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Muller Games

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = 2V \ F0

Player 0 has a winning strategy from every vertex: alternate
between 0 and 2.
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Muller Games

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = 2V \ F0

Player 0 has a winning strategy from every vertex: alternate
between 0 and 2.

Muller game (A,F0,F1):

Arena A and partition {F0,F1} of the power set of vertices.
Player i wins ρ iff Inf(ρ) = {v | ∃ωn s.t. ρn = v} ∈ Fi .

Martin Zimmermann University of Warsaw Down the Borel Hierarchy 2/5



Muller Games

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}

F1 = 2V \ F0

Player 0 has a winning strategy from every vertex: alternate
between 0 and 2.

Muller game (A,F0,F1):

Arena A and partition {F0,F1} of the power set of vertices.
Player i wins ρ iff Inf(ρ) = {v | ∃ωn s.t. ρn = v} ∈ Fi .

Theorem

1. Muller games are determined with finite-state strategies
of size n!.

2. Muller games cannot be reduced to safety games.
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Scoring Functions for Muller Games

McNaughton: “We believe that infinite games might have an
interest for casual living-room recreation.”
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Scoring Functions for Muller Games

McNaughton: “We believe that infinite games might have an
interest for casual living-room recreation.”

For F ⊆ V and w ∈ V+ : ScF (w) is the number of times F has
been visited completely since the last visit of a vertex in V \ F .
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Scoring Functions for Muller Games

McNaughton: “We believe that infinite games might have an
interest for casual living-room recreation.”

For F ⊆ V and w ∈ V+ : ScF (w) is the number of times F has
been visited completely since the last visit of a vertex in V \ F .

Example Sc{1,2}(122101012221212) = 3
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Lemma (Fearnley, Z. 2010)

In every Muller game, Player 0 has a winning strategy that bounds
the scores for all F ∈ F1 by two.

Corollary

Player 0 wins Muller game from v ⇔ she is able to bound the
scores for all F ∈ F1 by two (safety condition).
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Reducing Muller Games to Safety Games

Theorem
For every Muller game G, we can construct a safety game S and a
mapping f : V (G) → V (S) such that

1. Player i wins G from v iff she wins S from f (v).

2. Player 0’s winning region in S can be used as memory to
implement a finite-state winning strategy for her in G.

3. |V (S)| ≤ (|V (G)|!)3.
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Reducing Muller Games to Safety Games

Theorem
For every Muller game G, we can construct a safety game S and a
mapping f : V (G) → V (S) such that

1. Player i wins G from v iff she wins S from f (v).

2. Player 0’s winning region in S can be used as memory to
implement a finite-state winning strategy for her in G.

3. |V (S)| ≤ (|V (G)|!)3.

Remarks:

Size of parity game in LAR-reduction |V (G)|!. But: simpler
algorithms for safety games.

2. does not hold for Player 1.
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Conclusion

Reducing Muller games to safety games via scoring functions:

“Simple” algorithm for Muller games.

New memory structure: keep track of scores up to value three
(size can be improved by only taking maximal elements).

Permissive strategies: most general non-deterministic strategy
that prevents opponent from reaching a score of three.

Also: general framework of safety-reductions for other winning
conditions (e.g., parity, Rabin, Streett, request-response).
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Conclusion

Reducing Muller games to safety games via scoring functions:

“Simple” algorithm for Muller games.

New memory structure: keep track of scores up to value three
(size can be improved by only taking maximal elements).

Permissive strategies: most general non-deterministic strategy
that prevents opponent from reaching a score of three.

Also: general framework of safety-reductions for other winning
conditions (e.g., parity, Rabin, Streett, request-response).

Further research:

Progress measures for Muller games?

Determine influence of safety game algorithms on memory for
Muller games obtained in our reduction.

Understand tradeoff between size and quality of a strategy.
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