Solving Infinite Games with Bounds

Martin Zimmermann

RWTH Aachen University & University of Warsaw

February 27th, 2012

Oberseminar Informatik

Introduction

Verification and synthesis of reactive systems:

- non-terminating,
- dealing with an antagonistic environment.

Introduction

Verification and synthesis of reactive systems:

- non-terminating,
- dealing with an antagonistic environment.

Game-theoretic view:

- (infinite) game between system and environment,
- specification determines the winner.

Abstract model: graph-based games of infinite duration.

Introduction

Verification and synthesis of reactive systems:

- non-terminating,
- dealing with an antagonistic environment.

Game-theoretic view:

- (infinite) game between system and environment,
- specification determines the winner.

Abstract model: graph-based games of infinite duration.

Our focus: synthesize not only correct, but optimal systems. Here, optimality depends on context:

- Size of system (memory requirements).
- Response times (quality of the system).
- Generality (allows refinements).

Outline

- 1. Preliminaries
- 2. Synthesis from Parametric LTL Specifications
- 3. Playing Muller Games in Finite Time
- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion

1. Preliminaries

- 2. Synthesis from Parametric LTL Specifications
- 3. Playing Muller Games in Finite Time
- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion

Infinite Games

Arena $\mathcal{A} = (V, V_0, V_1, E)$:

- finite directed graph (V, E),
- $V_0 \subseteq V$ positions of Player 0 (circles),
- $V_1 = V \setminus V_0$ positions of Player 1 (squares).

Infinite Games

Arena $\mathcal{A} = (V, V_0, V_1, E)$:

- finite directed graph (V, E),
- $V_0 \subseteq V$ positions of Player 0 (circles),
- $V_1 = V \setminus V_0$ positions of Player 1 (squares).

- Play: infinite path $\rho_0 \rho_1 \cdots$ through \mathcal{A} .
- Strategy for Player *i*: σ : $V^*V_i \rightarrow V$ s.t. $(v, \sigma(wv)) \in E$.
- $\rho_0 \rho_1 \cdots$ consistent with $\sigma: \rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all *n* s.t. $\rho_n \in V_i$.
- Finite-state strategy: implemented by finite automaton with output reading play prefixes.

Infinite Games cont'd

Game: (\mathcal{A} , Win), with Win $\subseteq V^{\omega}$ winning plays for Player 0 ($V^{\omega} \setminus Win$ winning plays for Player 1).

- Winning strategy σ for Player i from v: every play consistent with σ starting in v is winning for her.
- Winning region of Player *i*: set of vertices from which she has a winning strategy.

Infinite Games cont'd

Game: (\mathcal{A} , Win), with Win $\subseteq V^{\omega}$ winning plays for Player 0 ($V^{\omega} \setminus Win$ winning plays for Player 1).

- Winning strategy σ for Player i from v: every play consistent with σ starting in v is winning for her.
- Winning region of Player *i*: set of vertices from which she has a winning strategy.

$$C$$
 1 2 $Win = \{0, 1\}^{\omega}$

- Winning region of Player 0: $\{0,1\}$,
- Winning strategy: from 1 always move to 0.

Outline

1. Preliminaries

2. Synthesis from Parametric LTL Specifications

- 3. Playing Muller Games in Finite Time
- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion

PLTL: Syntax and Semantics

Parametric LTL: *p* atomic proposition, $x \in \mathcal{X}$, $y \in \mathcal{Y}$ ($\mathcal{X} \cap \mathcal{Y} = \emptyset$). • $\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi | \varphi \mathbf{R} \varphi | \mathbf{F}_{<x} \varphi | \mathbf{G}_{<y} \varphi$

PLTL: Syntax and Semantics

Parametric LTL: *p* atomic proposition, $x \in \mathcal{X}$, $y \in \mathcal{Y}$ ($\mathcal{X} \cap \mathcal{Y} = \emptyset$). • $\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi | \mathbf{X}\varphi | \varphi \mathbf{U}\varphi | \varphi \mathbf{R}\varphi | \mathbf{F}_{\leq x}\varphi | \mathbf{G}_{\leq y}\varphi$

Semantics w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$:

As usual for LTL operators.

•
$$(\rho, n, \alpha) \models \mathbf{F}_{\leq x} \varphi$$
: $\rho_{1} \dots \vdash \begin{array}{c} \varphi \\ n \\ n \\ + \alpha(x) \end{array}$
• $(\rho, n, \alpha) \models \mathbf{G}_{\leq y} \varphi$: $\rho_{1} \dots \vdash \begin{array}{c} \varphi \\ n \\ + \alpha(y) \end{array}$

PLTL: Syntax and Semantics

Parametric LTL: *p* atomic proposition, $x \in \mathcal{X}$, $y \in \mathcal{Y}$ ($\mathcal{X} \cap \mathcal{Y} = \emptyset$). • $\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi | \varphi \mathbf{R} \varphi | \mathbf{F}_{\leq x} \varphi | \mathbf{G}_{\leq y} \varphi$

Semantics w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$:

As usual for LTL operators.

•
$$(\rho, n, \alpha) \models \mathbf{F}_{\leq x} \varphi: \rho_{1} \cdots \mapsto n \xrightarrow{\varphi} n + \alpha(x)$$

• $(\rho, n, \alpha) \models \mathbf{G}_{\leq y} \varphi: \rho_{1} \cdots \mapsto n \xrightarrow{\varphi} q \xrightarrow{\varphi} q \xrightarrow{\varphi} q$

- Parameterized Büchi: **GF**_{≤x}*p*
- Parameterized request-response: $G(q \rightarrow F_{\leq x}p)$

PLTL game: $\mathcal{G} = (\mathcal{A}, v_0, \varphi)$ with arena \mathcal{A} (labeled by $\ell \colon V \to 2^P$), initial vertex v_0 , and PLTL formula φ .

PLTL game: $\mathcal{G} = (\mathcal{A}, v_0, \varphi)$ with arena \mathcal{A} (labeled by $\ell : V \to 2^P$), initial vertex v_0 , and PLTL formula φ .

Rules:

- All plays start in v_0 .
- Player 0 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots, \alpha) \models \varphi$.
- Player 1 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots,\alpha) \not\models \varphi$.

PLTL game: $\mathcal{G} = (\mathcal{A}, v_0, \varphi)$ with arena \mathcal{A} (labeled by $\ell \colon V \to 2^P$), initial vertex v_0 , and PLTL formula φ .

Rules:

- All plays start in v_0 .
- Player 0 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots, \alpha) \models \varphi$.
- Player 1 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots, \alpha) \not\models \varphi$.
- σ is winning strategy for Player *i* w.r.t. α , if every consistent play is winning for Player *i* w.r.t. α .
- Winning valuations for Player i

 $\mathcal{W}_i(\mathcal{G}) = \{ \alpha \mid \text{Player } i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \}$

PLTL game: $\mathcal{G} = (\mathcal{A}, v_0, \varphi)$ with arena \mathcal{A} (labeled by $\ell \colon V \to 2^P$), initial vertex v_0 , and PLTL formula φ .

Rules:

- All plays start in v_0 .
- Player 0 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots, \alpha) \models \varphi$.
- Player 1 wins $\rho_0 \rho_1 \cdots$ w.r.t. α , if $(\ell(\rho_0)\ell(\rho_1)\cdots, \alpha) \not\models \varphi$.
- σ is winning strategy for Player *i* w.r.t. α , if every consistent play is winning for Player *i* w.r.t. α .
- Winning valuations for Player i

 $\mathcal{W}_i(\mathcal{G}) = \{ \alpha \mid \text{Player } i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \}$

Lemma

Determinacy: $W_0(\mathcal{G})$ is the complement of $W_1(\mathcal{G})$.

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0,1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

The benchmark:

Theorem (Pnueli, Rosner 1989)

Solving LTL games is **2EXPTIME**-complete.

Decision Problems

- Membership: given \mathcal{G} , $i \in \{0, 1\}$, and α , is $\alpha \in \mathcal{W}_i(\mathcal{G})$?
- Emptiness: given \mathcal{G} and $i \in \{0,1\}$, is $\mathcal{W}_i(\mathcal{G})$ empty?
- Finiteness: given \mathcal{G} and $i \in \{0,1\}$, is $\mathcal{W}_i(\mathcal{G})$ finite?
- Universality: given \mathcal{G} and $i \in \{0, 1\}$, is $\mathcal{W}_i(\mathcal{G})$ universal?

The benchmark:

Theorem (Pnueli, Rosner 1989)

Solving LTL games is **2EXPTIME**-complete.

Adding parameterized operators does not increase complexity:

Theorem (Z. 2011)

All four decision problems are 2EXPTIME-complete.

Optimization Problems

- $PLTL_F$: no parameterized always operators $\mathbf{G}_{\leq y}$.
- $PLTL_G$: no parameterized eventually operators $F_{\leq x}$.

Optimization Problems

- PLTL_F: no parameterized always operators **G**_{≤y}.
- **PLTL**_G: no parameterized eventually operators $\mathbf{F}_{\leq x}$.

Theorem (Z. 2011)

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL_F game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL_G game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

1. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_F)} \min_{x \in var(\varphi_F)} \alpha(x).$

Optimization Problems

- PLTL_F: no parameterized always operators **G**_{≤y}.
- **PLTL**_G: no parameterized eventually operators $\mathbf{F}_{\leq x}$.

Theorem (Z. 2011)

Let $\mathcal{G}_{\mathbf{F}}$ be a PLTL_F game with winning condition $\varphi_{\mathbf{F}}$ and let $\mathcal{G}_{\mathbf{G}}$ be a PLTL_G game with winning condition $\varphi_{\mathbf{G}}$. The following values (and winning strategies realizing them) can be computed in triply-exponential time.

- 1. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_F)} \min_{x \in \operatorname{var}(\varphi_F)} \alpha(x).$
- 2. $\min_{\alpha \in \mathcal{W}_0(\mathcal{G}_F)} \max_{x \in var(\varphi_F)} \alpha(x).$
- **3.** $\max_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathsf{G}})} \max_{y \in \operatorname{var}(\varphi_{\mathsf{G}})} \alpha(y).$
- 4. $\max_{\alpha \in \mathcal{W}_0(\mathcal{G}_{\mathbf{G}})} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$

Also: doubly-exponential upper and lower bounds on these values.

Outline

1. Preliminaries

2. Synthesis from Parametric LTL Specifications

3. Playing Muller Games in Finite Time

- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion

Muller Games

Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$:

- Arena \mathcal{A} and partition $(\mathcal{F}_0, \mathcal{F}_1)$ containing the loops of \mathcal{A} .
- Player *i* wins ρ iff $Inf(\rho) = \{v \mid \exists^{\omega} n \text{ s.t. } \rho_n = v\} \in \mathcal{F}_i$.

Muller Games

Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$:

- Arena \mathcal{A} and partition $(\mathcal{F}_0, \mathcal{F}_1)$ containing the loops of \mathcal{A} .
- Player *i* wins ρ iff $Inf(\rho) = \{v \mid \exists^{\omega} n \text{ s.t. } \rho_n = v\} \in \mathcal{F}_i$.

Running example

Player 0 has a winning strategy from every vertex: alternate between 0 and 2.

McNaughton's Idea

Robert McNaughton: *Playing Infinite Games in Finite Time*. In: *A Half-Century of Automata Theory*, World Scientific (2000).

We believe that infinite games might have an interest for casual living-room recreation.

Problem: it takes a long time to play an infinite game!

McNaughton's Idea

Robert McNaughton: *Playing Infinite Games in Finite Time*. In: *A Half-Century of Automata Theory*, World Scientific (2000).

We believe that infinite games might have an interest for casual living-room recreation.

Problem: it takes a long time to play an infinite game! Thus:

- Scoring functions for Muller games.
- Use threshold score to define finite-duration variant.
- McNaughton 2000: if threshold is large enough, then the finite-duration game has the same winning regions as the infinite-duration game.

Question

Minimal threshold that guarantees the same winning regions?

- For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:
 - Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
 - Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$								
$Acc_{\{0\}}$								
$\operatorname{Sc}_{\{0,1\}}$								
$\mathrm{Acc}_{\{0,1\}}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$ Acc_{\{0\}}	$\overset{1}{\emptyset}$							
$\frac{SC_{\{0,1\}}}{Acc_{\{0,1\}}}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø						
$\begin{array}{c}\operatorname{Sc}_{\{0,1\}}\\\operatorname{Acc}_{\{0,1\}}\end{array}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø					
$\begin{array}{c} \operatorname{Sc}_{\{0,1\}} \\ \operatorname{Acc}_{\{0,1\}} \end{array}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø				
$\begin{array}{c} {\rm Sc}_{\{0,1\}} \\ {\rm Acc}_{\{0,1\}} \end{array}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø			
$\frac{\operatorname{Sc}_{\{0,1\}}}{\operatorname{Acc}_{\{0,1\}}}$	4	4	4	<i>P</i>	P			
For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2		
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø		
Sc _{0,1}								
$\mathrm{Acc}_{\{0,1\}}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	
$\begin{array}{c} {\rm Sc}_{\{0,1\}} \\ {\rm Acc}_{\{0,1\}} \end{array}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	0 Ø
$\underset{\mathrm{Acc}_{\{0,1\}}}{\mathrm{Sc}_{\{0,1\}}}$								

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	0 Ø
$\begin{array}{c} {\rm Sc}_{\{0,1\}} \\ {\rm Acc}_{\{0,1\}} \end{array}$	0 {0}							

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	0 Ø
$\frac{\operatorname{Sc}_{\{0,1\}}}{\operatorname{Acc}_{\{0,1\}}}$	0 {0}	0 {0}						

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1\}}$	0	0	1					
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø					

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$\operatorname{Sc}_{\{0,1\}}$	0	0	1	1				
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$				

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$\operatorname{Sc}_{\{0,1\}}$	0	0	1	1	2			
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$	Ø			

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1\}}$	0	0	1	1	2	2		
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$	Ø	{0}		

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1\}}$	0	0	1	1	2	2	3	
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$	Ø	{0}	Ø	

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1\}}$	0	0	1	1	2	2	3	0
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$	Ø	{0}	Ø	Ø

For $F \subseteq V$ define $\operatorname{Sc}_F \colon V^+ \to \mathbb{N}$ and $\operatorname{Acc}_F \colon V^+ \to 2^F$. Intuition:

- Sc_F(w): maximal k ∈ N such that F is visited k times since last vertex in V \ F (reset).
- Acc_F(w): set A ⊂ F of vertices (from F) seen since last increase or reset of Sc_F.

Example:

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1\}}$	0	0	1	1	2	2	3	0
$\mathrm{Acc}_{\{0,1\}}$	{0}	{0}	Ø	$\{1\}$	Ø	{0}	Ø	Ø

Remark $F = \text{Inf}(\rho) \Leftrightarrow \liminf_{n \to \infty} \text{Sc}_F(\rho_0 \cdots \rho_n) = \infty.$

Finite-Time Muller Games

Two properties of scoring functions:

- If you play long enough (i.e., k^{|V|} steps), some score will be high (i.e., k).
- 2. At most one score can increase at a time.

Finite-Time Muller Games

Two properties of scoring functions:

- If you play long enough (i.e., k^{|V|} steps), some score will be high (i.e., k).
- 2. At most one score can increase at a time.

Definition

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ with threshold $k \geq 2$.

Rules:

- Stop play w as soon as score of k is reached for the first time.
- There is a unique F such that $Sc_F(w) = k$ (see above).
- Player *i* wins *w* iff $F \in \mathcal{F}_i$.

•
$$\mathcal{F}_0 = \{\{0,1\},\{1,2\},\ \{0,1,2,3\}\}$$

• $\mathcal{F}_1 = \{\{0,1,2\},\{0,2,3\}\}$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \checkmark 1 \rightarrow 0$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \to 0 \to 2 \xrightarrow{1 \to 0 \to 1}$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \to 0 \to 2 \checkmark 1 \to 0 \to 1 \to 2$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \xrightarrow{1 \rightarrow 0 \rightarrow 1 \rightarrow 2} \underbrace{\operatorname{Sc}_{\{0,1,2\}} = 2}_{\operatorname{Sc}_{\{0,1,2\}}}$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \stackrel{1 \rightarrow 0 \rightarrow 1 \rightarrow 2}{\underset{3}{\overset{\text{Sc}_{\{0,1,2\}}=2}{\overset{\text{Sc}_{\{0,1,2\}}$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \overbrace{\qquad \qquad 3 \rightarrow 0}^{1 \rightarrow 0 \rightarrow 1 \rightarrow 2} \underbrace{\operatorname{Sc}_{\{0,1,2\}} = 2}_{3 \rightarrow 0}$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \xrightarrow{1 \rightarrow 0 \rightarrow 1 \rightarrow 2} \underbrace{\operatorname{Sc}_{\{0,1,2\}} = 2}_{3 \rightarrow 0 \rightarrow 2}$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

$$3 \rightarrow 0 \rightarrow 2 \checkmark 1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \checkmark \text{Sc}_{\{0,1,2\}} = 2$$
$$3 \rightarrow 0 \rightarrow 2 \checkmark \text{Sc}_{\{0,2,3\}} = 2$$

Player 0 wins from every vertex: move to 1 and 3 alternatingly.

Winning strategy for Player 1 from vertex 3 for $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, 2)$:

$$3 \rightarrow 0 \rightarrow 2 \xrightarrow{1 \rightarrow 0 \rightarrow 1 \rightarrow 2} \underbrace{\operatorname{Sc}_{\{0,1,2\}} = 2}_{3 \rightarrow 0 \rightarrow 2} \xrightarrow{\operatorname{Sc}_{\{0,2,3\}} = 2}$$

Winning regions are not equal!

Results

McNaughton's version: stop play when some Sc_F reaches |F|! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton's finite-time Muller game coincide.

Results

McNaughton's version: stop play when some Sc_F reaches |F|! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton's finite-time Muller game coincide.

Theorem (Fearnley, Z. 2010)

The winning regions in a Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ and in the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, 3)$ coincide.

Results

McNaughton's version: stop play when some Sc_F reaches |F|! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton's finite-time Muller game coincide.

Theorem (Fearnley, Z. 2010)

The winning regions in a Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ and in the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, 3)$ coincide.

Stronger statement, which implies the theorem:

Lemma

On her winning region in a Muller game, Player i can prevent her opponent from ever reaching a score of 3 for some set $F \in \mathcal{F}_{1-i}$.

Playing Muller games in finite time in an arena with n vertices:

Variant	Threshold	Maximal play length	
		upper bound	lower bound
McNaughton	F !+1	$\prod_{j=1}^{n} (j!+1)$	$\frac{\frac{1}{2}\prod_{j=1}^{n}(j!+1)}{1}$

Playing Muller games in finite time in an arena with n vertices:

Variant	Threshold	Maximal	kimal play length	
		upper bound	lower bound	
McNaughton	F !+1	$\prod_{j=1}^{n} (j!+1)$	$\frac{1}{2}\prod_{j=1}^n(j!+1)$	
LAR-Reduction	n/a	$n \cdot n! + 1$	<i>n</i> ∙ <i>n</i> ! *	

* Due to Chaturvedi.

Playing Muller games in finite time in an arena with n vertices:

Variant	Threshold	Maximal play length	
		upper bound	lower bound
McNaughton	F !+1	$\prod_{j=1}^{n}(j!+1)$	$\frac{1}{2}\prod_{j=1}^n(j!+1)$
LAR-Reduction	n/a	$n \cdot n! + 1$	<i>n</i> ∙ <i>n</i> ! *
Fearnley, Z.	3	3 ⁿ	$3^{n} - 1$

* Due to Chaturvedi.

Playing Muller games in finite time in an arena with n vertices:

Variant	Threshold	Maximal play length	
		upper bound	lower bound
McNaughton	F !+1	$\prod_{j=1}^n (j!+1)$	$\frac{1}{2}\prod_{j=1}^n(j!+1)$
LAR-Reduction	n/a	$n \cdot n! + 1$	$n \cdot n! *$
Fearnley, Z.	3	3 ⁿ	$3^{n} - 1$

* Due to Chaturvedi.

Teaser (Fridman, Z.)

In pushdown parity games: exponential threshold (stair-) score yields equivalent finite-duration variant.

Outline

1. Preliminaries

- 2. Synthesis from Parametric LTL Specifications
- 3. Playing Muller Games in Finite Time
- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion
Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Definition

Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Definition

Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Definition

Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Definition

Reduce complicated game \mathcal{G} to simpler game \mathcal{G}' : every play in \mathcal{G} is mapped (continuously) to play in \mathcal{G}' that has the same winner.

Solving \mathcal{G}' yields

- **both** winning regions of \mathcal{G} and
- corresponding finite-state winning strategies for both players.

Definition

Safety game (\mathcal{A}, F) with $F \subseteq V$: Player 0 wins play ρ if no vertex in F is visited.

Remark

Muller games cannot be reduced to safety games.

Lemma

On her winning region in a Muller game, Player i can prevent her opponent from ever reaching a score of 3 for some set $F \in \mathcal{F}_{1-i}$.

Thus: v is in Player 0's winning region iff she can prevent Player 1 from reaching a score of 3 starting at v. Safety condition!

Lemma

On her winning region in a Muller game, Player i can prevent her opponent from ever reaching a score of 3 for some set $F \in \mathcal{F}_{1-i}$.

Thus: v is in Player 0's winning region iff she can prevent Player 1 from reaching a score of 3 starting at v. Safety condition!

Construction:

- Ignore scores of Player 0.
- Identify plays having the same scores and accumulators for Player 1: $w =_{\mathcal{F}_1} w'$ iff last(w) = last(w') and for all $F \in \mathcal{F}_1$:

$$\operatorname{Sc}_F(w) = \operatorname{Sc}_F(w')$$
 and $\operatorname{Acc}_F(w) = \operatorname{Acc}(w')$

- Build $=_{\mathcal{F}_1}$ -quotient of unravelling up to score 3 for Player 1.
- Winning condition for Player 0: avoid $Sc_F = 3$ for all $F \in \mathcal{F}_1$.

Results

Theorem (Neider, Rabinovich, Z. 2011)

- 1. v is in Player i's winning region in the Muller game iff $[v]_{=\mathcal{F}_1}$ is in her winning region in the safety game.
- 2. Player 0's winning region in the safety game can be turned into finite-state winning strategy for her in the Muller game.
- **3.** Size of the safety game: $(n!)^3$.

Results

Theorem (Neider, Rabinovich, Z. 2011)

- 1. v is in Player i's winning region in the Muller game iff $[v]_{=\mathcal{F}_1}$ is in her winning region in the safety game.
- 2. Player 0's winning region in the safety game can be turned into finite-state winning strategy for her in the Muller game.
- **3.** Size of the safety game: $(n!)^3$.

Remarks:

- Size of parity game in LAR-reduction n!. But: simpler algorithms for safety games.
- 2. does not hold for Player 1.
- Not a reduction in the classical sense: not every play of the Muller game can be mapped to a play in the safety game.

- $\mathcal{F}_0 = \{\{0, 1, 2\}, \{0\}, \{2\}\}$
- $\bullet \ \mathcal{F}_1 = \{\{0,1\},\{1,2\}\}$

Pick a winning strategy for the safety game.

Pick a winning strategy for the safety game.

Pick a winning strategy for the safety game. This "is" a finite-state winning strategy for the Muller game.

• $\mathcal{F}_0 = \{\{0, 1, 2\}, \{0\}, \{2\}\}$

•
$$\mathcal{F}_1 = \{\{0,1\},\{1,2\}\}$$

Even better: only use "maximal" elements, yields smaller memory.

Outline

1. Preliminaries

- 2. Synthesis from Parametric LTL Specifications
- 3. Playing Muller Games in Finite Time
- 4. Reductions Down the Borel Hierarchy
- 5. Conclusion

- Does Player 0 win w.r.t. some, infinitely many, or all bounds: 2EXPTIME-complete (not harder than solving LTL games).
- Determine optimal bounds: in **3EXPTIME**, **2EXPTIME**-hard.

- Does Player 0 win w.r.t. some, infinitely many, or all bounds: 2EXPTIME-complete (not harder than solving LTL games).
- Determine optimal bounds: in **3EXPTIME**, **2EXPTIME**-hard.

Finite-time Muller games:

- Finite-time Muller game with threshold score 3 equivalent to original Muller game (threshold 3 is optimal).
- Pushdown arenas: exponential threshold stair-score.

- Does Player 0 win w.r.t. some, infinitely many, or all bounds: 2EXPTIME-complete (not harder than solving LTL games).
- Determine optimal bounds: in **3EXPTIME**, **2EXPTIME**-hard.

Finite-time Muller games:

- Finite-time Muller game with threshold score 3 equivalent to original Muller game (threshold 3 is optimal).
- Pushdown arenas: exponential threshold stair-score.

Reducing Muller games to safety games:

- Reduce Muller game to safety game of size (n!)³, yields winning regions and one (permissive) winning strategy.
- Generalization for Büchi, co-Büchi, request-response, parity, Rabin, Streett, etc.: yields winning regions and one strategy.

- 2EXPTIME algorithm for optimization problems?
- Tradeoff between size and quality of a finite-state strategy?
- Emptiness problem here: $\exists \sigma \exists \alpha \forall \rho.(\rho, \alpha) \models \varphi$. Non-uniform PLTL games: $\exists \sigma \forall \rho \exists \alpha$ (reminiscent of finitary objectives).

- 2EXPTIME algorithm for optimization problems?
- Tradeoff between size and quality of a finite-state strategy?
- Emptiness problem here: $\exists \sigma \exists \alpha \forall \rho.(\rho, \alpha) \models \varphi$. Non-uniform PLTL games: $\exists \sigma \forall \rho \exists \alpha$ (reminiscent of finitary objectives).

Finite-time Muller games:

- Better bounds on scores for losing player (2 + empty acc's?).
- Can LAR or Zielonka tree strategies bound scores by 2?
- **Conjecture**: there is always a minimal finite-state strategy that bounds the scores by 2 (no tradeoff size vs. quality).

- 2EXPTIME algorithm for optimization problems?
- Tradeoff between size and quality of a finite-state strategy?
- Emptiness problem here: $\exists \sigma \exists \alpha \forall \rho.(\rho, \alpha) \models \varphi$. Non-uniform PLTL games: $\exists \sigma \forall \rho \exists \alpha$ (reminiscent of finitary objectives).

Finite-time Muller games:

- Better bounds on scores for losing player (2 + empty acc's?).
- Can LAR or Zielonka tree strategies bound scores by 2?
- Conjecture: there is always a minimal finite-state strategy that bounds the scores by 2 (no tradeoff size vs. quality).

Reducing Muller games to safety games:

- Find "good" winning strategies for safety game *G_S* that yield small finite-state winning strategies for Muller game *G*.
- Progress measure algorithm for Muller games?

Here: parity games on pushdown arenas (already non-trivial).

finite parity game ${\mathcal G}$ with the same winner.

Here: parity games on pushdown arenas (already non-trivial).

Walukiewicz 1996: turn parity game \mathfrak{P} on pushdown arena into finite parity game \mathcal{G} with the same winner.

Positional determinacy: \mathcal{G} can be stopped after loop is closed.

. . .

- Define stair-scores for \mathfrak{P} .
- Scores in \mathcal{G} correspond to stair-scores in \mathfrak{P} .
- Use threshold $|\mathcal{G}|$ (exponential in the size of PDA inducing \mathfrak{P}).

Here: parity games on pushdown arenas (already non-trivial).

Walukiewicz 1996: turn parity game \mathfrak{P} on pushdown arena into finite parity game \mathcal{G} with the same winner.

Positional determinacy: \mathcal{G} can be stopped after loop is closed.

. . .

- Define stair-scores for \mathfrak{P} .
- Scores in \mathcal{G} correspond to stair-scores in \mathfrak{P} .
- Use threshold $|\mathcal{G}|$ (exponential in the size of PDA inducing \mathfrak{P}).

Theorem (Fridman, Z.)

Player i wins \mathfrak{P} iff she wins the finite-duration version.

Pushdown Arenas con't

Pushdown Arenas con't

For first *n* primes p_1, \ldots, p_n : Player 0 has to reach stack height $\prod_{j=1}^n p_j \approx e^{(1+o(1))n \log n}$ in upper row: cannot prevent losing player from reaching exponentially high scores (in the number of states).

Definition

 $\mathcal{G} = (\mathcal{A}, Win)$ with vertex set V is safety reducible, if there is a regular $L \subseteq V^*$ such that:

• For every $\rho \in V^{\omega}$: if $\operatorname{Pref}(\rho) \subseteq L$, then $\rho \in \operatorname{Win}$.

• If $v \in W_0(\mathcal{G})$, then Player 0 has a strategy σ with $\operatorname{Pref}(\rho) \subseteq L$ for every ρ consistent with σ and starting in v.

Definition

 $\mathcal{G} = (\mathcal{A}, Win)$ with vertex set V is safety reducible, if there is a regular $L \subseteq V^*$ such that:

• For every $\rho \in V^{\omega}$: if $\operatorname{Pref}(\rho) \subseteq L$, then $\rho \in \operatorname{Win}$.

• If $v \in W_0(\mathcal{G})$, then Player 0 has a strategy σ with $\operatorname{Pref}(\rho) \subseteq L$ for every ρ consistent with σ and starting in v.

Theorem (Neider, Rabinovich, Z. 2011)

 \mathcal{G} safety reducible with $L(\mathfrak{A}) \subseteq V^*$ for DFA $\mathfrak{A} = (Q, V, q_0, \delta, F)$. Define the safety game $\mathcal{G}_S = (\mathcal{A} \times \mathfrak{A}, V \times F)$. Then:

- 1. v is in Player 0's winning region in \mathcal{G} iff $(v, \delta(q_0, v))$ is in her winning region in \mathcal{G}_S .
- **2.** Player 0 has a finite-state winning strategy for her winning region in G with memory states Q.

Safety Reductions: Applications

- Reachability games: reach F after $|V \setminus F|$ steps.
- Büchi games: reach F every $|V \setminus F|$ steps.
- co-Büchi games: avoid visiting $v \in V \setminus F$ twice.
- Request-response games and poset games: bound waiting times (Horn, Thomas, Wallmeier 2008; Zimmermann 2009).
- parity, Rabin, Streett games: progress measure algorithms "are" safety reductions (Jurdziński 2000; Piterman, Pnueli 2006).
- Muller games: bound scores.

If you can solve safety games, you can solve all these games. Caveat: safety games will be larger than original game.