Easy to Win, Hard to Master: Playing Parity Games with Costs Optimally

Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

Saarland University

September 5th, 2017
University of Liverpool, Liverpool, UK

Easy to Win. Hard to naster: Playing Finitary Parity Games Optimally Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

Saarland University
September 5th, 2017
University of Liverpool, Liverpool, UK

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

0

Example due to Chatterjee \& Fijalkow

Parity Games

$$
0 \longrightarrow 1
$$

Example due to Chatterjee \& Fijalkow

Parity Games

$$
0 \longrightarrow 1 \rightarrow 0
$$

Example due to Chatterjee \& Fijalkow

Parity Games

$$
0 \longrightarrow 1 \rightarrow 0 \longrightarrow 0
$$

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

Example due to Chatterjee \& Fijalkow

Parity Games

■ Various applications: μ-calculus model checking, Rabin's theorem, reactive synthesis, alternating automata,...

Finitary Parity Games

Finitary Parity Games

Finitary Parity Games

- A quantitative strengthening of parity games.

Another Example

Another Example

Another Example

Another Example

Previous Work

■ Parity: Almost all requests are answered.
■ Finitary Parity: There is a bound b such that almost all requests are answered within b steps.

Previous Work

■ Parity: Almost all requests are answered.
■ Finitary Parity: There is a bound b such that almost all requests are answered within b steps.

Condition	Complexity	Memory PI. 0	Memory PI. 1
Parity	UP \cap co-UP	Memoryless	Memoryless
Finitary Parity	PTiME	Memoryless	Infinite

Previous Work

- Parity: Almost all requests are answered.

■ Finitary Parity: There is a bound b such that almost all requests are answered within b steps.

Condition	Complexity	Memory PI. 0	Memory PI. 1
Parity	UP \cap co-UP	Memoryless	Memoryless
Finitary Parity	PTiME	Memoryless	Infinite

Corollary

If Player 0 wins a finitary parity game \mathcal{G}, then a uniform bound $b \leq|\mathcal{G}|$ suffices.

A trivial example shows that the upper bound $|\mathcal{G}|$ is tight.

Back to the Example

Answering requests as soon as possible requires memory.

- Every request can be answered within four steps:
- a 1 by a 2
- a 3 by a 4
\Rightarrow requires one bit of memory.

Back to the Example

Answering requests as soon as possible requires memory.
■ Every request can be answered within four steps:

- a 1 by a 2
- a 3 by a 4
\Rightarrow requires one bit of memory.
- But answering a 1 by a 4 takes five steps. \Rightarrow every memoryless strategy has at least cost 5 .

Playing Finitary Parity Games Optimally

Questions

1. How much memory is needed to play finitary parity games optimally?
2. How hard is it to determine the optimal bound b for a finitary parity game?
3. There is a tradeoff between size and cost of strategies! What is its extent?

Outline

1. Memory Requirements of Optimal Strategies
2. Determining Optimal Bounds is Hard
3. Trading Memory for Quality and Vice Versa
4. Conclusion

Outline

1. Memory Requirements of Optimal Strategies

2. Determining Optimal Bounds is Hard

3. Trading Memory for Quality and Vice Versa

4. Conclusion

Memory Requirements

Memory Requirements

■ Player 0 has winning strategy with cost $d^{2}+2 d$: answer j-th unique request in j-th response-gadget.
\Rightarrow requires exponential memory (in d).

- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Memory Requirements

■ Player 0 has winning strategy with cost $d^{2}+2 d$: answer j-th unique request in j-th response-gadget.
\Rightarrow requires exponential memory (in d).

- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Theorem

For every $d>1$, there exists a finitary parity game \mathcal{G}_{d} such that
■ $\left|\mathcal{G}_{d}\right| \in \mathcal{O}\left(d^{2}\right)$ and \mathcal{G}_{d} has d odd colors, and

- every optimal strategy for Player 0 has at least size 2^{d-1}.

Outline

1. Memory Requirements of Optimal Strategies

2. Determining Optimal Bounds is Hard

3. Trading Memory for Quality and Vice Versa
4. Conclusion

PSPACE-Hardness

Lemma

The following problem is PSpace-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b ?"

PSPACE-Hardness

Lemma

The following problem is PSpace-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b ?"

Proof

- By a reduction from QBF (w.l.o.g. in CNF).

■ Checking the truth of $\varphi=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$ as a two-player game (Player 0 wants to prove truth of φ):

PSPACE-Hardness

Lemma

The following problem is PSpace-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b ?"

Proof

- By a reduction from QBF (w.l.o.g. in CNF).

■ Checking the truth of $\varphi=\forall x \exists y .(x \vee \neg y) \wedge(\neg x \vee y)$ as a two-player game (Player 0 wants to prove truth of φ):

1. Player 1 picks truth value for x.
2. Player 0 picks truth value for y.
3. Player 1 picks clause C.
4. Player 0 picks literal ℓ from C.
5. Player 0 wins $\Leftrightarrow \ell$ is picked to be satisfied in step 1 or 2 .

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

The Reduction

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

The Reduction

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

For a well-chosen bound b, a strategy for Player 0 with cost at most b witnesses the truth of φ and vice versa.

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

For a well-chosen bound b, a strategy for Player 0 with cost at most b witnesses the truth of φ and vice versa.

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

For a well-chosen bound b, a strategy for Player 0 with cost at most b witnesses the truth of φ and vice versa.

The Reduction

$$
\varphi=\forall x \exists y \cdot \overbrace{(x \vee \neg y) \wedge(\neg x \vee y)}^{\psi}
$$

For a well-chosen bound b, a strategy for Player 0 with cost at most b witnesses the truth of φ and vice versa.

PSPACE-Membership

Lemma

The following problem is in PSpace: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

PSPACE-Membership

Lemma

The following problem is in PSpace: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b ?"

Proof Sketch

Fix \mathcal{G} and b (w.l.o.g. $b \leq|\mathcal{G}|$).

1. Construct equivalent parity game \mathcal{G}^{\prime} storing the costs of open requests (up to bound b) and the number of overflows (up to bound $|\mathcal{G}|) \Rightarrow\left|\mathcal{G}^{\prime}\right| \in|\mathcal{G}|^{\left({ }^{(d)}\right)}$.

PSPACE-Membership

Lemma

The following problem is in PSpace: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G}
whose cost is at most b ?"

Proof Sketch

Fix \mathcal{G} and b (w.I.o.g. $b \leq|\mathcal{G}|$).

1. Construct equivalent parity game \mathcal{G}^{\prime} storing the costs of open requests (up to bound b) and the number of overflows (up to bound $|\mathcal{G}|) \Rightarrow\left|\mathcal{G}^{\prime}\right| \in|\mathcal{G}|^{\mathcal{O}(d)}$.
2. Define equivalent finite-duration variant \mathcal{G}_{f}^{\prime} of \mathcal{G}^{\prime} with polynomial play-length.
3. \mathcal{G}_{f}^{\prime} can be solved on alternating polynomial-time Turing machine.
4. APTime $=$ PSpace concludes the proof.

Upper Bounds on Memory

Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}^{\prime} yields upper bounds on memory requirements.

Corollary

Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^{d}=2^{d \log (b+2)}$.

Upper Bounds on Memory

Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}^{\prime} yields upper bounds on memory requirements.

Corollary

Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^{d}=2^{d \log (b+2)}$.

- Recall: lower bound 2^{d-1}.
- The same bounds hold for Player 1.

Outline

1. Memory Requirements of Optimal Strategies

2. Determining Optimal Bounds is Hard
3. Trading Memory for Quality and Vice Versa

4. Conclusion

Tradeoffs

Tradeoffs

■ Recall: Player 0 has winning strategy with cost $d^{2}+2 d$: answer j-th unique request in j-th response-gadget, which requires memory of size 2^{d-1}.

Tradeoffs

■ Recall: Player 0 has winning strategy with cost $d^{2}+2 d$: answer j-th unique request in j-th response-gadget, which requires memory of size 2^{d-1}.
■ Only store first i unique requests, then go to largest answer in next gadget.
\Rightarrow achieves cost $d^{2}+3 d-i$ and size $\sum_{j=1}^{i-1}\binom{d}{j}$.
■ Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of i requests.

Tradeoffs

Theorem

Fix some finitary parity game \mathcal{G}_{d} as before. For every i with $1 \leq i \leq d$ there exists a strategy σ_{i} for Player 0 in \mathcal{G}_{d} such that σ_{i} has cost $d^{2}+3 d-i$ and size $\sum_{j=1}^{i-1}\binom{d}{j}$.
Also, every strategy σ^{\prime} for Player 0 in \mathcal{G}_{d} whose cost is at most the cost of σ_{i} has at least the size of σ_{i}.

Outline

1. Memory Requirements of Optimal Strategies

2. Determining Optimal Bounds is Hard
3. Trading Memory for Quality and Vice Versa

4. Conclusion

Conclusion

Results

■ Playing finitary games/games with costs optimally is harder than just winning them.

■ Both in terms of memory requirements and computational complexity.

- Quality can (gradually) be traded for memory and vice versa.

Conclusion

Results

■ Playing finitary games/games with costs optimally is harder than just winning them.

- Both in terms of memory requirements and computational complexity.
- Quality can (gradually) be traded for memory and vice versa.

Open problems

- Parity games with mutiple cost functions

■ Multi-dimensional games

- Tradeoffs in other games (first results for parametric LTL and energy games)

