
Martin Zimmermann
Aalborg University

History-deterministic
Pushdown Automata

Based on joint work with Shibashis Guha,
Ismaël Jecker and Karoliina Lehtinen

IRIF, Paris, August 2024

Let’s Get Started

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

1

Let’s Get Started

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

1

Let’s Get Started

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X
1

Let’s Get Started

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X
1

Not All Nondeterminism is Equal

In the first automaton, one needs to know the whole word to
make the nondeterministic choice.

In the second automaton, one only needs to know the prefix
processed so far to make the nondeterministic choice.

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

2

Not All Nondeterminism is Equal

In the first automaton, one needs to know the whole word to
make the nondeterministic choice.

In the second automaton, one only needs to know the prefix
processed so far to make the nondeterministic choice.

#,⊥ | ⊥

#,⊥ | ⊥

a,X | XA

#,X | X

a,X | X

#,X | X

b,A | ε

#,X | X

a,X | X

#,X | X

a,X | XA

#,X | X

b,A | ε

#,X | X

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

2

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

An infinite word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for
every n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

3

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

An infinite word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for
every n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

3

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

An infinite word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for
every n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

3

An Automaton for Les

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Acceptance condition: Red transitions may only be taken finitely
often.

4

Why Should You Care?

Because you want to solve infinite games with contextfree winning
conditions!

Two players move a token through a finite graph without
dead ends whose vertices are labeled by Σ, thereby
constructing an infinite word ρ over Σ.

Protagonist wins if ρ is in some fixed winning condition, an
ω-language over Σ.

Many applications in automata theory, logic, reactive
synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a
game with ω-contextfree winning condition?

The following problem is ExpTime-complete: Does
protagonist win a game with deterministic ω-contextfree
winning condition?

5

Why Should You Care?

Because you want to solve infinite games with contextfree winning
conditions!

Two players move a token through a finite graph without
dead ends whose vertices are labeled by Σ, thereby
constructing an infinite word ρ over Σ.

Protagonist wins if ρ is in some fixed winning condition, an
ω-language over Σ.

Many applications in automata theory, logic, reactive
synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a
game with ω-contextfree winning condition?

The following problem is ExpTime-complete: Does
protagonist win a game with deterministic ω-contextfree
winning condition?

5

Why Should You Care?

Because you want to solve infinite games with contextfree winning
conditions!

Two players move a token through a finite graph without
dead ends whose vertices are labeled by Σ, thereby
constructing an infinite word ρ over Σ.

Protagonist wins if ρ is in some fixed winning condition, an
ω-language over Σ.

Many applications in automata theory, logic, reactive
synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a
game with ω-contextfree winning condition?

The following problem is ExpTime-complete: Does
protagonist win a game with deterministic ω-contextfree
winning condition?

5

Why Should You Care?

Because you want to solve infinite games with contextfree winning
conditions!

Two players move a token through a finite graph without
dead ends whose vertices are labeled by Σ, thereby
constructing an infinite word ρ over Σ.

Protagonist wins if ρ is in some fixed winning condition, an
ω-language over Σ.

Many applications in automata theory, logic, reactive
synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a
game with ω-contextfree winning condition?

The following problem is ExpTime-complete: Does
protagonist win a game with deterministic ω-contextfree
winning condition?

5

Why Should You Care?

Because you want to solve infinite games with contextfree winning
conditions!

Two players move a token through a finite graph without
dead ends whose vertices are labeled by Σ, thereby
constructing an infinite word ρ over Σ.

Protagonist wins if ρ is in some fixed winning condition, an
ω-language over Σ.

Many applications in automata theory, logic, reactive
synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a
game with ω-contextfree winning condition?

The following problem is ExpTime-complete: Does
protagonist win a game with deterministic ω-contextfree
winning condition?

5

But..

.. why can’t we just let protagonist “resolve” nondeterministic
choices on-the-fly during a play?

a

b

a

b a, b

a, b

a

b

a, b

Every play is winning for protagonist (round vertices), but..

protagonist loses if she has to resolve nondeterminism
on-the-fly.

6

But..

.. why can’t we just let protagonist “resolve” nondeterministic
choices on-the-fly during a play?

a

b

a

b a, b

a, b

a

b

a, b

Every play is winning for protagonist (round vertices), but..

protagonist loses if she has to resolve nondeterminism
on-the-fly.

6

But..

.. why can’t we just let protagonist “resolve” nondeterministic
choices on-the-fly during a play?

a

b

a

b a, b

a, b

a

b

a, b

Every play is winning for protagonist (round vertices), but..

protagonist loses if she has to resolve nondeterminism
on-the-fly.

6

History-Determinism

Let P = (Q,Σ, Γ, qI ,∆,Ω) be a nondeterministic PDA.

A resolver for P is a function r : ∆∗ × Σ → ∆ such that for
every w ∈ L(P) the sequence τ0τ1τ2 · · · ∈ ∆ω defined as

τn = r(τ0 · · · τn−1,w(|(τ0 · · · τn−1)|Σ))

induces an accepting run of P on w .

Here, |(τ0 · · · τn−1)|Σ denotes the number of letters processed
by the transitions τ0 · · · τn−1 (P may have ε-transitions), i.e.,
w(|(τ0 · · · τn−1)|Σ) is the first letter of w not processed by
τ0 · · · τn−1.

P is history-deterministic if it has a resolver.

Definition slightly more tedious for finite words.

7

History-Determinism

Let P = (Q,Σ, Γ, qI ,∆,Ω) be a nondeterministic PDA.

A resolver for P is a function r : ∆∗ × Σ → ∆ such that for
every w ∈ L(P) the sequence τ0τ1τ2 · · · ∈ ∆ω defined as

τn = r(τ0 · · · τn−1,w(|(τ0 · · · τn−1)|Σ))

induces an accepting run of P on w .

Here, |(τ0 · · · τn−1)|Σ denotes the number of letters processed
by the transitions τ0 · · · τn−1 (P may have ε-transitions), i.e.,
w(|(τ0 · · · τn−1)|Σ) is the first letter of w not processed by
τ0 · · · τn−1.

P is history-deterministic if it has a resolver.

Definition slightly more tedious for finite words.

7

Back to the Example

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Let us define a resolver for the ω-PDA above.

Given w =
(w0

0

w1
0

)
· · ·

(w0
n

w1
n

)
let mi for i ∈ {0, 1} be the

minimal m such that w i
m · · ·w i

n is safe.

Then, we define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

8

Back to the Example

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Let us define a resolver for the ω-PDA above.

Given w =
(w0

0

w1
0

)
· · ·

(w0
n

w1
n

)
let mi for i ∈ {0, 1} be the

minimal m such that w i
m · · ·w i

n is safe.

Then, we define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

8

Back to the Example

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Let us define a resolver for the ω-PDA above.

Given w =
(w0

0

w1
0

)
· · ·

(w0
n

w1
n

)
let mi for i ∈ {0, 1} be the

minimal m such that w i
m · · ·w i

n is safe.

Then, we define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

8

And the Other One

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

Let us again define a resolver for the PDA.

In the red state, after having processed # ai # aj and the next
letter being #, select

the upper transition if j < i , and
the lower transition otherwise.

9

And the Other One

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}

#,⊥ | ⊥

a,X | XA

#,X | X#

a,X | XA

#,X | X

ε,A | ε

ε,# | ε

b,A | ε

#,X | X

#,X | X

Let us again define a resolver for the PDA.

In the red state, after having processed # ai # aj and the next
letter being #, select

the upper transition if j < i , and
the lower transition otherwise.

9

But Have we Gained Anything?

Theorem (Lehtinen, Z. 2020)

Les is history-deterministic ω-contextfree, but not
deterministic ω-contextfree.

There are ω-contextfree languages that are not
history-deterministic ω-contextfree.

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

L2 is history-deterministic contextfree, but not deterministic
contextfree.

There are contextfree languages that are not
history-deterministic contextfree.

10

But Have we Gained Anything?

Theorem (Lehtinen, Z. 2020)

Les is history-deterministic ω-contextfree, but not
deterministic ω-contextfree.

There are ω-contextfree languages that are not
history-deterministic ω-contextfree.

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

L2 is history-deterministic contextfree, but not deterministic
contextfree.

There are contextfree languages that are not
history-deterministic contextfree.

10

But Have we Gained Anything?

Theorem (Lehtinen, Z. 2020)

Les is history-deterministic ω-contextfree, but not
deterministic ω-contextfree.

There are ω-contextfree languages that are not
history-deterministic ω-contextfree.

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

L2 is history-deterministic contextfree, but not deterministic
contextfree.

There are contextfree languages that are not
history-deterministic contextfree.

10

The Big Picture

ω-PDA

ω-HD-PDA

ω-DPDA Les

Theorem (Lehtinen, Z. 2020)

The following problem is ExpTime-complete: Does protagonist
win a game with history-deterministic ω-contextfree winning
condition?

Corollary

Universality for history-deterministic PDA is in ExpTime.

11

The Big Picture

ω-PDA

ω-HD-PDA

ω-DPDA Les

Theorem (Lehtinen, Z. 2020)

The following problem is ExpTime-complete: Does protagonist
win a game with history-deterministic ω-contextfree winning
condition?

Corollary

Universality for history-deterministic PDA is in ExpTime.

11

The Big Picture

ω-PDA

ω-HD-PDA

ω-DPDA Les

Theorem (Lehtinen, Z. 2020)

The following problem is ExpTime-complete: Does protagonist
win a game with history-deterministic ω-contextfree winning
condition?

Corollary

Universality for history-deterministic PDA is in ExpTime.

11

The Big Picture

ω-PDA

ω-HD-PDA

ω-DPDA Les

Theorem (Lehtinen, Z. 2020)

The following problem is ExpTime-complete: Does protagonist
win a game with history-deterministic ω-contextfree winning
condition?

Corollary

Universality for history-deterministic PDA is in ExpTime.

11

The Big Picture

ω-PDA

ω-HD-PDA

ω-DPDA Les

Theorem (Lehtinen, Z. 2020)

The following problem is ExpTime-complete: Does protagonist
win a game with history-deterministic ω-contextfree winning
condition?

Corollary

Universality for history-deterministic PDA is in ExpTime.

11

Closure Properties

Theorem (Lehtinen, Z. 2020)

The history-deterministic contextfree languages have poor closure
properties.

∩ ∪ \ h

ω-DPDA ✗ ✗ ✓ ✗ ✗

ω-HD-PDA ✗ ✗ ✗ ✗ ✗

ω-VPA ✓ ✓ ✓ ✓ ✗

ω-PDA ✗ ✓ ✗ ✗ ✓

12

Closure Properties

Theorem (Lehtinen, Z. 2020)

The history-deterministic contextfree languages have poor closure
properties.

∩ ∪ \ h

ω-DPDA ✗ ✗ ✓ ✗ ✗

ω-HD-PDA ✗ ✗ ✗ ✗ ✗

ω-VPA ✓ ✓ ✓ ✓ ✗

ω-PDA ✗ ✓ ✗ ✗ ✓

12

Decidability

History-determinism is a semantic definition, so it is not trivial to
determine whether a PDA is history-deterministic.

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

1. Given an ω-PDA P, is P history-deterministic?

2. Is a given ω-PDA P equivalent to some history-deterministic
PDA?

Similar results hold for PDA on finite words.

13

Decidability

History-determinism is a semantic definition, so it is not trivial to
determine whether a PDA is history-deterministic.

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

1. Given an ω-PDA P, is P history-deterministic?

2. Is a given ω-PDA P equivalent to some history-deterministic
PDA?

Similar results hold for PDA on finite words.

13

Also in the Papers

A comparison to unambiguous contextfree languages:
incomparable (over finite words)

A comparison to visibly pushdown languages: incomparable
(over infinite words)

History-deterministic visibly pushdown languages: better
properties*

The parity-index hierarchy of history-deterministic context-free
language: infinite

A comparison to good-for-games pushdown automata: not
equivalent!!!

14

Also in the Papers

A comparison to unambiguous contextfree languages:
incomparable (over finite words)

A comparison to visibly pushdown languages: incomparable
(over infinite words)

History-deterministic visibly pushdown languages: better
properties*

The parity-index hierarchy of history-deterministic context-free
language: infinite

A comparison to good-for-games pushdown automata: not
equivalent!!!

14

Also in the Papers

A comparison to unambiguous contextfree languages:
incomparable (over finite words)

A comparison to visibly pushdown languages: incomparable
(over infinite words)

History-deterministic visibly pushdown languages: better
properties*

The parity-index hierarchy of history-deterministic context-free
language: infinite

A comparison to good-for-games pushdown automata: not
equivalent!!!

14

Also in the Papers

A comparison to unambiguous contextfree languages:
incomparable (over finite words)

A comparison to visibly pushdown languages: incomparable
(over infinite words)

History-deterministic visibly pushdown languages: better
properties*

The parity-index hierarchy of history-deterministic context-free
language: infinite

A comparison to good-for-games pushdown automata: not
equivalent!!!

14

Also in the Papers

A comparison to unambiguous contextfree languages:
incomparable (over finite words)

A comparison to visibly pushdown languages: incomparable
(over infinite words)

History-deterministic visibly pushdown languages: better
properties*

The parity-index hierarchy of history-deterministic context-free
language: infinite

A comparison to good-for-games pushdown automata: not
equivalent!!!

14

How Hard is it to Resolve Nondeterminism?

Recall: A resolver is a function r : ∆∗ × Σ → ∆ that induces
an accepting run for every accepted word.

Such functions can be implemented by automata with output.

But how “complex” do resolvers for history-deterministic PDA
need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then
it can be determinized by taking the product of the PDA and
the (finite-state implementation of the) resolver.

Not every history-deterministic PDA has a resolver that is
implementable by a PDA with output.

15

How Hard is it to Resolve Nondeterminism?

Recall: A resolver is a function r : ∆∗ × Σ → ∆ that induces
an accepting run for every accepted word.

Such functions can be implemented by automata with output.

But how “complex” do resolvers for history-deterministic PDA
need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then
it can be determinized by taking the product of the PDA and
the (finite-state implementation of the) resolver.

Not every history-deterministic PDA has a resolver that is
implementable by a PDA with output.

15

How Hard is it to Resolve Nondeterminism?

Recall: A resolver is a function r : ∆∗ × Σ → ∆ that induces
an accepting run for every accepted word.

Such functions can be implemented by automata with output.

But how “complex” do resolvers for history-deterministic PDA
need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then
it can be determinized by taking the product of the PDA and
the (finite-state implementation of the) resolver.

Not every history-deterministic PDA has a resolver that is
implementable by a PDA with output.

15

How Hard is it to Resolve Nondeterminism?

Recall: A resolver is a function r : ∆∗ × Σ → ∆ that induces
an accepting run for every accepted word.

Such functions can be implemented by automata with output.

But how “complex” do resolvers for history-deterministic PDA
need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then
it can be determinized by taking the product of the PDA and
the (finite-state implementation of the) resolver.

Not every history-deterministic PDA has a resolver that is
implementable by a PDA with output.

15

How Hard is it to Resolve Nondeterminism?

Recall: A resolver is a function r : ∆∗ × Σ → ∆ that induces
an accepting run for every accepted word.

Such functions can be implemented by automata with output.

But how “complex” do resolvers for history-deterministic PDA
need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then
it can be determinized by taking the product of the PDA and
the (finite-state implementation of the) resolver.

Not every history-deterministic PDA has a resolver that is
implementable by a PDA with output.

15

Counterexample

Recall

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}.

It has resolver that is implementable by a PDA with output
(after processing # ai # aj , we need to check j < i).

So, consider

L3 = {# ah # ai # aj # bk # | k ≤ h or k ≤ i or k ≤ j},

which is also history-deterministic.

To resolve the nondeterminism here, we need to check, e.g.,
i < h ∧ j < h. This cannot be achieved by a PDA.

Open Problem
Does every history-deterministic PDA have a computable resolver?

16

Counterexample

Recall

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}.

It has resolver that is implementable by a PDA with output
(after processing # ai # aj , we need to check j < i).

So, consider

L3 = {# ah # ai # aj # bk # | k ≤ h or k ≤ i or k ≤ j},

which is also history-deterministic.

To resolve the nondeterminism here, we need to check, e.g.,
i < h ∧ j < h. This cannot be achieved by a PDA.

Open Problem
Does every history-deterministic PDA have a computable resolver?

16

Counterexample

Recall

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}.

It has resolver that is implementable by a PDA with output
(after processing # ai # aj , we need to check j < i).

So, consider

L3 = {# ah # ai # aj # bk # | k ≤ h or k ≤ i or k ≤ j},

which is also history-deterministic.

To resolve the nondeterminism here, we need to check, e.g.,
i < h ∧ j < h. This cannot be achieved by a PDA.

Open Problem
Does every history-deterministic PDA have a computable resolver?

16

Counterexample

Recall

L2 = {# ai # aj # bk # | k ≤ i or k ≤ j}.

It has resolver that is implementable by a PDA with output
(after processing # ai # aj , we need to check j < i).

So, consider

L3 = {# ah # ai # aj # bk # | k ≤ h or k ≤ i or k ≤ j},

which is also history-deterministic.

To resolve the nondeterminism here, we need to check, e.g.,
i < h ∧ j < h. This cannot be achieved by a PDA.

Open Problem
Does every history-deterministic PDA have a computable resolver?

16

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For
every n-state PDA accepting a deterministic contextfree language,
there is an equivalent deterministic PDA with f (n) states.

Due to ω-DCFL ⊊ ω-HD-CFL ⊊ ω-CFL, we know that at
least one of the succinctness gaps involving
history-deterministic PDA must be noncomputable.

Open Problem
Which of the two succinctness gaps is noncomputable?

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

There are exponential and doubly-exponential lower bounds.

17

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For
every n-state PDA accepting a deterministic contextfree language,
there is an equivalent deterministic PDA with f (n) states.

Due to ω-DCFL ⊊ ω-HD-CFL ⊊ ω-CFL, we know that at
least one of the succinctness gaps involving
history-deterministic PDA must be noncomputable.

Open Problem
Which of the two succinctness gaps is noncomputable?

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

There are exponential and doubly-exponential lower bounds.

17

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For
every n-state PDA accepting a deterministic contextfree language,
there is an equivalent deterministic PDA with f (n) states.

Due to ω-DCFL ⊊ ω-HD-CFL ⊊ ω-CFL, we know that at
least one of the succinctness gaps involving
history-deterministic PDA must be noncomputable.

Open Problem
Which of the two succinctness gaps is noncomputable?

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

There are exponential and doubly-exponential lower bounds.

17

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

More Open Problems

Is universality for history-deterministic PDA ExpTime-hard?

Is it decidable whether a history-deterministic PDA has an
equivalent deterministic PDA?

Is equivalence of history-deterministic PDA (over finite words)
decidable?

Is there a class of grammars that is equivalent to
history-deterministic PDA?

Is there an extension of MSO that is equivalent to
history-deterministic PDA?

Thank you!
Questions and more open problems?

18

