Limit Your Consumption! Finding Bounds in Average-energy Games

Joint work with Kim G. Larsen and Simon Laursen (Aalborg University)

Martin Zimmermann

Saarland University

April, 3nd 2016 QAPL 16

Motivation

■ Shift from programs to reactive systems:

- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive

Motivation

Shift from programs to reactive systems:

- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive
- Successful approach to verification and synthesis: an infinite game between the system and its environment:
 - two players
 - infinite duration
 - perfect information
 - system player wins if specification is satisfied

Motivation

Shift from programs to reactive systems:

- non-terminating
- interacting with a possibly antagonistic environment
- communication-intensive
- Successful approach to verification and synthesis: an infinite game between the system and its environment:
 - two players
 - infinite duration
 - perfect information
 - system player wins if specification is satisfied
- Here: graph-based games with quantitative winning conditions modeling consumption of a ressource

A play:

 v_0

A play:

*v*₀ *v*₂

A play:

 $v_0 v_2 v_1$

A play:

 $v_0 v_2 v_1 v_0$

A play:

 $v_0 v_2 v_1 v_0 v_2$

A play:

 $v_0 v_2 v_1 v_0 v_2 v_0$

A play:

 V_0 V_2 V_1 V_0 V_2 V_0 V_1

A play:

 v_0 v_2 v_1 v_0 v_2 v_0 v_1 \cdots

A play (with energy levels): $(v_0, 0)$

A play (with energy levels):

 $(v_0, 0)$ $(v_2, 3)$

A play (with energy levels): $(v_0, 0)$ $(v_2, 3)$ $(v_1, 0)$

A play (with energy levels):

 $(v_0,0)$ $(v_2,3)$ $(v_1,0)$ $(v_0,0)$

A play (with energy levels):

 $(v_0,0)$ $(v_2,3)$ $(v_1,0)$ $(v_0,0)$ $(v_2,3)$

A play (with energy levels):

 $(v_0,0)$ $(v_2,3)$ $(v_1,0)$ $(v_0,0)$ $(v_2,3)$ $(v_0,5)$

A play (with energy levels):

 $(v_0,0)$ $(v_2,3)$ $(v_1,0)$ $(v_0,0)$ $(v_2,3)$ $(v_0,5)$ $(v_1,4)$

A play (with energy levels):

 $(v_0,0)$ $(v_2,3)$ $(v_1,0)$ $(v_0,0)$ $(v_2,3)$ $(v_0,5)$ $(v_1,4)$...

A strategy:

A strategy:

$$\rightarrow$$
 (v₀, 0) \rightarrow (v₂, 3)

A strategy:

objective	Complexity	Memory Requirements
EG _L	$NP \cap CO-NP$	memoryless
EG _{LU}	EXPTIME-complete	pseudopolynomial

objective	Complexity	Memory Requirements
EG _L	$NP \cap CO-NP$	memoryless
EG _{LU}	EXPTIME-complete	pseudopolynomial
AE	$NP \cap CO-NP$	memoryless
AE _{LU}	EXPTIME-complete	pseudopolynomial

objective	Complexity	Memory Requirements
EG _L EG _{LU}	$NP \cap CO-NP$ EXPTIME-complete	memoryless pseudopolynomial
$\begin{array}{l} AE \\ AE_{LU} \\ AE_{LU} \ (U-L \ poly) \end{array}$	$NP \cap CO-NP$ EXPTIME-complete $NP \cap CO-NP$	memoryless pseudopolynomial polynomial

objective	Complexity	Memory Requirements
EG _L EG _{LU}	$NP \cap CO-NP$ EXPTIME-complete	memoryless pseudopolynomial
$\begin{array}{l} AE \\ AE_{LU} \\ AE_{LU} \ (U-L \ poly) \end{array}$	$NP \cap CO-NP$ EXPTIME-complete $NP \cap CO-NP$	memoryless pseudopolynomial polynomial
AE _L	ExpTIME-hard	\geq pseudopolynomial

objective	Complexity	Memory Requirements
EG _L EG _{LU}	$NP \cap CO-NP$ EXPTIME-complete	memoryless pseudopolynomial
$\begin{array}{l} AE \\ AE_{LU} \\ AE_{LU} \ (U-L \ poly) \end{array}$	$NP \cap CO-NP$ EXPTIME-complete $NP \cap CO-NP$	memoryless pseudopolynomial polynomial
AE _L	ExpTIME-hard	\geq pseudopolynomial

- W.I.o.g.: fix lower bound 0
- In all problems, lower and upper bounds part of the input.
- Here: upper bound existentially quantified.

Capacity $cap \in \mathbb{N}$, threshold $t \in \mathbb{N}$

$$\blacksquare \mathsf{EG}_{\mathsf{L}} = \{ v_0 v_1 \cdots \mid \forall n. \, 0 \leq \mathsf{EL}(v_0 \cdots v_n) \}$$

$$\blacksquare \mathsf{EG}_{\mathsf{LU}}(\mathsf{cap}) = \{v_0v_1\cdots \mid \forall n. 0 \leq \mathsf{EL}(v_0\cdots v_n) \leq \mathsf{cap}\}$$

Capacity $cap \in \mathbb{N}$, threshold $t \in \mathbb{N}$

■ EG_L = {
$$v_0v_1 \cdots | \forall n. 0 \le \operatorname{EL}(v_0 \cdots v_n)$$
}
■ EG_{LU}(*cap*) = { $v_0v_1 \cdots | \forall n. 0 \le \operatorname{EL}(v_0 \cdots v_n) \le cap$ }
■ AE(*t*) = { $v_0v_1 \cdots | \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \operatorname{EL}(v_0 \cdots v_i) \le t$ }

Capacity $cap \in \mathbb{N}$, threshold $t \in \mathbb{N}$

$$\blacksquare \mathsf{EG}_{\mathsf{L}} = \{ v_0 v_1 \cdots \mid \forall n. \, 0 \leq \mathrm{EL}(v_0 \cdots v_n) \}$$

$$\blacksquare \mathsf{EG}_{\mathsf{LU}}(\mathsf{cap}) = \{\mathsf{v}_0\mathsf{v}_1\cdots \mid \forall \mathsf{n}.\, \mathsf{0} \leq \mathsf{EL}(\mathsf{v}_0\cdots \mathsf{v}_n) \leq \mathsf{cap}\}$$

•
$$\mathsf{AE}(t) = \{v_0 v_1 \cdots \mid \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathrm{EL}(v_0 \cdots v_i) \leq t\}$$

$$\blacksquare \mathsf{AE}_{\mathsf{L}}(t) = \mathsf{EG}_{\mathsf{L}} \cap \mathsf{AE}(t)$$

•
$$AE_{LU}(cap, t) = EG_{LU}(cap) \cap AE(t)$$

Finding Bounds in Average-energy Games

Input: Weighted arena \mathcal{A} **Question**: Exists a threshold $t \in \mathbb{N}$ s.t. Player 0 wins $(\mathcal{A}, AE_{L}(t))$?

Finding Bounds in Average-energy Games

Input: Weighted arena \mathcal{A} **Question**: Exists a threshold $t \in \mathbb{N}$ s.t. Player 0 wins $(\mathcal{A}, AE_{L}(t))$?

We show this to be equivalent to..

Input: Weighted arena \mathcal{A} **Question**: Exists a capacity $cap \in \mathbb{N}$ s.t. Player 0 wins $(\mathcal{A}, EG_{LU}(cap))$?

.. which is in 2EXPTIME [Juhl, Larsen, Raskin '13].

Finding Bounds in Average-energy Games

Input: Weighted arena \mathcal{A} **Question**: Exists a threshold $t \in \mathbb{N}$ s.t. Player 0 wins $(\mathcal{A}, AE_{L}(t))$?

We show this to be equivalent to..

```
Input: Weighted arena \mathcal{A}
Question: Exists a capacity cap \in \mathbb{N} s.t. Player 0 wins (\mathcal{A}, EG_{LU}(cap))?
```

.. which is in 2EXPTIME [Juhl, Larsen, Raskin '13].

Note:

The direction $\exists cap \Rightarrow \exists t$ is trivial.

$\exists t \Rightarrow \exists cap$

 Obstacle: average can be bounded while energy level is unbounded

$\exists t \Rightarrow \exists cap$

- But: every time energy level increases above threshold t on average, it drops below t later
- Crossings are characterized by vertex v and energy level in range $t + 1, \ldots, t + W$
- For every such combination play like in situation with smallest maximal energy level before next drop below t

$\exists t \Rightarrow \exists cap$

- But: every time energy level increases above threshold t on average, it drops below t later
- Crossings are characterized by vertex v and energy level in range $t + 1, \ldots, t + W$
- For every such combination play like in situation with smallest maximal energy level before next drop below t

This strategy bounds the energy level by some *cap*.

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0, 5)$$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0, 5)$$
 $(v_2, 4)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$ $(v_0,5)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$ $(v_0,5)$ $(v_2,4)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$ $(v_0,5)$ $(v_2,4)$ $(v_0,4)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$ $(v_0,5)$ $(v_2,4)$ $(v_0,4)$ $(v_1,3)$

- Previsouly: positive and negative weights
- Now: only negative weights and recharge edges that recharge to a fixed capacity *cap*.

$$(v_0,5)$$
 $(v_2,4)$ $(v_1,1)$ $(v_0,5)$ $(v_2,4)$ $(v_0,4)$ $(v_1,3)$...

■ RE(*cap*) = {
$$v_0v_1 \cdots | \forall n. \text{EL}_{cap}(v_0 \cdots v_n) \ge 0$$
}
■ AR(*cap*, *t*) = RE(*cap*) ∩
{ $v_0v_1 \cdots | \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \text{EL}_{cap}(v_0 \cdots v_i) \le t$ }

■ RE(*cap*) = {
$$v_0v_1 \cdots | \forall n. \text{EL}_{cap}(v_0 \cdots v_n) \ge 0$$
}
■ AR(*cap*, *t*) = RE(*cap*) ∩
{ $v_0v_1 \cdots | \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \text{EL}_{cap}(v_0 \cdots v_i) \le t$ }

Theorem

The problem

Input: Weighted arena \mathcal{A} , $cap \in \mathbb{N}$, and $t \in \mathbb{N}$. **Question**: Does Player 0 win $(\mathcal{A}, AR(cap, t))$?

is EXPTIME-complete.

■ RE(*cap*) = {
$$v_0v_1 \cdots | \forall n. \text{EL}_{cap}(v_0 \cdots v_n) \ge 0$$
}
■ AR(*cap*, *t*) = RE(*cap*) ∩
{ $v_0v_1 \cdots | \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \text{EL}_{cap}(v_0 \cdots v_i) \le t$ }

Theorem

The problem

Input: Weighted arena A, $cap \in \mathbb{N}$, and $t \in \mathbb{N}$. **Question**: Does Player 0 win (A, AR(cap, t))?

is EXPTIME-complete.

Proof:

Upper bound: Reduction to mean-payoff games. Lower bound: Reduction from countdown games.

Proof Sketch

A countdown game. Objective: reach v_{\perp} with energy-level -cap for some given $cap \in \mathbb{N}$.

Proof Sketch

A countdown game. Objective: reach v_{\perp} with energy-level -cap for some given $cap \in \mathbb{N}$.

Theorem (Jurdziński, Sproston, Laroussini '08) Solving countdown games is EXPTIME-complete.

Proof Sketch

A countdown game. Objective: reach v_{\perp} with energy-level -cap for some given $cap \in \mathbb{N}$.

Theorem (Jurdziński, Sproston, Laroussini '08)

Solving countdown games is EXPTIME-complete.

Turn countdown game into average bounded recharge game: capacity *cap* and threshold 0.

Who is to Blame?

Theorem

Solving average-bounded recharge games with existentially quantified capacity and a given threshold is EXPTIME-hard.

Theorem

Solving average-bounded recharge games with existentially quantified capacity and a given threshold is EXPTIME-hard.

Theorem

The problem

Input: Weighted arena \mathcal{A}

Question: Exists a capacity cap s.t. Player 0 wins (A, RE(cap))? is in PTIME.

Tradeoffs: Capacity vs. Average

- Available loops depend on capacity
- Tradeoff not monotonic
- Cause of tradeoff: recharge to *cap* at recharge-edges

Tradeoffs: Average vs. Memory

With *n* memory states, use self-loop *n* - 1 times
Then, recharge to level *cap*

We started the investigation of average-energy and recharge games with existentially quantified bounds.

Many problems remain open:

Show that games with winning condition AE_L are decidable..

We started the investigation of average-energy and recharge games with existentially quantified bounds.

Many problems remain open:

Show that games with winning condition AE_L are decidable.. maybe by a refinement of our technique for lower-bounded average-energy games with existentially quantified threshold

We started the investigation of average-energy and recharge games with existentially quantified bounds.

Many problems remain open:

- Show that games with winning condition AE_L are decidable.. maybe by a refinement of our technique for lower-bounded average-energy games with existentially quantified threshold
- Give a lower bound on solving lower-bounded average-energy games with existentially quantified threshold

We started the investigation of average-energy and recharge games with existentially quantified bounds.

Many problems remain open:

- Show that games with winning condition AE_L are decidable.. maybe by a refinement of our technique for lower-bounded average-energy games with existentially quantified threshold
- Give a lower bound on solving lower-bounded average-energy games with existentially quantified threshold
- Study tradeoffs, in particular upper bounds

We started the investigation of average-energy and recharge games with existentially quantified bounds.

Many problems remain open:

- Show that games with winning condition AE_L are decidable.. maybe by a refinement of our technique for lower-bounded average-energy games with existentially quantified threshold
- Give a lower bound on solving lower-bounded average-energy games with existentially quantified threshold
- Study tradeoffs, in particular upper bounds
- Multi-dimensional games