Down the Borel Hierarchy: Solving Muller Games via Safety Games

Joint work with Daniel Neider and Roman Rabinovich (RWTH Aachen University)

Martin Zimmermann

University of Warsaw

June 25th, 2012

LICS 2012 Dubrovnik, Croatia

Muller Games

Running example

Player 0 has a winning strategy from every vertex: alternate between 0 and 2.

Muller Games

Running example

$$\begin{array}{c} \textcircled{0} \\ (1) \\ (2)$$

Player 0 has a winning strategy from every vertex: alternate between 0 and 2.

Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$:

- Arena \mathcal{A} and partition $\{\mathcal{F}_0, \mathcal{F}_1\}$ of the power set of vertices.
- Player *i* wins ρ iff $Inf(\rho) = \{v \mid \exists^{\omega} n \text{ s.t. } \rho_n = v\} \in \mathcal{F}_i$.

Muller Games

Running example

$$\mathcal{F}_0 = \{\{0, 1, 2\}, \{0\}, \{2\}\}$$

$$\mathcal{F}_1 = 2^V \setminus \mathcal{F}_0$$

Player 0 has a winning strategy from every vertex: alternate between 0 and 2.

Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$:

- Arena \mathcal{A} and partition $\{\mathcal{F}_0, \mathcal{F}_1\}$ of the power set of vertices.
- Player *i* wins ρ iff $Inf(\rho) = \{v \mid \exists^{\omega} n \text{ s.t. } \rho_n = v\} \in \mathcal{F}_i$.

Theorem

- 1. Muller games are determined with finite-state strategies of size n!.
- 2. Muller games cannot be reduced to safety games.

McNaughton: *"We believe that infinite games might have an interest for casual living-room recreation."*

McNaughton: *"We believe that infinite games might have an interest for casual living-room recreation."*

For $F \subseteq V$ and $w \in V^+$: $Sc_F(w)$ is the number of times F has been visited completely since the last visit of a vertex in $V \setminus F$.

McNaughton: *"We believe that infinite games might have an interest for casual living-room recreation."*

For $F \subseteq V$ and $w \in V^+$: $Sc_F(w)$ is the number of times F has been visited completely since the last visit of a vertex in $V \setminus F$.

Example $Sc_{\{1,2\}}(122101012221212) = 3$

McNaughton: *"We believe that infinite games might have an interest for casual living-room recreation."*

For $F \subseteq V$ and $w \in V^+$: $Sc_F(w)$ is the number of times F has been visited completely since the last visit of a vertex in $V \setminus F$.

Example
$$\operatorname{Sc}_{\{1,2\}}(122101 \underbrace{0}_{\notin \{1,2\}} \underbrace{12}_{1} \underbrace{221}_{2} \underbrace{21}_{3} 2) = 3$$

McNaughton: *"We believe that infinite games might have an interest for casual living-room recreation."*

For $F \subseteq V$ and $w \in V^+$: $Sc_F(w)$ is the number of times F has been visited completely since the last visit of a vertex in $V \setminus F$.

Example
$$\operatorname{Sc}_{\{1,2\}}(122101 \underbrace{0}_{\notin \{1,2\}} \underbrace{12}_{1} \underbrace{221}_{2} \underbrace{21}_{3} 2) = 3$$

Lemma (Fearnley, Z. 2010)

In every Muller game, Player 0 has a winning strategy that bounds the scores for all $F \in \mathcal{F}_1$ by two.

Corollary

Player 0 wins Muller game from $v \Leftrightarrow$ she is able to bound the scores for all $F \in \mathcal{F}_1$ by two (safety condition).

Theorem

For every Muller game G, we can construct a safety game S and a mapping $f: V(G) \to V(S)$ such that

- **1**. Player i wins G from v iff she wins S from f(v).
- 2. Player 0's winning region in S can be used as memory to implement a finite-state winning strategy for her in G.
- **3.** $|V(S)| \le (|V(G)|!)^3$.

Theorem

For every Muller game G, we can construct a safety game S and a mapping $f: V(G) \to V(S)$ such that

- **1**. Player i wins G from v iff she wins S from f(v).
- 2. Player 0's winning region in S can be used as memory to implement a finite-state winning strategy for her in G.
- **3.** $|V(S)| \le (|V(G)|!)^3$.

Remarks:

- Size of parity game in LAR-reduction |V(G)|!. But: simpler algorithms for safety games.
- 2. does not hold for Player 1.

Conclusion

Reducing Muller games to safety games via scoring functions:

- "Simple" algorithm for Muller games.
- New memory structure: keep track of scores up to value three (size can be improved by only taking maximal elements).
- Permissive strategies: most general non-deterministic strategy that prevents opponent from reaching a score of three.
- Also: general framework of safety-reductions for other winning conditions (e.g., parity, Rabin, Streett, request-response).

Conclusion

Reducing Muller games to safety games via scoring functions:

- "Simple" algorithm for Muller games.
- New memory structure: keep track of scores up to value three (size can be improved by only taking maximal elements).
- Permissive strategies: most general non-deterministic strategy that prevents opponent from reaching a score of three.
- Also: general framework of safety-reductions for other winning conditions (e.g., parity, Rabin, Streett, request-response).

Further research:

- Progress measures for Muller games?
- Determine influence of safety game algorithms on memory for Muller games obtained in our reduction.
- Understand tradeoff between size and quality of a strategy.