1, s

1
3, . . . , s

1
c1

+ 1, 0 . . . , 0). Hence, the entries with coor-
dinates 1, 3, . . . , c1 witness s0 ⊕ c < s1 ⊕ c, as we have s0

c′ = s1
c′ for every such coordinate

c′.
• If c1 = c∗ = c0, then s1 ⊕ c = (s1

1, s
1
3, . . . , s

1
c∗ + 1, 0 . . . , 0). Hence, the entries with coordi-

nates 1, 3, . . . , c∗ witness s0 ⊕ c < s1 ⊕ c, as we have s0
c′ = s1

c′ for every c′ < c∗ and s0
c∗ < s1

c∗ .
• If c1 > c∗ = c0, then s1 ⊕ c = (s1

1, s
1
3, . . . , s

1
c∗ , . . . , s

1
c1

+ 1, 0 . . . , 0). If the entries with coordi-
nates 1, 3, . . . , c∗ witness s0 ⊕ c < s1 ⊕ c, then we are done. If they do not, then s0 ⊕ c and
s1 ⊕ c share a common prefix in these coordinates. As s0 ⊕ c only contain zeros after this
prefix, but s1 ⊕ c contains at least one non-zero entry after c∗, we conclude s0 ⊕ c < s1 ⊕ c.

In contrast, if c0 is greater than c∗, then s0 ⊕ c starts with the prefix (s0
1, s

0
3, . . . , s

0
c∗).

• If c1 ≤ c∗, then s1 ⊕ c starts with the prefix (s1
1, s

1
3, . . . , s

1
c1

+ 1). Hence, s0
c′ = s1

c′ for every
coordinate c′ of the prefixes implies s0 ⊕ c < s1 ⊕ c.

• If c1 > c∗, then s0 ⊕ c starts with the prefix (s1
1, s

1
3, . . . , s

1
c∗). Hence, s0

c′ = s1
c′ for every c′ < c∗

and s0
c∗ < s1

c∗ implies s0 ⊕ c < s1 ⊕ c.

Now, we define progress measures as mappings that assign a score sheet to each vertex subject to two
constraints that allow to derive a winning strategy from a progress measure.
Definition 3.9 (Progress Measure). Let G be a parity game with vertex set V . A function ℘ : V → Sh(G)
is a progress measure for G, if

• every v ∈ V0 has a successor v′ with ℘(v) ≥ ℘(v′)⊕ Ω(v) and

• for every v ∈ V1 and every successor v′ of v, ℘(v) ≥ ℘(v′)⊕ Ω(v) holds.

The set of all progress measures for G is denoted by PM(G). The evaluation ‖ · ‖ : PM(G) → 2V of a
progress measure ℘ is defined as ‖℘‖ = {v ∈ V | ℘(v) 6= >}.

Note that progress measures consider edges in reverse order: the score sheet of v is compared to that
of a successor v′ updated by the color of v.

A progress measure ℘e for our running example game Ge is given by the following table:
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v v0 v1 v2 v3 v4 v5 v6 v7 v8
℘e(v) > > > (1, 0) > > (0, 0) (0, 1) >

For example, we have ℘e(v3) = (1, 0) = (0, 0) ⊕ 1 = ℘e(v6) ⊕ 1 for the vertex v3 ∈ V0, ℘e(v7) = (0, 1) =
(0, 0)⊕ 3 = ℘e(v6)⊕ 3 for v7 ∈ V0, and ℘e(v6) = (0, 0) = (0, 1)⊕ 2 = ℘e(v7)⊕ 2 for v6 ∈ V1, which only
has the successor v7. In contrast, for vertices labeled by >, the requirement is trivially satisfied, as > is
the maximal element.

Note that the evaluation of the progress measure ℘e is equal to the winning region of Player 0 and
that the successors of v3 and v7 witnessing that ℘e is indeed a progress measure, v6 in both cases, are
exactly those picked by a winning strategy for Player 0 that is winning from ‖℘e‖.

The next lemma shows that the evaluation of a progress measure is always a subset of her winning
region and that there is a progress measure whose evaluation is her complete winning region. In both
cases, we rely on a tight connection between positional winning strategies for Player 0 and progress
measures.

A consequence of the following lemma and of positional determinacy is that an evaluation-maximal
progress measure yields the winning regions of both players in a parity game. The small progress measure
algorithm we present in the following computes such a progress measure.
Lemma 3.10. Let G be a parity game.

1. ‖℘‖ ⊆W0(G) for every progress measure ℘ ∈ PM(G).

2. There exists a progress measure ℘ ∈ PM(G) with ‖℘‖ = W0(G).

Proof. 1.) This can be proven by constructing a strategy for Player 0 that is winning from ‖℘‖ (Exer-
cise 3.13).

2.) We begin by introducing some notation. First, we define the function sh : V ∗ → Sh(G) recursively
as sh(ε) = (0, . . . , 0) and sh(wv) = sh(w) ⊕ Ω(v), i.e., we update the empty sheet by the sequence of
colors encountered by the play prefix. Furthermore, define ←−sh : V ∗ → Sh(G) as ←−sh (w) = sh(wR). Recall
that wR denotes the reversal of w, i.e., (w0 · · ·wn)R = wn · · ·w0.

Now, fix a uniform positional winning strategy σ for Player 0 in G and define ℘ : V → Sh(G) via

℘(v) =
{

max{←−sh (w) | w ∈ Prefs(ρ) for some ρ ∈ Plays(A, v, σ)} if v ∈W0(G),
> otherwise.

We claim that ℘ is a progress measure whose evaluation is equal to Player 0’s winning region. First, we
prove the latter claim and then show that ℘ is indeed a progress measure.

As we have proven ‖℘‖ ⊆ W0(G) above, we only have to show W0(G) ⊆ ‖℘‖. Thus, let v ∈ W0(G).
As > is the maximal element in Sh(G), we have to prove that ←−sh (w) 6= > holds for all ρ ∈ Plays(A, v, σ)
and all w ∈ Prefs(ρ).

First, we claim that every such w does not contain an infix with nc + 1 occurrences of an odd color c
and without an occurrence of a smaller even color in between. Towards a contradiction, assume there is
such an infix. Then, there is a vertex repetition of some vertex of color c in this infix. Consider the play
obtained by reaching this vertex and then traversing the loop induced by the repetition forever, which
is consistent with σ. The minimal color in the loop, which is also the minimal color occurring infinitely
often, is odd. This contradicts σ being winning from v.

Now, an induction over c from d to 1 shows that ←−sh (w) = sh(wR) does not have an overflow: c can
either overflow if a larger color overflows (which is ruled out by the induction hypothesis) or if nc + 1
occurrences of c without a reset in between are encountered. The latter situation yields an infix of w with
nc+1 occurrences of c and without an occurrence of a smaller even color in between, which does not exist
in w as shown above. Thus, ←−sh (w) does not have an overflow. In particular, we conclude ←−sh (w) 6= >.

It remains to show that ℘ is indeed a progress measure, i.e., that the conditions of Definition 3.9 are
satisfied. Let v ∈ V . We distinguish three cases.

Case 1. “v ∈ V0 ∩W0(G)”: We use the following property for w = w0w1 · · ·wn ∈ V ∗: vw is consistent
with σ if, and only if, w0 = σ(v) and w is consistent with σ.
We show ℘(v) ≥ ℘(σ(v))⊕ Ω(v), i.e., σ(v) is the successor required by the definition. We have

℘(v) = max{←−sh (vw) | vw ∈ Prefs(ρ) and ρ ∈ Plays(A, v, σ)}

31



= max{sh(wRv) | vw ∈ Prefs(ρ) and ρ ∈ Plays(A, v, σ)}
= max{sh(wR)⊕ Ω(v) | w ∈ Prefs(ρ) and ρ ∈ Plays(A, σ(v), σ)}
= max{sh(wR) | w ∈ Prefs(ρ) and ρ ∈ Plays(A, σ(v), σ)} ⊕ Ω(v)
= max{←−sh (w) | w ∈ Prefs(ρ) and ρ ∈ Plays(A, σ(v), σ)} ⊕ Ω(v)
= ℘(σ(v))⊕ Ω(v).

Case 2. “v ∈ V1 ∩ W0(G)”: Here, we use the following property for w = w0w1 · · ·wn ∈ V ∗: vw is
consistent with σ if, and only if, w is consistent with σ and (v, w0) ∈ E.
We have to show ℘(v) ≥ ℘(v′)⊕ Ω(v) for every successor v′ of v. Indeed, we have

℘(v) = max{←−sh (vw) | vw ∈ Prefs(ρ) and ρ ∈ Plays(A, v, σ)}
= max{sh(wRv) | vw ∈ Prefs(ρ) and ρ ∈ Plays(A, v, σ)}
= max{sh(wR)⊕ Ω(v) | w ∈ Prefs(ρ), ρ ∈ Plays(A, v′, σ) and (v, v′) ∈ E}
= max{max{sh(wR) | w ∈ Prefs(ρ) and ρ ∈ Plays(A, v′, σ)} ⊕ Ω(v) | (v, v′) ∈ E}
= max{max{←−sh (w) | w ∈ Prefs(ρ) and ρ ∈ Plays(A, v′, σ)} ⊕ Ω(v) | (v, v′) ∈ E}
= max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}
≥ ℘(v′)⊕ Ω(v) for all (v, v′) ∈ E.

Case 3. “v ∈ W1(G)”: In this case, we have ℘(v) = >, which is the maximal element. Hence, ℘(v) ≥
℘(v′)⊕ Ω(v) for all (v, v′) ∈ E.

To apply the Knaster-Tarski Theorem, we construct a complete lattice and a monotonic operator
whose pre-fixed-points are the progress measures. To this end, we first define the ordering.
Definition 3.10 (Progress Measure Ordering). Let G = (A,Parity(Ω)) be a parity game with vertex
set V and let PG = {℘ | ℘ : V → Sh(G)}. We define a partial order v on PG via ℘ v ℘′, if ℘(v) ≤ ℘′(v)
for all v ∈ V .

As usual, @ denotes the strict variant of the order, i.e., ℘ @ ℘′, if ℘ v ℘′ and ℘ 6= ℘′. Also, note that
PG is in general a super set of PM(G), as the elements of PG do not have to satisfy the requirements in
the definition of progress measures.
Lemma 3.11. Let G be a parity game. Then, (PG ,v) is a complete lattice.

Proof. Reflexiveness, antisymmetry, and transitivity are straightforward to verify. Now, let P ⊆ PG .
Define ℘s ∈ PG via

℘s(v) = max{℘(v) | ℘ ∈ P}.

Then, ℘u is a supremum of P . An infimum of P is obtained by replacing the maximization in the
definition of ℘s by a minimization.

Next, we introduce the operator whose fixed-points we are interested in. Intuitively, the lift operator
implements the local update of the score sheets described above: at Player 0 vertices v, it takes the
minimal score sheet of a successor, updates it with the color of v, and then assigns the new score sheet
to v. Dually, at Player 1 vertices, the maximal score sheet of the successors is considered.
Definition 3.11 (Lift-operator). Let G = (A,Parity(Ω)) be a parity game with A = (V, V0, V1, E). For
every v ∈ V , we define the function Liftv : PG → PG via

Liftv(℘)(u) =


℘(u) if u 6= v,

max{℘(v),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}} if u = v and u ∈ V0,

max{℘(v),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}} if u = v and u ∈ V1.

Next, we need to prove that each lift operator is monotonic.
Lemma 3.12. Let G = (A,Parity(Ω)) be a parity game with vertex set V . Then, every lift-operator Liftv
is v-monotonic, i.e., ℘ v ℘′ implies Liftv(℘) v Liftv(℘′).

Proof. We have to show ℘(u) ≤ ℘′(u) implies Liftv(℘)(u) ≤ Liftv(℘′)(u) for all u, v ∈ V and for all
℘, ℘′ ∈ PG . We consider the three cases in the definition of Liftv:
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Case 1. “u 6= v”: In this case, we have Liftv(℘)(u) = ℘(u) ≤ ℘′(u) = Liftv(℘′)(u).

Case 2. “u = v and u ∈ V0”: Then,

Liftv(℘)(u)
= max{℘(u),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}}
≤ max{℘′(u),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}} (℘(u) ≤ ℘′(u))
≤ max{℘′(u),min{℘′(v′)⊕ Ω(v) | (v, v′) ∈ E}} (Lemma 3.9)
= Liftv(℘′)(u).

Case 3. “u = v and u ∈ V1”: Then,

Liftv(℘)(u)
= max{℘(u),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}}
≤ max{℘′(u),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}} (℘(u) ≤ ℘′(u))
≤ max{℘′(u),max{℘′(v′)⊕ Ω(v) | (v, v′) ∈ E}} (Lemma 3.9)
= Liftv(℘′)(u).

Next, we characterize the simultaneous pre-fixed-points of the lift-operators as progress measures.
Lemma 3.13. Let G be a parity game. Then, ℘ ∈ PG is a progress measure for G if, and only if, ℘ is a
pre-fixed-point of all lift-operators, i.e., Liftv(℘) v ℘ for all v ∈ V .

Proof. Let G = (A,Parity(Ω)) with A = (V, V0, V1, E).
First, assume that ℘ is a progress measure and let v ∈ V be arbitrary. By Definition 3.10, we have to

show ℘(u) ≥ Liftv(℘)(u) for all u ∈ V . We distinguish three cases.

Case 1. “v 6= u”. We have Liftv(℘)(u) = ℘(u) and accordingly ℘(u) ≥ ℘(u).

Case 2. “v = u and u ∈ V0”: Then, we have

℘(u) ≥ ℘(u′)⊕ Ω(u) for some successor u′ of u
⇒ ℘(u) ≥ min{℘(u′)⊕ Ω(u) | (u, u′) ∈ E}
⇒ ℘(u) ≥ max{℘(u),min{℘(u′)⊕ Ω(u) | (u, u′) ∈ E}}
⇒ ℘(u) ≥ Liftv(℘)(u).

Case 3: “v = u and u ∈ V1”: then, we have

℘(u) ≥ ℘(u′)⊕ Ω(u) for all successors u′ of u
⇒ ℘(u) ≥ max{℘(u′)⊕ Ω(u) | (u, u′) ∈ E}
⇒ ℘(u) ≥ max{℘(u),max{℘(u′)⊕ Ω(u) | (u, u′) ∈ E}}
⇒ ℘(u) ≥ Liftv(℘)(u).

For the other implication, let Liftv(℘) v ℘ for all v ∈ V . By Definition 3.10, we have ℘(u) ≥
Liftv(℘)(u) for all u, v ∈ V . We have to verify the two requirements of a progress measure.

First, we show that every v ∈ V0 has a successor v′ such that ℘(v) ≥ ℘(v′)⊕ Ω(v). We have

℘(v) ≥ Liftv(℘)(v)
⇒ ℘(v) ≥ max{℘(v),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}}
⇒ ℘(v) ≥ min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}

Thus, there exists indeed a successor v′ of v with ℘(v) ≥ ℘(v′) ⊕ Ω(v), namely the one realizing the
minimum above.

Now, it remains to prove ℘(v) ≥ ℘(v′)⊕ Ω(v) for every v ∈ V1 and every successor v′ of v. We have

℘(v) ≥ Liftv(℘)(v)
⇒ ℘(v) ≥ max{℘(v),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}}
⇒ ℘(v) ≥ max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E}

Thus, we have indeed ℘(v) ≥ ℘(v′)⊕ Ω(v) for every v ∈ V1 and every successor v′ of v.
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Thus, the pre-fixed-points of the lift-operators coincide with the progress measures and we prove that
a least pre-fixed-point has the largest evaluation, which then has to be equal to the winning region of
Player 0. The following construction yields the least pre-fixed-point.
Construction 3.3 (Small Progress Measures). Let G = (A,Parity(Ω)) be a parity game with vertex
set V . Furthermore, let ℘0 be the unique element in PG such that ℘0(v) = (0, . . . , 0) for all v ∈ V .

The small progress measure construction on G is then defined for all n ∈ N via ℘0
G = ℘0 and

℘n+1
G =

{
Liftv(℘nG) if there is a v ∈ V with ℘nG @ Liftv(℘nG),
℘nG if Liftv(℘nG) v ℘n−1

G for all v ∈ V .

Finally, we define ℘G = max{℘nG | n ∈ N}, which is well-defined, as there are only finitely many functions
in PG.

Note that the construction as described above is non-deterministic, as we do not specify which lift-
operator to apply in case several ones are applicable. The following results do not depend on how this
non-determinism is resolved. However, the running time of the algorithm might depend on this choice.
Lemma 3.14. Let G = (A,Parity(Ω)) be a parity game with vertex set V and let ℘G the result of the
progress measure algorithm. Then, W0(G) = ‖℘G‖ and W1(G) = V \ ‖℘G‖.

Proof. By Lemma 3.10(2) there exists a progress measure ℘∗ with ‖℘∗‖ = W0(G). We have the following
properties:

• ℘G is the least pre-fixed-point of the Liftv-operators, which can be shown similarly to the proof of
Theorem A.1.

• ℘∗ is a pre-fixed-point of the Liftv-operators (see Lemma 3.13).

Thus, we can conclude ℘G v ℘∗, i.e., ℘G(v) ≤ ℘∗(v) for all v ∈ V . Thus, ‖℘∗‖ = W0(G) implies
℘G(v) ≤ ℘∗(v) < > for all v ∈ W0(G). It follows that W0(G) ⊆ ‖℘G‖ and together with Lemma 3.10(1)
we obtain W0(G) = ‖℘G‖. Finally, Theorem 3.5 yields W1(G) = V \ ‖℘G‖.

Reconsider the example given in Figure 3.7. We solve this game using the progress measure algorithm.
An example execution is depicted in Figure 3.12. The resulting progress measure is the one presented
above and yields both winning regions.

The following theorem wraps up the previous results and contains upper bounds on the time and
space consumption of the algorithm.
Theorem 3.7. Every parity game G = (A,Parity(Ω)) with A = (V, V0, V1, E) and with k odd colors

can be solved in time O(k · log |V | · |E| ·
(
|V |
k

)k
) time and space O(|V | · log |V | · k).

Proof. We use Construction 3.3 to solve parity games. By Lemma 3.14 we obtain the winning regions
for both players and from the proof of Lemma 3.10(1) it follows that we also obtain a positional winning
strategy for Player 0. Finally, as parity games are self-dual we obtain a winning strategy for Player 1 by
solving the dual game.

In Construction 3.3 we only need to store the current ℘nG of each iteration n. Each ℘nG consists of a
score sheet for every vertex v ∈ V and score sheets are tuples of length k. Finally, a score sheet only
contains values of size at most |V |; hence, they can be stored in space log |V |. Thus, the algorithm
requires at most O(k · |V | · log |V |) space.

The number of iterations is bounded by |Sh(G)| and in each iteration we have to execute a lift operator,
which requires us to inspect each edge at most once. Reading and writing the score sheets needs at most
time k · log |V | such that we obtain an upper bound of

|Sh(G)| ≤
∏

c∈Ω(V )odd

(nc + 1) ≤
(
|V |
k

)k
on the runtime of the algorithm. Here, the last inequality follows from the fact that the sum of all nc
exactly sums up to at most |V | and choosing equally-sized nc for each color c maximizes the product.

To conclude let us mention that there are examples where the algorithm requires an exponential
running time. At the time of writing, it is an open problem whether parity games can be solved in
polynomial time.
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Figure 3.12: Progress measure algorithm on the game from Figure 3.7. The lifted nodes are marked.
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3.6 Exercises
Exercise 3.1. Consider the reachability game G = (A,Reach(R)) depicted below.

v0

v2

v1

v3

v5

v4

v6

v7

v8

v9

v11v10

1. Determine the attractor sets Attrn0 (R) for all n ∈ N.

2. Give the uniform winning strategies for both players resulting from the attractor construction.
Argue how you constructed them.

Exercise 3.2. Let A = (V, V0, V1, E) be an arena and R,R′ ⊆ V .
• Prove CPre0(R) = V \ CPre1(V \R)

• Prove R′ ⊆ R implies CPrei(R)CPrei(R′) and Attri(R′) ⊆ Attri(R)

• Prove or disprove Attri(R ∩R′) = Attri(R) ∩Attri(R′)

• Prove or disprove Attri(R ∪R′) = Attri(R) ∪Attri(R′)

• Attri(R) \Attri(R′) = Attri(R \R′)

• V \Attri(R) = Attri(V \R)
Exercise 3.3. Prove Lemma 3.2.

Exercise 3.4. Fix an arena A = (V, V0, V1, E). The generalized reachability condition for a family of
subsets R ⊆ 2V is defined as

GenReach(R) = {ρ ∈ V ω | Occ(ρ) ∩R 6= ∅ for all R ∈ R}.
We call a game G = (A,GenReach(R)) a generalized reachability game.

Let A be the arena depicted below:

0

1 2

3 4

1′

2′

3′

4′

¬1

¬2

¬3

¬4

0′
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Consider the generalized reachability game G = (A,GenReach(R)) with

R :={{1, 1′}, {2, 2′}, {3, 3′}, {4, 4′}},

i.e., in order for a play to be winning for Player 0, it has to visit vertex j or vertex j′ for each j ∈ {1, 2, 3, 4}.

1. Show that Player 1 has a winning strategy from vertex 0.

2. Show that Player 1 does not have a positional winning strategy from vertex 0.

Exercise 3.5. Consider the safety game depicted below.

v0

v1

v2

v3

v4

v5

Solve the game by transforming it into an equivalent reachability game first, solving the reachability
game and transforming back the results to the actual safety game.

Exercise 3.6. Show for i ∈ {0, 1}: a winning strategy σ for Player i from a vertex v ∈ V in a game G is
also a winning strategy for Player 1− i from v in the dual game G.

Exercise 3.7. Consider the Büchi game G = (A,Büchi(F )) depicted below.

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

Compute the winning region and a corresponding uniform positional winning strategy for each Player i.

Exercise 3.8. Consider the parity game G depicted below.

v0/0 v2/3 v5/2 v8/1 v10/0

v3/0 v6/1 v9/3

v1/4 v4/3 v7/2

Compute the winning regions and uniform positional winning strategies for both players using the
idea underlying the proof of Theorem 3.5.
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Exercise 3.9. Prove Lemma 3.7.

Exercise 3.10. Prove Lemma 3.8.

Exercise 3.11. In a parity game, the goal for Player i is to ensure that the minimal color occuring
infinitely often has parity i. By replacing “infinitely often” with “at least once” we obtain a definition
for a weaker variant of parity games: the weak parity condition wParity(Ω) for a coloring Ω: V → N
and an arena A = (V, V0, V1, E) is defined as

wParity(Ω) :={ρ ∈ V ω | min Occ(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · ) is even}.

We call a game G = (A,wParity(Ω)) a weak parity game with coloring Ω.

1. Give a polynomial-time algorithm that computes the winning regions and uniform positional win-
ning strategies for both players in a weak parity game G.

2. Consider the game G = (A,wParity(Ω)) where A and Ω are defined as in Exercise 3.8.
Determine the winning regions and uniform positional winning strategies of both players using your
algorithm given in Part a).

Exercise 3.12. A single-player game for Player i is a game played in an arena where every vertex of
Player 1− i has exactly one successor.

1. Let σ be a positional strategy for Player i in a game (A,Win).
Show that σ is a winning strategy for Player i from a vertex v in G if, and only if, v is in the winning
region of Player i in the single-player game (Aσ,Win).

2. Show that single-player parity games can be solved in polynomial time.

Exercise 3.13. Prove Lemma 3.10(1).

Exercise 3.14. Consider the parity game G = (A,Parity(Ω)) with arena A and coloring Ω depicted
below and apply the progress measure algorithm to compute the winning regions of the game.

v0/2 v1/2 v2/0

v4/4v3/3 v5/1 v6/2 v7/4

v8/1 v9/0 v10/3

Exercise 3.15 (Challenge). A game G = (A,Win) with A = (V, V0, V1, E) is called undirected if (v, v′) ∈
E implies (v′, v) ∈ E, i.e., the edge relation is symmetric. It is called bipartite if E ⊆ V0 × V1 ∪ V1 × V0,
i.e., the players move alternatingly.

Prove that undirected, bipartite parity games can be solved in polynomial time in the number of edges
of the arena.

Exercise 3.16 (Challenge). Prove that solving generalized reachability games (see Exercise 3.4) is
Pspace-hard. Here, the size of a generalized reachability game G = (A,GenReach(R)) is defined
to be |A|+ |R|.
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4 Finite-state Strategies and Reductions
All games we have considered until now, e.g., reachability and safety, Büchi and co-Büchi, and parity,
are determined with uniform positional winning strategies. Now, we move beyond positional strategies
by considering games where such strategies do not suffice to win.

4.1 Finite-state Strategies

v0 v1 v2

Figure 4.1: A game where Player 0 has no posi-
tional strategy that visits all vertices infinitely of-
ten.

As an example, consider the game G = (A,Win) where
A is depicted in Figure 4.1 and where Win contains
exactly those plays that visit all vertices infinitely of-
ten, i.e., ρ ∈ Win if, and only if, Inf(ρ) = {v0, v1, v2}.
Player 0 has no positional winning strategy, as such a
strategy either always moves from v1 to v0 or always
moves from v1 to v2, i.e., v2 respectively v0 are visited
at most once (namely, if the play starts in this vertex).
On the other hand, she has a simple winning strategy that alternates between moving from v1 to v0 and
to v2, e.g., σ(wv1) = v2 if wv1 contains an odd number of occurrences of v1 and σ(wv1) = v0 otherwise.
This strategy can be seen as switching between two positional strategies every time the vertex v1 is
visited.

q0 q1

v1 7→ v0 v1 7→ v2
v0

v2

v1

v0

v2

v1

v0, v2 v1

Figure 4.2: Automaton implementing the winning
strategy σ for the game in Figure 4.1.

As presented above, this strategy is an infinite ob-
ject, as it has an infinite domain. Nevertheless, there is
an informal finite description: remember the parity of
the number of occurrences of v1 in the the play thus far
and if at v1 move to v2, if it is odd. As this description
has only a finite number of states, namely two, one calls
such a strategy finite-state. To formalize the intuitive
description of finite-state strategies, we employ deter-
ministic finite automata with output. The automaton
reads the current play prefix and outputs the successor
to move to. An automaton implementing the strategy σ
is depicted in Figure 4.2. Note that unlike classical fi-
nite automata, the automaton does not have a single initial state, but an initial arrow for each vertex of
the arena. For example, if the first vertex to be processed is v0, then the runs starts in q0 and processing
v1 then leads the automaton to state q1. This definition mimics the formal definition, which employs an
initialization function for technical reasons that become clear when we discuss reductions.

Furthermore, the outputs of the automaton are given as positional strategies, one attached to each
state of the automaton. To illustrate the semantics, consider the play prefix w = v0v1v0v1v2v1v2v1.
Processing w brings the automaton to the state q0. As the last vertex of w is v1, i.e., it is Player 0’s turn,
she uses the positional strategy attached to q0, i.e., she moves to v0.

Next, we introduce finite-state strategies formally. For reasons that become clear in the next sub-
section, we split the definition of automata with output into two parts. First, we define a variant of
classical finite automata (without output) that is suitable for our purposes. Such automata are called
memory structures, since they represent the memory needed to implement a finite-state strategy. Then,
we define the output function of such an automaton as a separate object, called a next-move function. A
finite-state strategy is then given by a memory-structure and a next-move function.
Definition 4.1 (Memory Structure). Let A = (V, V0, V1, E) be an arena. A memory structure M =
(M, init,upd) for A consists of

• a finite set M of memory states,

• an initialization function init : V →M and

• an update function upd: M × V →M .

The size of M, denoted by |M|, is defined as |M |.
Unlike standard finite automata, a memory structure has no initial state, but an initialization function,

i.e., the initial state depends on the first letter of the input. On the other hand, the update function is a
classical transition function, i.e., it maps a state and an input letter to a successor state.
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Also note that a memory structure is a deterministic device. Hence, one can define the unique state
reached after processing an input as usual: we define upd∗ : V + → M inductively via upd∗(v) = init(v)
for v ∈ V and upd∗(wv) = upd(upd∗(w), v).

Next, we define the output functions for memory structures. Intuitively, given a play prefix w, such
a function takes the last letter v of w and the memory state upd∗(w) and maps them to a successor of v.

Definition 4.2 (Next-Move Function). Let A = (V, V0, V1, E) be an arena and M = (M, init,upd) be a
memory structure for A. A next-move function for Player i is a mapping nxt: Vi ×M → V satisfying
(v,nxt(v,m)) ∈ E for all v ∈ Vi and m ∈M .

As already explained, a memory structure and a next-move function induce a strategy.

Definition 4.3 (Finite-state Strategy). Let A = (V, V0, V1, E) be an arena, let M = (M, init,upd) be a
memory structure for A, and let nxt be a next-move function for Player i that is compatible with A and
M. Then, M and nxt implement the strategy σ given by σ(wv) = nxt(v,upd∗(wv)) for all w ∈ V ∗ and
v ∈ Vi.

A strategy σ is a finite-state strategy, if it is implemented by some memory structure and some next-
move function.

If a strategy σ is implemented by some memory structure with n memory states, then we say that σ
has size |M |. This is slightly abusive, since σ might also be implementable by smaller memory structures.
However, we only use this notion, if the memory structure that implements σ is clear from context.

Finally, let us remark that we recover positional strategies as a special case of finite-state strategies.

Remark 4.1. A strategy is positional if, and only if, it is implementable by a memory structure of size
one.

4.2 Reductions
After defining finite-state strategies in the previous subsection, we now consider the problem of computing
such strategies. Obviously, one can construct such strategies by hand, e.g., as done in the example from
the previous subsection. A more general approach is to use reductions between games. As usual in
computer science, a reduction simplifies a problem. In the case of infinite games, this means simplifying
the winning condition: given a game G = (A,Win) one takes the product A ×M of A with a suitable
memory structure M to obtain a new game G′ = (A ×M,Win′) where Player 0 is known to have a
positional winning strategy. If the new winning condition Win′ satisfies a certain reduction property,
then a positional winning strategy for Player 0 in G′ can effectively be turned into a finite-state winning
strategy for Player 0 in the original game G. Thus, reducing G to G′ simplifies the winning condition
(in the sense that positional strategies are sufficient to win G′), but increases the size (by taking the
product).

From such a reduction (and the solution of the reduced game G′), we obtain the winning regions of
the original game G as well as finite-state winning strategies for both players. However, note that we
have to provide the memory structure for the reduction, i.e., we only obtain the next-move function from
solving G′.

We begin by introducing the product construction between an arena and a memory structure. Intu-
itively, the memory structure is used to keep track of the state upd∗(w) reached along a play prefix w.

Definition 4.4 (Product Arena). Let A = (V, V0, V1, E) be an arena and M = (M, init,upd) be a
memory structure for A. The product A×M of A and M is defined as A×M = (V ×M,V0×M,V1×
M,E′) with ((v,m), (v′,m′)) ∈ E′ if, and only if, (v, v′) ∈ E and upd(m, v′) = m′ for all v, v′ ∈ V and
all m,m′ ∈M .

Now, let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A). We define the extended play ext(ρ) = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · ∈
Plays(A×M) with m0 = init(ρ0) and mn+1 = upd(mn, ρn+1) for all n ∈ N.

Let ρ and ext(ρ) be as in the definition. A simple induction shows mn = upd∗(ρ0 · · · ρn) for every n,
i.e., the product does indeed keep track of memory states reached when processing the prefixes of ρ.

Now, we formalize the notation of (game) reductions. Most importantly, we need to relate the winning
conditions in the original game in the arena A and in the reduced game in the product arena in order to
obtain winning regions and winning strategies from solving the reduced game.

Definition 4.5 (Reduction). Let G = (A,Win) and G′ = (A′,Win′) be two games and let M be a
memory structure for A. We say G is reducible to G′ via the memory structure M, denoted by G ≤M G′,
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if A′ = A×M and if for every ρ ∈ V ω: ρ and ext(ρ) have the same winner, i.e., ρ ∈Win if, and only
if, ext(ρ) ∈Win′.

Next, we prove the reduction lemma, which formalizes the relation between the winning regions of the
original and the reduced game. Here, we assume the case where the reduced game allows for positional
winning strategies. A more general result is discussed in Exercise 4.1.
Lemma 4.1. Let G ≤M G′ with M = (M, init,upd). Also, let V ′ be a subset of the set of vertices of G.
If Player i has a positional winning strategy for G′ from {(v, init(v)) | v ∈ V ′}, she also has a finite-state
winning strategy with memory M for G from V ′.

Proof. Let G = (A,Win) with A = (V, V0, V1, E). By Definition 4.5, we have G′ = (A ×M,Win′) for
some winning condition Win′ and A ×M = (V × M,V0 × M,V1 × M,E′). Furthermore, let σ′ the
positional winning strategy for Player i for G′ from {(v, init(v)) | v ∈ V ′}. For v ∈ Vi and m ∈ M we
define nxt(v,m) = v′, if σ′(v,m) = (v′,m′) for some v′ ∈ V and some m′ ∈ M . Finally, let σ be the
strategy implemented by M and nxt.

We have to show that σ is winning from every v ∈ V ′. So let v ∈ V ′ and let ρ ∈ Plays(A, v, σ) be
arbitrary. Furthermore, let ρ′ = ext(ρ), which is a play of G′ starting in (v, init(v)). We first show that
ρ′ ∈ Plays(A×M, (v, init(v)), σ′). To do so, we show by induction that every prefix (ρ0,m0) · · · (ρn,mn)
of ρ′ is consistent with σ′.

As a play prefix of length one is consistent with any strategy, the induction start for n = 0 is trivial.
For the induction step with n > 0 consider a prefix (ρ0,m0) · · · (ρn,mn). By induction hypothe-

sis (ρ0,m0)(ρ1,m1) · · · (ρn−1,mn−1) is consistent with σ′. If it is not Player i’s turn at (ρn−1,mn−1),
i.e.,(ρn−1,mn−1) ∈ V1−i × M , then the full prefix is also consistent with σ′. Thus, assume we have
(ρn−1,mn−1) ∈ Vi ×M . Hence, ρn−1 ∈ Vi and thus

ρn = σ(ρ0 · · · ρn−1) = nxt(ρn−1,upd∗(ρ0 · · · ρn−1)).

Thus, by definition of nxt, there is an m ∈M such that

σ′(ρn−1,upd∗(ρ0 · · · ρn−1)) = σ′(ρn−1,mn−1) = (ρn,m).

It remains to show that m = mn: We have mn = upd(mn−1, ρn) by definition of the extended play.
Also, σ′(ρn−1,mn−1) = (ρn,m) implies ((ρn−1,mn−1), (ρn,m)) ∈ E′. Hence, the definition of E′ yields
m = upd(mn−1, ρn). Thus, both m and mn are equal to upd(mn−1, ρn), i.e., m = mn.

Thus, ext(ρ) is consistent with σ′ and starts in (v, init(v)) for every play ρ in G that is consistent
with σ and starts in V ′. As σ′ is a winning strategy from (v, init(v)), we have ext(ρ) ∈Win′. Applying
Definition 4.5 yields ρ ∈Win. Thus, σ is winning for Player 0 from every v ∈ V ′.

Typically, we reduce to games which are determined with uniform positional winning strategies. For
this situation, we can formulate the following variant of the reduction lemma.
Corollary 4.1. Let G ≤M G′ such that G′ is determined with uniform positional winning strategies.
Then, G is determined with uniform finite-state strategies implemented by M and the winning regions
are given Wi(G) = {v ∈ V | (v, init(v)) ∈Wi(G′)} for i ∈ {0, 1}.

To illustrate the usefulness of reductions, we show how to reduce weak Muller games to weak parity
games, which are positionally determined (see Exercise 3.11). In a weak Muller game, the winner of a
play only depends on the occurrence set of the play. More formally, there is a family of occurrence sets
that are winning for Player 0, all others are winning for Player 1.
Definition 4.6 (Weak Muller Game). Let A = (V, V0, V1, E) be an arena and let F ⊆ 2V be a family of
subsets of A’s vertices. Then, the weak Muller condition wMuller(F) is defined as

wMuller(F) := {ρ ∈ V ω | Occ(ρ) ∈ F}.

We call a game G = (A,wMuller(F)) a weak Muller game.
Recall that Player i wins a play in a weak parity game, if the parity of the minimal color occurring

during the play is i. In the following, it is useful to consider the max-variant of the weak parity condition.
Here, Player i wins a play, if the parity of the maximal color occurring during the play is i. We denote
this winning condition by wMaxParity(Ω), i.e.,

wMaxParity(Ω) :={ρ ∈ V ω | max Occ(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · ) is even}.
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As with parity games, it is straightforward to show that the max-variant is equivalent to the min-variant,
i.e., every weak max-parity condition can be turned into a weak min-parity condition (with the same
number of colors) and vice versa.

We now show how to reduce weak Muller games to weak max-parity games. The memory structure
keeps track of the vertices visited along a play. The coloring of the weak max-parity game assigns even
colors to vertices (v, S) where S, the set of already visited vertices, is in F , and odd colors if F is not in F .
As the set of visited vertices increases until it gets stationary at some point, larger sets are assigned larger
colors than smaller sets. This is the reason we use the weak max-parity condition: the occurrence set of
the play is the largest set S that is encountered as a memory state, hence it has to have the deciding, i.e.,
the largest color. Using the colors 2 · · · |S| respectively 2 · · · |S|+ 1 ensures our requirements are satisfied.
Lemma 4.2. Weak Muller games are reducible to weak max-parity games.

Proof. Let G = (A,wMuller(F)) be a weak Muller game with A = (V, V0, V1, E). We define the
memory structure M = (M, init,upd) with M = 2V \ {∅}, init(v) = {v} and upd(S, v) = S ∪ {v} for all
v ∈ V and S ∈ M . A straightforward induction over w shows that upd∗(w) = Occ(w) for all w ∈ V +,
i.e., M does indeed keep track of the occurrence set of a play prefix. In particular, upd∗ is monotonic in
the following sense: We have upd∗(w) ⊆ upd∗(ww′) for all w,w′ ∈ V ∗.

We show G = (A,wMuller(F)) ≤M (A ×M,wMaxParity(Ω)) = G′, where the coloring Ω is
defined as

Ω(v, S) =
{

2 · |S| if S ∈ F ,
2 · |S| − 1 if S /∈ F .

Now, it remains to show that a play in G and its extended play in G′ have the same winner. Thus,
let ρ ∈ Plays(A) be arbitrary. There is a position n of ρ such that

1. Occ(ρ0 · · · ρn) = Occ(ρ), and

2. Occ(ρ0 · · · ρm) ( Occ(ρ) for all m < n.

Now consider the extended play ext(ρ) = (ρ0, S0)(ρ1, S1)(ρ2, S2) · · · ∈ Plays(A ×M). Then, the choice
of n and the definition of Ω imply

1. Ω(ρm, Sm) = Ω(ρn, Sn) for all m > n, and

2. Ω(ρm, Sm) < Ω(ρn, Sn) for all m < n.

Intuitively, these two properties formalize that the monotonicity of upd∗ is “preserved” bu the coloring Ω.
Hence, the maximal color occurring in ext(ρ) is Ω(ρn, Sn), which is even if, and only if, Sn = Occ(ρ) ∈ F .
Hence, ρ ∈ wMuller(F) if, and only if, ext(ρ) ∈ wMaxParity(Ω).

Thus, an application of Corollary 4.1 yields the following corollary of Lemma 4.2.
Corollary 4.2. Weak Muller games are determined with finite-state strategies of size 2n, where n is the
number of vertices, and can be solved in exponential time.

The natural follow-up is whether the size of the strategies is optimal or whether smaller finite-state
strategies exist in general. The next result rules this out. It presents a family of weak Muller games Gn of
linear size in n where Player 0 wins from a designated initial vertex, but only with strategies of exponential
size. Note that the size of a weak Muller game (A,wMuller(F)) is measured both in the size of A and
in the size of F , as F cannot necessarily be encoded in linear size in the size of A.

If we measure the size in the game only in the size of the arena, then there is a very simple weak
Muller game that has the same property. However, keeping F small as well complicates the situation
and requires a clever trick due to Christof Löding.
Theorem 4.1. There exists a family Gn = (An,wMuller(Fn)) of weak Muller games, each having a
designated vertex v, such that

• |An| ∈ O(n) and |Fn| = 2,

• Player 0 has a finite-state winning strategy from v, but

• Player 0 has no finite-state winning strategy from v with less than 2n states.

44



Proof. Consider the arena An, depicted in Figure 4.3, with vertex set Vn. It contains n widgets, each
containing the vertices sj , hj , uj , and dj for all j ∈ {1, . . . , n}. Additionally, the arena contains the
vertices c0, c1, d, vA and vB . At every vertex sj Player 0 has to decide to go to uj , to dj or to hj . At
every hj , Player 1 has then to decide to move to uj or dj . Then, the play proceeds to the next gadget,
or to c0, if j = n.

We define Fn = {Vn\{vA}, Vn\{vB}}, i.e.,Player 0 has to visit all vertices except for vA or all vertices
except for vB . Notice that in case a play reaches the vertex c1 twice, Player 1 can win by moving to vA
when at c1 for the first time and to vB the second time. Trivially, An and Fn satisfy the requirements
formulated by the first item of the lemma.

s1 h1

u1

d1

s2 h2

u2

d2

s3 · · · sn hn

un

dn

c0

d

c1

vA

vB

Figure 4.3: The arena An for the weak Muller game Gn of Theorem 4.1.

Now, consider the vertex v = s1. First, we show that Player 0 has a winning strategy from this vertex.
This strategy can be described as follows: When at some sj for the first time she moves to hj from where
Player 1 can either go to uj or to dj in the next move. When at vertex c0 for the first time, Player 0
moves to c1 from where Player 1 either visits vA or vB and then moves to s1 again. Now, when at some
sj for the second time, Player 0 moves to dj if Player 1 moved to uj from hj and vice versa. This way
every vertex in every widget is visited at least once. Finally, when at c0 for the second time she moves
to d and stays there forever. Correspondingly, the strategy ensures that every vertex except either vA or
vB (but not both) is visited at least once.

Now, assume that Player 0 has a finite-state winning strategy σ from s1 implementable with less than
2n memory states. We start by showing that, when at vertex sj for some j ∈ {1, . . . , n} for the first time,
the strategy prescribes a move to hj . Assume this is not the case, i.e.,say it prescribes a move to uj (the
case of dj is analogous). Then, after coming back in the second round, which has to be taken by Player 0
as otherwise c1 is not visited, the strategy prescribes a move to either dj or hj or to uj again. In case it
moves to hj , Player 1 answers by moving to uj again. This way the vertex dj is not visited yet. In case
it does not move to hj , hj itself is not visited yet. Accordingly, Player 0 has to move to c1 again, when
at c0. Thereby, she allows Player 1 to visit the missing vertex of the set {vA, vB}, not visited in the first
round. At this point, Player 0 has lost the play since Fn contains no set containing both vA and vB .

As a consequence, Player 0 always has to move to hj when at vertex sj in the first round. From each hj
Player 1 has two choices. Hence, there are 2n different play prefixes leading from s1 to c0. As there are less
than 2n memory states, at least two of them lead into the same memory state, i.e.,upd∗(w) = upd∗(w′)
for two different play prefixes w and w′ from s1 to c0. Thus, the memory structure implementing σ
cannot distinguish w and w′. Hence, from c0 onward, the strategy makes the same moves to extend the
play prefixes w and w′, i.e., we have σ(wx) = σ(w′x) for all prolongations x. As argued before, in the
second round, Player 0 has to move, when at sj , to the vertex dj or uj not visited by Player 1 during
the first round. Note that w and w′ differ at least for one j∗ in the choice made by Player 1 at hj∗ . Say,
w.l.o.g., w visited uj∗ and w′ visited dj∗ . Hence, if Player 1 moves from c1 to vA to extend w and w′,
then Player 0 continues both play prefixes the same way always moving from sj to either dj or uj and
then to the sink d. At sj∗ this choice does not complement the choice made by Player 1 during w or
during w′, respectively, i.e., if σ prescribes a move to uj∗ in the second round, then the continuation of
w is losing for her. Dually, in case σ prescribes a move to dj∗ in the second round, then the continuation
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of w′ is losing for her.
Hence, one of the corresponding plays will be losing contradicting the fact that σ is a winning strategy

for Player 0 from s1.

4.3 Muller Games
In the previous subsection, we reduced weak Muller games to weak parity games to illustrate the usefulness
of reductions. In this section, we consider the strong variant of the Muller condition. As with parity and
weak parity games, it is obtained by considering the set of vertices visited infinitely often instead of the
set of vertices visited at least once.
Definition 4.7 (Muller Game). Let A = (V, V0, V1, E) be an arena and let F ⊆ 2V be a family of subsets
of A’s vertices. Then, the Muller condition Muller(F) is defined as

Muller(F) := {ρ ∈ V ω | Inf(ρ) ∈ F}.

We call a game G = (A,Muller(F)) a Muller game.

v1

v2

v3

...

vn

v′1

v′2

v′3

...

v′n

Figure 4.4: The arena for the Muller game DJWn.

As an example, consider the family of Muller
games5 DJWn = (An,Muller(Fn)) with arenaAn =
(V n, V n0 , V n1 , En) where

• V n = V n0 ∪ V n1 ,

• V n0 = {v1, . . . , vn},

• V n1 = {v′1, . . . , v′n},

• En = V n0 × V n1 ∪ V n1 × V n0 , and

• Fn = {F ⊆ V n | |F ∩V n0 | = max{j | v′j ∈ F}}.

The arena An is depicted in Figure 4.4: Player 0
can move from each of her vertices to every vertex
of Player 1 and vice versa. The goal of Player 0
in a play ρ of DJWn is to visit the vertex v′j with
j = |Inf(ρ) ∩ V n0 | infinitely often, but vertices v′j′
with j′ > j only finitely often (visiting ones with
smaller j′ infinitely often has no influence). Note
that the set Inf(ρ) ∩ V n0 is determined by Player 1
and depends on the whole play. During this play, Player 0 has to make sure that she visits v′j again and
again, but no larger vertex, without knowing what the cardinality of this set is going to be.

Which player wins the games DJWn? We claim that Player 0 has a uniform finite-state winning
strategy from every vertex. The crucial point here is picking the right memory structure to implement a
winning strategy: Player 0 has to approximate the cardinality j of the set Inf(ρ) ∩ V n0 from below, i.e.,
infinitely often moving to the vertex v′j and from some point onwards only visiting vertices with smaller
or equal index. This is possible by keeping track of the order in which the vertices in V n0 were visited for
the last time. Vertices visited only finitely often are in the limit the largest elements in this order while
vertices visited infinitely often will be the smallest elements, as from some point onwards, the vertices
seen infinitely often appear again and again while the other do not appear any more. Hence, the last
occurrence of the vertices visited infinitely often is more recent than the last occurrence of a vertex only
visited finitely often.

To illustrate this principle, consider the game DJW4 and the play prefix (restricted to vertices from
V 4

0 )
w = v1 v3 v1 v2 v2 v1 v2 v4 v4 v4 v2.

The last vertex from V 4
0 that appears is v2, the second-to-last one is v4, and the third-to-last one is also

v4, which had a later occurrence, so it is ignored. The next vertices in this order are v1 and then v3.
Hence, the memory state for this play encodes the list v2 v4 v1 v3 (note that we reverse the order, i.e., the
last vertex of the play is the first vertex in the list). Updating this list when visiting a vertex v ∈ V 4

0 is
done by removing v from the list, if it appears, and putting it in front of the list again. This preserves

5These games where introduced by Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz.
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the property that the list encodes the order in which the vertices were visited for the last time. There is
no update when visiting vertices in V 4

1 .
We need one additional piece of information to implement a winning strategy. We mark the position

where v is deleted during an update by a special symbol ], e.g., when visiting v3 we update v1]v2v3v4 to
v3v1v2]v4. We call the vertices to the left of the ] the hit-set of the list. The sequence of hit-sets occurring
during a play approximates the infinity set from below in the following sense: During a play, the vertices
from V 4

0 seen only finitely often accumulate at the end of the list while those seen infinitely often are
in the front as they are the only ones that are moved to the front again and again. More formally, the
following two properties are satisfied in every play: From some point onwards, the hit-set only contains
vertices visited infinitely often and infinitely often the hit-set is equal to Inf(ρ) ∩ V 4

0 . Hence, moving to
the cardinality of the hit-set results in only finitely often seeing a vertex v′j′ with j′ > j = |Inf(ρ) ∩ V 4

0 |
and infinitely often seeing the vertex v′j . This strategy is winning for Player 0 from every vertex.

v1 v′1 v2 v′2 v1 v′2 v4 v′4 v4 v′1 v2 v′2 v4 v′2 v4 v′1 · · ·

v1]v2v3v4 ⇒ move to v′1

cardinality: 1

v2v1]v3v4 ⇒ move to v′2
cardinality: 2

v1v2]v3v4 ⇒ move to v′2

cardinality: 2

v4v1v2v3] ⇒ move to v′4
cardinality: 4

v4]v1v2v3 ⇒ move to v′1

cardinality: 1

v2v4v1]v3 ⇒ move to v′3
cardinality: 3

v4v2]v1v3 ⇒ move to v′2

cardinality: 2

v4]v2v1v3 ⇒ move to v′1
cardinality: 1

Figure 4.5: Example play consistent with the strategy for DJW4 described above. The current memory state
is depicted in the boxes above respectively below the vertices of Player 0.

We illustrate the update of the memory and the choice of moves for Player 0 in the example play of
DJW4 depicted in Figure 4.5. The memory states reached are depicted in the boxes above and below the
vertices in V 4

0 , where we start at some arbitrary initial list. Using this memory, Player 0 always moves
to the vertex v′j where j is the cardinality of the hit set of the current memory state. For example, her
first move leads to v′1, since only one vertex is in the hit set of v1]v2v3v4. Her second move leads to v′2
since there are two vertices in the hit set of v2v1]v3v4.

In the following we show that a generalization of the bookkeeping of the latest appearance of vertices
suffices for general Muller games, not only for the games DJWn: The so-called “latest-appearance-
record” (LAR) memory structure allows to reduce Muller games to parity games. In the general case, we
keep a list of all vertices of the arena, instead of a list of a subset as in the case of the games DJWn,
but the update is defined as above.
Definition 4.8 (Latest Appearance Record). Let V be a finite set and let ] /∈ V be some fresh symbol. A
latest appearance record LAR over V is a word over the alphabet V ∪{]} where every letter from V ∪{]}
appears exactly once and whose first letter is from V . The hit-set of an LAR ` = v0v1 · · · vm]vm+1 · · · vn
is defined as hit(`) = {v0, . . . , vm}.

We denote the set of all LAR’s over V by LARV . Also, note that the hit-set is never empty. Now,
we show how to use LAR’s to reduce Muller games to parity games by generalizing the reasoning for the
special case of the DJWn games. For convenience, we use the max-parity condition.
Theorem 4.2. Muller games are reducible to parity games.

Proof. Let G = (A,Muller(F)) be a Muller game with arena A = (V, V0, V1, E) and F ⊆ 2V . We define
the memory structure M = (LARV , init,upd) where init : V → LARV is some arbitrary function and

upd(v0 · · · vm]vm+1 · · · vn, vj) = vjv0v1 · · · vj−1]vj+1 · · · vn

for all v0v1 · · · vm]vm+1 · · · vn ∈ LARV , i.e., the vertex vj we update with is moved to the front of the
list and the ] is moved to vj ’s previous position. Before we define the coloring for the parity game in the
arena A×M, we first prove some general facts about the evolution of the memory state along a play.

Let ρ = ρ0ρ1ρ2 · · · ∈ Plays(A) be arbitrary and let ` = `0`1`2 · · · be the sequence of LAR’s reached
during ρ, i.e.,`n = upd∗(ρ0 · · · ρn) for all n ∈ N.

We begin by showing that the hit-set of the `n is from some position onwards always a subset of
the infinity set of ρ, i.e., there is an n∗ such that hit(`n) ⊆ Inf(ρ) for all n > n∗. First, let n0 be a
position such that Occ(ρn0ρn0+1ρn0+2 · · · ) = Inf(ρ), i.e., the prefix up to position n0 − 1 contains all
occurrences of the vertices that appear only finitely often in ρ. Now, let n∗ > n0 be a position such that
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the infix ρn0 · · · ρn∗−1 contains every vertex from Inf(ρ) at least once. We claim that this position has
the desired property.

The infix ρn0 · · · ρn∗−1 contains every vertex of Inf(ρ) at least once, but not other vertices, due to
the choice of n0. Hence, the first |Inf(ρ)| non-] entries of `n∗−1 are exactly the vertices from Inf(ρ).
Furthermore, the vertex ρn∗ is also one of these vertices. Hence, also the first |Inf(ρ)| non-] entries of `n∗
are exactly the vertices from Inf(ρ) and additionally the ] is one of the first |Inf(ρ)| + 1 entries. Hence,
the hit-set of `n∗ is a subset of Inf(ρ). The same reasoning can now be applied inductively to show the
same for every `n with n > n∗.

Next, we show that there are infinitely many n with hit(`n) = Inf(ρ). Let n > n∗. It suffices to show
that there is some n′ > n with hit(`n′) = Inf(ρ). As argued above, the first |Inf(ρ)| non-] entries of `n
are the vertices from Inf(ρ). Let v be the last one of these in `n, i.e., the |Inf(ρ)|-th non-] entry, and let
n′ > n be the first position where v appears in ρ after position n. As v does not appear in ρn+1 · · · ρn′−1,
it is also the |Inf(ρ)|-th non-] entry of `n′−1. Hence, every other vertex from Inf(ρ) is in front of it. Now,
updating `n′−1 to `n′ , which consists of moving v to the first position and moving the ] to its position,
results in the hit-set hit(`n′) = Inf(ρ). Thus, the position n′ has the desired properties.

Relying on these two properties we define the coloring for the parity game in the arena A×M: LAR’s
with a hit-set in F are assigned an even color while LAR’s with a hit-set in the complement are assigned
an odd color. Furthermore, as the sequence of hits-sets underapproximates the infinity set, larger hit-sets
are more relevant than smaller ones. Thus, we assign more important colors to larger sets. Hence, it is
natural to reduce to a max-parity game and relate the cardinality of the hit-set with the color we assign.

Hence, we define the coloring Ω: V × LARV → N as

Ω(v, `) =
{

2 · |hit(`)| if hit(`) ∈ F ,
2 · |hit(`)| − 1 if hit(`) /∈ F .

This is well-defined, as the hit-set is always non-empty.
It remains to show ρ ∈Muller(F) if, and only if, ext(ρ) = (ρ0, `0)(ρ1, `1)(ρ2, `2) · · · ∈MaxParity(Ω):

We have

ρ ∈Muller(F)
⇒ Inf(ρ) ∈ F
⇒ ∃F ∈ F (∃n∗ s.t. hit(`n) ⊆ F for all n > n∗) and (hit(`n) = F for infinitely many n)
⇒ ∃F ∈ F (∃n∗ s.t. Ω(ρn, `n) ≤ 2 · |F | for all n > n∗) and (Ω(ρn, `n) = 2 · |F | for infinitely many n)
⇒ ∃F ∈ F max Inf(Ω(ρ0, `0)Ω(ρ1, `1)Ω(ρ2, `2) · · · ) = 2 · |F |
⇒ ext(ρ) ∈MaxParity(Ω).

Dually, we have the exact same argument if ρ does not satisfy the Muller condition:

ρ /∈Muller(F)
⇒ Inf(ρ) /∈ F
⇒ ∃F ∈ 2V \ F (∃n∗ s.t. hit(`n) ⊆ F for all n > n∗) and (hit(`n) = F for infinitely many n)
⇒ ∃F ∈ 2V \ F (∃n∗ s.t. Ω(ρn, `n) ≤ 2 · |F | − 1 for all n > n∗) and (Ω(ρn, `n) = 2 · |F | − 1 for inf. many n)
⇒ ∃F ∈ 2V \ F max Inf(Ω(ρ0, `0)Ω(ρ1, `1)Ω(ρ2, `2) · · · ) = 2 · |F | − 1
⇒ ext(ρ) /∈MaxParity(Ω).

Applying Corollary 4.1 and positional determinacy of parity games yields finite-state determinacy of
Muller games and a first algorithm for solving Muller games.
Theorem 4.3. Every Muller game G = (A,Muller(F)) with n vertices is determined with uniform
finite state winning strategies of size n · n! and can be solved in exponential time.

Proof. Finite-state determinacy follows directly from Corollary 4.1, while the size of the strategies stems
from the fact that there are exactly n · n! LAR’s in an arena with n vertices.

Furthermore, the corollary implies that G can be solved by solving a parity game of exponential
size, namely n2 · n!, with 2n colors. This is possible, as the running time of the small progress measure
algorithm is only exponential in the number of colors, i.e., it has an exponential running time.

The upper bound n ·n! on the memory requirements in a Muller game with n vertices is complemented
by a matching lower bound exhibited by the family DJWn presented above.
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Theorem 4.4. Player 0 wins the Muller game DJWn from every vertex, but not with finite-state strate-
gies with less than n! states.

Proof. See Exercise 4.11.

The reduction to parity games yields an exponential-time algorithm for solving Muller games. How-
ever, this is not optimal. Indeed, depending on the representation of the family F , the complxity of
solving Muller games ranges from being in polynomial time to being complete for polynomial space.

Note that the issue of representing the winning condition does not appear for the games we considered
in the previous section, e.g., reachability, Büchi, and parity, as their winning conditions are induced
by a single subset of the vertices or by a coloring of the vertices. The size of these objects can be
bounded by the size of the arena. However, in (weak) Muller games, the family F might be exponential
in the size of the arena and can be represented compactly in different formalisms. We conclude this
subsection by introducing several representations and the complexity of solving Muller games given in
these representations.

Explicit representation: The simplest way to represent F is by giving it explicitly as a list of all
subsets, e.g.,

F = {{v0}, {v1}, {v2}, {v0, v3}, {v1, v2}, {v0, v1, v2}, {v0, v1, v2, v3}}.

Boolean formula: We can also encode the family F as a boolean formula over variables xv for all
vertices v. Then, F is in F , if, and only if, the evaluation mapping exactly the xv with v ∈ F to
true satisfies the formula. A formula representing the family F from above is given below:

(xv0 ∧ xv1 ∧ xv2 ∧ xv3) ∨ → {v1}

(xv0 ∧ xv1 ∧ xv2 ∧ xv3) ∨ → {v2}

(xv0 ∧ xv1 ∧ xv2 ∧ ) ∨ → {v0, v3}, {v0}

( xv1 ∧ xv2 ∧ xv3) ∨ → {v0, v1, v2}, {v1, v2}

(xv0 ∧ xv1 ∧ xv2 ∧ ) ∨ → {v0, v1, v2, v3}, {v0, v1, v2}

Boolean circuit: Every boolean formula can be represented as a circuit, which is possibly smaller, as
it allows to eliminate shared subformulas.

Zielonka tree: A family F can be represented as a tree, which is given by the following inductive
definition:

• The root is labeled by the set of all vertices.
• Children of a node labeled with F ∈ F are the ⊆-maximal subsets F ′ ⊆ F with F ′ /∈ F .
• Children of a node labeled with F /∈ F are the ⊆-maximal subsets F ′ ⊆ F with F ′ ∈ F .

For example, our running example is encoded by the following Zielonka tree:

{v0, v1, v2, v3}

{v0, v2, v3} {v0, v1, v3} {v1, v2, v3}

{v2} {v0, v3} {v1} {v0, v3} {v1, v2}

{v3} {v3} ∅∅∅

∈ F

/∈ F

∈ F

/∈ F

Directed Acyclic Graph: Again, the previous representation can be reduced by merging equal sub-
trees, i.e., we obtain a directed acyclic graph.
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{v0, v1, v2, v3}

{v0, v2, v3} {v0, v1, v3} {v1, v2, v3}

{v2}{v0, v3} {v1, v2}

{v3} ∅

∈ F

/∈ F

∈ F

/∈ F

Coloring: We can color v by a coloring Ω: V → N and give an explicit representation of a family Fc ⊆
2Ω(V ) of sets of colors representing the family

F = {F ⊆ V {Ω}(F ) ∈ Fc}

of sets of vertices. If the number of colors is much smaller than the number of vertices, then this
representation can be much smaller than an explicit list of F itself.

Important Subset: Here, a W ⊆ V of important vertices is fixed and an explicit representation of a
family Fi ⊆ 2W of subsets of W represents the family

F = {F ⊆ V | F ∩W ∈ Fi}

of subsets of V . Again, if the set W is much smaller than V , then this representation can be much
smaller than an explicit list of F itself.

Theorem 4.5.

1. Solving Muller games is in P if F is given as an explicit list.

2. Solving Muller games is in NP ∩ Co-NP if F is given as a Zielonka tree.

3. Solving Muller games is Pspace-complete if F is given in any of the other representations.

4.4 Borel Determinacy and Limits on Reductions
In the previous subsection, we have presented several reductions, e.g., from Muller games to parity games.
A natural question concerns the limits of such reductions, e.g., can Büchi games be reduced to reachability
games? It turns out that this is impossible: A Büchi condition is harder than a reachability condition
in a very formal way. On an intuitive level, this hardness can be phrased as follows: In a Büchi game,
vertices from F have to be visited infinitely often while in a reachability game it suffices to visit R
once, which is a much weaker condition. In particular, assume there is a reduction from Büchi games to
reachability games and consider a play ρ satisfying the Büchi condition. Thus, the extended play has to
satisfy the reachability condition, i.e., there is a prefix of length n that satisfies the reachability condition.
Now, consider a play ρ′ shares its prefix of length n with ρ, but does not satisfy the Büchi condition.
The extended play ext(ρ′) shares its prefix of length n with ext(ρ), hence it satisfies the reachability
condition. This is a contradiction, as ext(ρ′) has to violate the reachability condition, as ρ′ violates the
Büchi condition. The underlying problem here is that reductions are continuous, i.e., if ρ and ρ′ share a
prefix of length n, then so do ext(ρ) and ext(ρ′).

In this subsection, we introduce tools to make such informal statements precise. In particular, we
introduce the Borel hierarchy, which captures the complexity of languages (and therefore also winning
conditions for infinite games) in terms of their topological complexity. Starting from very simple languages
it consists of infinitely many levels of languages of increasing complexity.

Then, we show that reductions cannot go “down” the hierarchy: A complicated language cannot be
reduced to a simpler one. To complement this impossibility result, we conclude by mentioning Martin’s
determinacy result, the most far-reaching determinacy result: every game with a winning condition in
the Borel hierarchy is determined. This result subsumes all determinacy results proved thus far in these
notes. However, it yields only arbitrary strategies, not necessarily positional or finite-state strategies
where they exist.

We begin by introducing the Borel hierarchy, whose basic sets are so-called open sets, which can be
understood as very general reachability conditions6.

6But should not be confused with generalized reachability conditions as introduced in Exercise 3.4.
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Definition 4.9 (Open Set). Let V be a finite set. A set L ⊆ V ω is open if it is of the form KV ω for
some K ⊆ V ∗.

Thus, as soon as ρ ∈ V ω has a prefix in K, ρ itself is in L. However note, that K might be arbitrarily
complicated, e.g., the set P = {ap | p ∈ N is prime}{a, b}ω is open7. As expected, reachability winning
conditions are open, as we have Reach(R) = (V ∗R)V ω.

Starting with the open sets, the Borel hierarchy is obtained by closing these sets under complemen-
tation and countable unions. The levels of the hierarchy correspond to the number of applications of
countable unions.
Definition 4.10 (Borel Hierarchy). Let V be a finite set. The Borel hierarchy (over V ω) consists of
levels Σn ⊆ 2V ω and Πn ⊆ 2V ω for every n > 0, which are defined inductively as follows:

• Σ1 = {L ⊆ V ω | L is open},

• Πn = {L ⊆ V ω | V ω \ L ∈ Σn} for every n > 0, and

• Σn+1 = {L ⊆ V ω | L =
⋃
j∈N Lj with Lj ∈ Πn for every j} for every n > 0.

Note that we require the Lj to be from Πn when defining Σn+1. This is not a restriction, as we prove
that every lower level is a subset of Πn (see Lemma 4.3). Also, the Borel hierarchy has levels Σα and Πα

for countably infinite ordinals α. We omit the formal definition, since all winning conditions we consider
here are in the first three levels of the hierarchy, i.e., in Σn or Πn for n ≤ 3.

First, we show that the classes Σn and Πn indeed form a hierarchy, as already mentioned above.
Lemma 4.3. For every n ∈ N+, we have Σn ∪Πn ⊆ Σn+1 ∩Πn+1.

Proof. Note that we trivially have Πn ⊆ Σn+1 for every n, as each L ∈ Πn can be expressed as
L =

⋃
j∈N Lj with Lj = L for every j. Hence, L ∈ Σn+1. Applying this inclusion and duality, we also

obtain
L ∈ Σn ⇒ V ω \ L ∈ Πn ⇒ V ω \ L ∈ Σn+1 ⇒ L ∈ Πn+1.

To conclude the proof, we prove the implications L ∈ Σn ⇒ L ∈ Σn+1 and L ∈ Πn ⇒ L ∈ Πn+1 by
induction over n.

For the induction start, let L ∈ Σ1 be arbitrary. We first show L ∈ Σ2, i.e., L =
⋃
j∈N Lj with

Lj ∈ Π1 for every j. Given some finite word w = w0 · · ·wk ∈ V ∗ let

Kw = {w0 · · ·wk′v | k′ < k and v 6= wk′+1}

be the set of shortest words that are not equal to a prefix of w. As L is in Σ1 and therefore open,
L = KV ω holds for some K ⊆ V ∗. We show

L =
⋃
w∈K

V ω \KwV
ω.

This implies L ∈ Σ2 as every V ω \KwV
ω is in Π1 (every KwV

ω is open) and as K is countable.
We show the statement by proving v0v1v2 · · · ∈ L if, and only if, v0v1v2 · · · ∈

⋃
w∈K V

ω \ KwV
ω.

For the direction from left to right, let v0v1v2 · · · ∈ L be arbitrary. Since L = KV ω, there exists
a prefix w = v0 · · · vn ∈ K. If w = ε, then Kw = ∅ and V ω \ KwV

ω = V ω. As a consequence,
v0v1v2 · · · ∈

⋃
w∈K V

ω \KwV
ω. Now, consider the case w 6= ε. Then, we have v0v1v2 · · · /∈ KwV

ω and
therefore v0v1v2 · · · ∈ V ω \KwV

ω. Thus, also v0v1v2 · · · ∈
⋃
w∈K V

ω \KwV
ω.

We show the other direction of the implication by contraposition. To this end, let v0v1v2 · · · /∈ L and
w ∈ K be arbitrary. Note that w 6= ε since ε ∈ K implies L = KV ω = V ω which contradicts v0v1v2 · · · /∈
L. Furthermore, v0v1v2 · · · ∈ KwV

ω, since w is not a prefix of v0v1v2 · · · . Thus, v0v1v2 · · · /∈ V ω \KwV
ω.

As this reasoning holds for every w ∈ K we conclude v0v1v2 · · · /∈
⋃
w∈K V

ω \KwV
ω. Thus, as argued

above, L ∈ Σ1 implies L ∈ Σ2 for all L ⊆ V ω.
It remains to consider Π1. The fact that L ∈ Π1 implies L ∈ Π2 directly follows from the result

L ∈ Σ1 ⇒ L ∈ Σ2 just proven and from duality, i.e.,

L ∈ Π1 ⇒ V ω \ L ∈ Σ1 ⇒ V ω \ L ∈ Σ2 ⇒ L ∈ Π2.

7However, P is equal to aa{a, b}ω . A more interesting set is {apbp | p is prime}{a, b}ω .
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Now, consider the induction step, i.e., n > 1. We have

L ∈ Σn ⇒ L =
⋃
j∈N

Lj with Lj ∈ Πn−1
IH⇒ L =

⋃
j∈N

Lj with Lj ∈ Πn ⇒ L ∈ Σn+1,

where we apply the induction hypothesis to every Lj with j ∈ N. The proof for Πn is similar to the proof
for the induction start. We have

L ∈ Πn ⇒ V ω \ L ∈ Σn ⇒ V ω \ L ∈ Σn+1 ⇒ L ∈ Πn+1

where we again apply the result just proven for Σn.

All winning conditions we have considered thus far can be placed in the first three levels of the Borel
hierarchy.

Σ1 Π1 Σ2 ∩Π2 Σ2 Π2 Σ3 ∩Π3
Reach(R) × × × × ×
Safety(S) × × × × ×

wParity(Ω) × × × ×
wMuller(F) × × × ×

Büchi(F ) × ×
coBüchi(C) × ×

Parity(Ω) ×
Muller(F) ×

Furthermore, for each type of winning condition appearing in the table above, there is a condition
which is in the corresponding class, but not in a smaller class or in the complement-class8. For example,
there is a parity condition Parity(Ω) (which is also a Muller condition) with Parity(Ω) /∈ Σ2 ∪Π2.
Similarly, there is a Büchi condition Büchi(F ) with Büchi(F ) /∈ Σ1 ∪ Π1 and Büchi(F ) /∈ Σ2 (see
Exercise 4.14 for tools to prove such results).

Next, we study a generalized notion of reductions via continuous mappings between languages. We
later prove that game reductions are a special case of them. Here, we define continuity of functions via
preservation of open sets. An equivalent approach is to define a suitable metric on infinite words and
then using the standard ε-δ-definition for functions over the reals known from analysis.
Definition 4.11 (Continuous Function). A function f : Uω → V ω is called continuous if f−1(L) is open
for every open set L ⊆ V ω.

Now, a Wadge reduction is defined to be a continuous function that preserves membership in the
languages under consideration.
Definition 4.12 (Wadge Reduction). A set L ⊆ Uω is Wadge-reducible to a set L′ ⊆ V ω, denoted by
L ≤ L′, if, and only if, there exists a continuous function f : Uω → V ω such that f−1(L′) = L.

This definition, while simple, is rather impractical to apply. Later, we characterize the existence of
a reduction by a certain two-player game (cf. Theorem 4.6). Constructing a winning strategy in such
a game, which implies the existence of a continuous function with the desired properties, is typically
simpler than defining a function and then verifying that it is continuous and has the desired properties.
Even more so, a winning strategy for the opponent witnesses that no reduction exists. Constructing such
a strategy is again simpler than arguing that every possible function violates the requirements.

First, we mention a simple consequence of the definition of Wadge reductions.
Remark 4.2. Let V and U be finite sets and L ⊆ Uω, L′ ⊆ V ω. Then L ≤ L′ implies Uω \L ≤ V ω \L′.

The following lemma proves restrictions on the existence of reductions. Intuitively, there are no
reductions “down” the Borel hierarchy.
Lemma 4.4. Let L ⊆ Uω and L′ ⊆ V ω for two finite sets U and V such that L ≤ L′. Then,

1. L′ ∈ Σn ⇒ L ∈ Σn, and

2. L′ ∈ Πn ⇒ L ∈ Πn.

8The latter claim only applies to the winning conditions which are in Σn or Πn, but not in their intersection.
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Proof. We prove both statements simultaneously by induction over n > 0.
For the induction start, let L′ ∈ Σ1, i.e., L′ is open. By L ≤ L′ there exists a continuous function f

with f−1(L′) = L. Thus, by continuity of f , L is also open and correspondingly L ∈ Σ1.
Now, let L′ ∈ Π1. We have V ω \ L′ ∈ Σ1 and therefore also Uω \ L ∈ Σ1 by the proof for Σ1 and

Remark 4.2. Hence, L ∈ Π1.
Now, consider an n > 1 and let L′ ∈ Σn, i.e., L′ =

⋃
j∈N L

′
j for some L′j ∈ Πn−1. We define Lj =

f−1(L′j) for all j ∈ N, where f is again the continuous function witnessing the reduction. Correspondingly,
Lj ≤ L′j for every j ∈ N. It follows Lj ∈ Πn−1 for all j ∈ N by induction hypothesis. Also,

x ∈ L⇔ f(x) ∈ L′ ⇔ f(x) ∈ L′j for some j ⇔ x ∈ Lj for some j .

Hence, L =
⋃
j∈N Lj with Lj ∈ Πn−1 for all j ∈ N, i.e., L ∈ Σn.

Finally, consider L′ ∈ Πn. Then, we have V ω \ L′ ∈ Σn and Uω \ L ≤ V ω \ L′ due to Remark 4.2.
Thus, as already shown, Uω \ L ∈ Σn and therefore L ∈ Πn.

There is an alternative characterization of Wadge reductions via games. A Wadge game W (L,L′)
consists of two languages L ⊆ Uω and L′ ⊆ V ω and is played in rounds by two players, called I and II.
In each round n, I picks a letter xn ∈ U and then II picks a word yn ∈ V ∗. After ω many rounds, the
pair (x, y) with x = x0x1x2 · · · and y = y0y1y2 · · · determines the winner. Player II wins if, and only if,
y is infinite and the equivalence x ∈ L⇔ y ∈ L′ is satisfied.

Here, a strategy for I is a mapping σ : V ∗ → U while a strategy for II is a mapping τ : U+ → V ∗. A
play ρ = x0y0x1y1 · · · is consistent with σ if xn = σ(y0 · · · yn−1) for all n ∈ N and it is consistent with
τ if yn = τ(x0 · · ·xn) for every n ∈ N. A strategy is winning, if every play that is consistent with the
strategy is winning. For a play ρ = x0y0x1y1 · · · we call the pair (x, y) the outcome of the play.

As an example consider the game W (0∗1(0+1)ω, (0∗1)ω) and note that the first condition is essentially
a reachability one while the second one is essentially a Büchi condition: The first language contains the
words having at least one occurrence of 1 while the second languages contains the word having infinitely
many occurrences of 1. The following strategy is winning for II: If I has already played a 1, then pick a
1 too, and a 0 otherwise. Consider an outcome (x, y) that is consistent with this strategy. If x contains
a 1, then y ends with the suffix 1ω. Otherwise, if x contains no 1, then y is equal to 0ω. Hence, we have
x ∈ 0∗1(0 + 1)ω if, and only if, y ∈ (0∗1)ω. Hence, this strategy is indeed winning for II.

In contrast, we claim that I wins the game W ((0∗1)ω, 0∗1(0 + 1)ω) where we have swapped the two
languages. His strategy to do so is to pick 1, if II has not yet picked a 1, and 0 otherwise. Consider
an outcome (x, y) that is consistent with this strategy. We only have to consider the case where y is
infinite, as I wins in the other case by default. If y contains a 1, then x ends with 0ω, i.e., x /∈ (0∗1)ω,
but y ∈ 0∗1(0 + 1)ω. On the other hand, if y does not contain a 1, i.e., y = 0ω, then x is equal to
1ω. Thus, x ∈ (0∗1)ω, but y /∈ 0∗1(0 + 1)ω. Thus, the strategy is indeed winning for I. Note that this
winning strategy for I is a formalization of the intuitive reasoning presented above arguing that Büchi
games cannot be reduced to reachability games in general.

We now show that Wadge games characterize Wadge reductions.
Theorem 4.6. Let L ⊆ Uω and L′ ⊆ V ω for two finite sets U and V . Then L ≤ L′ if, and only if, II
has a winning strategy for the game W (L,L′).

Proof. First, let L ≤ L′, i.e., there is a continuous function f such that f−1(L′) = L. We have to
construct a winning strategy for II in W (L,L′). Assume we are in round n. Then I has picked letters
x0, . . . , xn and II has picked possibly empty words y0, . . . , yn−1 and has to pick yn. By construction of
our strategy, the set {x0 · · ·xn}Uω is partitioned into {f−1({y0 · · · yn−1v}V ω) | v ∈ V }. If there is a v
such that {x0 · · ·xn}Uω ⊆ f−1({y0 · · · yn−1v}V ω), then II picks yn = v, otherwise II picks yn = ε. Note,
that this choice preserves the partition property required above.

It remains to show that y0y1y2 · · · is an infinite word. If this is the case, then y0y1y2 · · · = f(x0x1x2 · · · )
and therefore x0x1x2 · · · ∈ L if, and only if, y0y1y2 · · · = f(x0x1x2 · · · ) ∈ L′ due to L = f−1(L′). Hence,
the strategy is indeed winning.

Towards a contradiction, assume II picks yn′ = ε for every n′ ≥ n and some fixed n ∈ N as answer
to x = x0x1x2 · · · . Then, {x0 · · ·xn · · ·xn+k}Uω is not a subset of f−1({y0 · · · yn−1v}V ω) for every
v ∈ V and every k ∈ N. As every f({x0 · · ·xn · · ·xn+k}Uω) is open and correspondingly also every
f−1({y0 · · · yn−1v}V ω) we have that

f−1({y0 · · · yn−1v}V ω) = KvU
ω
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for some Kv ⊆ U∗. Now recall the invariant of our strategy. The set {x0 · · ·xn}Uω is partitioned into
the sets KvU

ω. Hence, there exists some prefix x0 · · ·xm of x that is in Kv for some v. But then we also
have {x0 · · ·xm}Uω ⊆ KvU

ω. This yields the desired contradiction.
Now, let τ be a winning strategy for II in W (L,L′). We define a function f : Uω → V ω as follows. Let

u0u1u2 · · · ∈ Uω and let the sequence y = y0y1y2 · · · ∈ V ω be defined by yn = τ(u0 · · ·un) for all n ∈ N.
Then, as τ is a winning strategy, we have that y is infinite. Hence, we can define f(u0u1u2 · · · ) = y. We
obtain f−1(L′) = L by the fact that τ is a winning strategy for II in W (L,L′). It remains to show that f
is continuous. To do so, consider an open set KV ω for some K ⊆ V ω. We have to show that f−1(KV ω)
is open as well. To this end define

K ′ = {u0 · · ·un ∈ U∗ | τ(u0)τ(u0u1) · · · τ(u0 · · ·un) ∈ K}.

We show f−1(KV ω) = K ′Uω. Let x ∈ f−1(KV ω), i.e., f(x) ∈ KV ω. Then there exists a prefix
u0 · · ·un of x satisfying τ(u0)τ(u0u1) · · · τ(u0 · · ·un) ∈ K. As a consequence, u0 · · ·un ∈ K ′ and therefore
x ∈ K ′Uω. Now, let x ∈ K ′Uω. Then, there exists a prefix u0 · · ·un of x with τ(u0)τ(u0u1) · · · τ(u0 · · ·un) ∈
K. Hence, f(x) ∈ KV ω.

Finally, we can apply the general results we obtained so far to study game reductions as introduced
previously. We show that every game reduction is a Wadge reduction. In particular, this implies that
there are no game reductions “down” the Borel hierarchy, e.g., parity games cannot be reduced to safety
games.9

Lemma 4.5. Let G = (A,Win) be reducible to G′ = (A′,Win′). Then, Win ≤Win′.

Proof. Let M = (M, init,upd) be the memory structure witnessing the reduction. We show that II has
a winning strategy for the game W (Win,Win′) which we define by τ(v0 · · · vn) = (vn,upd∗(v0 · · · vn)).
Accordingly, II constructs ext(ρ) as response to I picking a play ρ ∈ V ω. By definition of G ≤M G′, we
have ρ ∈ Win if, and only if, ext(ρ) ∈ Win′. As a consequence, τ is indeed a winning strategy for II,
which implies Win ≤Win′.

We conclude this subsection by mentioning Martin’s determinacy theorem, which subsumes all de-
terminacy results we proved so far. Note, however, that it does not impose any restriction on the type
of winning strategies for both players. For example it does not imply that parity games are positionally
determined, but only that they are determined. We say that a set L is Borel if it is contained in some
level of the Borel hierarchy, even if the level has an ordinal index.
Theorem 4.7. Every infinite game with Borel winning condition is determined.

4.5 An Undetermined Game
Every game with Borel winning condition is determined, which, in particular, covers every determinacy
result we have proven thus far. However, there are indeed games that are undetermined. In this subsec-
tion, we present one such game. Typically such games have a winning condition that allows the players
to steal strategies in the following sense: Assuming σ is a winning strategy for Player i, Player 1− i has
a strategy τ obtained by mimicking σ so that the play obtained from using τ against σ is winning for
Player 1− i. Thus, σ is not winning after all. Throughout this section, we fix the alphabet B = {0, 1}.

The game we present here is based on an infinite XOR function mapping words in Bω to bits in B.
Such a function satisfies the following property: changing one bit in the input changes the output bit.

We first define the Hamming distance between two words x, y ∈ Bω as the number of positions at
which these two words differ.
Definition 4.13 (Hamming Distance). Let x = x0x1x2 · · · and y = y0y1y2 · · · be in Bω. The Hamming
distance between x and y is defined as

hd(x, y) = |{n ∈ N | xn 6= yn}| ∈ N ∪ {∞}.

For example, we have

• hd(0101101000 · · · , 1010100000 · · · ) = 5,

• hd(1010101010 · · · , 0101010101 · · · ) =∞, and
9However, see Exercise 4.15 for a relaxed notion of reduction that allows to do exactly that.
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• hd(1010101010 · · · , 1111111111 · · · ) =∞.

We define a relation ∼ over Bω via x ∼ y if hd(x, y) 6= ∞, i.e., we relate those words having finite
Hamming distance. An alternative characterization relies on the fact that having finite Hamming distance
implies that x and y share a suffix that starts at the same position in both words.
Remark 4.3. Let x = x0x1x2 · · · and y = y0y1y2 · · · in Bω. Then, x ∼ y if, and only if, there is an n
such that xn′ = yn′ for all n′ > n.

Using this characterization, it is straightforward to show that ∼ is reflexive, symmetric, and transitive.
Remark 4.4. ∼ is an equivalence relation.
Definition 4.14 (Infinite XOR Function). A function f : Bω → B is an infinite XOR function, if
hd(x, y) = 1 implies f(x) 6= f(y) for all x, y ∈ Bω.

Theorem 4.8. There exists an infinite XOR function.

Proof. Let S ⊆ Bω be a set that contains exactly one element from each ∼-equivalence class, i.e., for
every x ∈ Bω, there is a y ∈ S with x ∼ y, but there are no two y 6= y′ in S with y ∼ y′. Hence, for every
x ∈ Bω, let r(x) denote the unique element in S with x ∼ r(x). Now, we define

f(x) = hd(x, r(x)) mod 2

and show that f is an infinite XOR function. First note that f(x) is indeed well-defined, since hd(x, r(x)) ∈
N for all x ∈ Bω.

Thus, let x = x0x1x2 · · · and y = y0y1y2 · · · be such that hd(x, y) = 1, i.e., x and y differ at exactly
one position. We assume w.l.o.g. that x has a 0 in this position while y has a 1: x = w0w′ and y = w1w′
for some w ∈ B∗ and w′ ∈ Bω.

Furthermore, we have x ∼ y and therefore r(x) = r(y). Call this element r = r0r1r2 · · · and define

Dx = {n | xn 6= rn} and Dy = {n | yn 6= rn}.

Due to x and y differing only at position |w|, we have

Dx \ {|w|} = Dy \ {|w|}

and exactly one of the sets contains |w|, say, w.l.o.g., |w| ∈ Dy. Thus, |Dy| = |Dx|+ 1.
Then,

f(x) = hd(x, r) mod 2 = |Dx| mod 2
and

f(y) = hd(y, r) mod 2 = |Dy| mod 2 = (|Dx|+ 1) mod 2.
Thus, one of the values f(x) and f(y) is equal to 0 and the other one is equal to 1, i.e., f(x) 6= f(y).

The construction of the set S in the previous proof requires an application of the axiom of choice, which
states that every family (Ai)i∈I of non-empty sets has a choice function, i.e., a mapping c : I →

⋃
i∈I Ai

with c(i) ∈ Ai for every i. Here, I is an arbitrary index set. The intuitively true axiom of choice is
equivalent to many less intuitive statements (e.g., Zorn’s Lemma and the well-ordering principle) and
has some paradoxical consequences (e.g., the Banach-Tarski paradox). Here, the study of games has very
deep connections to set theory and the foundations of math.

We fix some infinite XOR function f for the remainder of this subsection and define a game Gf
played in rounds n = 0, 1, 2, . . . between Player 0 and Player 1 as follows: in round n, first Player 0
picks w2n ∈ B+, then Player 1 picks w2n+1 ∈ B+. The resulting play w0, w1, w2, . . . is winning for
Player f(w0w1w2 · · · ).

A strategy σ for Player i in Gf is a mapping

σ :
⋃
n∈N

(B+)2n+i → B+

with (B+)0 = {∅} by convention. A play w0, w1, w2, . . . is consistent with σ, if wn+1 = σ(w0, . . . , wn) for
all n with n mod 2 = i. As usual, σ is a winning strategy for Player i, if Player i wins every play that is
consistent with σ.

Note that we defined Gf as an abstract game without underlying arena. It is straightforward to
construct an explicit variant G′f = (A,Win) of Gf in a finite arena A with some designated initial
vertex v such that Player i has a winning strategy for Gf if, and only if, v ∈Wi(G′f ) (see Exercise 4.16).
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Theorem 4.9. Let f be an infinite XOR function. No player has a winning strategy for Gf .

Proof. To simplify our notation, let ρ(σ, τ) be the unique play that is consistent with the strategy σ for
Player 0 and the strategy τ for Player 1. Our proof is a strategy stealing argument: First, fix an arbitrary
strategy τ for Player 1. From τ , we construct two strategies σ and σ′ for Player 0 that mimic the behavior
of τ . The difference between σ and σ′ is that one of them starts by playing a 0, the other one by playing
a 1. We show that one of the plays ρ(σ, τ) and ρ(σ′, τ) is winning for Player 0, as they will only differ
in their first position and hence, hd(ρ(σ, τ), ρ(σ′, τ)) = 1. This property implies that the infinite XOR
function f maps one of these plays to 0, i.e., it is winning for Player 0. Thus, τ is not a winning strategy
and as τ is picked arbitrarily, we conclude that Player 1 has no winning strategy. Then, we prove the dual
statement for Player 0: for every strategy σ for Player 0, Player 1 has a counter strategy that witnesses
that σ is not a winning strategy. Hence, both players do not have a winning strategy.

Thus, first let τ be a strategy for Player 1 in Gf . We show that τ is not winning by defining two
strategies σ and σ′ for Player 0 as described above. To this end, recall that the input for the initial move
of Player 0 is ∅ and define σ(∅) = 0. Now, let τ(0) = w1. Then, we define σ′(∅) = 1w1, i.e., we mimic
the move of Player 1 in response to Player 0 starting with the choice w0 = 0, but replace the initial 0 of
this play prefix by a 1. For all subsequent rounds, we define

σ(0, w1, . . . , w2n+1) = τ(1w1, . . . , w2n+1)

(note that 1w1 is a single word in the argument to τ) and we define

σ′(1w1, w2, . . . , w2n) = τ(0, w1, . . . , w2n)

i.e., we continue mimicking τ . For all other input sequences, we define σ and σ′ arbitrarily, as these are
not relevant to our argument. The definition of the strategies is illustrated in Figure 4.6.

τ

σ

σ′

τ

0

w1

1w1

w2

w2

w3

w3

w4

w4

w5

w5

w6

w6

Figure 4.6: The definition of the strategies σ and σ′ from τ . The resulting plays are ρ(σ, τ) = 0w1w2w3 · · · and
ρ(σ′, τ) = 1w1w2w3 · · · .

Consider the plays ρ(σ, τ) and ρ(σ′, τ). By construction, they differ only at their first position, where
one has a 0 and the other one has a 1. Hence, f maps one of these plays to 0, i.e., Player 0 wins this
play. Hence, τ is not a winning strategy, as a play that is consistent with τ is winning for Player 0.

The construction for Player 0 is analogous. Fix a strategy σ for her. Here, we define two strategies τ
and τ ′ for Player 1. Let w0 = σ(∅) and define τ(w0) = 0. Now, let σ(w0, 0) = w1 and define τ ′(w0) = 1w1.

For all subsequent rounds, we define

τ(w0, 0, w1, . . . , w2n+1) = σ(w0, 1w1, . . . , w2n+1)

and
τ ′(w0, 1w1, . . . , w2n) = σ(w0, 0, w1, . . . , w2n).

Again, for all other input sequences, we define τ and τ ′ arbitrarily, as these are not relevant to our
argument. The definition of τ is illustrated in Figure 4.7.

Thus, the resulting plays ρ(σ, τ) and ρ(σ, τ ′) differ only in one position. Hence, one of them is mapped
by f to 1, i.e., it witnesses that σ is not a winning strategy for Player 0.
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τ

σ

σ′

τ

w0

0

w1

w0

1w1

w2

w2

w3

w3

w4

w4

w5

w5

Figure 4.7: The definition of the strategies τ and τ ′ from σ. The resulting plays are ρ(σ, τ) = w00w1w2 · · · and
ρ(σ, τ ′) = w01w1w2 · · · .

4.6 Exercises
Exercise 4.1. Let G ≤M G′ withM = (M, init,upd). Also, let V ′ be a subset of G’s vertices. If Player i
has a finite-state winning strategy for G′ from {(v, init(v)) | v ∈ V ′}, she also has a finite-state winning
strategy for G from V ′.

Hint: Start by defining a suitable product memory structure M×Mf .

Exercise 4.2.

1. Recall the definition of generalized reachability games presented in Exercise 3.4.
Show that generalized games are reducible to reachability games.

2. Let A = (V, V0, V1, E) be an arena. Given a finite family (Qj , Pj)j=1,...,k of subsets Qj , Pj ⊆ V , we
define the request-response condition by

ReqRes((Qj , Pj)j=1,...,k) = {ρ ∈ V ω | for all j = 1, . . . , k and all n ∈ N:
ρn ∈ Qj implies ρn′ ∈ Pj for some n′ ≥ n}.

Intuitively, a visit to Qj is a request that has to be answered by a later response, i.e., a visit to Pj .
A game G = (A,ReqRes((Qj , Pj)j=1,...,k)) is a request-response game.
Show that request-response games are reducible to Büchi games.

Exercise 4.3. Show that Player 0 needs exponential memory to win request-response games. To this
end, construct a family Gn of request-response games of polynomial size in n, each with a designated
vertex v, such that Player 0 wins Gn from v, but only with finite-state strategies of size 2n.

Note: The size of a request-response game is measured in the number of vertices of the arena and in
the number of request-response pairs (Q,P ).

Exercise 4.4. Prove or disprove: If Player i has a finite-state winning strategy from each vertex v ∈
Wi(G), in an arbitrary game G, then Player i has a uniform finite-state winning strategy for G.

Exercise 4.5. A (deterministic word) parity automaton A = (Q,Σ, qI , δ,Ω) is a tuple consisting of

• a finite set Q of states,

• an alphabet Σ,

• an initial state qI ∈ Q,

• a transition function δ : Q× Σ→ Q and

• a coloring Ω: Q→ [k].
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The run r = r0r1r2... ∈ Qω of A on an infinite input word α ∈ Σω is defined by r0 = qI and
rn+1 = δ(rn, αn) for all n ∈ N+. This run is accepting if min(Ω(inf(r))) is even. The language L(A ) of
A is the set of all input words whose run is accepting. A game G = (A,Win) is ω-regular if there exists
a parity automaton A with L(A ) = Win.

Prove the following statements:

1. Parity games are ω-regular.

2. Muller games are ω-regular.

3. The Büchi-Landweber Theorem: Every ω-regular game is determined with uniform finite-state
winning strategies.

Exercise 4.6. Consider the Muller game G1 = (A1,Muller(F1)) with A1 as depicted below and

F1 = {{v0, v1}, {v3, v4}, {v4, v5}, {v4, v5, v6}, {v0, v1, v2, v6}}.

v0

v1

v2

v3

v4

v5

v6

Determine the winning regions of G1 and uniform finite-state winning strategies for both players.
Specify the strategies by giving a memory structure (not necessarily the same for both players) and a
next-move function.

Exercise 4.7. Consider the Muller game G2 = (A2,Muller(F2)) with A2 as depicted below and

F2 = {{v0}, {v2}, {v0, v1, v2}}.

v1v0 v2

Apply the LAR reduction to determine the winning regions of G2, where constructing the vertices
reachable from {(v, init(v)) | v ∈ {v0, v1, v2}} suffices.

Exercise 4.8. A family F ⊆ 2V of sets is union-closed, if F ∪F ′ ∈ F for all F, F ′ ∈ F . The family F is
doubly union-closed, if F and 2V \ F are union-closed.

Show that doubly union-closed Muller conditions are equivalent to parity conditions, i.e.

1. for every doubly union-closed F ⊆ 2V there exists a coloring Ω: V → N with Muller(F) =
Parity(Ω), and

2. for every coloring Ω: V → N there exists a doubly union-closed F ⊆ 2V such that Parity(Ω) =
Muller(F).

Exercise 4.9. Fix a Muller game G = (A,Muller(F)) with vertex set V . Furthermore, let W ⊆ V be
such that for all F, F ′ ⊆ V : F ∩W = F ′ ∩W implies F ∈ F if, and only if, F ′ ∈ F , i.e., membership in
F only depends on the vertices in W .

Show: Both players have uniform finite-state winning strategies for G using the LAR’s over W as
memory states.
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Exercise 4.10 (Challenge). Consider a request-response game G = (A,ReqRes((Qj , Pj)j=1,...,k)) with
A = (V, V0, V1, E) as defined in Exercise 4.2. We define the waiting time for condition j, denoted by
wtj : V ∗ → N, inductively via wtj(ε) = 0 and

wtj(wv) =


1 if wtj(w) = 0 and v ∈ Qj \ Pj ,
0 if wtj(w′) = 0 and v /∈ Qj \ Pj ,
wtj(w) + 1 if wtj(w) > 0 and v /∈ Pj ,
0 if wtj(w) > 0 and v ∈ Pj .

Intuitively, wtj measures the waiting time between a request and its (earliest) response (ignoring addi-
tional requests of condition j while wtj is already non-zero). The waiting times measure the quality of
plays and strategies.

Give a family of request-response games Gk = (Ak,ReqRes((Qj , Pj)j=1,...,k)) with |Ak| ∈ O(k) and
k pairs (Qj , Pj) such that every Ak has a distinguished vertex v satisfying:

• Player 0 has a winning strategy from v, but

• every winning strategy for Player 0 from v has a play ρ ∈ Plays(Ak, v, σ) satisfying wtj(w) ≥ 2k
for some prefix w of ρ.

Can you derive an upper bound on wtj from your reduction in Exercise 4.2? Does this bound
(asymptotically) match the lower bound 2k?

Exercise 4.11 (Challenge). Prove Theorem 4.4.

Hint: By induction over n using the fact that DJWn+1 contains n+ 1 different copies of DJWn.

Exercise 4.12. Show that Σn and Πn are closed under union and intersection for every n > 0.

Exercise 4.13. Let V be a finite set. Prove each membership in the Borel hierarchy stated below.

1. wMuller(F) = {ρ ∈ V ω | Occ(ρ) ∈ F} ∈ Σ2 ∩Π2 for every F ⊆ 2V .

2. coBüchi(C) = {ρ ∈ V ω | Inf(ρ) ⊆ C} ∈ Σ2 for every C ⊆ V .

3. Parity(Ω) = {ρ ∈ V ω | min(Inf(Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · )) is even} ∈ Σ3 ∩Π3 for every Ω: V → N.

Hint: Use the closure properties proven in Exercise 4.12.

Exercise 4.14. Fix B = {0, 1}. A language L ⊆ Bω is complete for a level Σn of the Borel hierarchy
over B if L ∈ Σn and L′ ≤ L for every L′ ⊆ Bω with L′ ∈ Σn. Completeness for Πn is defined similarly.

1. Show that 0∗1(0 + 1)ω is complete for Σ1.

2. Show that (0∗1)ω is complete for Π2.

3. Show that (0∗1)ω is not in Σ1 ∪Π1.

Exercise 4.15 (Challenge). Let G = (A,Parity(Ω)) be a parity game. Construct a safety game Gs =
(A×M,Safety(S)) for some memory structure M = (M, init,upd) such that for all v ∈ V :

v ∈W0(G)⇔ (v, init(v)) ∈W0(Gs).

Hint: Revisit the small progress measure algorithm for parity games.

Exercise 4.16. Let f : Bω → B. Construct an explicit variant G′f = (A,Win) of Gf in a finite arena A
with some designated initial vertex v such that Player i has a winning strategy for Gf if, and only if
v ∈Wi(G′f ).
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5 Infinite Games in Infinite Arenas
Until now, we only have considered games where the underlying arena is a finite object. In this chapter,
we overcome this restriction and allow arenas to be countably infinite. Plays, strategies, winning regions,
etc. are still defined as usual. However, there are some important differences between games in finite
arenas and games in infinite arenas:

• The input to the solution algorithms is now an infinite object.

• Even positional strategies are infinite objects.

• The infinity set Inf(ρ) of a play ρ might be empty.

• Paths of bounded, finite length might not be sufficient for the attractor construction. For an
example, see Figure 5.1. Here, the vertex v will never by added to the attractor after a fixed
number of n iterations. Accordingly, we also have that v /∈

⋃
n∈N Attrn0 (R) = Attr0(R). But

Player 0 can force every play from v to v′ as Player 1 has to choose one outgoing edge and then the
number of steps after v′ is reached is bounded.

v v′

...

... ...

Figure 5.1: There is no n ∈ N such that v is in Attrn
0 ({v′}).

Accordingly, to solve this game by an attractor construction we need more than infinitely many
steps. Every vertex but v is eventually in some level of the attractor. Hence, doing “infinitely many
and then one more” step adds v to the attractor as well.
More formally, using ordinals one can define higher levels of the attractor construction as follows:

Attrω0 (R) =
⋃
n∈N

Attrn0 (R)

Attrω+1
0 (R) = Attrω0 (R) ∪ CPre0(Attrω0 (R))

Attrω+2
0 (R) = Attrω+1

0 (R) ∪ CPre0(Attrω+1
0 (R))

...

We then have that v ∈ Attrω+1
0 (R). However, if v has further predecessors, we even need more

iterations and possibly even infinitely many limit steps10. However, there is always a level at which
the attractor gets stationary.

• Consider a parity game G = (A,Parity(Ω) with Ω: V → {0, 1, . . . , k}) for some k ∈ N. As the
image of Ω is finite, there is a color appearing infinitely often on every play, even if every vertex
only appears once. For such games, one can still prove positional determinacy, using an induction

10Attrω
0 (R) is a limit step, as it is the union of all smaller attractors
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on the number of colors and the adapted attractor construction. Note, that it is indeed crucial here
that the image of Ω is finite, as otherwise the minimal color seen infinitely often may be undefined.

v/1

v0/2 v1/4 v2/6 v3/8 v4/10 ...

Figure 5.2: Max-parity game which cannot be translated into an equivalent min-parity game and where Player 1
needs a winning strategy of infinite size.

There is also a difference between min-parity and max-parity when we allow Ω to range over N and
even infinite memory might be necessary. As an example consider the max-parity game depicted in
Figure 5.2. Here, Player 1 has a winning strategy by visiting each of the lower vertices only once,
which implies that only v is visited infinitely often. But with a finite-state strategy, he could only
visit finitely many of the lower states such that the maximal color occurring infinitely often is even.
Also, we cannot represent this game as an equivalent min-parity game, as both players have posi-
tional winning strategies in min-parity games, even with infinitely many colors.11

5.1 Pushdown Parity Games
In the following, we want to consider a class of infinite games in infinite arenas that have a better
behavior than the examples discussed so far: parity games that are played on the configuration graphs
of pushdown machines. Such machines are similar to usual pushdown automata, but with discarded
language acceptance features. These games are finitely represented by the underlying pushdown machines
and therefore suitable for algorithmic analysis.
Definition 5.1 (Pushdown System). A pushdown system P = (Q,Γ,∆, qI) is a tuple consisting of

• a non-empty, finite set of states Q,

• a finite stack alphabet Γ,

• a transition relation ∆ ⊆ Q× Γ⊥ ×Q× Γ≤2
⊥ and

• an initial state qI ∈ Q,

where Γ⊥ denotes the extended stack alphabet Γ⊥ = Γ∪ {⊥}. We call ⊥ the initial stack symbol, which we
require to be fresh, i.e., ⊥ /∈ Γ. Furthermore, a pushdown system P has to fulfil the following requirements:

• The system is deadlock free: For all q ∈ Q and all A ∈ Γ⊥ there exists a q′ ∈ Q and an α ∈ Γ≤2
⊥ such

that (q, A, q′, α) ∈ ∆.

• The initial stack symbol is never deleted nor written on the stack: (q,⊥, q′, ε) /∈ ∆ for all q, q′ ∈ Q
and (q,A, q′,⊥X) ∈ ∆ implies A = ⊥ and X = ε.

We call a transition (q, A, q′, α) ∈ ∆

• a pop transition if |α| = 0,

• a skip transition if |α| = 1, and

• a push transition if |α| = 2.

A stack content of P is a word γ ∈ Γ∗{⊥}. A configuration of P is a tuple (q, γ) ∈ Q×Γ∗{⊥} consisting
of a state and a stack content. The stack height of such a configuration is defined as by |(q, γ)| = |γ| − 1.
A transition from one configuration (q, γ) to another one (q, γ), is defined as (q, γ) _ (q′, γ′) if, and only
if, (q, γ0, q

′, α) ∈ ∆ and γ′ = αγ1γ2...γ|(q,γ)|. Now, we define the configuration graph of a pushdown
system.

11For further details on this topic, see the paper “Positional determinacy of games with infinitely many priorities” by
Grädel and Walukiewicz (LMCS, 2006).
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Definition 5.2 (Configuration Graph). Let P = (Q,Γ,∆, qI) be a pushdown system. The configuration
graph of P, denoted by G (P), is then defined as G (P) = (V,E) where

• V = Q× Γ∗{⊥} is the set of configurations of P and

• E = {(v, v′) ∈ V × V | v _ v′} is the set of transitions.

The configuration graph has no terminal vertices, as P is deadlock free. To construct an arena, it
remains to define the positions of the players and to color the vertices appropriately.
Definition 5.3 (Pushdown Parity Game). Let P = (Q,Γ,∆, qI) be a pushdown system, let {Q0Q1}
be a partition of Q, and let Ω′ : Q → N be a coloring of Q. Then, we define the parity game G by
G = (A,Parity(Ω)) with A = (V, V0, V1, E) such that

• (V,E) = G (P),

• Vi = {(q, γ) ∈ V | q ∈ Qi} for i ∈ {0, 1}, and

• Ω((q, γ)) = Ω′(q) for all (q, γ) ∈ V .

The call such a game a pushdown parity game.

An example for pushdown parity game is depicted in Figure 5.3. The corresponding pushdown system
is given by P = ({qI , q1, q2}, {A},∆, qI) with ∆ defined as the set

{(qI , X, qI , AX), (qI , X, q1, AX), (q1, A, q1, ε), (q1,⊥, q2,⊥), (q2, A, q2, ε), (q2,⊥, q2,⊥) | X ∈ {A,⊥}},

the partition Q1 = {qin} and Q0 = {q1, q2}, and the coloring Ω with Ω(q) = 0 if q 6= q1, and Ω(q1) = 1.
In this game, Player 1 can either increase the stack forever or move to some vertex v′j where it is

Player 0’s turn. If he increases the stack forever, the minimal color seen infinitely often is 0. This play is
winning for Player 0. However, if Player 0 is allowed to move, she simply can empty the stack again and
move to q2. As removing all elements from the stack only needs finitely many steps and q2 has an even
color, odd colors occur only finitely often. Accordingly, Player 0 wins this game from every vertex.

v0/0

v′0/1

v1/0

v′1/1

v2/0

v′2/1

v3/0

v′3/1

v4/0

v′4/1

v5/0

v′5/1

A⊥ AA⊥ AAA⊥ AAAA⊥ AAAAA⊥

v′′0 /0

⊥

...

...

qI

q1

q2

Figure 5.3: An example for a pushdown game.

We now are interested in solving such games with infinite arenas. In general we want to tackle the
following problem: Given a pushdown game G, represented by a pushdown system P, a partition of its
states and a coloring Ω of its states, and some i ∈ {0, 1}, determine whether Player i wins G from (qI ,⊥)
and, if yes, compute a corresponding winning strategy for her.

5.2 Pushdown Transducer
Recall that we claimed that parity games with finitely many colors are positionally determined, even if
the arena is countably infinite. This applies to pushdown parity games, as the set of configurations is
countable. However, even a positional winning strategy in a pushdown game is an infinite object, as there
are infinitely many vertices.
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In the following we introduce a finitely-representable machine model that implements winning strate-
gies for pushdown games. Finite-state strategies does not suffice12, but, not surprisingly, using pushdown
machines suffices.

In the following, we define pushdown automata with output, so-called pushdown transducers.

Definition 5.4 (Pushdown Transducers). A pushdown transducer T = (Q,Γ,∆, qI ,ΣI ,ΣO, λ) is a tuple
consisting of

• a non-empty, finite set of states Q,

• a finite stack alphabet Γ,

• a transition relation ∆ ⊆ Q× Γ⊥ × (ΣI ∪ {ε})×Q× Γ≤2
⊥ ,

• an initial state qI ,

• a finite input alphabet ΣI ,

• a finite output alphabet ΣO and

• a partial output function λ : Q ⇀ ΣO.

where Γ⊥ is defined similar as for pushdown systems and ε /∈ ΣI .

We say that T is deterministic if, and only if, for all q ∈ Q, all A ∈ Γ⊥, and all a ∈ ΣI we have

|{(q′, α) | (q, A, a, q′, α) ∈ ∆ or (q, ε, a, q′, α) ∈ ∆}| ≤ 1.

Informally, in a deterministic, there is always at most one transition applicable.
A run r of T on a finite input word w ∈ Σ∗I is defined as

(q0, γ0)(q1, γ1)...(qm, γm) ∈ (Q× Γ∗{⊥})∗

with (q0, γ0) = (qin,⊥) and with (qj , γj)
aj

_ (qj+1, γj+1) for all j ∈ [m] and aj ∈ ΣI ∪ {ε} such that
a0a1...am−1 = w and {(q, α) | (qm, γ0, ε, q, α) ∈ ∆} = ∅. We use (q, γ) a_ (q′, γ′) to denote that
(q, γ0, a, q

′, x) ∈ ∆ with γ′ = αγ(1)...γ(|γ| − 1). The last condition enforces that after reading w no more
ε-transitions are possible. If T is deterministic, the corresponding run of w is unique and we denote it
by run(w).

Definition 5.5 (Function Computed by a Transducer). Let T = (Q,Γ,∆, qI ,ΣI ,ΣO, λ) be a deter-
ministic pushdown transducer. Then T computes the partial function fT : (ΣI)∗ ⇀ ΣO with fT (w) =
λ(prQ(Lst(run(w)))) for all w ∈ Σ∗I , if such a run exists. Here, prQ denotes the projection of a configu-
ration to its state.

To implement pushdown strategies in a pushdown game we will use pushdown transducers. To have a
finite input alphabet, we represent play prefixes here by sequences of transitions and not by sequences of
configurations. Notice, that both representations can easily be converted into each other. Furthermore,
the output will be the next transition to be chosen by Player i instead of the next configuration. Hence,
we use the set of transitions of the pushdown system defining the pushdown game for both, the input
and the output alphabet of the pushdown transducer. Accordingly, we have ΣI = ΣO = ∆, where ∆
is the transition relation of the pushdown system underlying the game arena. This way, the transducer
consumes a play prefix in the pushdown graph represented by a sequence of transitions and outputs
the transition which Player i should choose next (in case the last configuration of the play prefix is a
Player i configuration). Thus, we have to require the output transition to be executable from the last
configuration of the play prefix induced by the input sequence.

As an example, consider the pushdown transducer depicted in Figure 5.4, which implements the
winning strategy for Player 0 in the game G depicted in Figure 5.3.

12Even more problematic is that the update and the next-move function have infinite domain, as there are infinitely many
vertices.
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qI q1 q′1 q2

Z/AZ

(qI , X, qI , AX)

Z/AZ

(qI , X, q1, AX)
A/ε

(q1, A, q1, ε)

⊥/⊥
ε

⊥/⊥

(q1,⊥, q2,⊥)
⊥/⊥

(q2,⊥, q2,⊥)

λ(q1)
=

(q1, A, q1, ε)

λ(q′1)
=

(q1,⊥, q2,⊥)

λ(q2)
=

(q2,⊥, q2,⊥)

Figure 5.4: Pushdown transducer implementing a winning strategy for Player 0 from (qI ,⊥) in the game depicted
in Figure 5.3.

5.3 Walukiewicz’s Reduction
In this section, we show how to simulate a pushdown parity game by a parity game in a finite arena. This
entails that we cannot store the whole information about the stack content of a configuration. Instead,
we only store the topmost stack symbol, which allows us to deal with push and skip transitions, but not
with pop transitions. Such transitions remove the topmost stack symbol, revealing the symbol below it,
which we discarded. Hence, we change the evolution of a play: the players are assigned different tasks,
one of them makes predictions and the other one verifies them.

A prediction P = (P0, ..., Pk−1) contains for every c ∈ {0, 1, . . . , k − 1} a subset Pc ⊆ Q of states,
where k − 1 is the largest color appearing in the game. Whenever a push-transition is to be simulated
the predicting player has to make a prediction P about the future round t when the same stack height as
before performing the push-transition is reached again for the first time (if it is reached at all). With this
prediction, the predicting player claims that if the current push-transition is performed, then in round t
some state q ∈ Pc will be reached if c ∈ {0, 1, . . . , k − 1} is the minimal color seen in between. Once a
prediction P is proposed, the verifying player has two ways of reacting, either believing that P is correct
or not. In the first case, he is not interested in verifying P , so the push-transition is not performed and
the verifying player chooses a color c ∈ {0, 1, . . . , k − 1} and a state q ∈ Pc, for some Pc 6= ∅, and skips
a part of the simulated play by jumping to an appropriate position in the play. In the other case, he
wants to verify the correctness of P , so the push-transition is performed and when the top of the stack is
eventually popped it will turn out whether P is correct or not. The predicting player wins if P turns out
to be correct and otherwise the verifying player wins. So after a pop-transition the winner is certain. For
the other case, where no pop-transition is performed at all, the parity condition determines the winner.

In the following, let Player 0 take the role of the predicting player and Player 1 the role of the
verifying one. Let G = (A,Parity(Ω)) be a pushdown game with arena A = (V, V0, V1, E) induced by
P = (Q,Γ,∆, qI) with partition Q0 ∪Q1 of Q and coloring Ω: Q→ {0, 1, . . . , k− 1}. To simulate G by a
game on a finite arena the information stored on the stack is encoded by some finite memory structure.
The essential component of this structure is the set of predictions Pred = (2Q)k.

We define the game G′ = (A′,Parity(Ω′)) with A′ = (V ′, V ′0 , V ′1 , E′) as follows: for all states q ∈ Q,
stack symbols A,B ∈ Γ⊥, colors c, d ∈ {0, 1, . . . , k − 1} and predictions P,R ∈ Pred, the set V ′ contains
the vertices

• Check[q, A, P, c, d] (which correspond to the configurations of G),

• Push[P, c, q, AB] (to signalize the intention of performing a push-transition),

• Claim[P, c, q, AB,R] (to make a new prediction),

• Jump[q, A, P, c, d] (to skip a part of a simulated play), and

• Win0[q] and Win1[q] (sink vertices which are reached when a prediction is verified).

The set E′ consists of the following edges (for the sake of readability, we denote an edge (v1, v2) ∈ E′
here by v1 → v2). For every skip-transition δ = (q, A, p,B) ∈ ∆ there are edges

Check[q, A, P, c, d]→ Check[p,B, P,min{c,Ω(p)},Ω(p)] ,

for P ∈ Pred and c, d ∈ {0, 1, . . . , k − 1}. Thus, the first two components of the Check-vertices are
updated according to δ, the prediction P remains untouched, the last but one component is used to keep
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track of the minimal color for being able to check the prediction for correctness and the last component
determines the color of the current Check-vertex. For every push-transition δ = (q, A, p,BC) ∈ ∆ there
are edges

Check[q, A, P, c, d]→ Push[P, c, p,BC] ,

for all P ∈ Pred and c, d ∈ {0, 1, . . . , k−1}. Here, a player states that a push-transition is to be performed
such that the current state q has to be changed to p and the top of the stack A has to be replaced by
BC. The information containing the current prediction P and the minimal color c is carried over, as this
is needed in the case where the verifying player decides to skip. Moreover, to make a new prediction R,
all edges

Push[P, c, p,BC]→ Claim[P, c, p,BC,R]

for every R ∈ Pred are needed. In case a new prediction is to be verified, a push-transition is finally
performed using edges of the form

Claim[P, c, p,BC,R]→ Check[p,B,R,Ω(p),Ω(p)]

where the prediction P , the color c and the lower stack symbol C are discarded, since they are no longer
needed. For the other case, where the verifying player intends to skip a part of a play, all edges

Claim[P, c, p,BC,R]→ Jump[q′, C, P, c, e]

with q′ ∈ Re are contained in E′. Here, the verifying player chooses a color e ∈ {0, 1, . . . , k − 1} for the
minimal color of the skipped part and a state q from the corresponding component Re of the prediction
R. Now, the lower stack symbol C, the prediction P and the color c additionally have to be carried over,
whereas B and R are discarded. Then, all edges

Jump[q, C, P, c, e]→ Check[q, C, P,min{c, e,Ω(q)},min{e,Ω(q)}]

are contained in E′ where the last component of the Check-vertex is set to be the minimum of the color
of the current state q and the minimal color of the part just skipped. For the last but one component, we
also have to account for the color c, which is necessary for eventually checking P for correctness. Finally,
we have for every pop-transition (q, A, p, ε) ∈ ∆, the edges

Check[q, A, P, c, d]→Win0[p] if p ∈ Pc , and
Check[q, A, P, c, d]→Win1[p] if p /∈ Pc ,

for P ∈ Pred and c, d ∈ {0, 1, . . . , k−1}, which lead to the sink vertex Win0[p] of the predicting Player 0 if
the prediction P turns out to be correct or to the sink vertex Win1[p] of the verifying Player 1 otherwise.
Moreover, we have (Wini[q],Wini[q]) ∈ E′, for i ∈ {0, 1} and q ∈ Q.

The set of vertices V0 of Player 0 (who in addition has to make the predictions) is defined to consist
of all Push-vertices, as there new predictions are made, and of those Check[p,A, P, c, d] vertices where
p ∈ Qi. Accordingly, all other vertices belong to Player 1., especially all Claim-vertices belong to Player 1,
as he accepts a prediction or challenges it at these vertices. Similarly, all Jump-vertices belong to Player 1,
since he can pick a configuration from the current prediction to continue the play at this configuration.

The coloring Ω′ : V ′ → {0, 1, . . . , k − 1} is defined by Ω′(Check[p,A, P, c, d]) = d and Ω′(Wini[q]) = i,
for i ∈ {0, 1}. All other vertices are colored by the maximal color k (which does not appear in G), since
they are auxiliary vertices and should have no influence on the minimal color seen infinitely often. Note
that there is no play in G′ with minimal color k, as every play visits infinitely many Check-vertices or
ends up in one of the sinks, which all have a smaller color.

The following lemma claims that solving G′ suffices to determine the winner of G. Furthermore, in
the proof we will construct a pushdown transducer implementing a winning strategy for Player 0, if she
is the winner. The proof shows that G′ simulates G. To this end, we need to specify the vertex of G′
where the simulation starts. To this end, we define the initial prediction P in = ∅k, coinciding with the
fact that the stack bottom symbol cannot be deleted from the stack.
Lemma 5.1. Let G be a pushdown parity game and G′ the parity game constructed as above. We have
(qI ,⊥) ∈Wi(G) if and only if Check[qI ,⊥, P in,Ω(qI),Ω(qI)] ∈Wi(G) for i ∈ {0, 1}.

Proof. We show that (qI ,⊥) ∈ W0(G) implies Check[qI ,⊥, P in,Ω(qI),Ω(qI)] ∈ W0(G) and vice versa.
This proves the claim for i = 1, too, as both games are determined.
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In the following, we only consider plays and play prefixes beginning in (qI ,⊥) in A respectively in
Check[qI ,⊥, P in,Ω(qI),Ω(qI)] in A′. For the sake of readability, when we refer to plays, we will always
mean plays starting in one of these vertices.

First, let σ be a positional winning strategy for Player 0 from (qI ,⊥) in G. We need to construct a
winning strategy σ′ for Player 0 from Check[qI ,⊥, P in,Ω(qI),Ω(qI)] in G′. We define σ′ and a function f
mapping finite play prefixes of G′ ending in a Check vertex to play prefixes in A simultaneously by
induction over the length of the play prefixes. This is necessary, as f depends on choices made by σ′

while σ is defined using f , which simulates play prefixes in G′ by play prefixes in G. Then, σ′ mimics
σ when applied to the simulated play prefix. Both functions are subjects to some invariants. First, f
maps a play prefix w in G′ ending in Check[q, A, P, c, d] to f(w) ending in (q, Aγ) for some γ. Secondly,
we define f(w) and σ′ only for those w that are consistent with σ′ as defined thus far. This is sufficient
as all other values of σ can be defined arbitrarily, since we only want to define a winning strategy from
Check[qI ,⊥, P in,Ω(qI),Ω(qI)].

We begin by defining σ′(w) for those w ending in a Check vertex, say w ends in Check[q,A, P, c, d], as
the definition is the same for the induction start and the induction step. Here, we apply the invariant:
f(w) ends in a configuration of the form (q, Aγ). If it is Player 0’s turn at the last vertex of w, then also
at the last vertex of f(w). Hence, let σ(f(w)) = (p,Bγ′) and let δ be the transition inducing the edge
from (q, Aγ) to (p,Bγ′). If δ is a skip-transition, then δ = (q, A, p,B). Then, we define σ′ to mimic σ by
defining

σ′(w) = Check[p,B, P,min{c,Ω(p)},Ω(p)] .

If δ is a push-transition, then we again want to mimic σ. However, Player 0 cannot execute the push-
transition, she can only signal her intent and make a prediction, and then let Player 1 decide whether he
actually simulates the push-transition or whether he wants to skip a portion of the play. So, we define

σ′(w) = Push[P, c, p,BC] .

Finally, if δ is a pop-transition, we move to the unique successor of the form Wini[p] for some i ∈ {0, 1}.
Note that this might be a losing sink for Player 0 (i.e., the vertex Win1[p]), if p /∈ Pc. We will see later
that this is never the case.

Now, consider a play prefix w′ of the form wPush[P, c, p,BC] so that f(w) is already defined. If
Check[q, A, P, c, d] is the last vertex of w, then the last vertex of f(w) is of the form (q, Aγ) (here,
we again apply the invariant). As there is an edge from Check[q, A, P, c, d] to wPush[P, c, p,BC], δ =
(q, A, p,BC) is a transition of P, which is executable at the last vertex of f(w) leading to the config-
uration (p,BCγ). Consider the set Rc all those (q∗, C) ∈ Q × Γ⊥ such that there is a finite prolonga-
tion f(w)(p,BCγ)(q1, γ1)...(qn, γn) of f(w)(p,BCγ) that are consistent with σ and satisfy the following
requirements: q∗ = qn and C is the topmost symbol of γn), |qn, γn| = |q, Aγ|, |qn′ , γn′ | > |q, Aγ|, and
c = min({Ω(p) ∪ {Ω(qn′) | 1 ≤ n′ < n}}). Hence, Rc contains all those states of configurations that are
reachable from (q,Aγ) via a play prefix that is consistent with σ after first taking the push-transition δ
(replacing the topmost A by BC) and then reaching the same stack height as (q, Aγ) for the first time,
while the minimal color seen after (q, Aγ) is c. Note that this implies that the topmost stack sym-
bol of such a configuration is C. We collect these set in the prediction R = (R0, ..., Rk−1) and define
σ′(w′) = Claim[P, c, p,BC,R]. This completes the definition of σ′.

It remains to define f . For the induction start, consider a play prefix of length one. As all our
plays start in the initial Check vertex Check[qI , P in,Ω(qI),Ω(qI)], we only have to consider the play
prefix Check[qI , P in,Ω(qI),Ω(qI)] and define

f(Check[qI , P in,Ω(qI),Ω(qI)]) = (qI ,⊥) .

Now consider a play prefix w in G′ ending in a Check vertex Check[q,A, P, c, d] that is consistent with
σ as defined so far. By the invariant, we have that the last vertex of f(w) is of the form (q, Aγ) for some
γ. We consider the different cases how w can be prolonged so that the next Check-vertex is reached.

First, consider w′ = wCheck[p,B, P,min{c,Ω(p)},Ω(p)], i.e., the skip-transition (q, A, p,B) is simu-
lated. This transition is executable at (q, Aγ), the last vertex of f(w), leading to the configuration (p,Bγ).
Hence, we can define f(w′) = f(w)(p,Bγ).

Secondly, consider the simulation of a push-transition (q,A, p,BC). To simulate such a transition
in G′, one of the players moves to a Push-vertex. From there, Player 0 moves to a Claim-vertex, while
making a prediction R during this move. Note that we can assume that R is the prediction as in the
definition of σ′ above, as we only have to consider play prefixes that are consistent with σ′. After Player 0
has made the prediction, there are two possible types of moves for Player 1: either, he accepts prediction
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and executes the push-transition and moves from the Claim-vertex to the corresponding Check-vertex, or
he skips a portion of the play using the Jump-vertex. we consider both cases independently. First, let

w′ = wPush[P, c, p,BC]Claim[P, c, p,BC,R]Check[p,B,R,Ω(p),Ω(p)] ,

i.e., Player 0 makes the prediction R and Player 1 chooses to execute the push-transition. The push-
transition is also executable at (q, Aγ), the last vertex of f(w), leading to the configuration (p,BCγ).
Hence, we can define f(w′) = f(w)(p,BCγ). On the other hand, assume Player 1 skips a portion of the
play using a Jump-vertex, i.e., we have

w′ = wPush[P, c, p,BC]Claim[P, c, p,BC,R]Jump[qC, P, c, e]Check[q, C, P,min{c, e,Ω(q)},min{e,Ω(q)}] ,

where q ∈ Re for some color e. By the choice of the prediction Re by σ′, there exists a prolonga-
tion f(w)(p,BCγ)(q1, γ1)...(qn, γn) of f(w)(p,BCγ) that is consistent with σ and satisfies q∗ = qn and
that C is the topmost symbol of γn). Thus, we can define f(w′) = f(w)(p,BCγ)(q1, γ1)...(qn, γn). Notice
that in all cases the invariant is satisfied. This completes the definition of f .

It remains to show that σ′ is a winning strategy for Player 0 from Check[qI ,⊥, P in,Ω(qI),Ω(qI)]. To
this end, pick some arbitrary play ρ starting in this vertex that is consistent with σ′. First, we show
that ρ does not contain a sink-vertex Win1[p], as they are losing for Player 0. To the contrary, assume
ρ visits Win1[q]. Then, the last vertex before the first visit to the sink is of the form Check[q, A, P, c, d]
(and is the last Check-vertex in ρ) such that there is a pop-transition δ = (q, A, p, ε) with p /∈ Pc. Note
that A 6= ⊥, since there is no pop-transitions deleting ⊥. This implies that there was a last simulated
push-transition during ρ, at which point Player 0 picked the prediction P according to σ′. Afterwards,
only skip-transitions are simulated or push-transitions where Player 0 decides to skip a portion of the
play are executed, since the prediction P would be replaced in any other case.

Let w denote the prefix of ρ up to and including the last Check-vertex of ρ (immediately before the
sink is reached), and let w′ the prefix of w ending in the Check-vertex reached before Player 0 picked the
prediction P . Then, f(w′) is a prefix of f(w) and there is some non-empty x such that f(w′)x = f(w).
By the choice of x as a suffix of f(w) we know that is of the form (q, Aγ). Thus, the pop-transition δ is
applicable, leading to the configuration (p, γ). Furthermore, x(p, γ) is a path that witnesses p ∈ Pe, where
e is the minimal color seen during x. This color is equal to c as encoded in the vertex Check[q, A, P, c, d],
as c is equal to the minimal color visited, if only skip-transitions or push-transitions via Jump-vertices are
simulated in ρ. Hence, we have p ∈ Pe = Pc. This contradicts p /∈ Pc. Thus, no losing sink for Player 0
is ever reached by ρ.

If a sink of the form Win0[q] is reached, then Player 0 wins ρ. Hence, it remains to consider the case
where ρ visits no sink at all. As f(ρ0...ρn′) is a prefix of f(ρ0...ρn) for every n′ < n, there is a unique play
f(ρ) such that f(ρ0...ρn) is a prefix of f(ρ) for every n. By construction, the play f(ρ) is consistent with
σ. Let x0 = f(ρ0) and xn be such that f(ρ0...ρn) = f(ρ0...ρn−1)xn for every n > 0, which is non-empty
as f(ρ0...ρn) is a proper prolongation of f(ρ0...ρn−1). Note that this implies f(ρ) = x0x1x2....

Let n0 < n1 < n2 < ... be the enumeration of the positions of the Check-vertices in ρ. There are
infinitely many, since ρ never visits a sink vertex. Inspecting all three cases of the definition of f , we obtain
that the color of the j-th Check-vertex is equal to the minimal color occurring in xnj

. As f(ρ) = x0x1x2...
we conclude that the minimal color occurring infinitely often in f(ρ) (which is even, as f(ρ) is winning
for Player 0) is equal to the minimal color labeling infinitely many Check-vertices in ρ. Finally, all other
vertices in ρ have a larger color, hence the minimal color seen infinitely often ρ is even, i.e., ρ is winning
for Player 0. This concludes the first part of the proof.

Now, let us describe how a winning strategy σ for Player i in G can be constructed from a positional
winning strategy σ′ for Player 0 in G′. The idea is to simulate σ′ in G. This works out fine as long as
only skip- and push-transitions are involved. As soon as the first pop-transition is used, σ′ leads to a
sink Win0-vertex at which the future moves of σ′ are no longer useful for playing in the original game G.
Note that no Win1-vertex is reached, since they are losing for Player 0, and therefore not reachable via a
winning strategy. To overcome this, the strategy σ uses a stack to store Claim-vertices visited during the
simulated play. This allows us to reset the simulated play and to continue from the appropriate successor
Jump-vertex of the Claim-vertex stored on the stack.

Formally, let A′|σ′ = (V ′|σ′ , V ′0 |σ′ , V ′1 |σ′ , E′|σ′) be A′ restricted to the vertices and edges visited by σ′
when starting in to play in Check[qI ,⊥, P in,Ω(qI),Ω(qI)]. This implies that every vertex from V ′0 |σ′ has
a unique successor in A′|σ′ and that Win1-vertices are not contained in V |σ′ . The pushdown transducer
Tσ implementing σ is obtained from σ′ by employing A′|σ′ for its finite control and the Claim-vertices as
its stack symbols. The PDT implementing σ is defined by Tσ = (Qσ,Γσ,∆σ, qσI ,ΣσI ,ΣσO, λσ), where
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• Qσ = V ′|σ′ ,

• Γσ = {v ∈ V ′|σ′ | v is a Claim-vertex in A′|σ},

• qσI = Check[qI ,⊥, P in,Ω(qI),Ω(qI)], and

• ΣσI = ΣσO = ∆.

Recall that ∆ is the transition relation of the pushdown system P inducing the arena. To define ∆σ,
we first define the labeling ` : E′|σ′ → ∆ ∪ {ε} which assigns to every edge in E′|σ′ its corresponding
transition δ ∈ ∆ by

`(v, v′) =


(q, A, p,B) if (v, v′) = (Check[q, A, P, c, d],Check[p,B, P, c′, d′]) ,
(q, A, p,BC) if (v, v′) = (Check[q, A, P, c, d],Push[P, c, p,BC]) ,
(q, A, p, ε) if (v, v′) = (Check[q, A, P, c, d],Win0[p]) ,
ε otherwise.

Now, the transition relation ∆σ is defined by considering several cases for every edge (v, v′) ∈ E′|σ′ .

• If v is not a Claim-vertex and v′ is not a Win0-vertex, then (v, Z, `(v, v′), v′, Z) ∈ ∆σ, for every
Z ∈ Γσ⊥.

• If v is a Claim-vertex and v′ is a Check-vertex, then (v, Z, `(v, v′), v′, vZ) ∈ ∆σ for Z ∈ Γσ⊥, i.e., the
Claim-vertex v is pushed onto the stack.

• If (v, v′) = (Check[q,A, P, c, d],Win0[p]), then (v, Z, `(v, v′), Jump[p, C,R, e, c], ε) ∈ ∆σ for every
Z ∈ Γσ of the form Z = Claim[R, e, q′, BC,R′], i.e., the topmost symbol Claim[R, e, q′, BC,R′] is
popped from the stack and the pushdown transducer proceeds to the state Jump[p, C,R, e, c] which
would be reached in A′|σ′ if Player 1 would have chosen color c and state p ∈ Rc to determine the
successor of Claim[R, e, q′, BC,R′].

To complete the definition of Tσ, we define the output function λσ by λσ(v) = `(v, v′) if v ∈ V ′0 |σ′ is a
Check-vertex and (v, v′) ∈ E′|σ′ , i.e., the labeling of the edge chosen by σ′ determines the output of Tσ.

It remains to show that Tσ implements a winning strategy from (qI ,⊥). To show this, let ρ =
(q0, γ0)(q1, γ1)(q2, γ2)... be a play that is consistent with the strategy σ implemented by T , starting in
(qI ,⊥). To prove that ρ is winning, we need some additional notation. The position n is a stair of
ρ, if |qn, γn| ≥ |qn′ , γn′ | for every n′ ≥ n, i.e., no smaller stack height is reached after n. Every play
has infinitely many stairs and if n is a stair and n′ the next one, then either |qn, γn| = |qn′ , γn′ | or
|qn, γn| = |qn′ , γn′ | − 1.

Let n0 < n1 < n2 < ... be the ascending enumeration of ρ’s stairs. We chop ρ into infinitely many
pieces, leading from one stair to the next by defining x0 = (q0, γ0)...(qn0 , γn0) and

xj = (qnj−1+1, γnj−1+1)...(qnj
, γnj

) .

Then, we have ρ = x0x1x2... and furthermore, the minimal color seen infinitely often during ρ is the same
as the minimal color seen infinitely often in the sequence c0c1c2..., where cj is the minimal color in xj .

Towards a contradiction, assume ρ is not winning for Player 0, i.e., the minimal color seen infinitely
often in c0c1c2... is odd. We construct a play ρ in G′ that is consistent with σ′, but losing for Player 0,
which will yield the desired contradiction. Intuitively, Player 1 uses Jump-vertices to skip the portions
between stairs, thus the simulated play uses only push- and skip-transitions and never leads to a sink-
vertex.

More formally, we define ρ′ by induction over the stairs, satisfying the following invariants: after
simulating a stair, the simulated play is in a Check-vertex whose first two components encode the state
and the topmost stack symbol of the stair configuration. Secondly, the simulation in G′ will be consistent
with σ.

We have that n0 = 0 as the stack bottom symbol is never deleted. Accordingly, we can define ρ′0 as
ρ′0 = Check[qI ,⊥, P in,Ω(qI),Ω(qI)]. Now, assume we have simulated ρ up to stair j, defining the play
prefix ρ′0...ρ

′
m, which is consistent with σ′. We need to prolong ρ′0...ρ′m to simulate the (j + 1)-st stair,

while staying consistent with σ′. To this end, we have to consider several cases.
If nj+1 = nj + 1 and |qnj+1 , γnj+1 | = |qnj

, γnj
|, then the nj+1-st configuration of ρ is reached via a

skip-transition. This skip-transition can be simulated in G′ to extend ρ′0...ρ
′
m by the Check-vertex which
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is reached by this simulation step. This satisfies the first invariant. Furthermore, if it is Player 1’ turn
at the nj+1-st configuration of ρ, then also at ρ′m, hence the prolongation is consistent with σ′. If it is
Player 0’s turn, then the skip-transition is the one specified by T , which is exactly the one specified by
σ′ in G′, too. Thus, the prolongation is again consistent with σ′.

If nj+1 = nj + 1 and |qnj+1 , γnj+1 | = |qnj , γnj |+ 1, then the nj+1-st configuration of ρ is reached via
a push-transition. This transition is simulated similarly as the skip-transition before, the only difference
being that Player 1 decides to simulate the transition by moving from the Claim-vertex to the Check-
successor. Thus, we can prolong ρ′0...ρ′m by the corresponding Push-vertex, the Claim-vertex picked by σ′
and the unique Check-successor of it. This choice again satisfies our invariant.

Finally, we consider the most involved case, where nj+1 > nj + 1, which implies |qnj+1 , γnj+1 | =
|qnj

, γnj
| and |qnj+1, γnj+1| = |qnj

, γnj
| + 1, i.e., a push-transition is executed first. In this case, the

state q of the (j+1)-th stair configuration is contained in Pc, where P is the prediction made by Player 0
when simulating the push-transition and c is the minimal color seen between the stairs j and j + 1.
Hence, Player 1 can use the Jump-vertex to reach a Check-vertex that encodes the state q and the second
(lower) stack symbol pushed onto the stack during the push-transition. Thus, we can prolong ρ′0...ρ′m by
the corresponding Push-vertex, the Claim-vertex picked by σ′, the Jump-successor and the Check-vertex
encoding the jump to q. This is again consistent with σ′.

To conclude we note that the sequence of colors seen at the Check-vertices during ρ′ is exactly the
sequence c0c1c2... . This is true for the first two cases of the simulation, since the Check-vertex that is
reached has exactly the same color as the (j+1)-st stair configuration. In the third case, the Check-vertex
reached has color c, which is exactly the smallest one seen between the stairs, i.e., the minimal color of
xj+1, which is cj+1 by definition.

All other colors appearing in ρ′ are larger than the colors of the (infinitely many) check-vertices,
hence they are irrelevant. We have constructed an infinite play that is consistent with σ′, starts in
Check[qI ,⊥, P in,Ω(qI),Ω(qI)], and is winning for Player 1. This contradicts the fact that σ′ is winning
from Check[qI ,⊥, P in,Ω(qI),Ω(qI)].

Since the parity game G′ is of exponential size and has just one more color than G, it can be solved
in exponential time. Hence, we obtain the following complexity result.

Theorem 5.1. Solving pushdown parity games is in Exptime.
Furthermore, one can show that solving pushdown parity games is also Exptime-hard, and therefore

Exptime-complete.13

5.4 Exercises

Exercise 5.1. Let A = (V, V0, V1, E) be a, possibly countably infinite, arena. Given a coloring Ω: V → N
and i∅, i∞ ∈ {0, 1} we define

InfParity(Ω, i∅, i∞) = {ρ ∈ V ω | Inf(Ω(ρ)) is finite and (max(Inf(Ω(ρ)))) is even} ∪ P∅ ∪ P∞,

where P∅ and P∞ are defined as

P∅ =
{
∅ if i∅ = 1,
{ρ | Inf(Ω(ρ)) = ∅} if i∅ = 0,

and P∞ =
{
∅ if i∞ = 1,
{ρ | Inf(Ω(ρ)) is infinite} if i∞ = 0.

Here, Ω(ρ) denotes the sequence of colors seen during ρ, i.e. Ω(ρ) = Ω(ρ0)Ω(ρ1)Ω(ρ2)... ∈ Ω(V )ω.
Accordingly, if only finitely many colors are seen infinitely often, then the parity of the maximal one
determines the winner. If no color is seen infinitely often, then Player i∅ wins, while Player i∞ wins if
infinitely many colors are seen infinitely often.

Give an arena A = (V, V0, V1, E) and a coloring Ω: V → N such that the winning regions of the
games Gi∅,i∞ = (A, InfParity(Ω, i∅, i∞)) are pairwise different for every value of (i∅, i∞), that is if
(i∅, i∞) 6= (i′∅, i′∞) then W0(Gi∅,i∞) 6= W0(Gi′∅,i′∞).

Exercise 5.2. Consider the following arena.

13See Walukiewicz’s paper “Pushdown processes: games and model checking” (Information and Computation 164, 2001)
for details.
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1. Give a pushdown system, a partition of its states, and a coloring inducing the pushdown parity
game sketched above, where only the part reachable from (qin,⊥) is sketched.

2. Give a pushdown transducer implementing a winning strategy for one of the players from (qin,⊥).

Exercise 5.3. Consider the family of pushdown systems Pn = (Qn, {A},∆n, qI) for n ∈ N+ with Qn
and ∆n defined as follows.

• Qn = {qI , qA} ∪
n⋃
j=1
{qtj | 0 ≤ t < j}, where pj denotes the j-th prime number, i.e. p1 = 2, p2 = 3,

p3 = 5 and so on.

• ∆n = {(qI , X, qI , AX), (qI , X, qA.AX) | X ∈ {A,⊥}} ∪
{(qA, A, q0

j , A) | 1 ≤ j ≤ n} ∪
{(qtj , A, qt

′

j , ε) | 1 ≤ j ≤ n, 0 ≤ t < pj , t
′ = (t+ 1) mod pj} ∪

{(q,⊥, q,⊥) | q ∈ Qn \ {qI}}

Furthermore, let Q0 = Qn\{qA} and Q1 = {qA} be a partition of Qn with n ∈ N+ and let Ω: Qn → N
be the coloring defined by

Ω(q) =
{

0 if there exists a j ∈ {1, 2, . . . , n} with q = q0
j

1 otherwise

Let Gn be the pushdown parity game induced by Pn and the partition and coloring defined above.

a) Draw G2 up to stack height 8 and give a positional winning strategy from (qI ,⊥) for one of the
players.

b) Give a winning strategy from (qI ,⊥) for one of the players for every Pn with n ∈ N+.

Exercise 5.4. Show how to solve pushdown parity games that are induced by a pushdown system
without pop transitions, some partition, and some coloring function.
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6 Rabin’s Theorem
In this chapter, we present an application of infinite games to automata theory by proving Rabin’s
theorem, which states that satisfiability of monadic second order logic over labeled infinite binary trees
(S2S for short) is decidable. This logic subsumes many important logics used in verification, e.g., Linear
Temporal Logic and Computation Tree Logic. Thus, satisfiability is decidable for these logics as well.
For this reason, Rabin’s theorem is referred to as the “mother of all decidability results”.

Rabin’s original proof is purely combinatorial and has been characterized as cumbersome and com-
plicated. Later, a simpler proof was published, which relies on determinacy of parity games to overcome
the key obstacle of the proof. The overall proof technique is to show that S2S is equivalent to parity
tree automata, a type of non-deterministic tree automaton running on infinite trees. Thus, a formula ϕ
can be translated into an automaton Aϕ such that ϕ is satisfiable if, and only if, the language of Aϕ

is non-empty. As the latter problem is decidable14, satisfiability is decidable, too. The translation is
by induction over the structure of ϕ, which amounts to showing that these automata are closed under
intersection (conjunction in S2S), union (disjunction in S2S), complementation (negation in S2S), and
projection (quantification in S2S).

The most involved step in this translation is showing that parity tree automata are closed under
complementation, i.e., to construct an automaton A ′ that accepts a tree t, if it is not accepted by a given
automaton A . Hence, there exists an accepting run of A ′ on t if, and only if, all runs of A on t are
rejecting. This universal statement is not well-suited to be checked by a non-deterministic automaton A ′,
since such automata are better suited to testing existential statements using their non-determinism. Thus,
one needs to turn the universal statement “every run is rejecting” into an existential one, i.e., one needs
a quantifier switch.

Here, determinacy of games comes into play, which can be seen as a quantifier switch. In a determined
game, Player 0 does not have a winning strategy, i.e., every strategy is losing (a universal statement), if,
and only if, Player 1 has a winning strategy (an existential statement). Thus, in a determined infinite
game we can turn a universal statement into an existential one.

This property is applied as follows: we define a parity game G(A , t) in which Player 0 has a winning
strategy from some fixed initial vertex if, and only if, A accepts t. Thus, if t is not accepted by A , then
Player 1 has a winning strategy for G(A , t) from the initial vertex. Hence, we construct an automaton A ′

which checks whether Player 1 has a winning strategy for the game G(A , t) while running on t, essentially
guessing the strategy and verifying that it is winning. This automaton recognizes the complement of the
language of A .

In the following, we introduce the logic S2S, parity tree automata, prove their equivalence, and then
show how to check the automata for emptiness, which solves the satisfiability problem for S2S.

6.1 Infinite Trees
In this subsection, we introduce our notation for (infinite binary) trees. To this end, fix B∗ = {0, 1}∗,
the (infinite) set of finite words over B. We interpret an occurrence of a 0 or a 1 as a direction. By
convention, when drawing trees, 0 encodes going to the left and 1 encodes going to the right. Then, we
can interpret the set B∗ as the nodes of the infinite binary tree, as drawn in Figure 6.1. Note that edges
are defined implicitly, i.e., the edge relation contains all pairs (w,wb) with w ∈ B∗ and b ∈ B.

ε

0 1

00 01 10 11

Figure 6.1: The complete binary tree

This tree is now used as underlying structure to define inputs for automata and as structures to
evaluate formulas in. To this end, we label the position of the tree by letters from an alphabet Σ.
Definition 6.1 (Infinite Labeled Trees). An (infinite binary labeled) tree over an alphabet Σ is a map-
ping t : B∗ → Σ.

14Most easily seen by defining an emptiness game with parity winning condition, another application of infinite games to
automata theory.

73



Consider the example tree te with

te(w) =
{
a if w = 1∗0,
b otherwise.

We show a graphical representation of te in Figure 6.2.

b

a b

b b a b

b b b b b b a b

Figure 6.2: Graphical representation of the example tree te.

We close this section with some useful definitions to reason about trees.
Definition 6.2 (Subtree). Let t : B∗ → Σ be a tree. The subtree of t rooted in w ∈ B∗ is denoted by tw
and defined by tw(w′) = t(ww′) for all w′ ∈ B∗.

For an example, the subtree te0 of te rooted in 0 is depicted in Figure 6.3. Other subtrees are te1 =
te11 = te111 = · · · = t, for example.

a

b b

b b b b

Figure 6.3: The subtree te0 of te rooted at node 0.

Definition 6.3 (Branch). A branch π is an infinite word π ∈ Bω. The label of π = b0b1b2 · · · in a
tree t : B∗ → Σ is the word

t|π = t(ε)t(b0)t(b0b1)t(b0b1b2) · · · ∈ Σω.

Some labels of branches of te are the following:

te|0ω = babω te|(10)ω = bbabω

te|1ω = bω te|(01)ω = babω

6.2 The Monadic Second-Order Logic of Two Successors
Next, we introduce Monadic Second-Order Logic of two Successors, S2S for short. Here, “two successors”
refers to the fact that we consider binary trees, where every node has exactly two successors. Furthermore,
“second-order” means that there are two types of quantification, i.e., quantification over nodes (first-
order quantification) and quantifications over relations of nodes (second-order quantification). Finally,
the qualifier “monadic” refers to restricting second-order quantification to unary relations, i.e., to sets.

Correspondingly, there are two different types of variables in S2S. First-order variables are denoted by
lowercase letters from the end of the latin alphabet, e.g., x, y, z, . . . . Second-order variables are denoted
by uppercase letters from the end of the latin alphabet, e.g., X,Y, Z, . . . . First-order variables refer to
nodes of the binary tree while second-order variables refer to sets of nodes. Formally, we use two disjoint
infinite sets V1 and V2 of first-order and second-order variables, respectively. Furthermore, we require
ε 6∈ V1 ∪ V2.

We begin our introduction to S2S with the definition of its syntax, which is defined in three steps:
terms are combined into atomic formulas which are combined into formulas.
Definition 6.4 (Syntax of S2S). A term of S2S is either the symbol ε or a first-order variable x ∈ V1.
The atomic formulas of S2S are defined inductively as follows:
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• s = s′ is an atomic formula for all terms s, s′.

• s v s′ is an atomic formula for all terms s, s′.

• Pa(s) is an atomic formula for every a ∈ Σ and every term s.

• Si(s, s′) is an atomic formula for every i ∈ {0, 1} and all terms s, s′.

• s ∈ X is an atomic formula for every second-order variable X and all terms s.

The formulas of S2S are defined inductively as follows:

• Every atomic formula is a formula.

• ¬ϕ is a formula for every formula ϕ.

• ϕ ∧ ϕ′ is a formula for all formulas ϕ,ϕ′.

• ϕ ∨ ϕ′ is a formula for all formulas ϕ,ϕ′.

• ∃xϕ is a formula for every formula ϕ.

• ∀xϕ is a formula for every formula ϕ.

• ∃Xϕ is a formula for every formula ϕ.

• ∃Xϕ is a formula for every formula ϕ.

As usual, we use the boolean connectives like → and ↔ as syntactic sugar, i.e., ϕ → ϕ′ = ¬ϕ ∨ ϕ′
and ϕ↔ ϕ′ = (ϕ→ ϕ′) ∧ (ϕ′ → ϕ).

In order to define the semantics of S2S we first interpret the first-order and second-order variables
using a valuation function µ.
Definition 6.5 (Variable Valuation). A variable valuation is a function µ : V1 → B∗ ∪ V2 → 2(B∗) ∪
{ε} → {ε} mapping first-order variables x to a node µ(x), every second-order variable X to a set of
nodes µ(X) ⊆ B∗, and ε to ε.

Given a variable valuation µ, a first-order variable x ∈ V1, and w ∈ B∗, we define the update of µ in
x by w, denoted by µ[x 7→ w], as

µ[x 7→ w](y) =
{
w if y = x,

µ(y) if y 6= x.

Given a variable valuation µ, a second-order variable X ∈ V2, and B ⊆ B∗, we define the update of
µ in X by B, denoted by µ[X 7→ B], as

µ[X 7→ B](Y ) =
{
B if Y = X,

µ(Y ) if Y 6= X.

We now define what it means for a given tree t and a variable evaluation µ to evaluate a formula. For-
mally, the semantics of S2S are given by a satisfaction relation |= between a tree t, a variable valuation µ
interpreting the variables, and a formula.
Definition 6.6 (Semantics of S2S). The semantics of S2S are defined recursively for a tree t, a variable
valuation µ, and a formula ϕ as follows:

• t, µ |= s = s′ if, and only if, µ(s) = µ(s′).

• t, µ |= s v s′ if, and only if, µ(s) is a prefix of µ(s′).

• t, µ |= Pa(s) if, and only if, t(µ(s)) = a.

• t, µ |= Si(s, s′) if, and only if, µ(s′) = µ(s) · i, for i ∈ {0, 1}.

• t, µ |= s ∈ X if, and only if, µ(s) ∈ µ(X).

• t, µ |= ¬ϕ if, and only if, it is not the case that t, µ |= ϕ.
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• t, µ |= ϕ ∧ ϕ′ if, and only if, t, µ |= ϕ and t, µ |= ϕ′.

• t, µ |= ϕ ∨ ϕ′ if, and only if, t, µ |= ϕ or t, µ |= ϕ′.

• t, µ |= ∃xϕ if, and only if, t, µ[x 7→ w] |= ϕ for some w ∈ B∗.

• t, µ |= ∀xϕ if, and only if, t, µ[x 7→ w] |= ϕ for all w ∈ B∗.

• t, µ |= ∃Xϕ if, and only if, t, µ[X 7→ B] |= ϕ for some B ⊆ B∗.

• t, µ |= ∀Xϕ if, and only if, t, µ[X 7→ B] |= ϕ for all B ⊆ B∗.

If an occurrence of a variable x or X in a formula ϕ is under the scope of a quantifier, then the
satisfaction of ϕ does not depend on the valuation µ(x) or µ(X), respectively. Such an occurrence is
called bound. In particular, if a formula only has bound occurrences, then its satisfaction only depends
on the tree t but not on the variable valuation under consideration.
Definition 6.7 (Sentences). Let ϕ be an S2S formula. An occurrence of a variable in ϕ is called free, if
it is not under the scope of a quantifier, otherwise it is called bound. A formula without free occurrences
of variables is called a sentence.

In Figure 6.4, this definition is illustrated on an example formula, which is not a sentence. Here, x
and y appears both free and bound in ϕ and X is quantified but never appears in a term.

ϕ = x v ε ∧ ∀X∃x (S0(x, y) ∧ (Pa(z) ∨ ∃y y ∈ Z))

boundfree bound

free free free

Figure 6.4: Example formula ϕ with free and bound variables.

As argued above, satisfaction of sentences is independent of the variable valuation under consideration,
i.e., for every sentence ϕ it holds true that t, µ |= ϕ if, and only if, t, µ′ |= ϕ. Accordingly, it suffices
to write t |= ϕ instead of t, µ |= ϕ and we say that t satisfies ϕ. We are interested in the satisfiability
problem for S2S:

Given a sentence ϕ, is there some tree t such that t |= ϕ?

If we define the language of ϕ to be the set L(ϕ) = {t : B∗ → Σ | t |= ϕ} of trees satisfying ϕ, then we
can reformulate the problem as:

Given a sentence ϕ, is L(ϕ) non-empty?

In the upcoming sections, we solve the satisfaction problem for S2S.
We close this section by some examples of S2S formulas and their satisfaction in our example tree te

from Figure 6.2.

• te |= Pb(ε), as the root is labeled with b.

• te 6|= Pa(ε), as the root is not labeled with a.

• te |= ∃xS1(ε, x) ∧ Pb(x), as the right child of the root is labeled with b.

• te |= ∃X Brnch(X) ∧ ∀x(x ∈ X → Pb(x)) where Brnch(X) is defined as

Brnch(X) = ε ∈ X ∧ ∀x
(
x ∈ X ∧ ¬∃y (S0(y, x) ∨ S1(y, x))

)
→ x = ε∧

∀x
(
x ∈ X → ∃y(y ∈ X ∧ (S0(x, y) ∨ S1(x, y)))∧

∀y′(y′ ∈ X ∧ (S0(x, y′) ∨ S1(x, y′)))→ y = y′
)
,

expressing that the root is in X and that it is the only node in X without predecessor, and that
each node in X has a successor in X, but not two.
This formula holds in te, as the branch 1ω is labeled by bω.
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• te |= ∃X∃Y ∃Z Brnch(X)∧Partitions(X,Y, Z)∧Alternate(Y, Z)∧ψ(X,Y ) where Brnch(X)
is defined as above, where

Partitions(X,Y, Z) = Y ⊆ X ∧ Z ⊆ X∧
∀x (x ∈ X → ((x ∈ Y ∨ x ∈ Z) ∧ ¬(x ∈ Y ∧ x ∈ Z)))

expresses that Y and Z partition X (here, we use ⊆ as syntactic sugar; See Exercise 6.1), where

Alternate(Y,Z) = ε ∈ Y ∧ ∀x∀x′ ((S0(x, x′) ∨ S1(x, x′))→
(¬(x ∈ Y ∧ x′ ∈ Y ) ∧ ¬(x ∈ Z ∧ x′ ∈ Z)))

expresses that membership in Y and Z alternates (under the assumption that Partitions(X,Y, Z)
is satisfied), and where

ψ(X,Y ) = ∃y(y ∈ Y ∧ Pa(y) ∧ ∀x((x ∈ X ∧ ¬(x = y))→ Pb(x)))

expresses that there is a position on the branch X and in Y where a holds and every other position
has a b. As y contains exactly the even positions along the branch induced by X, the conjunction
of the formulas requires the existence of a branch that is labeled by a sequence from (bb)∗abω.
This formula holds in te, as the branch 10ω is labeled by such a sequence, i.e., by bbabω.

6.3 Parity Tree Automata
Recall that we want to decide the satisfiability problem for S2S. However, as working in a logic is typically
cumbersome, the usual approach is to devise an equi-expressive automaton model for the logic. Then,
one first translates a sentence ϕ into an automaton Aϕ recognizing exactly the trees satisfying ϕ. In
this situation, one only has to solve the emptiness problem for this automaton model, which is typically
simpler. The automaton model we consider here is that of parity tree automata. These automata process
an input tree top-down, meaning that a run starts in the initial state at the root and every transition
of the automaton takes the current state and input letter at the current node of the tree and yields
two successor states, one for the left child and one for the right child. Finally, acceptance is defined
by a parity condition which has to hold on every branch of the run. Such an automaton is necessarily
non-deterministic, as a deterministic automaton cannot even check, e.g., whether there is an a-labeled
node in the tree (see Exercise 6.7).
Definition 6.8 (Parity Tree Automaton). A parity tree automaton A = (Q,Σ, qI ,∆,Ω) consists of

• a finite set Q of states,

• an alphabet Σ,

• an initial state qI ∈ Q,

• a transition relation ∆ ⊆ Q× Σ×Q×Q, and

• a coloring Ω: Q→ N.

We often graphically depict a transition τ = (q, a, q0, q1) by the tree shown below:

q, a

q0 q1

Such a transition can be seen as a binary tree of height one, whose vertices are labeled by states of the
automaton and whose root is additionally labeled by a letter from the input alphabet. Then, a run of the
automaton can be understood as a tiling of a given input tree by such transitions that is locally consistent
and has the initial state in the root.
Definition 6.9 (Run). A run of a parity tree automaton A = (Q,Σ, qI ,∆,Ω) on a tree t : B∗ → Σ is a
mapping r : B∗ → Q such that r(ε) = qI and (r(w), t(w), r(w0), r(w1)) ∈ ∆ for all w ∈ B∗.

Note, that a run is a Q-labeled binary tree, i.e., all our notations for trees are applicable.
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Definition 6.10 (Accepting Run). A run r : B∗ → Q of a parity tree automaton A = (Q,Σ, qI ,∆,Ω)
is accepting if for every branch π ∈ Bω the label r|π = q0q1q2 · · · ∈ Qω of the branch satisfies the parity
condition, i.e.,

min(Inf(Ω(q0)Ω(q1)Ω(q2) · · · ))

is even.
The language of a parity tree automaton A , denoted by L(A ), is defined as usual, i.e.,

L(A ) = {t : B∗ → Σ | A has an accepting run on t}.

A parity tree automaton A = (Q,Σ, qI ,∆,Ω) is complete if, for every state q ∈ Q and every letter a ∈ Σ
there are states q0, q1 ∈ Q such that (q, a, q0, q1) ∈ ∆. A complete automaton has a run on every input
tree. By adding a new sink state which is colored by an odd color one can complete each parity tree
automaton without changing the language it accepts. Thus, from now on we can assume every automaton
to be complete, if necessary. In examples, we typically keep them incomplete to improve readability.

Next, we present example parity tree automata recognizing the following tree languages.

1. L1 = {t : B∗ → {a, b} | t|π = bω for some branch π}, the language of trees containing a branch
labeled with bω.

2. L2 = {t : B∗ → {a, b} | b ∈ Inf(t|π) for some branch π}, the language of trees containing a branch
labeled with infinitely many b’s.

3. L3 = {te}, the language containing exactly our example tree te from above.

1. We construct a parity tree automaton A1 that accepts every tree containing a branch completely
labeled with b’s, i.e., such that L(A1) = L1. As parity tree automata are non-deterministic, A1 can
guess such a branch and verify that it only contains b’s. For all other nodes in the tree we use a
dummy state allowing an arbitrary label. Accordingly, we define A1 = (Q1, {a, b}, qI ,∆1,Ω1) with

• Q1 = {qI , q∗},
• Ω1(qI) = Ω1(q∗) = 0, and

• ∆1 =


qI , b

qI q∗

,

qI , b

q∗ qI

,

q∗, a

q∗ q∗

,

q∗, b

q∗ q∗

.

The automaton starts in the initial state and propagates it to exactly one of its successors, thereby
guessing the designated branch. On this branch, only b’s are allowed: the automaton gets stuck if it
encounters an a in state qI . On all nodes of the guessed branch, the dummy state q∗ is used. Thus,
the acceptance condition is irrelevant, we just have to ensure that every run is accepting. Hence,
every state has color 0.

2. Now we want to construct a parity tree automaton A2 that accepts every tree containing a branch
with infinitely many b’s. Similar to A1 we can guess the corresponding branch. We only need
to adjust the coloring to control the infinite behavior. Furthermore, the automaton may no
longer get stuck if it encounters an a on the guessed branch. Our corresponding automaton
A2 = (Q2, {a, b}, qa,∆2,Ω2) is then given by

• Q2 = {q∗, qa, qb},
• Ω2(qb) = Ω2(q∗) = 0 and Ω2(qa) = 1, and

• ∆2 =


qa, a

qa q∗

,

qa, a

q∗ qa

,

qa, b

qb q∗

,

qa, b

q∗ qb

,

q∗, a

q∗ q∗

,

qb, a

qa q∗

,

qb, a

q∗ qa

,

qb, b

qb q∗

,

qb, b

q∗ qb

,

q∗, b

q∗ q∗

.

78



We use the states qa and qb along the guessed branch to denote the last label seen. It follows that
L(A2) = L2. Note that using qb as initial state does not change the language accepted by the
automaton.

3. Finally we want to construct a parity tree automaton A3 that only accepts our example tree te
form the previous section. We construct A3 = (Q3, {a, b}, qr,∆3,Ω3) to get L(A3) = L3 as follows.

• Q3 = {q∗, qr, ql},
• Ω3(qr) = Ω3(ql) = Ω3(qr) = 0, and

• ∆3 =


qr, b

ql qr

,

ql, a

q∗ q∗

,

q∗, b

q∗ q∗

.

6.4 S2S and Parity Tree Automata are Equivalent
In this section, we prove that S2S and parity tree automata are equally expressive, i.e., for every parity
tree automaton A there exists an S2S sentence ϕA such that t ∈ L(A ) if, and only if, t |= ϕA and that
for every S2S sentence ϕ there is an automaton Aϕ such that t |= ϕ if, and only if, t ∈ L(Aϕ).

We begin by showing the simpler direction, i.e., we show that every language recognized by a parity
tree automaton is also definable by some S2S sentence.
Theorem 6.1. For every parity tree automaton A with alphabet Σ there exists an S2S sentence ϕA such
that

t ∈ L(A )⇔ t |= ϕA

for all trees t : B∗ → Σ.

Proof. Let A = (Q,Σ, qI ,∆,Ω). We construct a sentence ϕA that expresses that there exists an accepting
run of A on t. Without loss of generality, let Q = {q0, · · · , qn−1} and qI = q0. Intuitively, we express the
existence of n disjoint sets X0, . . . , Xn−1 such that Xj contains exactly those nodes labeled by state qj .
Additionally, we formulate the local requirements on a run as well as the acceptance condition.

Formally, we define ϕA as

ϕA = ∃X0∃X1 · · · ∃Xn−1
(

(1)

∀x
n−1∨
j=0

(
x ∈ Xj ∧

∧
j′ 6=j
¬(x ∈ Xj′)

)
∧ (2)

ε ∈ X0 ∧ (3)
∀x∃xl∃xr

[
S0(x, xl) ∧ S1(x, xr)∧ (4)∨

(qt,a,qi,qj)∈∆

(
x ∈ Xt ∧ Pa(x) ∧ xl ∈ Xi ∧ xr ∈ Xj

)]
∧ (5)

∀X Brnch(X)→
∨

c∈Ω(Q),
c even

(6)

∀x
[
x ∈ X → ∃y(y ∈ X ∧ x v y ∧

∨
j∈[n],

Ω(qj)=c

y ∈ Xj)
]
∧ (7)

∃x
[
x ∈ X ∧ ∀y((y ∈ X ∧ x v y)→

∨
j∈[n],

Ω(qj)≥c

y ∈ Xj)
])

(8)

The formula expresses the existence of n sets X0, . . . , Xn−1 (line 1), one for each state qj , that partition
the set of nodes (line 2). Furthermore, the root is in the set corresponding to the initial state (line 3) and
the transition relation is respected locally (lines 4 and 5). Thus, the sets have to encode a run. Finally,
for every branch there is an even color (line 6) that appears infinitely often on the branch (line 7), but
from some point onwards, no smaller color appears on the branch (line 8). Thus, the last three lines
express that the encoded run is accepting.
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The backward direction turns out to be more complicated. First note that due to logical equivalences
it suffices to consider S2S sentences consisting of atomic formulas, as well as disjunction, existential
quantification and negation. We translate S2S sentences into parity tree automata inductively over the
structure of the formulas, i.e., we have to show that we can build automata for the atomic formulas and
show that they are closed under union, projection, and complement, which yields the inductive step for
disjunction, existential quantification, and negation. The only non-trivial step is closure of parity tree
automata under complement. As already alluded to in the introduction we rely on infinite games to show
this result. As a first step, we characterize the acceptance of a tree t by a parity tree automaton A using
a parity game G(A , t) such that t ∈ L(A ) if, and only if, Player 0 wins G(A , t) from a fixed initial vertex.
By determinacy, this means that Player 1 wins G(A , t) from this vertex if, and only if, t is not accepted
by A , i.e., t is in the complement language. As the tree t is infinite, the arena of G(A , t) is infinite as
well.
Definition 6.11 (Acceptance Game). Let A = (Q,Σ, qI ,∆,Ω) be a complete parity tree automaton and
let t : B∗ → Σ be some tree. The acceptance game G(A , t) = (A,Parity(Ω′)) with A = (V, V0, V1, E) is
a parity game given by

• V = V0 ∪ V1,

• V0 = B∗ ×Q,

• V1 = B∗ ×∆,

• E = {((w, q), (w, τ)) ∈ V0 × V1 | τ = (q, t(w), q0, q1) for some states q0, q1 ∈ Q}∪
{((w, (q, t(w), q0, q1)), (wb, qb)) ∈ V1 × V0 | b ∈ {0, 1}},

• Ω′(w, q) = Ω(q) for all (w, q) ∈ V0, and

• Ω′(w, (q, a, q0, q1)) = Ω(q) for all (w, (q, a, q0, q1)) ∈ V1.

The idea behind this construction is that Player 1 picks directions and thereby builds a branch π.
During this, Player 0 has to pick transitions along this branch in a way that is compatible with t and such
that the parity condition of A is satisfied by the sequence of states labeling the roots of the transitions.
Since Player 1 might pick any branch π, Player 0 has to be prepared to construct a labeling of the whole
binary tree B∗ using the states in a way such that every branch is accepting. As a consequence, Player 0
has a winning strategy if, and only if, there is an accepting run of A on t. Due to their roles described
above, the players in the acceptance game are often also called “Automaton” and “Pathfinder”. Since we
require the automaton A to be complete, the arena is well-defined, i.e., every Player 0 vertex has at least
one successor since at least one transition is applicable.
Lemma 6.1. Let A be a parity tree automaton over Σ and t be a tree over Σ. Then it holds that

t ∈ L(A )⇔ (ε, qI) ∈W0(G(A , t)).

Proof. Let A = (Q,Σ, qI ,∆,Ω) and G(A , t) = (A,Parity(Ω′)) withA = (V, V0, V1, E). For the direction
from left to right, see Exercise 6.8.

For the other direction, let σ be a positional winning strategy for Player 0 from (ε, qI) in G(A , t). We
have to construct an accepting run r of A on t.

By construction, for every w ∈ B∗ there is a unique play prefix pw that starts in (ε, qI), is consistent
with σ, and ends in a vertex of the form (w, q) for some q ∈ Q. Accordingly, we define the run r by
r(w) = q, where q is given by Lst(pw) = (w, q).

We show that r is an accepting run of A . First, we have that r(ε) = qI since pε = (ε, qI). Now let
w ∈ B+ be arbitrary and let the corresponding play prefix pw end in (w, q). Consider the vertex

σ(w, q) = (w, (q, t(w), q0, q1)) ∈ B∗ ×∆

picked by the strategy σ. Then, we have

pwb = pw (w, (q, t(w), q0, q1)) (wb, qb)

for both b ∈ {0, 1}. Hence, qb = r(wb) and we have (r(w), t(w), r(w0), r(w1)) = (q, t(w), q0, q1) which is
a transition from ∆. Hence, r satisfies both requirements on the run.
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Now let π be a branch of r and let ρ ∈ Plays(A, (ε, qI), σ) be the play where Player 1 picks the
directions according to π and where Player 0 plays according to σ. This play has the same sequence of
colors as r|π with every occurrence of a color doubled. Accordingly, r|π fulfills the parity condition given
by the fact that ρ is winning. As this holds for every branch π it follows that r is an accepting run.

Before we continue proving closure of parity tree automata under complement, we take a short detour
and show that the acceptance game can be modified to solve the emptiness problem for such automata.
The arena of the acceptance game G(A , t) is infinite, since it encodes the the infinite tree t. In this game,
Player 0 has to construct an accepting run of A on the fixed tree t. By projecting away the tree t and
letting Player 0 construct it implicitly, we obtain a finite game that is won by Player 0 if, and only if,
there is a tree that is accepted by A .
Definition 6.12 (Emptiness Game). Let A = (Q,Σ, qI ,∆,Ω) be a complete parity tree automaton. The
emptiness game G(A ) = (A,Parity(Ω′)) with A = (V, V0, V1, E) is a parity game defined as

• V = V0 ∪ V1 with V0 = Q and V1 = ∆,

• E = {(q, τ) ∈ V0 × V1 | τ = (q, a, q0, q1) for some a ∈ Σ and some q0, q1 ∈ Q} ∪
{((q, a, q0, q1), qb) ∈ V1 × V0 | b ∈ {0, 1}}, and

• Ω′(q) = Ω(q) for all q ∈ V0 and Ω′(q, a, q0, q1) = Ω(q) for all (q, a, q0, q1) ∈ V1.

Thus, by making a move in the emptiness game, Player 0 picks a letter and an applicable transition,
thereby constructing a tree and a run on it simultaneously (one branch per play) while Player 1 is still in
charge of picking the branch π. Player 0 wins if, and only if, the branch π of the run satisfies the parity
condition.

We show that G(A ) characterizes emptiness of A .
Theorem 6.2. Let A be a parity tree automaton. Then, L(A ) 6= ∅ if, and only if, qI ∈W0(G(A )).

Proof. Let A = (Q,Σ, qI ,∆,Ω) and G(A ) = (A,Parity(Ω′)) with A = (V, V0, V1, E), i.e., V0 = Q and
V1 = ∆. For the direction from right to left, see Exercise 6.9.

For the other direction, fix some t ∈ L(A ) and an accepting run r of A on t. We define a strategy σ
for Player 0 from qI in G(A ) that implicitly constructs the branches of t and r corresponding to the
branch picked by Player 1 during the play.

For the unique play prefix of length one starting in qI , we define

σ(qI) = (r(ε), t(ε), r(0), r(1)).

Now, consider a play prefix

w = q0 (q0, a0, q
0
0 , q

1
0) q1 (q1, a1, q

0
1 , q

1
1) q2 (q2, a2, q

0
2 , q

1
2) · · · qn−1 (qn−1, an−1, q

0
n−1, q

1
n−1) qn

starting in qI such that σ(w′) is already defined for every strict prefix w′ of w ending in a vertex of Player 0.
By construction, for every j in the range 0 ≤ j ≤ n − 1 there is a bit bj ∈ B such that qj+1 = q

bj

j , as
Player 1 has to move to one of the vertices q0

j and q1
j when it is his turn at the vertex (qj , aj , q0

j , q
1
j ). Let

x = b0b1 · · · bn−1 be the sequence of these bits. Then, we define

σ(w) = (r(x), t(x), r(x0), r(x1)).

Clearly, σ(w) ∈ ∆, since r is a run. Hence, σ is indeed a strategy. We show that σ is winning for
Player 0 from qI . To this end, let ρ ∈ Plays(A, qI , σ) be arbitrary and b0b1b2 · · · be the infinite sequence
of associated directions defined as above. Furthermore, let c0c1c2 · · · be the sequence of colors seen during
ρ, which satisfies c2n = c2n+1 for all n ∈ N by construction of G(A ). Also by construction, the sequence
c0c2c4 · · · is equal to Ω(r(ε))Ω(r(b0))Ω(r(b0b1)) · · · , i.e., to the colors along the branch r|b0b1b2··· of r.
Since this sequence satisfies the parity condition, r is an accepting run. Hence, it follows that also ρ
satisfies the parity condition, i.e., σ is winning from qI .

Thus, we have shown that the emptiness problem for parity tree automata is decidable by constructing
and then solving the emptiness game. The size of the resulting game is polynomial in the size of the
automaton. One can also show that the problem of solving parity games can be reduced to the emptiness
problem of parity tree automata, which have polynomial size in the number of vertices of the game (see
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Exercise 6.12). Hence, these two problems are equivalent under polynomial-time reductions and therefore
share their complexity theoretic status: they are both in NP∩Co-NP, but no polynomial-time algorithm
is known for either problem.

After this detour, we continue with showing closure of parity tree automata under complement.
Recall that we defined the acceptance game G(A , t) which characterizes acceptance of t by A , i.e., we
have t ∈ L(A ) if, and only if, (ε, qI) ∈W0(G(A , t)). Thus, t is in the complement language of A if, and
only if, (ε, qI) /∈W0(G(A , t)). Applying (positional) determinacy of parity games (which also holds true
for countably infinite arenas, i.e., in particular for G(A , t)) yields that (ε, qI) /∈W0(G(A , t)) is equivalent
to (ε, qI) ∈ W1(G(A , t)). Thus, a winning strategy for Player 1 witnesses that t is in the complement
language. We will construct a parity tree automaton that recognizes a tree t and an encoding s of a
strategy for Player 1 if, and only if, the strategy encoded by s is winning for him in G(A , t). Then, we
show that projecting away the second component encoding the strategy yields the desired automaton
recognizing the complement language.

Note that the arena of the acceptance game is an infinite tree and that every Player 1 vertex has
exactly two successors identified by the directions 0 and 1. First, we encode a strategy for Player 1 as
a tree labeled by a finite alphabet, which can then be processed by an automaton. Due to positional
determinacy of parity games in countable arenas, we only have to consider positional strategies. For
Player 1, such a strategy τ has the form

τ : B∗ ×∆→ B,

since Player 1’s positions in G(A , t) are of them form (w, (q, a, q0, q1)) and have two successors, (w0, q0)
and (w1, q1), which we identify with their directions 0 and 1. Equivalently, applying currying, one can
denote such a strategy τ as

τ : B∗ → (∆→ B).
Since the set B∆ of functions from ∆ to B is finite, τ is a B∆-labeled tree. We call an element from B∆ a
local strategy, since it encodes Player 1’s reaction to Player 0 picking a certain transition from ∆. This is
local in the sense that it does not take the position w, which is also encoded in the vertices, into account.

A tree τ : B∗ → B∆ is referred to as a strategy tree. Furthermore, we call a strategy tree winning
for t, if it encodes a winning strategy for Player 1 in the game G(A , t). By using the characterization of
acceptance via G(A , t) and positional determinacy, we can express non-acceptance of t by the existence
of a winning strategy tree.
Remark 6.1. t /∈ L(A ) if, and only if, there is a winning strategy tree for t.

Next, we construct a parity tree automaton recognizing pairs of trees t and s such that s is winning
for t. To this end, we first construct a word automaton M that checks for every branch π and every
strategy for Player 0, whether the parity condition of A is satisfied if Player 1 picks the branch π. If this
is the case, s is not winning. Thus, we are ultimately interested in the complement language, but the
language described above is simpler to encode by an automaton.

Recall that A = (Q,Σ, qI ,∆,Ω) is the parity tree automaton we want to complement. We define
the non-deterministic parity word automaton15 M = (Q,Σ′, qI ,∆′,Ω) where the set of states, the initial
state, and the coloring are as in A , with Σ′ = B∆ × Σ× B and with (q, (f, a, b), q′) ∈ ∆′ if, and only if,
there is a transition τ = (q, a, q0, q1) ∈ ∆ of the tree automaton such that f(τ) = b and q′ = qb. Note that
the state q and the letter a appear in both transitions and the direction b appearing in M ’s transition
is equal to f(τ). Intuitively, the non-determinism of M simulates Player 0 picking a transition τ that is
applicable at state q and letter a (as she does in G(A , t)) and Player 1’s reaction to τ , as encoded by the
local strategy f , is the direction b = f(τ), which leads the automaton M from state q to state qb.

Fix some tree t : B∗ → Σ and a strategy tree s : B∗ → B∆ and let π = b0b1b2 · · · ∈ Bω be a branch.
We define the word w(s, t, π) by

w(s, t, π) = (s(ε), t(ε), b0) (s(b0), t(b0), b1) (s(b0b1), t(b0b1), b2) (s(b0b1b2), t(b0b1b2), b3) · · · ∈ (Σ′)ω

and the define the word language L(s, t) ⊆ (Σ′)ω by

L(s, t) = {w(s, t, π) | π ∈ Bω} .

Thus, L(s, t) contains the labels of s and t along the branch π, together with the branch itself.
Using these definitions, we can characterize s being a winning strategy tree for t in terms of the

automaton M .
15See Exercise 4.5
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Lemma 6.2. The strategy tree s is winning for t if, and only if, L(s, t) ∩ L(M ) = ∅.

Proof. First, let s be winning for t and assume towards a contradiction that there is a branch π =
b0b1b2 · · · such that w(s, t, π) is accepted by M , say with run r = q0q1q2 · · · . Then, for every j ≥ 0,

(qj , (s(b0 · · · bj−1), t(b0 · · · bj−1), bj), qj+1)

is a transition of M . By definition of M , s(b0 · · · bj−1) = f satisfies f(τj) = bj for some transition

τj = (qj , t(b0 · · · bj−1), q′0, q′1)

such that qj+1 = q′bj
.

The transitions τj and the strategy for Player 1 encoded by s induce a play ρ in G(A , t). The sequence
of colors visited by ρ is the same one as the sequence of colors of the run r of M on w(s, t, π), except
that each occurrence of a color is doubled. As r is accepting, ρ is winning for Player 0, which yields the
desired contradiction to s being winning.

For the other direction, let L(s, t) ∩ L(M ) = ∅. We show that an arbitrary play ρ that is consistent
with the strategy encoded by s is winning for Player 1, which proves that s is winning for t.

For every j ∈ N, let (wj , (qj , t(wj), q′0, q′1)) be the unique Player 1 vertex visited by ρ where the first
component is of length j. Since wj+1 is obtained from wj by appending a single bit, the wj induce an
infinite branch π = b0b1b2 · · · such that wj = b0 · · · bj−1.

Consider the sequence r = q0q1q2 · · · of states appearing in the first components of the transitions.
A straightforward induction proves that r is a run of M on w(s, t, π). This run is rejecting, since
w(s, t, π) ∈ L(s, t) and therefore w(s, t, π) /∈ L(M ).

Furthermore, the play ρ has the same sequence of colors as r, except that every occurrence of a color is
doubled. Hence, the play does not satisfy the parity condition and is therefore winning for Player 1.

Note that sequences in L(M ) are good for Player 0, since they satisfy the acceptance condition of A .
Hence, we are actually interested in the complement language (Σ′)ω \L(M ). We use the following result
about parity word automata without proof16.
Theorem 6.3. Parity word automata can be determinized and are closed under complement.

Thus, there is a deterministic parity word automaton S = (Q′,Σ′, q′I , δ′,Ω′) with deterministic tran-
sition function δ′ : Q′ × Σ′ → Q′ such that L(S ) = (Σ′)ω \ L(M ). By simulating this automaton along
all the branches of s and t we can check whether L(s, t)∩L(M ) = ∅. To this end, we define the combined
tree tas : B∗ → Σ× B∆ by tas(w) = (t(w), s(w)).

Now, we define the parity tree automaton B = (Q′,Σ×B∆, q′I ,∆′,Ω′) where the set of states, the initial
state, and the coloring are as in S and where (q, (a, f), q0, q1) ∈ ∆′ if, and only if, δ′(q, (f, a, b)) = qb for
both b ∈ B. Thus, B indeed simulates S along every branch of tas. Next, we show that B recognizes
winning strategies for Player 1 in G(A , t). Note that this simulation is only possible because S is
deterministic.
Lemma 6.3. The strategy tree s is winning for t if, and only if, tas ∈ L(B).

Proof. Let s be winning for t. Thus, by Lemma 6.2, we have L(s, t) ∩ L(M ) = ∅ and therefore L(s, t) ⊆
L(S ). Hence, for every branch π, we have w(s, t, π) ∈ L(S ).

For a sequence w = b0 · · · bj ∈ B∗, let r(w) be the unique state that S reaches while processing

(s(ε), t(ε), b0) (s(b0), t(b0), b1) (s(b0b1), t(b0b1), b2) · · · (s(b0b1 · · · bj−1), t(b0b1 · · · bj−1), bj) .

As S is deterministic, r is a run of B on tas. Furthermore, r|π is equal to the unique run r′ of S on
w(s, t, π). As w(s, t, π) is accepted by S , r′ and therefore also r|π satisfy the parity condition. As π is
an arbitrary branch, this implies that r is accepting, i.e., tas ∈ L(B).

For the other direction, let r be an accepting run of B on tas. Let π be an arbitrary branch. As
before, we have that r|π is equal to the unique run r′ of S on w(s, t, π). As r|π satisfies the parity
condition, so does r′. Hence, w(s, t, π) is accepted by S and therefore not in L(M ). As we picked π
arbitrarily, we obtain L(s, t) ∩ L(M ) = ∅, which implies that s is winning for t by Lemma 6.2.

16For a proof, see, e.g., Erich Grädel, Wolfgang Thomas, Thomas Wilke: Automata, Logics, and Infinite Games: A Guide
to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer Science 2500, Springer
2002
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Now, we can finish our argument by applying closure of parity tree automata under projection (see
Exercise 6.6), i.e., our final automaton B′ runs on t, guesses a strategy tree s, and uses B to verify that
s is winning for t.
Theorem 6.4. Parity tree automata are closed under complement.

Proof. Let B′ recognize the projection of L(B) to the first component. Then, t ∈ L(B′) if, and only if,
there exists a strategy tree s such that tas ∈ L(B). The latter statement is equivalent to s being winning
for t. Thus, t ∈ L(A ) if, and only if, there is a winning strategy tree for t. Thus, due to Lemma 6.1, B′

recognizes the complement of L(A ).

After having proved closure of parity tree automata under complement, we are now in a position
to translate S2S into automata. To this end, we first simplify S2S by eliminating syntactic sugar and
first-order quantification, obtaining the logic S2S0. In particular, first-order quantification is simulated
by second-order quantification of singletons. In order to do so, we need new atomic formulas that replace
the atomic formulas of S2S to deal with these singleton sets.
Definition 6.13 (Syntax of S2S0). Let X,Y ∈ V2 be second-order variables. The atomic formulas of
S2S0 are

• Sing(X),

• X ⊆ Pa for a ∈ Σ,

• X ⊆ Y , and

• Si(X,Y ) for i ∈ B.

Furthermore, every atomic formula is a formula of S2S0. If ϕ and ψ are formulas and X ∈ V2 is a
second-order variable, then ¬ϕ, ϕ ∨ ψ, and ∃Xϕ are formulas as well.

Intuitively, Sing(X) expresses that X is a singleton, X ⊆ Pa expresses that letter a is at every position
contained in X, while Si(X,Y ) holds if X = {x} and Y = {y} are singletons and y is the i-successor of
x. Formally, we define the semantics as follows.
Definition 6.14 (Semantics of S2S0). The semantics of S2S0 are defined recursively by the satisfaction
relation |=. Given a tree t and a variable valuation µ, we have

• t, µ |= Sing(X) if, and only if, |µ(X)| = 1,

• t, µ |= X ⊆ Pa if, and only if, t(w) = a for every w ∈ µ(X),

• t, µ |= X ⊆ Y if, and only if, µ(X) ⊆ µ(Y )

• t, µ |= Si(X,Y ) if, and only if, µ(X) = {w} and µ(Y ) = {wi} for some w ∈ B∗,

• t, µ |= ¬ϕ if, and only if, it is not the case that t, µ |= ϕ,

• t, µ |= ϕ ∨ ψ if, and only if, t, µ |= ϕ or t, µ |= ψ, and

• t, µ |= ∃Xϕ if, and only if, t, µ[X 7→ B] |= ϕ for some B ⊆ B∗ .

Now, we can show that we can turn every S2S-sentence into an equivalent S2S0-sentence.
Lemma 6.4. For every S2S-sentence ϕ there is an S2S0 sentence ϕ′ such that for every tree t: t |= ϕ
if, and only if, t |= ϕ′.

Proof. First, we showed in Exercise 6.1 that ε and v are syntactic sugar and can be eliminated. Hence,
we assume that these symbols do not appear in ϕ, which implies that every term in ϕ is a first-order
variable. Now, we replace every occurrence of a universally quantified subformula ∀xψ by the equivalent
formula ¬∃x¬ψ respectively ∀Xψ by ¬∃X¬ψ. Also, we replace conjunctions by disjunctions using De
Morgans’s law.

After these rewriting steps, we define ϕ′ by induction over the construction of S2S-formulas using the
remaining atomic formulas, boolean connectives, and existential quantification.

• (x = y)′ = Sing(X) ∧ Sing(Y ) ∧X ⊆ Y ∧ Y ⊆ X,
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• (Pa(x))′ = X ⊆ Pa,

• (Si(x, y))′ = Si(X,Y ),

• (x ∈ Y )′ = Sing(X) ∧X ⊆ Y ,

• (¬ϕ)′ = ¬(ϕ′),

• (ϕ ∨ ψ)′ = ϕ′ ∨ ψ′,

• (∃xϕ)′ = ∃X (Sing(X) ∧ ϕ′), and

• (∀Xϕ)′ = ∃Xϕ′.

Here, one has to ensure that the newly introduced second-order variables simulating the first-order vari-
ables are fresh, i.e., not already appearing in ϕ to avoid “variable capturing”.

Note that this rewriting introduces new conjunctions, which can again be replaced by disjunctions
using De Morgan’s law. The resulting formula is then in S2S0 and a straightforward induction shows
that it is indeed equivalent.

Thus, it suffices to show how to translate S2S0 into parity tree automata. To this end, we have to
deal with free variables, which were assigned meaning by a variable valuation. We encode this valuation
by a tree. Formally, fix an S2S0 formula ϕ with free variables X0, . . . , Xn−1 and a variable valuation µ.
We define the tree tµ : B∗ → Bn via tµ(w) = (b0, . . . , bn−1) where

bj =
{

0 if w /∈ µ(Xj),
1 if w ∈ µ(Xj).

Theorem 6.5. For every S2S0-formula ϕ there is a parity tree automaton Aϕ such that t, µ |= ϕ if, and
only if, tatµ ∈ L(Aϕ) for every tree t and every variable valuation µ.

In particular, if ϕ is a sentence, then we have t |= ϕ if, and only if, t ∈ L(Aϕ).

Proof. We construct the automata Aϕ by induction over the structure of ϕ. The automata for the atomic
formulas are straightforward:

• The automaton ASing(Xj) has to verify that there is a single position in the input tree whose label
has a 1 in the component encoding Xj . This can be done by guessing a finite branch to such a
position and requiring that every other position has a 0 in this component. The parity condition is
used to ensure that the guessed branch eventually finds a 1.

• The automaton AXj⊆Pa
works similarly as ASing(Xj), but additionally checks that the position with

a 1 is labeled by a in t.

• The automaton AXj⊆Xj′ has a single state that allows every label except for those where the
component encoding Xj has a 1, but the component encoding Xj′ has a 0.

• Finally, the automaton ASi(Xj ,Xj′ ) also guesses a branch to a position where the component en-
coding Xj has a 1, checks that the i-successor has a 1 in the component encoding Xj′ as well, and
checks that there is exactly one 1 in each of these two components in the input tree.

It remains to consider the boolean connectives and existential quantification.

• A¬ϕ is the automaton recognizing the complement of L(Aϕ), see Theorem 6.4.

• Aϕ∨ψ is the automaton recognizing L(Aϕ) ∪ L(Aψ), see Exercise 6.6.

• A∃Xjϕ is the automaton recognizing the projection of L(Aϕ) to all components but the one encoding
Xj , see Exercise 6.6.

In conclusion, we can now prove Rabin’s Theorem: satisfiability of S2S sentences is decidable.
Theorem 6.6. The following problem is decidable: Given an S2S sentence ϕ, is ϕ satisfiable?
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Proof. Given ϕ, first construct an equivalent S2S0 sentence ϕ′, then the equivalent parity tree automa-
ton Aϕ′ , and then the emptiness game G(Aϕ′). Due to the equivalences, this game is won by Player 0
from the vertex representing the initial state of Aϕ′ , if and only if, ϕ is satisfiable. As the emptiness
game can be effectively constructed from ϕ and can be solved, the satisfiability problem is decidable by
a reduction to solving parity games.

The proof of Rabin’s Theorem presented here can straightforwardly be extended to infinite trees
of higher arities: instead of considering binary trees one deals with trees where every node has n suc-
cessors, for some fixed arity n > 0. Hence, the corresponding logic, called SnS, has n successor re-
lations S0, . . . , Sn−1 and one proves it to be effectively equivalent to parity tree automata working on
n-ary trees. Such automata have transitions of the form (q, a, q0, . . . , qn−1) sending state qj to the j-th
successor. All results proven in this section for the case n = 2 can be generalized to the case for arbitrary
n, in particular the translation of logic into automata and the emptiness game for these automata.
Corollary 6.1. SnS satisfiability is decidable for every n > 0.

The case of trees with countably infinite branching, i.e., where one considers trees of the form N∗ → Σ,
is slightly more involved. Now, the resulting logic, called SωS has a successor relation Sj for every j ∈ N,
although each formula can only use a finite number of them. The automata-based approach cannot be
adapted as before, as this entails using sending a state to each successor, i.e., each transition is an infinite
object. Such automata are in general not suitable for algorithms.

Instead, one “interprets” the underlying structure N∗ with the successor relations (Sj)j∈N in a binary
tree with domain {0, 1}∗ and relations S0 and S1. The roots of both trees are identified and the j-th
successor j of the root ε is identified by the node 0j1. In general, the node j0j1 . . . jk of N∗ is mapped to
0j01 0j11 · · · 0jk 1 of {0, 1}∗.Thus, the j-th successor relation corresponds to taking S0 j times and then S1
once. Note that the image of the function mapping N∗ to {0, 1}∗ is the set D = {ε}∪ {w1 | w ∈ {0, 1}∗},
which is characterized by the formula

ϕD = x = ε ∨ ∃yS1(y, x)

with a single free variable x. Similarly, the j-th successor relation is characterized by the formula

ϕSj
= ∃y1 · · · ∃yjS0(x, y1) ∧

j−1∧
k=1

S0(xk, xk+1) ∧ S1(xj , x′)

for j > 0 and ϕS0 = S1(x, x′), each with free variables x and x′, which express that x′ is the j-th successor
of x.

Now, given an SωS sentence ϕ, one rewrites it by “guarding” each quantification with the domain
formula ϕD, i.e., one replaces ∃xψ by ∃x(ϕD(x) ∧ ψ) and ∀xψ by ∀x(ϕD(x) → ψ). Furthermore, one
replaces each occurrence of Sj by the formula phiSj

, i.e., each atomic formula Sj(x, x′) by ϕSj
(x, x′). Call

the resulting S2S sentence ϕ′. Then, one can show that ϕ is satisfiable if, and only if, ϕ′ is satisfiable, by
translating models for ϕ into models of ϕ′ and vice versa.
Corollary 6.2. SωS satisfiability is decidable.

Similarly, one can show decidability of monadic second-order logic on total orders that are interpretable
in the infinite binary tree.

6.5 Exercises
Exercise 6.1. Show that ε and v are syntactic sugar.

1. Give a formula ϕε(x) not containing ε and v with one free first-order variable x and no free second-
order variable such that t, µ � ϕε if, and only if, µ(x) = ε.

2. Give a formula ϕ�(x, y) not containing � and ε with two free first-order variables x and y and no
free second-order variable such that t, µ � ϕ� if, and only if, µ(x) is a prefix of µ(y).

Exercise 6.2. Give S2S formulas defining the following tree languages over the alphabet Σ = {a, b, c}:

1. The language of trees containing an a-labeled vertex whose left subtree contains a b-labeled vertex
and whose right subtree contains a c-labeled vertex.

2. The language of trees t satisfying t|0ω ∈ (aa)∗bω.
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3. The language of trees containing at least one a-labeled vertex and at least one b-labeled vertex.

Exercise 6.3. Let L be the language of all trees over Σ = {a, b} containing only finitely many a-labeled
vertices.

1. Give an S2S formula defining L.

2. Give a parity tree automaton recognizing L.

In both cases, argue informally that your solution is correct.

Exercise 6.4. Show that the subset-relation and “being connected“ is expressible in S2S.

1. Give a formula ϕ⊆(X,Y ) with two free second-order variables X and Y and no free first-order
variable such that t, µ � ϕ⊆ if and only if µ(X) ⊆ µ(Y ).

2. Give a formula ϕc(X) with one free second-order variable X and no free first-order variable such
that t, µ � ϕc if, and only if, µ(X) is connected, i.e., if w and w′ are in µ(X) and w′ is a descendant
of w, then all vertices on the path between w and w′ are in µ(X), as well.

Exercise 6.5. Give parity tree automata recognizing the languages from Exercise 6.2.

Exercise 6.6. Show that languages recognized by parity tree automata are closed under union and
projection.

1. Given two parity tree automata A1 and A2 over the same alphabet construct a parity tree au-
tomaton A such that L(A ) = L(A1) ∪ L(A2). Show formally that your automaton recognizes
L(A1) ∪ L(A2).

2. Given a tree t : B∗ → Σ × Γ we define its projection pΣ(t) : B∗ → Σ to its first component by
pΣ(t)(w) = a for every w ∈ B∗ with t(w) = (a, b).

Given a parity tree automaton Ae over the alphabet Σ×Γ construct a parity tree automaton A such
that L(A ) = {pΣ(t) | t ∈ L(Ae)}. Show formally that your automaton recognizes this language.

Exercise 6.7. A parity tree automaton (Q,Σ, qI ,∆,Ω) is deterministic, if for every state q and every
letter a there is at most one pair (q0, q1) of states such that (q, a, q0, a1) ∈ ∆. Thus, a deterministic
automaton has a unique run on every tree.

Let L be the language of trees over that alphabet {a, b} that contain at least one a.

1. Show that there is a parity tree automaton that recognizes L.

2. Show that there is no deterministic parity tree automaton that recognizes L.

Exercise 6.8. Prove the left-to-right implication of Lemma 6.1: if t ∈ L(A ), then (ε, qI) ∈W0(G(A , t)).

Exercise 6.9. Prove the right-to-left implication of Lemma 6.2: if qI ∈W0(G(A )), then L(A ) 6= ∅.

Exercise 6.10. Consider the parity tree automaton A = ({q0, q1, q2, q3, q4}, {a, b}, q0,∆,Ω) where ∆
and Ω are defined by Ω(q3) = 1, Ω(q0) = Ω(q4) = 2, Ω(q1) = Ω(q2) = 3, and

∆ =


q0, a

q0 q1

,

q0, b

q0 q3

,

q1, a

q3 q0

,

q1, b

q0 q2

,

q2, a

q0 q3

,

q2, b

q0 q1

,

q2, b

q0 q4

,

q3, a

q0 q3

,

q3, b

q0 q3

,

q4, a

q0 q1

,

q4, b

q3 q0

 .

1. Construct the emptiness game G(A ) and determine the winner from (ε, q0).

2. Give a tree t ∈ L(A ) as function t : B∗ → {a, b}.

3. Give a precise description of L(A ) using natural language.
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Exercise 6.11. A parity tree automaton (Q,Σ, qI ,∆,Ω) is deterministic, if for every state q and every
letter a there is exactly one pair (q0, q1) of states such that (q, a, q0, a1) ∈ ∆. Thus, a deterministic
automaton has a unique run on every tree.

Let L be the language of trees over that alphabet {a, b} that contain at least one a.

1. Show that there is a parity tree automaton that recognizes L.

2. Show that there is no deterministic parity tree automaton that recognizes L.

Exercise 6.12. In Theorem 6.2, we proved that the emptiness problem for parity tree automata A is
reducible to solving parity games of polynomial size in |A |.

Prove the converse, i.e., show that for every parity game G and vertex v of G, there is a parity tree
automaton AG,v such that v ∈ W0(G) if, and only if, L(AG,v) 6= ∅. Furthermore, |AG,v| should be
polynomial in |G|.
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A Appendix: Basic Definitions and Notations
Here, we introduce our notation and some basic definitions.

A.1 Basic Notations
We use the symbol N to denote the set of non-negative integers and N+ to denote the set of positive
integers. Arbitrary elements of N are abbreviated by lowercase Latin letters, preferably j, m, and n. For
every n ∈ N we define [n] = {0, 1, . . . , n − 1}. In particular, [0] = ∅. The parity of an integer n ∈ N is
denoted by Par(n), i.e.,

Par(n) =
{

0 if n is even,
1 if n is odd.

To denote sets, we use uppercase Latin letters like P , Q, and S. The cardinality of a set S is denoted
by |S| and its power set by 2S .

A.2 Alphabets and Words
An alphabet is a non-empty, finite set of symbols, usually denoted by Σ. The elements of an alphabet
are called letters.

The concatenation w = w0w1 · · ·wn−1 of finitely many letters of Σ is a finite word over Σ. The
length n of w is denoted by |w|. The only word of length 0 is the empty word which is denoted by ε. For
a non-empty finite word w, Lst(w) denotes the last letter of w.

The concatenation of infinitely many letters is an infinite word , i.e., a word of infinite length. We
usually use lowercase Latin letters like w to denote finite words and lowercase Greek letters like α, β, γ to
denote infinite words. If we just talk about words, we mean either finite or infinite words and fall back
to denoting them by lowercase Latin letters. The set of all finite words over Σ is denoted by Σ∗ and the
set of all infinite words by Σω. For Σ∗ \ {ε} we use the shortcut Σ+.

Like letters, we can concatenate a finite word w with a finite or infinite words w′ to form a new word
w′′ = ww′. For such a word w = w′w′′ we call w′ a prefix of w and w′′ a suffix. If a word w is a prefix of
a word w′ we denote this by w v w′ and use Prefs(w) to denote the set of all prefixes of w. In particular,
w v w for all w ∈ Σ∗. The reversal of a finite word w is denoted by wR, i.e., (w0 · · ·wn)R = wn · · ·w0.

For a finite or infinite word w = w0w1w2 · · · we define

Occ(w) := {a ∈ Σ | wn = a for some n}

to be the set of letters occurring in a word w, also called the occurrence set of w. Also, we define

Inf(w) :={a ∈ Σ | wn = a for infinitely many n}

to be the set of letters occurring infinitely often in the word w, called the infinity set of w. The infinity
set of a finite word is always empty.

A.3 Regular Languages
If Σ is an alphabet then each subset of Σ∗ is a language over finite words and each subset of Σω is a
language over infinite words. The concatenation of two languages K ⊆ Σ∗ and M ⊆ Σ∗ or M ⊆ Σω is
denoted by KM and defined as KM :={ww′ | w ∈ K and w′ ∈M}.

To specify languages over finite words we use regular expressions, which are given by the following
grammar, where a ranges over Σ:

r := ∅ | ε | a | r + r | rr | r∗

Additionally, we use r+ as a shortcut for rr∗. The language L(r) of a regular expression r is defined
using the following semantics. Languages definable this way are called regular.

• L(∅) := ∅

• L(ε) := {ε}

• L(a) := {a}

• L(r1r2) := L(r1)L(r2)

• L(r1 + r2) := L(r1) ∪ L(r2)

• L(r∗) := {w0 · · ·wn−1 | n ∈ N and wj ∈ L(r) for every j}. 17

17Here, the empty concatenation is defined to be ε.
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To define languages over infinite words we use ω-regular expressions, given by the grammar:

e := e+ e | rrω

Here, r ranges over the regular expressions as defined above. The language L(e) of an ω-regular
expression e is defined using the following semantics. Languages definable this way are called ω-regular.

• L(e1 + e2) = L(e1) ∪ L(e2)

• L(r1(r2)ω) := L(r1){w0w1w2 · · · | wj ∈ L(r2) for every j ∈ N}

As usual, we often drop the operator L assigning a language to an expression and instead identify
a regular expression with its language, i.e., (b∗a)ω is both an ω-regular expression and the language of
infinite words over {a, b} with infinitely many a’s.

A.4 Fixed-points and the Knaster-Tarski Theorem
Fix a set L. A binary relation ≤ over L is a partial order, if it is

• reflexive: a ≤ a for all a ∈ L,

• antisymmetric: a ≤ b and b ≤ a imply a = b for all a, b ∈ L, and

• transitive: a ≤ b and b ≤ c imply a ≤ c for all a, b, c ∈ L.

In this case, we call (L,≤) a partially ordered set (poset for short). We write a ≥ b if, and only if, b ≤ a.
Let L′ ⊆ L be a subset of L. An element a ∈ L is a lower bound of L′ if a ≤ a′ for all a′ ∈ L′. A

lower bound a ∈ L is an infimum of L′, if b ≤ a for every lower bound b of L′, i.e., a is a greatest lower
bound of L′. Upper bounds and suprema are defined dually: an element a ∈ L is an upper bound of L′
if a ≥ a′ for all a′ ∈ L′. An upper bound a ∈ L is a supremum of L′, if b ≥ a for every upper bound b of
L′, i.e., a is a least upper bound of L′. Note that neither infima nor suprema may not always exist, but
are unique if they do.

A complete lattice is a poset in which every subset L′ ⊆ L has an infimum and a supremum. A
complete lattice is never empty, e.g., it contains an infimum of the empty set. Furthermore, the only
infimum of the empty set is the least element of L, an element a such that a ≤ b for every b ∈ L.

A function f : L → L is monotonic, if a ≤ b implies f(a) ≤ f(b). A fixed-point of f is an element a
with f(a) = a and a pre-fixed-point of f is an element a with f(a) ≤ a.
Theorem A.1 (Knaster-Tarski). Let L be a complete lattice and f : L→ L monotonic. Then, the set of
fixed-points of f is a complete lattice.

In particular, every monotonic function f on a complete lattice has a least fixed-point, i.e., a fixed-
point a satisfying a ≤ b for every other fixed-point b of f .

If L is finite, then the least fixed-point can be computed as follows: let ⊥ be the minimal element of
L and consider the sequence

⊥ = f0(⊥) ≤ f1(⊥) ≤ f2(⊥) ≤ · · · .
As L is finite, there has to be an n ≤ |L| with fn(⊥) = fn+1(⊥).
Lemma A.1. e=: fn(⊥) is the least fixed-point of f .

Proof. First, we show that e is indeed a fixed-point:

e = fn(⊥) = fn+1(⊥) = f(fn(⊥)) = f(e).

Thus, it remains to show that e is the least fixed-point, i.e., e ≤ a for every fixed-point a of f . Fix one
such fixed-point a. We prove e = fn(⊥) ≤ a by showing f j(⊥) ≤ a by induction over j. The induction
start f0(⊥) = ⊥ ≤ a follows from ⊥ being the least element of L. Now, assume f j(⊥) ≤ a. Then,

f j+1(⊥) = f(f j(⊥)) ≤ f(a) ≤ a

where the first inequality follows from monotonicity of f and the second one from a being a fixed-point.

Furthermore, the least fixed-point is also the least pre-fixed-point, which can be proven by the same
argument presented in the second part of the proof of Lemma A.1: there, we only used the fact f(a) ≤ a,
i.e., that a is a pre-fixed-point.
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