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Let’s Play

S T

You move at circles and want to reach T from S.
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Motivation

Model-checking and satisfiability for fixed-point logics, e.g.,
the modal µ-calculus, CTL, CTL∗.
Automata emptiness often expressible in terms of games.
Semantics of alternating automata in terms of games.
Synthesis of correct-by-construction controllers for reactive
systems (non-terminating, interacting with antagonistic
environment).

Earliest appearance: Church’s problem (1957)
Given requirement ϕ on input-output behavior of boolean circuits,

compute a circuit C that satisfies ϕ (or prove that none exists).
Game theoretic formulation:

Player 0 generates infinite stream of input bits.
Player 1 has to answer each input bit by output bit.
Player 1 wins, if combination of streams satisfies ϕ.
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Church’s Problem: Example

ϕ is conjunction of following properties:
1. Whenever the input bit is 1, then the output bit is 1, too.
2. If there are infinitely many 0’s in the input stream, then there

are infinitely many 0’s in the output stream.
3. At least one out of every three consecutive output bits is a 1.

Winning strategy for the
output player:

Answer every 1 by a 1.
Answer every 0 by a 0,
unless it would be the
third 0 in a row. Then,
answer by a 1.

s0 s1 s2

1/1

0/0

1/1

0/0

1/1

0/1
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Outline

1. Definitions

2. Reachability Games

3. Parity Games

4. Muller Games

5. Outlook
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Arenas and Games

An arena A = (V ,V0,V1,E ) consists of
a finite set V of vertices,
a set V0 ⊆ V of vertices owned by Player 0 (circles),
the set V1 = V \V0 of vertices owned by Player 1
(squares),
a directed edge-relation E ⊆ V × V .

v4

v1

v3 v5

v7

v0 v2

v6 v8

A play is an infinite path through A.
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Strategies

A strategy for Player i in A is a mapping σ : V ∗Vi → V
satisfying (vn, σ(v0 · · · vn)) ∈ E (only legal moves).

A play v0v1v2 · · · is consistent with σ, if vn+1 = σ(v0 · · · vn)
for every n with vn ∈ Vi .
Note: if we fix an initial vertex and strategies σ and τ for
Player 0 and Player 1, then there is a unique play that starts
in v and is consistent with σ and τ .

Special types of strategies:

Positional strategies: σ(v0 · · · vn) = σ(vn) for all v0 · · · vn:
move only depends on position the token is at at the moment.
Finite-state strategies: implemented by DFA with output
reading play prefix v0 · · · vn and outputting σ(v0 · · · vn).
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Winning

A game G = (A,Win) consists of an arena A and a set
Win ⊆ V ω of winning plays for Player 0.
Set of winning plays for Player 1: V ω \Win.

Strategy σ for Player i is winning strategy from v , if every play
that starts in v and is consistent with σ is winning for him.
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Win = { ρ ∈ V ω | ρ does not visit all vertices }

Player 0 wins from every vertex with positional strategies.
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Winning

A game G = (A,Win) consists of an arena A and a set
Win ⊆ V ω of winning plays for Player 0.
Set of winning plays for Player 1: V ω \Win.
Strategy σ for Player i is winning strategy from v , if every play
that starts in v and is consistent with σ is winning for him.

Winning region Wi (G): set of vertices from which Player i has
a winning strategy.
Always: W0(G) ∩W1(G) = ∅.
G determined, if W0(G) ∪W1(G) = V .
Solving a game: determine the winning regions and winning
strategies.
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Three Types of Winning Conditions

Win is an (possibly) infinite set of infinite words, and therefore
unsuitable as input to an algorithm ⇒ need finite representation.

Reachability games: for R ⊆ V define

reach(R) = { ρ ∈ V ω | ρ visits R at least once }

Parity games: for Ω: V → N define

parity(Ω) = { ρ ∈ V ω | minimal priority seen infinitely often
during ρ is even }

Muller games: for F ⊆ 2V define

muller(F) = { ρ ∈ V ω | set of vertices seen infinitely often
during ρ is in F }

There are many other winning conditions.
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What Are We Interested in?

Given a type of winning condition (e.g., reachability, parity,
Muller),..

.. are games with this condition always determined?

.. what kind of strategy do the players need (e.g., positional,
finite-state)?
.. if finite-state strategies are necessary, how large do they
have to be?
How hard is it to solve the game?
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Reachability Games

Reachability games: for R ⊆ V define

reach(R) = { ρ ∈ V ω | ρ visits R at least once }
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Attractor Construction

AttrAi (R) =
⋃

n∈N An where A0 = R and
Aj+1 = Aj∪{v ∈ Vi | ∃(v , v ′) ∈ E s.t. v ′ ∈ Aj}

∪{v ∈ V1−i | ∀(v , v ′) ∈ E we have v ′ ∈ Aj}

Theorem
Reachability games are determined with positional strategies.

Proof.

R

A1 A2 · · · An = An+1

Remark: Attractors can be computed in linear time in |E |.
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Parity Games

Parity games: for Ω: V → N define
parity(Ω) = { ρ ∈ V ω | minimal priority seen infinitely

often during ρ is even }
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Parity Games

Applications:
Normal form for ω-regular languages: deterministic parity
automata.
Model-checking game of the modal µ-calculus.
Emptiness of parity tree automata equivalent to parity games.
Semantics of alternating automata on infinite objects.

Theorem
Parity games are determined with positional strategies.

Proof Sketch:
By induction over the number n of vertices. n = 1 trivial:

c or c

Player i wins iff Par(c) = i
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Proof Sketch

Now n > 1 and min Ω(V ) = 0.

Ω−1(0)

Attr0(Ω−1(0))
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Proof Sketch

.. yields winning regions W ′
i and positional strategies σ′, τ ′.

W ′
0

W ′
1
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Proof Sketch

W ′
1 empty: Player 0 wins from everywhere.

Winning strategy: combine σ′ and attractor strategy,
play arbitrarily at Ω−1(0).

Ω−1(0)

Attr0(Ω−1(0))

W ′
0
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Proof Sketch

W ′
1 non-empty: Player 0 wins from W ′′

0 with σ′′.

W ′
1

Attr1(W ′
1)
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0
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Proof Sketch

W ′
1 non-empty: Player 1 wins from W ′′

1 ∪Attr1(W ′
1).

Winning strategy: combine τ ′, τ ′′, and attractor strategy.

W ′
1

Attr1(W ′
1)

W ′′
0

W ′′
1
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Algorithms for Parity Games

Determinacy proof yields recursive algorithm with exponential
running time.
Best deterministic algorithms: O(m · n c

3 ).

Intriguing complexity-theoretic status: in NP ∩Co-NP (even
in UP ∩Co-UP and thus unlikely to be complete for NP or
Co-NP).
Open problem: is solving parity games in polynomial time?
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Muller Games

Muller games: for F ⊆ 2V define
muller(F) = { ρ ∈ V ω | set of vertices seen infinitely often

during ρ is in F }

A

B

C

D

1

2

3

4

F ∈ F
iff

|F ∩ {A,B,C ,D}| = max(F ∩ {1, 2, 3, 4})
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muller(F) = { ρ ∈ V ω | set of vertices seen infinitely often

during ρ is in F }

A

B

C

D

1

2

3
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in general: DJWn
here: DJW4

F ∈ F
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Latest Appearance Records

Need to estimate set of vertices in {A,B,C ,D} visited infinitely
often during the play:

Track order of last appearance of vertices in {A,B,C ,D}

C A B C D #

4
B B A # C D
2
D D B A C #

4

A A D B # C
3
C C A D B #

4
C C # A D B
1

A A C # D B
2
C C A # D B
2
A A C # D B
2

From some point onwards only vertices that are visited
infinitely often are in front of #, and
infinitely often exactly the set of vertices that are visited
infinitely often is in front of #.
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Muller Games

Bookkeeping works in general (use permutations over V ).
Product of arena and LAR-structure can be turned into
equivalent parity game from which finite-state strategies can
be derived (“Muller games are reducible to parity games”).

Theorem
Muller games are determined with finite-state strategies of
size n · n!.

Matching lower bounds via DJWn games.
Complexity depends on encoding of F :

P, if F is given as list of sets.
NP ∩Co-NP, if F is encoded by a tree.
Pspace-complete, if F is encoded by circuit or boolean
formula (with variables V ).
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Concurrent Games

Both players choose their moves simultaneously
Matching pennies:

randomized strategy winning with probability 1.

(heads, heads)

(tails, tails)

(heads, tails)

(tails, heads)

(*,*)

The “Snowball Game”:

for every ε, randomized strategy winning
with probability 1− ε.

(run, wait)

(hide, throw)

(hide, wait)

(run, throw)
(*,*)(*,*)
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Games of Imperfect Information

Players do not observe sequence of states, but sequence of
non-unique observations (yellow, purple, blue, brown).
Player 0 picks action (a or b), Player 1 resolves
non-determinism.

v0

v1

v2

v3

v4 v5

a,b

a,b

a
b

b
a

a,b

a,b

a,b

No winning strategy for Player 0: every fixed choice of actions to
pick at ( )∗( ) can be countered by going to v1 or v2.
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(Simple) Stochastic Games

Enter a new player ( ), it flips a coin to pick a successor.

0 wins 1 wins

No (sure) winning strategy...
...but one with probability 1.

More formally: Value of the game

max
σ

min
τ

pσ,τ

where pσ,τ is the probability that Player 0 wins when using
strategy σ and Player 1 uses strategy τ .

Martin Zimmermann Saarland University Infinite Games 26/30



(Simple) Stochastic Games

Enter a new player ( ), it flips a coin to pick a successor.

0 wins 1 wins

No (sure) winning strategy...
...but one with probability 1.

More formally: Value of the game

max
σ

min
τ

pσ,τ

where pσ,τ is the probability that Player 0 wins when using
strategy σ and Player 1 uses strategy τ .

Martin Zimmermann Saarland University Infinite Games 26/30



(Simple) Stochastic Games

Enter a new player ( ), it flips a coin to pick a successor.

0 wins 1 wins

No (sure) winning strategy...
...but one with probability 1.

More formally: Value of the game

max
σ

min
τ

pσ,τ

where pσ,τ is the probability that Player 0 wins when using
strategy σ and Player 1 uses strategy τ .

Martin Zimmermann Saarland University Infinite Games 26/30



Pushdown Games

Use configuration graphs of pushdown machines as arena (in
general infinite).

0

1

0

1

0

1

0

1

0

1

0

1

A⊥ AA⊥ AAA⊥ AAAA⊥ AAAAA⊥

0

⊥

...

...

qin

q1

q2

Positional determinacy still holds, but positional strategies are
infinite objects!
Solution: winning strategies implemented by pushdown
machines with output.
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Quantitative Winning Conditions

Parity game: Player 0 wins from everywhere, but it takes
arbitrarily long two “answer” 1 by 0.

1 2 0

Add edge-costs: Player 0 wins if there is a bound b and a
position n such that every odd color after n is followed by a
smaller even color with cost ≤ b in between
Player 1 wins example from everywhere (stay at 2 longer and
longer).
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Many other variants

Many more winning conditions.

Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.

Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.

Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.

Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.

More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Many other variants

Many more winning conditions.
Games on infinite arenas beyond pushdown graphs.
Games on timed automata: uncountable arenas.
Play even longer: games of ordinal length.
Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.
More than two players: no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.

Martin Zimmermann Saarland University Infinite Games 29/30



Literature

Lecture notes “Infinite Games” (hidden in the Teaching
section)
www.react.uni-saarland.de/teaching/infinite-games-13-14

Lectures in Game Theory for Computer Scientists. Krzysztof
Apt and Erich Grädel (Eds.), Cambridge University Press,
2011.
Automata, Logics, and Infinite Games. Erich Grädel,
Wolfgang Thomas, and Thomas Wilke (Eds.), LNCS 2500,
Springer-Verlag, 2002.
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