
Solving Infinite Games with Bounds

Martin Zimmermann

RWTH Aachen University

&

University of Warsaw

February 27th, 2012

Oberseminar Informatik

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 1/27



Introduction

Verification and synthesis of reactive systems:

non-terminating,

dealing with an antagonistic environment.
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Introduction

Verification and synthesis of reactive systems:

non-terminating,

dealing with an antagonistic environment.

Game-theoretic view:

(infinite) game between system and environment,

specification determines the winner.

Abstract model: graph-based games of infinite duration.

Our focus: synthesize not only correct, but optimal systems. Here,
optimality depends on context:

Size of system (memory requirements).

Response times (quality of the system).

Generality (allows refinements).
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Infinite Games

Arena A = (V , V0, V1, E ):

finite directed graph (V , E ),

V0 ⊆ V positions of Player 0 (circles),

V1 = V \ V0 positions of Player 1 (squares).

10 2

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 5/27



Infinite Games

Arena A = (V , V0, V1, E ):

finite directed graph (V , E ),

V0 ⊆ V positions of Player 0 (circles),

V1 = V \ V0 positions of Player 1 (squares).

10 2

Play: infinite path ρ0ρ1 · · · through A.

Strategy for Player i : σ : V ∗Vi → V s.t. (v , σ(wv)) ∈ E .

ρ0ρ1 · · · consistent with σ: ρn+1 = σ(ρ0 · · · ρn) for all n s.t.
ρn ∈ Vi .

Finite-state strategy: implemented by finite automaton with
output reading play prefixes.
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Infinite Games cont’d

Game: (A, Win), with Win ⊆ V ω winning plays for Player 0
(V ω \ Win winning plays for Player 1).

Winning strategy σ for Player i from v : every play consistent
with σ starting in v is winning for her.

Winning region of Player i : set of vertices from which she has
a winning strategy.
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Infinite Games cont’d

Game: (A, Win), with Win ⊆ V ω winning plays for Player 0
(V ω \ Win winning plays for Player 1).

Winning strategy σ for Player i from v : every play consistent
with σ starting in v is winning for her.

Winning region of Player i : set of vertices from which she has
a winning strategy.

Example

10 2 Win = {0, 1}ω

Winning region of Player 0: {0, 1},

Winning strategy: from 1 always move to 0.
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PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, x ∈ X , y ∈ Y (X ∩ Y = ∅).

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ
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PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, x ∈ X , y ∈ Y (X ∩ Y = ∅).

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ

Semantics w.r.t. variable valuation α : X ∪ Y → N:

As usual for LTL operators.

(ρ, n, α) |= F≤xϕ: ρ
n n + α(x)

ϕ

(ρ, n, α) |= G≤yϕ: ρ
n n + α(y)

ϕ ϕ ϕ ϕ ϕ
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PLTL: Syntax and Semantics

Parametric LTL: p atomic proposition, x ∈ X , y ∈ Y (X ∩ Y = ∅).

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ

Semantics w.r.t. variable valuation α : X ∪ Y → N:

As usual for LTL operators.

(ρ, n, α) |= F≤xϕ: ρ
n n + α(x)

ϕ

(ρ, n, α) |= G≤yϕ: ρ
n n + α(y)

ϕ ϕ ϕ ϕ ϕ

Example:

Parameterized Büchi: GF≤xp

Parameterized request-response: G(q → F≤xp)
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PLTL Games

PLTL game: G = (A, v0, ϕ) with arena A (labeled by ℓ : V → 2P),
initial vertex v0, and PLTL formula ϕ.
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PLTL Games

PLTL game: G = (A, v0, ϕ) with arena A (labeled by ℓ : V → 2P),
initial vertex v0, and PLTL formula ϕ.

Rules:

All plays start in v0.

Player 0 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) |= ϕ.

Player 1 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) 6|= ϕ.
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PLTL Games

PLTL game: G = (A, v0, ϕ) with arena A (labeled by ℓ : V → 2P),
initial vertex v0, and PLTL formula ϕ.

Rules:

All plays start in v0.

Player 0 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) |= ϕ.

Player 1 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) 6|= ϕ.

σ is winning strategy for Player i w.r.t. α, if every consistent
play is winning for Player i w.r.t. α.

Winning valuations for Player i

Wi (G) = {α | Player i has winning strategy for G w.r.t. α}
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PLTL Games

PLTL game: G = (A, v0, ϕ) with arena A (labeled by ℓ : V → 2P),
initial vertex v0, and PLTL formula ϕ.

Rules:

All plays start in v0.

Player 0 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) |= ϕ.

Player 1 wins ρ0ρ1 · · · w.r.t. α, if (ℓ(ρ0)ℓ(ρ1) · · · , α) 6|= ϕ.

σ is winning strategy for Player i w.r.t. α, if every consistent
play is winning for Player i w.r.t. α.

Winning valuations for Player i

Wi (G) = {α | Player i has winning strategy for G w.r.t. α}

Lemma
Determinacy: W0(G) is the complement of W1(G).
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Decision Problems

Membership: given G, i ∈ {0, 1}, and α, is α ∈ Wi (G)?

Emptiness: given G and i ∈ {0, 1}, is Wi (G) empty?

Finiteness: given G and i ∈ {0, 1}, is Wi (G) finite?

Universality: given G and i ∈ {0, 1}, is Wi (G) universal?
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Emptiness: given G and i ∈ {0, 1}, is Wi (G) empty?

Finiteness: given G and i ∈ {0, 1}, is Wi (G) finite?

Universality: given G and i ∈ {0, 1}, is Wi (G) universal?

The benchmark:

Theorem (Pnueli, Rosner 1989)

Solving LTL games is 2Exptime-complete.
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Decision Problems

Membership: given G, i ∈ {0, 1}, and α, is α ∈ Wi (G)?

Emptiness: given G and i ∈ {0, 1}, is Wi (G) empty?

Finiteness: given G and i ∈ {0, 1}, is Wi (G) finite?

Universality: given G and i ∈ {0, 1}, is Wi (G) universal?

The benchmark:

Theorem (Pnueli, Rosner 1989)

Solving LTL games is 2Exptime-complete.

Adding parameterized operators does not increase complexity:

Theorem (Z. 2011)

All four decision problems are 2Exptime-complete.
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Optimization Problems

PLTLF: no parameterized always operators G≤y .
PLTLG: no parameterized eventually operators F≤x .
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Optimization Problems

PLTLF: no parameterized always operators G≤y .
PLTLG: no parameterized eventually operators F≤x .

Theorem (Z. 2011)

Let GF be a PLTLF game with winning condition ϕF and let GG be
a PLTLG game with winning condition ϕG. The following values
(and winning strategies realizing them) can be computed in
triply-exponential time.

1. minα∈W0(GF) minx∈var(ϕF) α(x).
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Optimization Problems

PLTLF: no parameterized always operators G≤y .
PLTLG: no parameterized eventually operators F≤x .

Theorem (Z. 2011)

Let GF be a PLTLF game with winning condition ϕF and let GG be
a PLTLG game with winning condition ϕG. The following values
(and winning strategies realizing them) can be computed in
triply-exponential time.

1. minα∈W0(GF) minx∈var(ϕF) α(x).

2. minα∈W0(GF) maxx∈var(ϕF) α(x).

3. maxα∈W0(GG) maxy∈var(ϕG) α(y).

4. maxα∈W0(GG) miny∈var(ϕG) α(y).

Also: doubly-exponential upper and lower bounds on these values.
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Muller Games

Muller game (A,F0,F1):

Arena A and partition (F0,F1) containing the loops of A.

Player i wins ρ iff Inf(ρ) = {v | ∃ωn s.t. ρn = v} ∈ Fi .
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Muller Games

Muller game (A,F0,F1):

Arena A and partition (F0,F1) containing the loops of A.

Player i wins ρ iff Inf(ρ) = {v | ∃ωn s.t. ρn = v} ∈ Fi .

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = {{0, 1}, {1, 2}}

Player 0 has a winning strategy from every vertex: alternate
between 0 and 2.
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McNaughton’s Idea

Robert McNaughton: Playing Infinite Games in Finite Time. In:
A Half-Century of Automata Theory, World Scientific (2000).

We believe that infinite games might have an interest for
casual living-room recreation.

Problem: it takes a long time to play an infinite game!
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McNaughton’s Idea

Robert McNaughton: Playing Infinite Games in Finite Time. In:
A Half-Century of Automata Theory, World Scientific (2000).

We believe that infinite games might have an interest for
casual living-room recreation.

Problem: it takes a long time to play an infinite game! Thus:

Scoring functions for Muller games.

Use threshold score to define finite-duration variant.

McNaughton 2000: if threshold is large enough, then the
finite-duration game has the same winning regions as the
infinite-duration game.

Question
Minimal threshold that guarantees the same winning regions?
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0}

Acc{0}

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1

Acc{0} ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2

Acc{0} ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0

Acc{0} ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1

Acc{0} ∅ ∅ ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

Acc{0,1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0

Acc{0,1} {0}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0

Acc{0,1} {0} {0}

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 15/27



Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1

Acc{0,1} {0} {0} ∅
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1

Acc{0,1} {0} {0} ∅ {1}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2

Acc{0,1} {0} {0} ∅ {1} ∅
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2

Acc{0,1} {0} {0} ∅ {1} ∅ {0}
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3

Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0

Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅
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Scores and Accumulators

For F ⊆ V define ScF : V + → N and AccF : V + → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

Example:

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0

Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) = ∞.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 15/27



Finite-Time Muller Games

Two properties of scoring functions:

1. If you play long enough (i.e., k |V | steps), some score will be
high (i.e., k).

2. At most one score can increase at a time.
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Finite-Time Muller Games

Two properties of scoring functions:

1. If you play long enough (i.e., k |V | steps), some score will be
high (i.e., k).

2. At most one score can increase at a time.

Definition
Finite-time Muller game: (A,F0,F1, k) with threshold k ≥ 2.

Rules:

Stop play w as soon as score of k is reached for the first time.

There is a unique F such that ScF (w) = k (see above).

Player i wins w iff F ∈ Fi .
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An Example

0 1 2

3

F0 = {{0, 1}, {1, 2},
{0, 1, 2, 3}}

F1 = {{0, 1, 2}, {0, 2, 3}}

Player 0 wins from every vertex: move to 1 and 3 alternatingly.
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An Example

0 1 2

3

F0 = {{0, 1}, {1, 2},
{0, 1, 2, 3}}

F1 = {{0, 1, 2}, {0, 2, 3}}

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Winning strategy for Player 1 from vertex 3 for (A,F0,F1, 2):

3
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An Example

0 1 2

3

F0 = {{0, 1}, {1, 2},
{0, 1, 2, 3}}

F1 = {{0, 1, 2}, {0, 2, 3}}

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Winning strategy for Player 1 from vertex 3 for (A,F0,F1, 2):

3 0 2

1 0 1 2 Sc{0,1,2} = 2

3 0 2 Sc{0,2,3} = 2

Winning regions are not equal!
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Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s
finite-time Muller game coincide.
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Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s
finite-time Muller game coincide.

Theorem (Fearnley, Z. 2010)

The winning regions in a Muller game (A,F0,F1) and in the
finite-time Muller game (A,F0,F1, 3) coincide.

Stronger statement, which implies the theorem:

Lemma
On her winning region in a Muller game, Player i can prevent her
opponent from ever reaching a score of 3 for some set F ∈ F1−i .
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Comparison of Results

Playing Muller games in finite time in an arena with n vertices:

Variant Threshold Maximal play length
upper bound lower bound

McNaughton |F|!+1
∏n

j=1(j! + 1) 1
2

∏n
j=1(j! + 1)
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Comparison of Results

Playing Muller games in finite time in an arena with n vertices:

Variant Threshold Maximal play length
upper bound lower bound

McNaughton |F|!+1
∏n

j=1(j! + 1) 1
2

∏n
j=1(j! + 1)

LAR-Reduction n/a n · n! + 1 n · n! ∗

Fearnley, Z. 3 3n 3n − 1

∗ Due to Chaturvedi.

Teaser (Fridman, Z.)
In pushdown parity games: exponential threshold (stair-) score
yields equivalent finite-duration variant.
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1. Preliminaries

2. Synthesis from Parametric LTL Specifications

3. Playing Muller Games in Finite Time

4. Reductions Down the Borel Hierarchy
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Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 21/27



Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Definition
Safety game (A, F ) with
F ⊆ V : Player 0 wins play ρ

if no vertex in F is visited.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 21/27



Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Definition
Safety game (A, F ) with
F ⊆ V : Player 0 wins play ρ

if no vertex in F is visited.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 21/27



Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Definition
Safety game (A, F ) with
F ⊆ V : Player 0 wins play ρ

if no vertex in F is visited.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 21/27



Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Definition
Safety game (A, F ) with
F ⊆ V : Player 0 wins play ρ

if no vertex in F is visited.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 21/27



Game Reductions

Reduce complicated game G to simpler game G′: every play in G is
mapped (continuously) to play in G′ that has the same winner.

Solving G′ yields

both winning regions of G and
corresponding finite-state winning strategies for both players.

Definition
Safety game (A, F ) with
F ⊆ V : Player 0 wins play ρ

if no vertex in F is visited.

Remark
Muller games cannot be reduced to safety games.
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Reducing Muller Games to Safety Games

Lemma
On her winning region in a Muller game, Player i can prevent her
opponent from ever reaching a score of 3 for some set F ∈ F1−i .

Thus: v is in Player 0’s winning region iff she can prevent Player 1
from reaching a score of 3 starting at v . Safety condition!
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Reducing Muller Games to Safety Games

Lemma
On her winning region in a Muller game, Player i can prevent her
opponent from ever reaching a score of 3 for some set F ∈ F1−i .

Thus: v is in Player 0’s winning region iff she can prevent Player 1
from reaching a score of 3 starting at v . Safety condition!

Construction:

Ignore scores of Player 0.

Identify plays having the same scores and accumulators for
Player 1: w =F1 w ′ iff last(w) = last(w ′) and for all F ∈ F1:

ScF (w) = ScF (w ′) and AccF (w) = Acc(w ′)

Build =F1-quotient of unravelling up to score 3 for Player 1.

Winning condition for Player 0: avoid ScF = 3 for all F ∈ F1.
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Results

Theorem (Neider, Rabinovich, Z. 2011)

1. v is in Player i ’s winning region in the Muller game iff [v ]=F1

is in her winning region in the safety game.

2. Player 0’s winning region in the safety game can be turned
into finite-state winning strategy for her in the Muller game.

3. Size of the safety game: (n!)3.
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Results

Theorem (Neider, Rabinovich, Z. 2011)

1. v is in Player i ’s winning region in the Muller game iff [v ]=F1

is in her winning region in the safety game.

2. Player 0’s winning region in the safety game can be turned
into finite-state winning strategy for her in the Muller game.

3. Size of the safety game: (n!)3.

Remarks:

Size of parity game in LAR-reduction n!. But: simpler
algorithms for safety games.

2. does not hold for Player 1.

Not a reduction in the classical sense: not every play of the
Muller game can be mapped to a play in the safety game.
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Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

[10101]

[12121]

[1010]

[1212]

[10010]

[12212]

[101010]

[100101]

[122121]

[121212]
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[100]
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[1001]

[1221]

[0]

[1]

[2]

[10]
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[01]

[21]
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Pick a winning strategy for the safety game.
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Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = {{0, 1}, {1, 2}}

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

[100]

[122]

[1001]

[1221]

2

0

1

2

1

2

0

1

2

1

0

2
0

1

2

10

2 0

Pick a winning strategy for the safety game. This “is” a finite-state
winning strategy for the Muller game.
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Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

0

2

1

1

02

Even better: only use “maximal” elements, yields smaller memory.
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Overview of Results

PLTL games:

Does Player 0 win w.r.t. some, infinitely many, or all bounds:
2Exptime-complete (not harder than solving LTL games).

Determine optimal bounds: in 3Exptime, 2Exptime-hard.
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Pushdown arenas: exponential threshold stair-score.
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Overview of Results

PLTL games:

Does Player 0 win w.r.t. some, infinitely many, or all bounds:
2Exptime-complete (not harder than solving LTL games).

Determine optimal bounds: in 3Exptime, 2Exptime-hard.

Finite-time Muller games:

Finite-time Muller game with threshold score 3 equivalent to
original Muller game (threshold 3 is optimal).

Pushdown arenas: exponential threshold stair-score.

Reducing Muller games to safety games:

Reduce Muller game to safety game of size (n!)3, yields
winning regions and one (permissive) winning strategy.

Generalization for Büchi, co-Büchi, request-response, parity,
Rabin, Streett, etc.: yields winning regions and one strategy.
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Further Research and Open Questions

PLTL games:

2Exptime algorithm for optimization problems?
Tradeoff between size and quality of a finite-state strategy?
Emptiness problem here: ∃σ∃α∀ρ.(ρ, α) |= ϕ. Non-uniform
PLTL games: ∃σ∀ρ∃α (reminiscent of finitary objectives).
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Finite-time Muller games:

Better bounds on scores for losing player (2 + empty acc’s?).
Can LAR or Zielonka tree strategies bound scores by 2?
Conjecture: there is always a minimal finite-state strategy
that bounds the scores by 2 (no tradeoff size vs. quality).
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Emptiness problem here: ∃σ∃α∀ρ.(ρ, α) |= ϕ. Non-uniform
PLTL games: ∃σ∀ρ∃α (reminiscent of finitary objectives).

Finite-time Muller games:

Better bounds on scores for losing player (2 + empty acc’s?).
Can LAR or Zielonka tree strategies bound scores by 2?
Conjecture: there is always a minimal finite-state strategy
that bounds the scores by 2 (no tradeoff size vs. quality).

Reducing Muller games to safety games:

Find “good” winning strategies for safety game GS that yield
small finite-state winning strategies for Muller game G.
Progress measure algorithm for Muller games?
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Pushdown Arenas

Here: parity games on pushdown arenas (already non-trivial).

· · ·

· · ·

· · ·
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· · ·

Walukiewicz 1996: turn parity game P on pushdown arena into
finite parity game G with the same winner.

Positional determinacy: G can be stopped after loop is closed.

Define stair-scores for P.

Scores in G correspond to stair-scores in P.

Use threshold |G| (exponential in the size of PDA inducing P).
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Pushdown Arenas

Here: parity games on pushdown arenas (already non-trivial).

· · ·

· · ·

· · ·

Walukiewicz 1996: turn parity game P on pushdown arena into
finite parity game G with the same winner.

Positional determinacy: G can be stopped after loop is closed.

Define stair-scores for P.

Scores in G correspond to stair-scores in P.

Use threshold |G| (exponential in the size of PDA inducing P).

Theorem (Fridman, Z.)

Player i wins P iff she wins the finite-duration version.
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Pushdown Arenas con’t

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

mod2

mod3
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Pushdown Arenas con’t

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

mod2

mod3

For first n primes p1, . . . , pn: Player 0 has to reach stack height∏n
j=1 pj ≈ e(1+o(1))n log n in upper row: cannot prevent losing player

from reaching exponentially high scores (in the number of states).
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Safety Reductions

Definition
G = (A, Win) with vertex set V is safety reducible, if there is a
regular L ⊆ V ∗ such that:

For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈ Win.

If v ∈ W0(G), then Player 0 has a strategy σ with Pref(ρ) ⊆ L
for every ρ consistent with σ and starting in v .
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Safety Reductions

Definition
G = (A, Win) with vertex set V is safety reducible, if there is a
regular L ⊆ V ∗ such that:

For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈ Win.

If v ∈ W0(G), then Player 0 has a strategy σ with Pref(ρ) ⊆ L
for every ρ consistent with σ and starting in v .

Theorem (Neider, Rabinovich, Z. 2011)

G safety reducible with L(A) ⊆ V ∗ for DFA A = (Q, V , q0, δ, F ).
Define the safety game GS = (A× A, V × F ). Then:

1. v is in Player 0’s winning region in G iff (v , δ(q0, v)) is in her
winning region in GS .

2. Player 0 has a finite-state winning strategy for her winning
region in G with memory states Q.

Martin Zimmermann RWTH Aachen University Solving Infinite Games with Bounds 3/4



Safety Reductions: Applications

Reachability games: reach F after |V \ F | steps.

Büchi games: reach F every |V \ F | steps.

co-Büchi games: avoid visiting v ∈ V \ F twice.

Request-response games and poset games: bound waiting
times (Horn, Thomas, Wallmeier 2008; Zimmermann 2009).

parity, Rabin, Streett games: progress measure algorithms “are”
safety reductions (Jurdziński 2000; Piterman, Pnueli 2006).

Muller games: bound scores.

If you can solve safety games, you can solve all these games.
Caveat: safety games will be larger than original game.
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