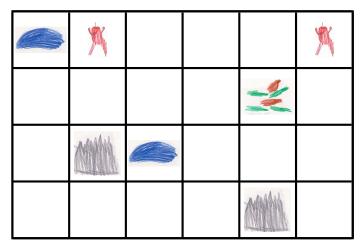
Optimally Resilient Strategies in Pushdown Safety Games

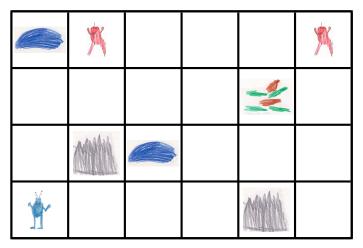
Joint work with Daniel Neider (MPI-SWS) and Patrick Totzke (Liverpool) Artwork by Paulina Zimmermann

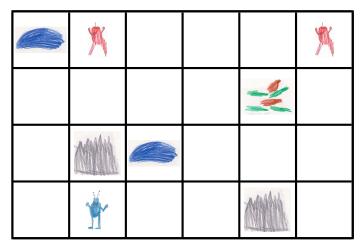
Martin Zimmermann

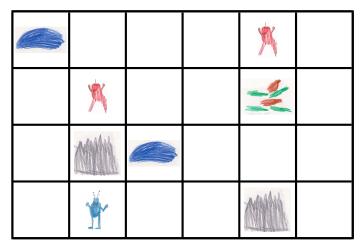
University of Liverpool

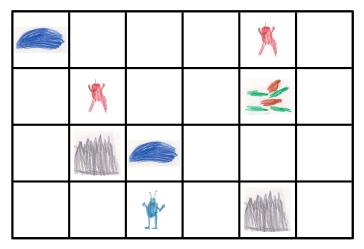
August 2020 MFCS 2020

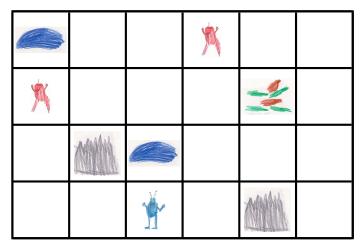


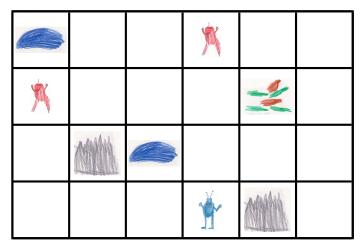






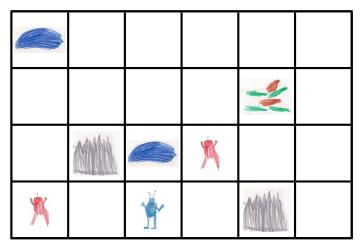


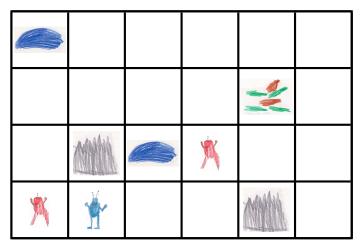


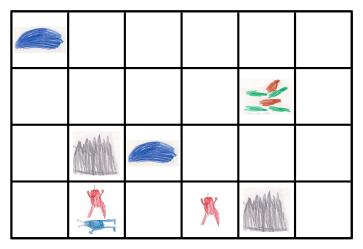


		X	W	
×				
		*		

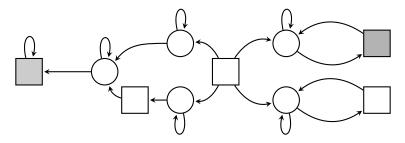
		×	W	
×				
	*			



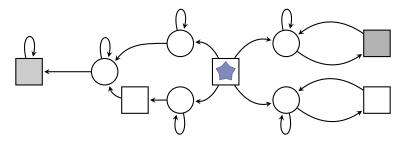




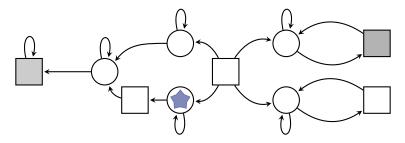
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



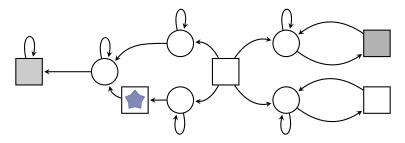
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



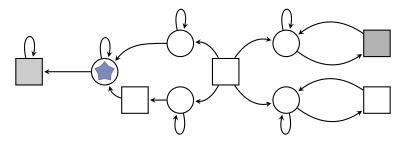
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



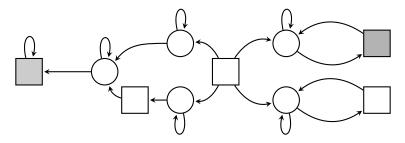
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



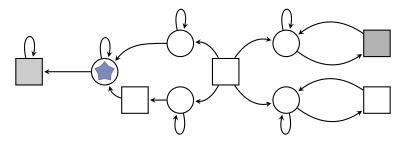
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



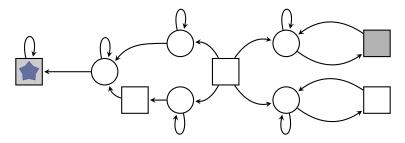
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



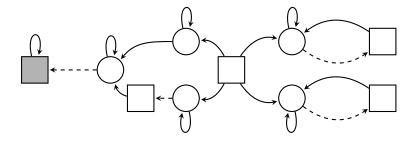
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



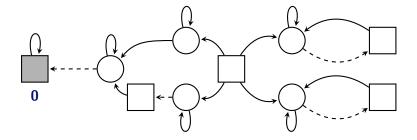
- Model the interaction between a system and its environment by an infinite-duration zero-sum game on graph. The winning condition captures a specification of the system.
- A winning strategy for the system player corresponds to an implementation satisfying the system specification.



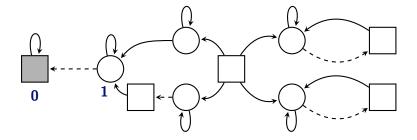
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



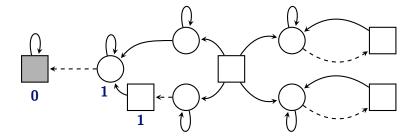
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



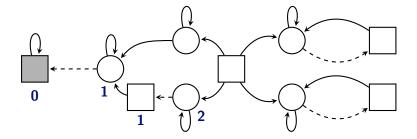
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



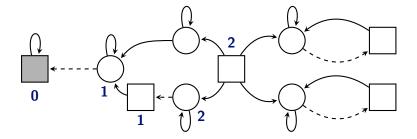
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



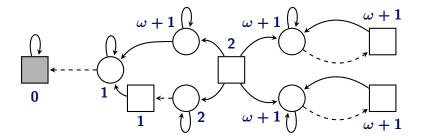
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.



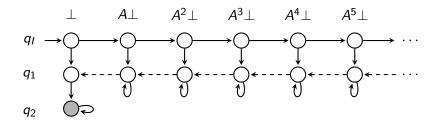
Dallal, Tabuada and Neider: Add disturbances edges to model non-antagonistic external influences.

Theorem (Dallal, Neider & Tabuada, 2016)

- A safety game with n vertices has resilience values in $\{0, \dots, n-1\} \cup \{\omega + 1\}.$
- The resilience values and an optimally resilient strategy can be computed in polynomial time.

Systems with Infinite State Space

- Pushdown graphs are configuration graphs of pushdown automata.
- One-counter automata are pushdown automata with a single stack symbol (that can still test the stack for emptiness).



Systems with Infinite State Space

- Pushdown graphs are configuration graphs of pushdown automata.
- One-counter automata are pushdown automata with a single stack symbol (that can still test the stack for emptiness).



Theorem

- A pushdown safety game has resilience values in $\{0, 1, 2, \cdots\} \cup \{\omega + 1\}$.
- An optimally resilient strategy always exists.

Lemma

The following problem is in EXPTIME: "Given a pushdown safety game \mathcal{G} with initial vertex v_l , is $r(v_l) = \omega + 1$?".

Note

 $\ensuremath{\operatorname{PSPACE}}$ for one-counter safety games.

Theorem

- A pushdown safety game has resilience values in $\{0, 1, 2, \dots\} \cup \{\omega + 1\}$.
- An optimally resilient strategy always exists.

Lemma

The following problem is in 2EXPTIME: "Given a pushdown safety game \mathcal{G} with initial vertex v_l and $k \in \omega$ (encoded in binary), is $r(v_l) = k$?".

Note

 $\operatorname{Exp}\operatorname{Space}$ for one-counter safety games.

A Naive Algorithm

1: if
$$r(v_l) = \omega + 1$$
 then
2: return $\omega + 1$
3: $k = 0$
4: while true do
5: if $r(v_l) = k$ then
6: return k
7: else

8:
$$k = k+1$$

- The algorithm terminates, as the only possible resilience values are ω + 1 or some k ∈ ω.
- To obtain an upper bound on the running time, we need an upper bound on the resilience value of the initial vertex.

Upper Bounds on Resilience Values

Note that resilience values can be unbounded. Nevertheless, we can bound the resilience value of the initial vertex.

For a pushdown automaton $\mathcal P$ with n states and s stack symbols, define

$$b(\mathcal{P}) = n \cdot h(\mathcal{P}) \cdot s^{h(\mathcal{P})}$$

with

$$h(\mathcal{P})=n\cdot s\cdot 2^{n+1}+1$$

Lemma

Let \mathcal{G} be a pushdown safety game with initial vertex v_l . If $r(v_l) \neq \omega + 1$, then $r(v_l) < b(\mathcal{P})$, where \mathcal{P} is the automaton underlying \mathcal{G} .

An Improved Algorithm

1: if
$$r(v_l) = \omega + 1$$
 then
2: return $\omega + 1$
3: for $k = 0$ to $b(\mathcal{P})$ do
4: if $r(v_l) = k$ then
5: return k

An Improved Algorithm

1: if
$$r(v_l) = \omega + 1$$
 then
2: return $\omega + 1$
3: for $k = 0$ to $b(\mathcal{P})$ do
4: if $r(v_l) = k$ then
5: return k

Theorem

The following problem can be solved in triply-exponential time: "Given a pushdown safety game G with initial vertex v_I , determine the resilience value of v_I ". If yes, an $r(v_I)$ -resilient strategy from v_I can be computed in triply-exponential time.

An Improved Algorithm

1: if
$$r(v_l) = \omega + 1$$
 then
2: return $\omega + 1$
3: for $k = 0$ to $b(\mathcal{P})$ do
4: if $r(v_l) = k$ then
5: return k

Theorem

The following problem can be solved in polynomial space: "Given a one-counter safety game G with initial vertex v_I , determine the resilience value of v_I ".

Note

No strategy computed.

Conclusion

Also in the paper/arXiv version:

- **1.** An outlook on resilient strategies in pushdown reachability games (new resilience values appear).
- **2.** A new result on optimal strategies in one-counter reachability games (without disturbance edges).
- **3.** Lower bounds on computational complexity and on the resilience value of the initial vertex.

Conclusion

Also in the paper/arXiv version:

- **1.** An outlook on resilient strategies in pushdown reachability games (new resilience values appear).
- **2.** A new result on optimal strategies in one-counter reachability games (without disturbance edges).
- **3.** Lower bounds on computational complexity and on the resilience value of the initial vertex.

Open problems:

- 1. Extension to more expressive winning conditions.
- **2.** Better complexity bounds for pushdown safety games via saturation.
- **3.** Computing optimally resilient strategies for one-counter safety games in polynomial space.

The Last Slide

Thank you for watching.



Daniel Neider: neider@mpi-sws.org Patrick Totzke: totzke@liverpool.ac.uk Martin Zimmermann: martin.zimmermann@liverpool.ac.uk