Approximating Optimal Bounds in Prompt-LTL Realizability in Doubly-exponential Time

Joint work with Leander Tentrup and Alexander Weinert

Martin Zimmermann

Saarland University

April, 2nd 2016 QAPL 16

Motivation

■ Shift from programs to reactive systems:

- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive

Motivation

Shift from programs to reactive systems:

- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive
- Successful approach to verification and synthesis: an infinite game between the system and its environment:
 - two players
 - infinite duration
 - perfect information
 - system player wins if specification is satisfied

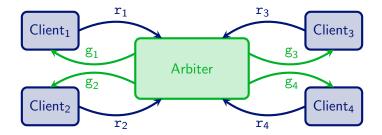
Motivation

Shift from programs to reactive systems:

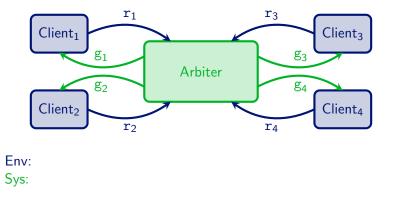
- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive
- Successful approach to verification and synthesis: an infinite game between the system and its environment:
 - two players
 - infinite duration
 - perfect information
 - system player wins if specification is satisfied

Simplest model: realizability

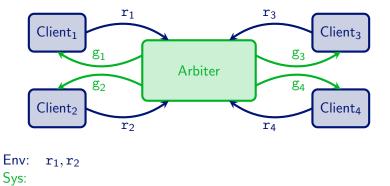
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



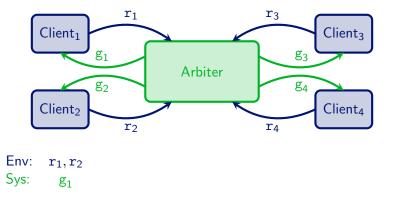
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



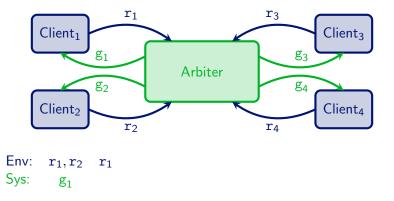
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



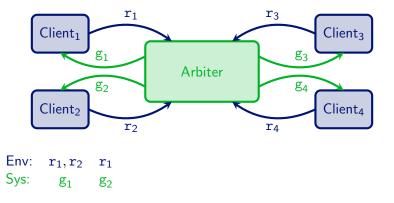
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



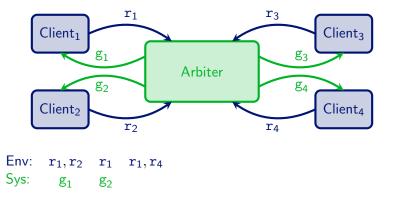
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



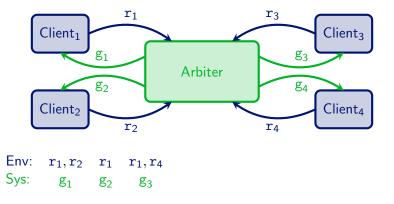
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



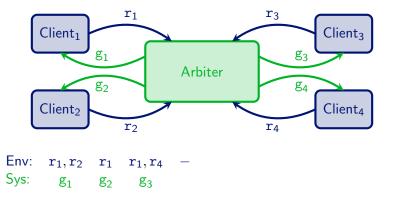
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



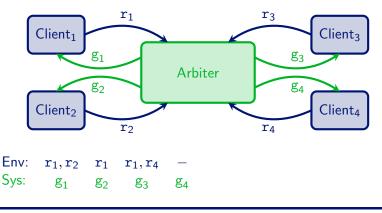
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



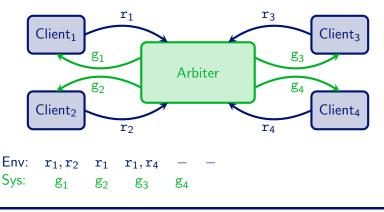
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



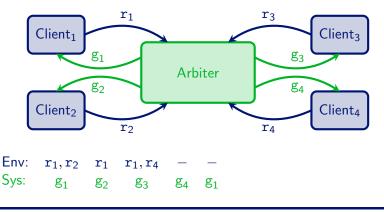
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



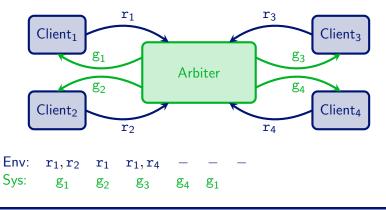
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



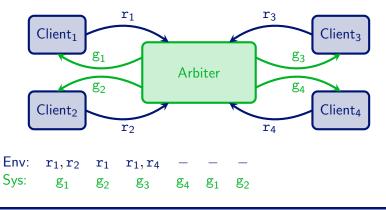
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



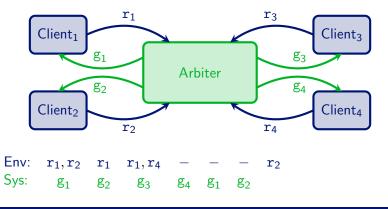
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



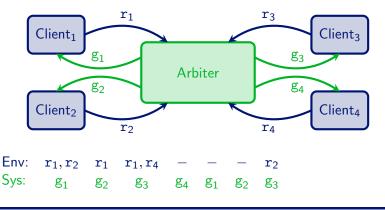
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



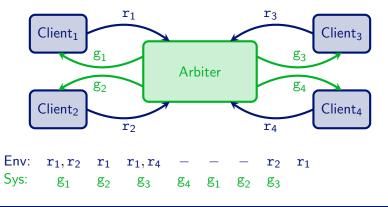
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



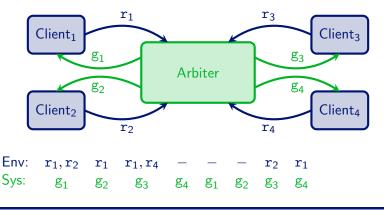
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



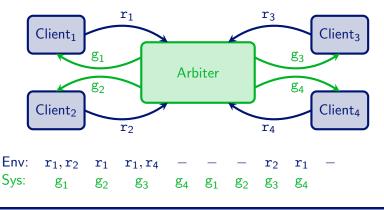
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



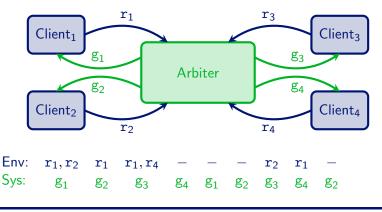
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



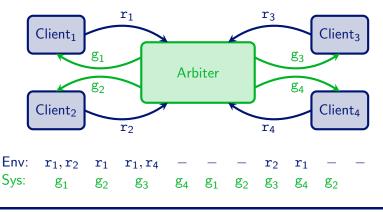
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



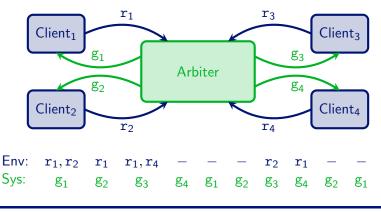
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



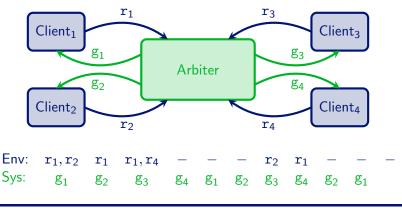
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



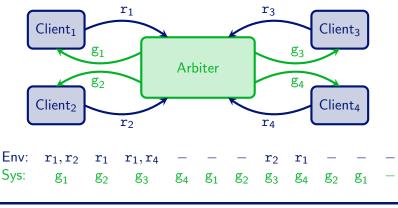
- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



- Setting: an arbiter with *n* clients
- **\blacksquare** requests \mathbf{r}_i from client *i* controlled by the environment
- **\blacksquare** grants g_i for client *i* controlled by the system



Linear Temporal Logic

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \,\mathbf{U} \varphi \mid \varphi \,\mathbf{R} \varphi$$

where p ranges over a finite set P of atomic propositions.

Linear Temporal Logic

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi$$

where p ranges over a finite set P of atomic propositions.

Semantics: $\rho \in (2^P)^{\omega}$, $n \in \mathbb{N}$ $\bullet (\rho, n) \models \mathbf{X} \varphi : \rho \longmapsto \bullet$ n+1п • $(\rho, \mathbf{n}) \models \psi \mathbf{U} \varphi$: $\rho \vdash \cdots \vdash \psi$ n • $(\rho, n) \models \psi \mathbf{R} \varphi$: $\rho \vdash \cdots \vdash \downarrow$ or φ,ψ ρ | | n

Use shorthands:

- **F** $\varphi = \operatorname{tt} \operatorname{U} \varphi$: eventually φ holds
- **G** $\varphi = \mathbf{ff} \mathbf{R} \varphi$: φ holds always

Use shorthands:

- **F** $\varphi = \mathbf{tt} \, \mathbf{U} \, \varphi$: eventually φ holds
- **G** $\varphi = \mathbf{ff} \mathbf{R} \varphi$: φ holds always

Example specifications:

1. Answer every request: $\bigwedge_{i} \mathbf{G}(\mathbf{r}_{i} \rightarrow \mathbf{F}\mathbf{g}_{i})$

Use shorthands:

- **F** $\varphi = \mathbf{tt} \, \mathbf{U} \, \varphi$: eventually φ holds
- **G** $\varphi = \mathbf{ff} \mathbf{R} \varphi$: φ holds always

Example specifications:

- **1.** Answer every request: $\bigwedge_{i} \mathbf{G}(\mathbf{r}_{i} \rightarrow \mathbf{F} \mathbf{g}_{i})$
- **2.** At most one grant at a time: $\mathbf{G} \bigwedge_{i \neq j} \neg (g_i \land g_j)$

Use shorthands:

- **F** $\varphi = \mathbf{tt} \, \mathbf{U} \, \varphi$: eventually φ holds
- **G** $\varphi = \mathbf{ff} \mathbf{R} \varphi$: φ holds always

Example specifications:

- **1.** Answer every request: $\bigwedge_{i} \mathbf{G}(\mathbf{r}_{i} \rightarrow \mathbf{F} \mathbf{g}_{i})$
- **2.** At most one grant at a time: $\mathbf{G} \bigwedge_{i \neq j} \neg (\mathbf{g}_i \land \mathbf{g}_j)$
- 3. No spurious grants:

$$\bigwedge_{i} \neg [(\neg \mathbf{r}_{i} \mathbf{U} (\neg \mathbf{r}_{i} \land \mathbf{g}_{i}))] \land \neg [\mathbf{F} (\mathbf{g}_{i} \land \mathbf{X} (\neg \mathbf{r}_{i} \mathbf{U} (\neg \mathbf{r}_{i} \land \mathbf{g}_{i})))]$$

Use shorthands:

- **F** $\varphi = \mathbf{tt} \, \mathbf{U} \, \varphi$: eventually φ holds
- **G** $\varphi = \mathbf{ff} \mathbf{R} \varphi$: φ holds always

Example specifications:

- **1.** Answer every request: $\bigwedge_{i} \mathbf{G}(\mathbf{r}_{i} \rightarrow \mathbf{F} \mathbf{g}_{i})$
- **2.** At most one grant at a time: $\mathbf{G} \bigwedge_{i \neq j} \neg (\mathbf{g}_i \land \mathbf{g}_j)$
- 3. No spurious grants:

$$\bigwedge_{i} \neg [(\neg \mathbf{r}_{i} \mathbf{U} (\neg \mathbf{r}_{i} \land \mathbf{g}_{i}))] \land \neg [\mathbf{F} (\mathbf{g}_{i} \land \mathbf{X} (\neg \mathbf{r}_{i} \mathbf{U} (\neg \mathbf{r}_{i} \land \mathbf{g}_{i})))]$$
$$\equiv \bigwedge_{i} [(\mathbf{r}_{i} \mathbf{R} (\mathbf{r}_{i} \lor \neg \mathbf{g}_{i}))] \land [\mathbf{G} (\neg \mathbf{g}_{i} \lor \mathbf{X} (\mathbf{r}_{i} \mathbf{R} (\mathbf{r}_{i} \lor \neg \mathbf{g}_{i})))]$$

Prompt-LTL

Problem: LTL is too weak to express timing-constraints: no guarantee when request is granted, only that it is granted eventually

$$\blacksquare \bigwedge_{i} \mathbf{G} (\mathbf{r}_{i} \to \mathbf{F} \mathbf{g}_{i})$$

Prompt-LTL

Problem: LTL is too weak to express timing-constraints: no guarantee when request is granted, only that it is granted eventually

$$\blacksquare \bigwedge_{i} \mathbf{G} (\mathbf{r}_{i} \to \mathbf{F} \mathbf{g}_{i})$$

Solution: add prompt-eventually operator F_P :

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Prompt-LTL

Problem: LTL is too weak to express timing-constraints: no guarantee when request is granted, only that it is granted eventually

$$\blacksquare \bigwedge_{i} \mathbf{G} (\mathbf{r}_{i} \rightarrow \mathbf{F} \mathbf{g}_{i})$$

Solution: add prompt-eventually operator F_P :

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Semantics: defined with respect to a fixed bound $k \in \mathbb{N}$

Prompt-LTL

Problem: LTL is too weak to express timing-constraints: no guarantee when request is granted, only that it is granted eventually

$$\blacksquare \bigwedge_i \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Solution: add prompt-eventually operator F_P :

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Semantics: defined with respect to a fixed bound $k \in \mathbb{N}$

Now:
$$\bigwedge_{i} \mathbf{G}(\mathbf{r}_{i} \rightarrow \mathbf{F}_{\mathbf{P}} \mathbf{g}_{i})$$

 $\langle \circ \rangle$

Prompt-LTL Realizability

Given a Prompt-LTL formula φ , determine whether the system player has a strategy realizing φ w.r.t. some bound k.

Theorem (Kupferman et al. '07)

1. *Prompt-LTL realizability is* 2EXPTIME-complete.

2. if φ is realizable w.r.t. some k, then also w.r.t. $k_{\varphi} = 2^{2^{|\varphi|}}$.

Prompt-LTL Realizability

Given a Prompt-LTL formula φ , determine whether the system player has a strategy realizing φ w.r.t. some bound k.

Theorem (Kupferman et al. '07)

1. *Prompt-LTL realizability is* 2EXPTIME-complete.

2. if φ is realizable w.r.t. some k, then also w.r.t. $k_{\varphi} = 2^{2^{|\varphi|}}$.

Prompt-LTL realizability as optimization problem: determine the smallest k s.t. the system player has a strategy realizing φ w.r.t. k.

Theorem (Z. '11)

The Prompt-LTL realizability optimization problem can be solved in triply-exponential time.

- **1.** Add fresh proposition $p \notin P$: think of a coloring.
- 2. Obtain $\operatorname{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}}\,\psi$ of φ by

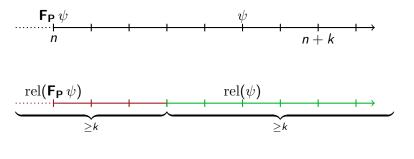
 $(p \rightarrow (p \mathbf{U} (\neg p \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg p \rightarrow (\neg p \mathbf{U} (p \mathbf{U} \operatorname{rel}(\psi)))).$

Intuitively: ψ has to be satisfied within one color change.

- **1.** Add fresh proposition $p \notin P$: think of a coloring.
- 2. Obtain $\operatorname{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

$$(p \rightarrow (p \mathbf{U} (\neg p \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg p \rightarrow (\neg p \mathbf{U} (p \mathbf{U} \operatorname{rel}(\psi)))).$$

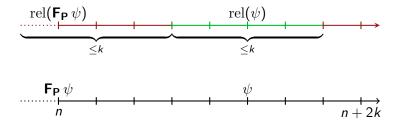
Intuitively: ψ has to be satisfied within one color change.



- **1.** Add fresh proposition $p \notin P$: think of a coloring.
- 2. Obtain $\operatorname{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

$$(p \rightarrow (p \mathbf{U} (\neg p \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg p \rightarrow (\neg p \mathbf{U} (p \mathbf{U} \operatorname{rel}(\psi)))).$$

Intuitively: ψ has to be satisfied within one color change.



- **1.** Add fresh proposition $p \notin P$: think of a coloring.
- 2. Obtain $\operatorname{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}}\,\psi$ of φ by

 $(p \rightarrow (p \mathbf{U} (\neg p \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg p \rightarrow (\neg p \mathbf{U} (p \mathbf{U} \operatorname{rel}(\psi)))).$

Intuitively: ψ has to be satisfied within one color change.

Lemma (Kupferman et al. '07)

Let φ be a PROMPT-LTL formula, $w \in (2^P)^{\omega}$, and $w' \in (2^{P \cup \{p\}})^{\omega}$ s.t. w and w' coincide on P at every position.

- **1.** If $(w, k) \models \varphi$ and distance between color changes is at least k in w', then $w' \models rel(\varphi)$.
- **2.** Let $k \in \mathbb{N}$. If $w' \models \operatorname{rel}(\varphi)$ and distance between color-changes is at most k in w', then $(w, 2k) \models \varphi$.

Applying the Alternating-color Technique

 ψ_k expressing that distance between color changes is at most k

Lemma (Kupferman et al. '07)

Let φ be a PROMPT-LTL formula and let $k \in \mathbb{N}$.

- **1.** A strategy realizing φ with respect to k can be turned into a strategy realizing rel $(\varphi) \land \psi_k$.
- **2.** A strategy realizing $rel(\varphi) \land \psi_k$ can be turned into a strategy realizing φ with respect to 2k.

Applying the Alternating-color Technique

 ψ_k expressing that distance between color changes is at most k

Lemma (Kupferman et al. '07)

Let φ be a PROMPT-LTL formula and let $k \in \mathbb{N}$.

- **1.** A strategy realizing φ with respect to k can be turned into a strategy realizing rel $(\varphi) \land \psi_k$.
- **2.** A strategy realizing $rel(\varphi) \land \psi_k$ can be turned into a strategy realizing φ with respect to 2k.

Lemma

The following problem is in 2EXPTIME: Given a PROMPT-LTL formula φ and a natural number $k \leq 2^{2|\varphi|}$, is $rel(\varphi) \wedge \psi_k$ realizable?

The Algorithm

- 1: if φ unrealizable then
- 2: **return** " φ unrealizable"
- 3: for k = 0; $k \le 2^{2^{|\varphi|}}$; $k \leftarrow k + 1$ do
- 4: **if** $\operatorname{rel}(\varphi) \wedge \psi_k$ realizable **then**
- 5: **return** 2*k*

The Algorithm

- 1: if φ unrealizable then
- 2: **return** " φ unrealizable"

3: for
$$k = 0$$
; $k \le 2^{2^{|\varphi|}}$; $k \leftarrow k + 1$ do

4: **if** $\operatorname{rel}(\varphi) \wedge \psi_k$ realizable **then**

5: **return** 2*k*

Run-time: doubly-exponential in $|\varphi|$:

- 1. Lines 1 and 4: doubly-exponential time.
- 2. At most doubly-exponentially many iterations.

The Algorithm

- 1: if φ unrealizable then
- 2: **return** " φ unrealizable"

3: for
$$k = 0$$
; $k \le 2^{2^{|\varphi|}}$; $k \leftarrow k + 1$ do

4: **if** $\operatorname{rel}(\varphi) \wedge \psi_k$ realizable **then**

5: **return** 2k

Run-time: doubly-exponential in $|\varphi|$:

- 1. Lines 1 and 4: doubly-exponential time.
- 2. At most doubly-exponentially many iterations.

Approximation ratio:

$$\frac{2k}{2k-k_{\rm opt}} \le \frac{2k}{2k-k} = 2.$$

Theorem

The optimization problem for PROMPT-LTL realizability can be approximated within a factor of 2 in doubly-exponential time. As a byproduct, one obtains a strategy witnessing the approximatively optimal bound.

Theorem

The optimization problem for PROMPT-LTL realizability can be approximated within a factor of 2 in doubly-exponential time. As a byproduct, one obtains a strategy witnessing the approximatively optimal bound.

The same algorithm works for stronger logics as well

- Parametric LTL: allow multiple bounds on prompteventually: $\mathbf{F}_{\leq x}$ with parameter x or on the dual operator $\mathbf{G}_{\leq x}$
- **Parametric LDL:** replace $\mathbf{F}_{\leq x}$ and $\mathbf{G}_{\leq x}$ by $\langle r \rangle_{\leq x}$ and $[r]_{\leq x}$ with regular expression r

An arbiter with five clients:

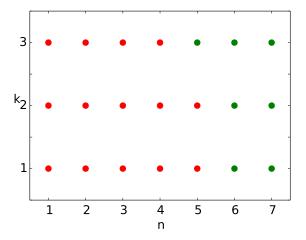
- 1. Answer every request of client 1 promptly: $\bm{\mathsf{G}}\left(\mathtt{r}_{1}\rightarrow \bm{\mathsf{F}}_{\bm{\mathsf{P}}}\,\mathtt{g}_{1}\right)$
- **2.** Answer every other request eventually: $\bigwedge_{i>1} \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$
- **3.** At most one grant at a time: $\mathbf{G} \bigwedge_{i \neq j} \neg (g_i \land g_j)$

A Prototype Implementation

- Bounded synthesis: incrementally search for smallest strategy
- **T**wo parameters: bound k and size n of strategy \Rightarrow Tradeoffs

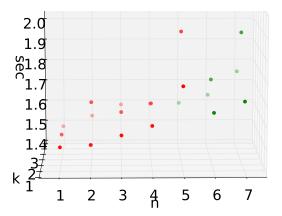
A Prototype Implementation

■ Bounded synthesis: incrementally search for smallest strategy
■ Two parameters: bound k and size n of strategy ⇒ Tradeoffs



A Prototype Implementation

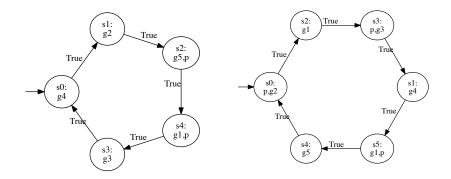
■ Bounded synthesis: incrementally search for smallest strategy
■ Two parameters: bound k and size n of strategy ⇒ Tradeoffs



The Resulting Strategies

- $k = 3 \Rightarrow$ bound ≤ 6 and size n = 5
- Implements round-robin strategy

- $k = 1 \Rightarrow \text{bound} \le 2$ and size n = 6
- Prioritizes client 1, others round-robin



Conclusion

Our contribution:

- The first approximation algorithm for Prompt-LTL realizability with doubly-exponential running time
- Computes a realizing strategy
- Applicable to stronger logics as well
- Not presented: tight exponential upper bounds on the tradeoff between bound and memory
- Preprint available at arXiv.

Conclusion

Our contribution:

- The first approximation algorithm for Prompt-LTL realizability with doubly-exponential running time
- Computes a realizing strategy
- Applicable to stronger logics as well
- Not presented: tight exponential upper bounds on the tradeoff between bound and memory
- Preprint available at arXiv.

Future work:

- Detailed experiments
- Study the tradeoffs between bound, size, and run time
- Show that the exact optimum can be computed in doubly-exponential time