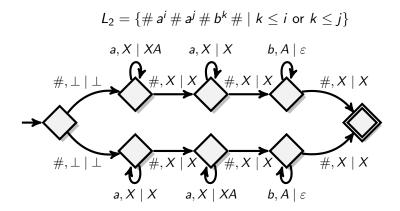
Martin Zimmermann Aalborg University

History-deterministic Pushdown Automata

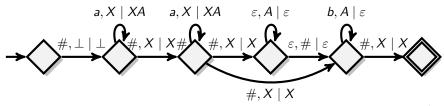
Based on joint work with Shibashis Guha, Ismaël Jecker and Karoliina Lehtinen

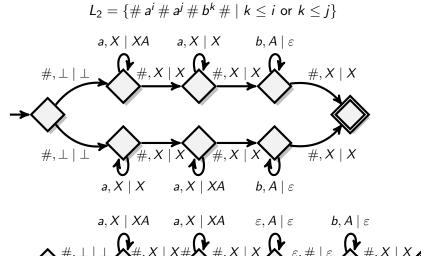
IRIF, Paris, August 2024

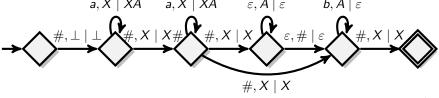
$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}$$



$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}$$

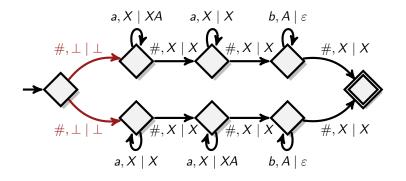






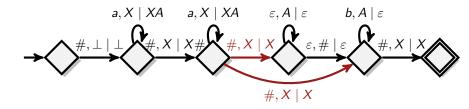
Not All Nondeterminism is Equal

In the first automaton, one needs to know the whole word to make the nondeterministic choice.



Not All Nondeterminism is Equal

- In the first automaton, one needs to know the whole word to make the nondeterministic choice.
- In the second automaton, one only needs to know the prefix processed so far to make the nondeterministic choice.



Another Language

Let I = {0, +, −} and define the energy level EL: I* → Z of a finite word over I as

 $EL(w) = |w|_{+} - |w|_{-},$

where $|w|_{\circ}$ is the number of \circ in w, for $\circ \in I$.

Another Language

Let I = {0,+,−} and define the energy level EL: I* → Z of a finite word over I as

 $EL(w)=|w|_{+}-|w|_{-},$

where $|w|_{\circ}$ is the number of \circ in w, for $\circ \in I$.

- An infinite word w ∈ I^ω is safe if EL(w(0) · · · w(n)) ≥ 0 for every n ≥ 0.
- A word $w \in I^{\omega}$ is eventually safe if it has a safe suffix.

Another Language

Let I = {0,+,−} and define the energy level EL: I* → Z of a finite word over I as

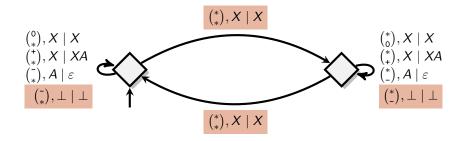
 $EL(w)=|w|_{+}-|w|_{-},$

where $|w|_{\circ}$ is the number of \circ in w, for $\circ \in I$.

- An infinite word w ∈ I^ω is safe if EL(w(0) · · · w(n)) ≥ 0 for every n ≥ 0.
- A word $w \in I^{\omega}$ is eventually safe if it has a safe suffix.
- Let $\Sigma = I \times I$ and

$$L_{\mathsf{es}} = \left\{ \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \in \Sigma^{\omega} \ \middle| \ \mathsf{some} \ w_i \ \mathsf{is eventually safe}
ight\}.$$

An Automaton for L_{es}



Acceptance condition: Red transitions may only be taken finitely often.

Because you want to solve infinite games with contextfree winning conditions!

Because you want to solve infinite games with contextfree winning conditions!

- Two players move a token through a finite graph without dead ends whose vertices are labeled by Σ, thereby constructing an infinite word ρ over Σ.
- Protagonist wins if ρ is in some fixed winning condition, an ω -language over Σ .
- Many applications in automata theory, logic, reactive synthesis, etc.

Because you want to solve infinite games with contextfree winning conditions!

- Two players move a token through a finite graph without dead ends whose vertices are labeled by Σ, thereby constructing an infinite word ρ over Σ.
- Protagonist wins if ρ is in some fixed winning condition, an ω -language over Σ .
- Many applications in automata theory, logic, reactive synthesis, etc.

Theorem (Finkel 2001, Walukiewicz 2001)

The following problem is undecidable: Does protagonist win a game with ω-contextfree winning condition?

Because you want to solve infinite games with contextfree winning conditions!

- Two players move a token through a finite graph without dead ends whose vertices are labeled by Σ, thereby constructing an infinite word ρ over Σ.
- Protagonist wins if ρ is in some fixed winning condition, an ω -language over Σ .
- Many applications in automata theory, logic, reactive synthesis, etc.

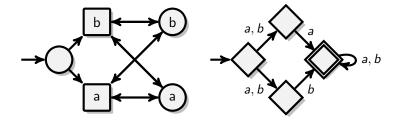
Theorem (Finkel 2001, Walukiewicz 2001)

- The following problem is undecidable: Does protagonist win a game with ω-contextfree winning condition?
- The following problem is EXPTIME-complete: Does protagonist win a game with deterministic ω-contextfree winning condition?

But..

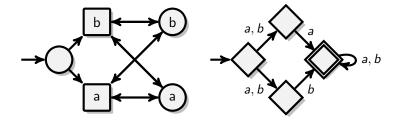
.. why can't we just let protagonist "resolve" nondeterministic choices on-the-fly during a play?

.. why can't we just let protagonist "resolve" nondeterministic choices on-the-fly during a play?



Every play is winning for protagonist (round vertices), but..

.. why can't we just let protagonist "resolve" nondeterministic choices on-the-fly during a play?



- Every play is winning for protagonist (round vertices), but..
- protagonist loses if she has to resolve nondeterminism on-the-fly.

History-Determinism

Let $\mathcal{P} = (Q, \Sigma, \Gamma, q_I, \Delta, \Omega)$ be a nondeterministic PDA.

A resolver for P is a function r: Δ* × Σ → Δ such that for every w ∈ L(P) the sequence τ₀τ₁τ₂··· ∈ Δ^ω defined as

$$\tau_n = r(\tau_0 \cdots \tau_{n-1}, w(|(\tau_0 \cdots \tau_{n-1})|_{\Sigma}))$$

induces an accepting run of \mathcal{P} on w.

Here, $|(\tau_0 \cdots \tau_{n-1})|_{\Sigma}$ denotes the number of letters processed by the transitions $\tau_0 \cdots \tau_{n-1}$ (\mathcal{P} may have ε -transitions), i.e., $w(|(\tau_0 \cdots \tau_{n-1})|_{\Sigma})$ is the first letter of w not processed by $\tau_0 \cdots \tau_{n-1}$.

 $\blacksquare \mathcal{P}$ is history-deterministic if it has a resolver.

History-Determinism

Let $\mathcal{P} = (Q, \Sigma, \Gamma, q_I, \Delta, \Omega)$ be a nondeterministic PDA.

A resolver for P is a function r: Δ* × Σ → Δ such that for every w ∈ L(P) the sequence τ₀τ₁τ₂··· ∈ Δ^ω defined as

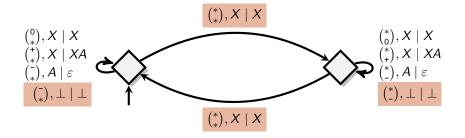
$$\tau_n = r(\tau_0 \cdots \tau_{n-1}, w(|(\tau_0 \cdots \tau_{n-1})|_{\Sigma}))$$

induces an accepting run of \mathcal{P} on w.

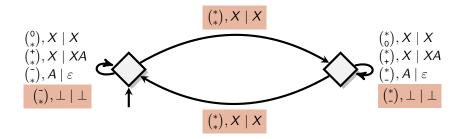
Here, $|(\tau_0 \cdots \tau_{n-1})|_{\Sigma}$ denotes the number of letters processed by the transitions $\tau_0 \cdots \tau_{n-1}$ (\mathcal{P} may have ε -transitions), i.e., $w(|(\tau_0 \cdots \tau_{n-1})|_{\Sigma})$ is the first letter of w not processed by $\tau_0 \cdots \tau_{n-1}$.

- $\blacksquare \mathcal{P}$ is history-deterministic if it has a resolver.
- Definition slightly more tedious for finite words.

Back to the Example

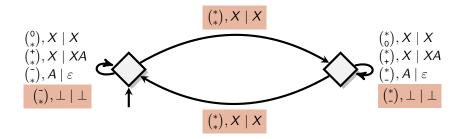


Back to the Example



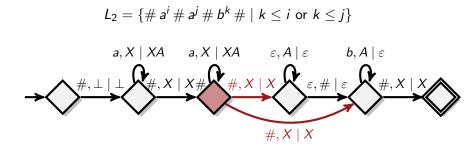
Let us define a resolver for the ω-PDA above.
 Given w = (^{w0}₀)_{w0} ··· (^{wn}_n)_{wn} let mⁱ for i ∈ {0,1} be the minimal m such that wⁱ_m ··· wⁱ_n is safe.

Back to the Example

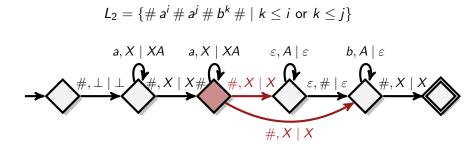


- Let us define a resolver for the ω-PDA above.
 Given w = (^{w0}₀)_{w0} ··· (^{wn}_n)_{wn} let mⁱ for i ∈ {0,1} be the minimal m such that wⁱ_m ··· wⁱ_n is safe.
- Then, we define the resolver to guide the run
 - to the left state, if $m^0 \leq m^1$, and
 - to the right state otherwise.

And the Other One



And the Other One



- Let us again define a resolver for the PDA.
- In the red state, after having processed # aⁱ # a^j and the next letter being #, select
 - the upper transition if j < i, and
 - the lower transition otherwise.

But Have we Gained Anything?

Theorem (Lehtinen, Z. 2020)

 L_{es} is history-deterministic ω-contextfree, but not deterministic ω-contextfree.

But Have we Gained Anything?

Theorem (Lehtinen, Z. 2020)

- L_{es} is history-deterministic ω-contextfree, but not deterministic ω-contextfree.
- There are ω-contextfree languages that are not history-deterministic ω-contextfree.

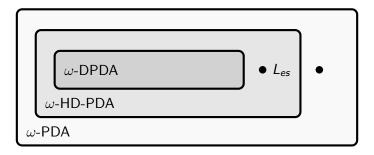
But Have we Gained Anything?

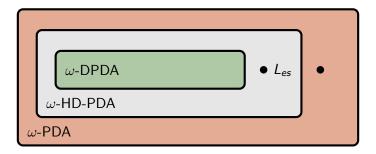
Theorem (Lehtinen, Z. 2020)

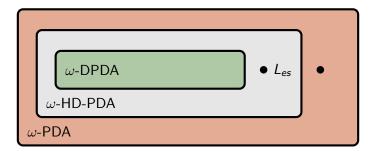
- L_{es} is history-deterministic ω-contextfree, but not deterministic ω-contextfree.
- There are ω-contextfree languages that are not history-deterministic ω-contextfree.

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

- L₂ is history-deterministic contextfree, but not deterministic contextfree.
- There are contextfree languages that are not history-deterministic contextfree.

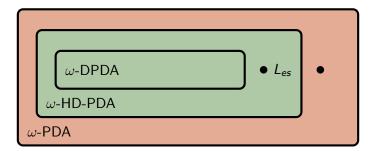






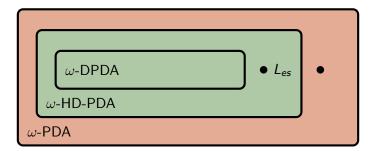
Theorem (Lehtinen, Z. 2020)

The following problem is EXPTIME-complete: Does protagonist win a game with history-deterministic ω -contextfree winning condition?



Theorem (Lehtinen, Z. 2020)

The following problem is EXPTIME-complete: Does protagonist win a game with history-deterministic ω -contextfree winning condition?



Theorem (Lehtinen, Z. 2020)

The following problem is EXPTIME-complete: Does protagonist win a game with history-deterministic ω -contextfree winning condition?

Corollary

Universality for history-deterministic PDA is in EXPTIME.

Closure Properties

Theorem (Lehtinen, Z. 2020)

The history-deterministic contextfree languages have poor closure properties.

Closure Properties

Theorem (Lehtinen, Z. 2020)

The history-deterministic contextfree languages have poor closure properties.

	\cap	U	—	\setminus	h
ω -DPDA	×	×	1	×	×
ω -HD-PDA	X	X	X	X	X
ω -VPA	\checkmark	1	1	1	X
ω -PDA	×	\checkmark	X	X	\checkmark

Decidability

History-determinism is a semantic definition, so it is not trivial to determine whether a PDA is history-deterministic.

Decidability

History-determinism is a semantic definition, so it is not trivial to determine whether a PDA is history-deterministic.

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

- **1.** Given an ω -PDA \mathcal{P} , is \mathcal{P} history-deterministic?
- **2.** Is a given ω -PDA \mathcal{P} equivalent to some history-deterministic PDA?

Similar results hold for PDA on finite words.

 A comparison to unambiguous contextfree languages: incomparable (over finite words)

- A comparison to unambiguous contextfree languages: incomparable (over finite words)
- A comparison to visibly pushdown languages: incomparable (over infinite words)

- A comparison to unambiguous contextfree languages: incomparable (over finite words)
- A comparison to visibly pushdown languages: incomparable (over infinite words)
- History-deterministic visibly pushdown languages: better properties*

- A comparison to unambiguous contextfree languages: incomparable (over finite words)
- A comparison to visibly pushdown languages: incomparable (over infinite words)
- History-deterministic visibly pushdown languages: better properties*
- The parity-index hierarchy of history-deterministic context-free language: infinite

- A comparison to unambiguous contextfree languages: incomparable (over finite words)
- A comparison to visibly pushdown languages: incomparable (over infinite words)
- History-deterministic visibly pushdown languages: better properties*
- The parity-index hierarchy of history-deterministic context-free language: infinite
- A comparison to good-for-games pushdown automata: not equivalent!!!

■ Recall: A resolver is a function r: Δ* × Σ → Δ that induces an accepting run for every accepted word.

- Recall: A resolver is a function r: Δ* × Σ → Δ that induces an accepting run for every accepted word.
- Such functions can be implemented by automata with output.

- Recall: A resolver is a function r: Δ* × Σ → Δ that induces an accepting run for every accepted word.
- Such functions can be implemented by automata with output.
- But how "complex" do resolvers for history-deterministic PDA need to be?

- Recall: A resolver is a function r: Δ* × Σ → Δ that induces an accepting run for every accepted word.
- Such functions can be implemented by automata with output.
- But how "complex" do resolvers for history-deterministic PDA need to be?

Theorem (Lehtinen, Z. 2020)

If a history-deterministic PDA has a finite-state resolver, then it can be determinized by taking the product of the PDA and the (finite-state implementation of the) resolver.

- Recall: A resolver is a function r: Δ* × Σ → Δ that induces an accepting run for every accepted word.
- Such functions can be implemented by automata with output.
- But how "complex" do resolvers for history-deterministic PDA need to be?

Theorem (Lehtinen, Z. 2020)

- If a history-deterministic PDA has a finite-state resolver, then it can be determinized by taking the product of the PDA and the (finite-state implementation of the) resolver.
- Not every history-deterministic PDA has a resolver that is implementable by a PDA with output.

Recall

$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}.$$

It has resolver that is implementable by a PDA with output (after processing $\# a^i \# a^j$, we need to check j < i).

Recall

$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}.$$

It has resolver that is implementable by a PDA with output (after processing $\# a^i \# a^j$, we need to check j < i).

So, consider

$$L_3 = \{ \# a^h \# a^i \# a^j \# b^k \# \mid k \le h \text{ or } k \le i \text{ or } k \le j \},\$$

which is also history-deterministic.

Recall

$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}.$$

It has resolver that is implementable by a PDA with output (after processing $\# a^i \# a^j$, we need to check j < i).

So, consider

$$L_3 = \{ \# a^h \# a^i \# a^j \# b^k \# \mid k \le h \text{ or } k \le i \text{ or } k \le j \},\$$

which is also history-deterministic.

• To resolve the nondeterminism here, we need to check, e.g., $i < h \land j < h$. This cannot be achieved by a PDA.

Recall

$$L_2 = \{ \# a^i \# a^j \# b^k \# \mid k \le i \text{ or } k \le j \}.$$

It has resolver that is implementable by a PDA with output (after processing $\# a^i \# a^j$, we need to check j < i).

So, consider

$$L_3 = \{ \# a^h \# a^i \# a^j \# b^k \# \mid k \le h \text{ or } k \le i \text{ or } k \le j \},\$$

which is also history-deterministic.

• To resolve the nondeterminism here, we need to check, e.g., $i < h \land j < h$. This cannot be achieved by a PDA.

Open Problem

Does every history-deterministic PDA have a computable resolver?

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For every n-state PDA accepting a deterministic contextfree language, there is an equivalent deterministic PDA with f(n) states.

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For every n-state PDA accepting a deterministic contextfree language, there is an equivalent deterministic PDA with f(n) states.

Due to ω-DCFL ⊊ ω-HD-CFL ⊊ ω-CFL, we know that at least one of the succinctness gaps involving history-deterministic PDA must be noncomputable.

Open Problem

Which of the two succinctness gaps is noncomputable?

Succinctness

Theorem (Valiant 1976)

There is no computable function f with the following property: For every n-state PDA accepting a deterministic contextfree language, there is an equivalent deterministic PDA with f(n) states.

■ Due to ω-DCFL ⊊ ω-HD-CFL ⊊ ω-CFL, we know that at least one of the succinctness gaps involving history-deterministic PDA must be noncomputable.

Open Problem

Which of the two succinctness gaps is noncomputable?

Theorem (Guha, Jecker, Lehtinen, Z. 2021)

There are exponential and doubly-exponential lower bounds.

■ Is universality for history-deterministic PDA EXPTIME-hard?

- Is universality for history-deterministic PDA EXPTIME-hard?
- Is it decidable whether a history-deterministic PDA has an equivalent deterministic PDA?

- Is universality for history-deterministic PDA EXPTIME-hard?
- Is it decidable whether a history-deterministic PDA has an equivalent deterministic PDA?
- Is equivalence of history-deterministic PDA (over finite words) decidable?

- Is universality for history-deterministic PDA EXPTIME-hard?
- Is it decidable whether a history-deterministic PDA has an equivalent deterministic PDA?
- Is equivalence of history-deterministic PDA (over finite words) decidable?
- Is there a class of grammars that is equivalent to history-deterministic PDA?

- Is universality for history-deterministic PDA EXPTIME-hard?
- Is it decidable whether a history-deterministic PDA has an equivalent deterministic PDA?
- Is equivalence of history-deterministic PDA (over finite words) decidable?
- Is there a class of grammars that is equivalent to history-deterministic PDA?
- Is there an extension of MSO that is equivalent to history-deterministic PDA?

- Is universality for history-deterministic PDA EXPTIME-hard?
- Is it decidable whether a history-deterministic PDA has an equivalent deterministic PDA?
- Is equivalence of history-deterministic PDA (over finite words) decidable?
- Is there a class of grammars that is equivalent to history-deterministic PDA?
- Is there an extension of MSO that is equivalent to history-deterministic PDA?

Thank you! Questions and more open problems?