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Church’s Synthesis Problem
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Church 1957: Given a specification on the input/output behavior
of a circuit (in some suitable logical language), decide whether
such a circuit exists, and, if yes, compute one.
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Church’s Synthesis Problem

?
i1

...
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Example

Interpret input ij = 1 as client j requesting a shared resource and
output oj = 1 as the corresponding grant to client j .

Typical properties:
1. If there are infinitely many requests of client j , then also

infinitely many grants for client j .

2. At most one grant at a time (mutual exclusion).

3. No spurious grants.
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Church’s Synthesis Problem

?
i1

...

in

o1

...

on

Solved by Büchi & Landweber in 1969.

Insight: Problem can be expressed as two-player game of infinite
duration between the environment (producing inputs) and the
circuit (producing outputs).

Martin Zimmermann Saarland University Tradeoffs in Infinite Games 2/36



Back to the Example

Consider the one-client case!

Now, the winning plays for the circuit player have to satisfy

1. if i is visited infinitely often, then s as well, and

2. ` is never visited.

Equivalently: color the vertices by natural numbers as above and
require that almost all odd colors are followed by a larger even one.

This is the classical parity condition for ω-automata.
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Winning plays for circuit player have to satisfy

1. if i is visited infinitely often, then o as well, and
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Büchi-Landweber in a Nutshell

23 0 1 0 0
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Player 0 has a memoryless winning strategy,

which can be turned into an automaton with output,

which can be turned into a circuit satisfying the specification.
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Not Everyone is Equal

Quality of winning strategies is measured in multiple dimensions:

1. Memory requirements

2. Degree of satisfaction of a (quantitative) winning condition

3. Computational complexity of computing such a strategy

4. Use of lookahead

5. Use of randomization

6. Informedness

7. Robustness

8. Non-determinism

In previous work, each dimension was studied in isolation.

Goal of this thesis:
Understand the tradeoffs between (some of) these dimensions.
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Overview

Typical questions we answered in this thesis:

What is the price of optimality?

Is it harder to compute an optimal winning strategy in a
quantitative game than an arbitrary winning strategy?
Does optimality increase the memory requirements of
winning strategies?

Can the expressiveness of LTL be increased without
increasing the complexity of solving games?

How does the addition of lookahead change the characteristics
of games?

Does lookahead increase the complexity of solving
games?
Does lookahead allow to improve the quality of strategies
in quantitative games?
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Outline

1. Playing Optimally in Variations of Parity Games

2. Playing (Approximatively) Optimally in LTL Games

3. More Tradeoffs
Lookahead vs. Quality
Lookahead vs. Memory
Expressiveness vs. Complexity
Expressiveness vs. Memory

4. Conclusion
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A Parity Game

1 0 2

1 0 2

1 0 0 2

1 0 0 0 2 · · ·

2 steps

3 steps

4 steps

Player 0 wins from every vertex,

but Player 1 can delay between
color 1 and color 2 longer and
longer.
⇒ undesired behavior.
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Parity Games go Quantitative

During the last two decades, various quantitative variants of parity
games have been introduced:

Mean-payoff parity games [CHJ05]

Finitary parity games [CH06]

Energy parity games [CD11]

Window parity games [BHR16]

Finitary parity games are distinguished, as here the quantitative
aspect measures the satisfaction of the qualitative one.
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Finitary Parity Games

Parity: Almost all odd colors are followed by larger even one.

Finitary Parity: There is a bound b such that almost all odd
colors are followed by larger even one within b steps.

Condition Complexity Memory Pl. 0 Memory Pl. 1

Parity quasi-poly Memoryless Memoryless
Finitary Parity PTime Memoryless Infinite
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Boundedness vs. Optimization

The bound b in the definition of finitary parity games is
existentially quantified (and may depend on the play).

Corollary

If Player 0 wins a finitary parity game G, then a uniform
bound b ≤ |G| suffices.

A trivial example shows that the upper bound |G| is tight.

Questions

1. Does Player 0 need memory to achieve the optimal bound?

2. Is it harder to compute the optimal bound than checking
whether a bound exists?
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Chatterjee & Fijalkow

0 0

1 3

0 0

0 0

2 4

0 0

Player 0 has a unique memoryless winning strategy, which
achieves the bound five: from the 1 it takes five steps to the 4.
With two memory states, she can achieve the bound four:
“answer” a 1 by a 2 and a 3 by a 4.
It is trivial to extend this example to d odd colors and d even
colors requiring d memory states to play optimally.

⇒ In general, playing optimally requires memory; but how much?
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Memory Requirements
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Memory Requirements

...
...

d request gadgets with d colors︷ ︸︸ ︷ d response gadgets with d colors︷ ︸︸ ︷

Player 0 has winning strategy with cost d2 + 2d : answer j-th
unique request in j-th response-gadget.
⇒ requires exponential memory (in d).
Against a smaller strategy Player 1 can enforce a larger cost,
as Player 0 cannot store every sequence of requests.

Theorem (WZ16)

For every d > 1, there exists a finitary parity game Gd such that

|Gd | ∈ O(d2) and Gd has d odd colors, and

every optimal strategy for Player 0 has at least size 2d−1.
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PSPACE-Hardness

Lemma (WZ16)

The following problem is PSpace-hard: “Given a finitary parity
game G and a bound b ∈ N, does Player 0 have a strategy for G
whose cost is at most b?”

Proof

By a reduction from QBF (w.l.o.g. in CNF).

Checking the truth of ϕ = ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y) as a
two-player game (Player 0 wants to prove truth of ϕ):

1. Player 1 picks truth value for x .
2. Player 0 picks truth value for y .
3. Player 1 picks clause C .
4. Player 0 picks literal ` from C .
5. Player 0 wins ⇔ ` is picked to be satisfied in step 1 or 2.
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The Reduction

ϕ = ∀x ∃y .

ψ︷ ︸︸ ︷
( x ∨ ¬y ) ∧ ( ¬x ∨ y )

0

1x

0

0

3¬x

0

0

5y

0

0

7¬y

0

0

ψ
0

(x ∨ ¬y)

0

(¬x ∨ y)

2
x

0

0
¬y

8

0
¬x

4

6
y

0

. . .

. . .

. . .

. . .

10

For a well-chosen bound b, a strategy for Player 0 with cost at
most b witnesses the truth of ϕ and vice versa.
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PSPACE-Membership

Lemma (WZ16)

The following problem is in PSpace: “Given a finitary parity
game G and a bound b ∈ N, does Player 0 have a strategy for G
whose cost is at most b?”

Proof Sketch

Fix G and b (w.l.o.g. b ≤ |G|).

1. Construct equivalent parity game G′ storing the costs of open
requests (up to bound b) and the number of “overflows” (up
to bound |G|) ⇒ |G′| ∈ |G|O(d).

2. Define equivalent finite-duration variant G′f of G′ with
polynomial play-length.

3. G′f can be solved on alternating polynomial-time Turing
machine.

4. APTime = PSpace concludes the proof.
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Upper Bounds on Memory

Equivalence between finitary parity game G w.r.t. bound b and
parity game G′ yields upper bounds on memory requirements.

Corollary

Let G be a finitary parity game with costs with d odd colors. If
Player 0 has a strategy for G with cost b, then she also has a
strategy with cost b and size (b + 2)d = 2d log(b+2).

Recall: lower bound 2d−1.

The same bounds hold for Player 1.
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Tradeoffs

Theorem (WZ16)

Fix some finitary parity game Gd as before. For every i
with 1 ≤ i ≤ d there exists a strategy σi for Player 0 in Gd such
that σi has cost d2 + 3d − i and size

∑i−1
j=1

(d
j

)
.

Also, every strategy σ′ for Player 0 in Gd whose cost is at most the
cost of σi has at least the size of σi .

129128127126125124123122121120119

1

1022

cost

size
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Generalizations

We generalized finitary parity games to

parity games with costs (by allowing non-negative weights on
the edges) [FZ14], and

parity games with weights (by allowing arbitrary weights on
the edges) [SWZ18].

finitary parity parity
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Generalizations

We generalized finitary parity games to

parity games with costs (by allowing non-negative weights on
the edges) [FZ14], and

parity games with weights (by allowing arbitrary weights on
the edges) [SWZ18].

Boundedness

Condition Complexity Memory Pl. 0 Memory Pl. 1

Parity quasi-poly Memoryless Memoryless
Finitary Parity PTime Memoryless Infinite

Parity w. Costs quasi-poly Memoryless Infinite
Parity w. Weights NP ∩ co-NP Exponential Infinite
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Generalizations

We generalized finitary parity games to

parity games with costs (by allowing non-negative weights on
the edges) [FZ14], and

parity games with weights (by allowing arbitrary weights on
the edges) [SWZ18].

Optimization

Condition Complexity Memory Pl. 0 & 1

Finitary Parity PSpace-complete Exponential

Parity w. Costs PSpace-complete Exponential
Parity w. Weights PSpace-hard ≥ Exponential

The results for parity games with costs hold for unary and
binary encodings of the weights.
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Outline

1. Playing Optimally in Variations of Parity Games

2. Playing (Approximatively) Optimally in LTL Games

3. More Tradeoffs

4. Conclusion
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Introducing LTL by Examples

Atomic propositions ri for requests and gi for grants.

1. Answer every request:
∧

i G (ri → F gi )

2. At most one grant at a time: G
∧

i 6=j ¬(gi ∧ gj)

3. No spurious grants:∧
i

¬[ (¬ri U (¬ri ∧ gi )) ] ∧ ¬[ F (gi ∧X (¬ri U (¬ri ∧ gi ))) ]

≡
∧
i

[ (ri R (ri ∨ ¬gi )) ] ∧ [ G (¬gi ∨ X (ri R (ri ∨ ¬gi ))) ]
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A Problem with LTL

Answer every request:
∧

i G (ri → F gi )

r0 g0 r0 g0 r0 g0 · · ·

Problem:
LTL is too weak to express timing-constraints: no guarantee when
request is granted, only that it is granted eventually
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LTL goes Quantitative

During the last two decades, various quantitative variants of LTL
have been introduced:

Parametric LTL [AETP99]

PROMPT–LTL [KPV07]

Parametric MTL [GTN10]

PROMPT–LTL is distinguished, as all problems for the more
general Parametric LTL are reducible to those for PROMPT–LTL.
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Prompt-LTL

Syntax: Add prompt-eventually operator FP .

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | FP ϕ

Semantics: Defined with respect to a fixed bound k ∈ N.

(ρ, n, k) |= FP ϕ: ρ
n n + k

ϕ

Now:
∧

i G (ri → FP gi )
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Prompt-LTL Games

Label the arena by atomic propositions.

Winning condition: PROMPT–LTL formula ϕ.

Player 0 wins if there is a uniform bound k and a strategy σ
such that every play that is consistent with σ satisfies the
winning condition ϕ w.r.t. k .
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Label the arena by atomic propositions.

Winning condition: PROMPT–LTL formula ϕ.

Player 0 wins if there is a uniform bound k and a strategy σ
such that every play that is consistent with σ satisfies the
winning condition ϕ w.r.t. k .

PROMPT–LTL games are not harder than LTL games...

Theorem (KPV07)

1. Determining the winner of PROMPT–LTL games is
2ExpTime-complete.

2. If Player 0 wins, then also with a finite-state strategy of
size 22|ϕ|

and w.r.t. the bound kϕ = 22|ϕ|
.
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Prompt-LTL Games

Label the arena by atomic propositions.

Winning condition: PROMPT–LTL formula ϕ.

Player 0 wins if there is a uniform bound k and a strategy σ
such that every play that is consistent with σ satisfies the
winning condition ϕ w.r.t. k .

...unless you optimize the bound.

Theorem (Z11)

1. The PROMPT–LTL game optimization problem can be
solved in triply-exponential time.

2. The bound kϕ is tight in general.
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Prompt-LTL Games

Label the arena by atomic propositions.

Winning condition: PROMPT–LTL formula ϕ.

Player 0 wins if there is a uniform bound k and a strategy σ
such that every play that is consistent with σ satisfies the
winning condition ϕ w.r.t. k .

Questions

1. Is the optimization problem harder than the boundedness
problem?

2. Can the optimum be approximated?
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An Approximation Algorithm

Lemma (TWZ16)

Fix a PROMPT–LTL game G with winning condition ϕ and
k ≤ kϕ. There is an LTL game Gk such that

1. if Player 0 wins G w.r.t. k , then she wins Gk ,

2. if Player 0 wins Gk , then she wins G w.r.t. 2k, and

3. Gk can be solved in doubly-exponential time in |G|.

The algorithm:

1: for k = 0; k ≤ kϕ; k ← k + 1 do

2: if Player 0 wins Gk then

3: return 2k

Running time:
doubly-exponential

Approximation ratio: 2

Yields winning strategy
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1: for k = 0; k ≤ kϕ; k ← k + 1 do

2: if Player 0 wins Gk then

3: return 2k

Running time:
doubly-exponential

Approximation ratio: 2

Yields winning strategy
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Tradeoffs

memory size

bound

Implementation via bounded synthesis:

Search for finite-state strategy of size n achieving bound k .

Complete due to upper bounds on n and k .
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Tradeoffs

RG

memory size

bound

Implementation via bounded synthesis:

Search for finite-state strategy of size n achieving bound k .

Complete due to upper bounds on n and k .

RG : realizable combinations for game G.
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Tradeoffs

RG

memory size

bound

Lemma
1. If (n, k) ∈ RG , then (n, n2|ϕ|) ∈ RG .

2. If (n, k) ∈ RG , then (22k|ϕ|
, k) ∈ RG .
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Tradeoffs

b + 1 Pareto points

2b

2b
RGb

memory size

bound

Theorem (TWZ16)

For every b, there is a game Gb of size O(b) such that (2j , 2b−j) is
a Pareto point for every j ≤ b.
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Tradeoffs

c 22b

2b

RGb

memory size

bound

Theorem (TWZ16)

For every b, there is a game Gb of size O(b) such that (22b , 0) and
(c , 2b) are Pareto points for some constant c .

Martin Zimmermann Saarland University Tradeoffs in Infinite Games 29/36



An Example

Five clients:

1. Answer every request of client 1 promptly: G (r1 → FP g1)

2. Answer every other request eventually:
∧

i>1 G (ri → F gi )

3. At most one grant at a time: G
∧

i 6=j ¬(gi ∧ gj)
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Generalizations

Parametric LDL [FZ14]: full expressive power of the
ω-regular languages and bounded operators.
Parametric LTL and LDL with costs [Z15]: replace unit cost
by non-negative weights.
Visibly LDL [WZ15]: full expressive power of the ω-visibly
pushdown languages.

LTL

LDL PLTL
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Parametric LDL [FZ14]: full expressive power of the
ω-regular languages and bounded operators.
Parametric LTL and LDL with costs [Z15]: replace unit cost
by non-negative weights.

Visibly LDL [WZ15]: full expressive power of the ω-visibly
pushdown languages.

Logic Complexity Memory Pl. 0 & 1

LTL 2ExpTime-complete Doubly-exponential
LDL 2ExpTime-complete Doubly-exponential
PLTL 2ExpTime-complete Doubly-exponential
PLDL 2ExpTime-complete Doubly-exponential
cPLTL 2ExpTime-complete Doubly-exponential
cPLDL 2ExpTime-complete Doubly-exponential
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Parametric LTL and LDL with costs [Z15]: replace unit cost
by non-negative weights.
Visibly LDL [WZ15]: full expressive power of the ω-visibly
pushdown languages.

Logic Complexity Memory Pl. 0 & 1

LTL 2ExpTime-complete Doubly-exponential
LDL 2ExpTime-complete Doubly-exponential
PLTL 2ExpTime-complete Doubly-exponential
PLDL 2ExpTime-complete Doubly-exponential
cPLTL 2ExpTime-complete Doubly-exponential
cPLDL 2ExpTime-complete Doubly-exponential
VLDL 3ExpTime-complete pushdown transducer
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Outline

1. Playing Optimally in Variations of Parity Games

2. Playing (Approximatively) Optimally in LTL Games

3. More Tradeoffs

4. Conclusion
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Delay Games

Landweber & Hosch: Allow one player to delay her moves
to obtain a lookahead on the opponent’s moves.

This thesis presents the first in-depth study of delay games.
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Delay Games

Landweber & Hosch: Allow one player to delay her moves
to obtain a lookahead on the opponent’s moves.

This thesis presents the first in-depth study of delay games.

Theorem (KZ15)

Solving ω-regular delay games is ExpTime-complete and
exponential lookahead is always sufficient and in general necessary.

Best previous result: in 2ExpTime and doubly-exponential upper
bound, no non-trivial lower bounds [HKT10].
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Delay Games

Landweber & Hosch: Allow one player to delay her moves
to obtain a lookahead on the opponent’s moves.

This thesis presents the first in-depth study of delay games.

More results (incomplete)

Solving LTL delay games is 3ExpTime-complete,
triply-exponential lookahead sufficient and necessary [KZ16].

Lookahead can be traded for quality in delay games with
finitary parity conditions [Z17].

Finite-state strategies for delay games [WZ18]: lookahead
can be traded for memory.
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More Results

In the thesis, but not covered in this talk:

Solving an open problem on average-energy
games [BHMRZ17]

Optimal strategies for request-response games [HTWZ15]

Distributed synthesis for PROMPT–LTL [JTZ16]

A first-order logic for Hyperproperties [FZ17]

Context-free delay games [FLZ11]

Borel determinacy for delay games [KZ15]

Delay games with WMSO+U winning conditions [Z15]
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Conclusion

Tradeoffs in infinite games exist:

Optimality can be prohibitively expensive, both in terms of
computational complexity and in terms of memory
requirements.

Positive results:

Optimal bounds in PROMPT–LTL games can be
approximated at no extra cost.

The expressiveness of LTL can be increased considerably for
free.

Lookahead allows to improve strategies and decrease memory
requirements.

⇒ Need to take tradeoffs into account when solving games.
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