
Temporal Logics for the
Specification of Hyperproperties

Martin Zimmermann

Aalborg University

October 18th, 2022
NetVAS 22

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 1/13

Motivation

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Motivation

Trace-based view on S: observe execution traces, i.e., infinite
sequences over 2AP for some set AP of atomic propositions.

{init, ipblc} {iscrt} {ipblc} {iscrt, opblc, term} · · ·

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Motivation

Typical requirements:

S terminates

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Motivation

Typical requirements:

S terminates
S terminates within a uniform time bound

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Motivation

Typical requirements:

S terminates
S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Motivation

Typical requirements:

S terminates
S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 2/13

Trace Properties vs. Hyperproperties

Definition
A trace property T ⊆ (2AP)ω is a set of traces. A system S
satisfies T , if Traces(S) ⊆ T .

Example: The set of traces where term holds at least once.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 3/13

Trace Properties vs. Hyperproperties

Definition
A trace property T ⊆ (2AP)ω is a set of traces. A system S
satisfies T , if Traces(S) ⊆ T .

Example: The set of traces where term holds at least once.

Definition
A hyperproperty H ⊆ 2(2

AP)ω is a set of sets of traces. A system S
satisfies H if Traces(S) ∈ H.

Example: The set {T ⊆ Tn | n ∈ N} where Tn is the trace
property containing the traces where term holds at least once
within the first n positions.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 3/13

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 4/13

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 4/13

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = trueUψ Gψ = ¬F¬ψ

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 4/13

The Virtues of LTL

LTL is the most important specification language for reactive
systems and has many desirable properties:

1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finitely-represented model.

2. LTL and FO[<] are expressively equivalent.
3. LTL satisfiability and model-checking are PSpace-complete.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 5/13

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ∈ AP and π ∈ V (trace variables).

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 6/13

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ∈ AP and π ∈ V (trace variables).

Prenex normal form, but
closed under boolean combinations.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 6/13

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 7/13

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 7/13

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

S terminates within a uniform time bound.
Not expressible in HyperLTL.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 7/13

Applications

Uniform framework for information-flow control
Does a system leak information?

Symmetries in distributed systems
Are clients treated symmetrically?

Error resistant codes
Do codes for distinct inputs have at least Hamming
distance d?

Software doping
Think emission scandal in automotive industry

Network verification?

There are prototype tools for model checking, satisfiability
checking, runtime verification, and synthesis.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 8/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Another Example

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Consequence:
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 9/13

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem (Fortin et. al ’21)
HyperLTL satisfiability is Σ1

1-complete (i.e., highly undecidable).

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 10/13

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem (Fortin et. al ’21)
HyperLTL satisfiability is Σ1

1-complete (i.e., highly undecidable).

Fine-grained analysis:

Theorem (Finkbeiner & Hahn ’16)
1. ∀∃-HyperLTL satisfiability is undecidable.
2. ∃∗-HyperLTL satisfiability is PSpace-complete.
3. ∀∗-HyperLTL satisfiability is PSpace-complete.
4. ∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 10/13

Model-Checking

The HyperLTL model-checking problem:

Given a transition system S and ϕ, does Traces(S) |= ϕ?

Theorem (Clarkson et al. ’14)
The HyperLTL model-checking problem is decidable.

Corollary (Mascle & Z. ’20)
The HyperLTL model-checking problem is TOWER-hard, even for a
fixed transition system with 5 states and formulas without nested
operators.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 11/13

Model-Checking

Proof:

Consider ϕ = ∃π1. ∀π2. . . . ∃πk−1. ∀πk .ψ.
Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 12/13

Model-Checking

Proof:

Consider ϕ = ∃π1. ∀π2. . . . ∃πk−1. ∀πk .ψ.
Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.
By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) ∕= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to traces
of S.
For ¬θ complement automaton for θ.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 12/13

Model-Checking

Proof:

Consider ϕ = ∃π1. ∀π2. . . . ∃πk−1. ∀πk .ψ.
Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.
By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) ∕= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to traces
of S.
For ¬θ complement automaton for θ.

⇒ Non-elementary complexity, but alternation-free fragments are
as hard as LTL.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 12/13

Conclusion

HyperLTL behaves quite differently than LTL:
The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
Satisfiability is in general undecidable.
Model-checking is decidable, but non-elementary.

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 13/13

Conclusion

HyperLTL behaves quite differently than LTL:
The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
Satisfiability is in general undecidable.
Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things:
HyperLTL is a powerful tool for information security and beyond:

Information-flow control
Symmetries in distributed systems
Error resistant codes
Software doping
Soon: Network verification

Martin Zimmermann Aalborg University Temporal Logics for Hyperproperties 13/13

