
Temporal Logics for
Information-flow Policies

Martin Zimmermann

University of Liverpool

January 14th, 2020
Royal Holloway, London, UK

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 1/28

Motivation

S
iscrt oscrt

ipblc opblc

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Motivation

S
iscrt oscrt

ipblc opblc

Trace-based view on S: observe execution traces, i.e., infinite
sequences over 2AP for some set AP of atomic propositions.

{init, ipblc} {iscrt} {ipblc} {iscrt, opblc, term} · · ·

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Motivation

S
iscrt oscrt

ipblc opblc

Typical requirements:

S terminates

S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Motivation

S
iscrt oscrt

ipblc opblc

Typical requirements:

S terminates
S terminates within a uniform time bound

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Motivation

S
iscrt oscrt

ipblc opblc

Typical requirements:

S terminates
S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Motivation

S
iscrt oscrt

ipblc opblc

Typical requirements:

S terminates
S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 2/28

Trace Properties vs. Hyperproperties

Definition
A trace property T ⊆ (2AP)ω is a set of traces. A system S
satisfies T , if Traces(S) ⊆ T .

Example: The set of traces where term holds at least once.

Definition
A hyperproperty H ⊆ 2(2

AP)ω is a set of sets of traces. A system S
satisfies H if Traces(S) ∈ H.

Example: The set {T ⊆ Tn | n ∈ N} where Tn is the trace
property containing the traces where term holds at least once
within the first n positions.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 3/28

Trace Properties vs. Hyperproperties

Definition
A trace property T ⊆ (2AP)ω is a set of traces. A system S
satisfies T , if Traces(S) ⊆ T .

Example: The set of traces where term holds at least once.

Definition
A hyperproperty H ⊆ 2(2

AP)ω is a set of sets of traces. A system S
satisfies H if Traces(S) ∈ H.

Example: The set {T ⊆ Tn | n ∈ N} where Tn is the trace
property containing the traces where term holds at least once
within the first n positions.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 3/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 4/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 5/28

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = trueUψ Gψ = ¬F¬ψ

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 6/28

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = trueUψ Gψ = ¬F¬ψ

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 6/28

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = trueUψ Gψ = ¬F¬ψ

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 6/28

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ∈ AP and π ∈ V (trace variables).

Prenex normal form, but
closed under boolean combinations.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 7/28

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ∈ AP and π ∈ V (trace variables).

Prenex normal form, but
closed under boolean combinations.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 7/28

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

S terminates within a uniform time bound.
Not expressible in HyperLTL.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 8/28

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

S terminates within a uniform time bound.
Not expressible in HyperLTL.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 8/28

Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

S terminates within a uniform time bound.
Not expressible in HyperLTL.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 8/28

Applications

Uniform framework for information-flow control
Does a system leak information?

Symmetries in distributed systems
Are clients treated symmetrically?

Error resistant codes
Do codes for distinct inputs have at least Hamming
distance d?

Software doping
Think emission scandal in automotive industry

There are prototype tools for model checking, satisfiability
checking, runtime verification, and synthesis.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 9/28

The Virtues of LTL

LTL is the most important specification language for reactive
systems and has many desirable properties:

1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finitely-represented model.

2. LTL and FO[<] are expressively equivalent.
3. LTL satisfiability and model-checking are PSpace-complete.

Which properties does HyperLTL retain?

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 10/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 11/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ

∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ

∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)
∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 12/28

More Results

Theorem (Finkbeiner & Z. ’17)
Every satisfiable HyperLTL sentence has a countable model.

What about ω-regular models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
ω-regular set of traces.

What about ultimately periodic models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
set of traces that contains an ultimately periodic trace.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 13/28

More Results

Theorem (Finkbeiner & Z. ’17)
Every satisfiable HyperLTL sentence has a countable model.

What about ω-regular models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
ω-regular set of traces.

What about ultimately periodic models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
set of traces that contains an ultimately periodic trace.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 13/28

More Results

Theorem (Finkbeiner & Z. ’17)
Every satisfiable HyperLTL sentence has a countable model.

What about ω-regular models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
ω-regular set of traces.

What about ultimately periodic models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
set of traces that contains an ultimately periodic trace.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 13/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 14/28

First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)
LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x)) → ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 15/28

First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)
LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x)) → ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 15/28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T

E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Example

∀x∀x ′ E (x , x ′) → (Pon(x) ↔ Pon(x
′))

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Proposition
For every HyperLTL sentence there is an equivalent FO[<, E]
sentence.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28

A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)
ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E]:

∃x ∀y E (x , y) → ¬Pp(y)

Corollary
FO[<, E] strictly subsumes HyperLTL.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 17/28

A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)
ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E]:

∃x ∀y E (x , y) → ¬Pp(y)

Corollary
FO[<, E] strictly subsumes HyperLTL.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 17/28

HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.
∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

ℓ yℓ ≥ xgℓ . ψ

Q ∈ {∃, ∀},
{x1, . . . , xk} and {y1, . . . , yℓ} are disjoint,
every guard xgj is in {x1, . . . , xk}, and
ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , yℓ}.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 18/28

HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.
∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

ℓ yℓ ≥ xgℓ . ψ

Q ∈ {∃, ∀},
{x1, . . . , xk} and {y1, . . . , yℓ} are disjoint,
every guard xgj is in {x1, . . . , xk}, and
ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , yℓ}.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 18/28

Equivalence

Theorem (Finkbeiner & Z. ’17)
HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.
From HyperFO to HyperLTL: reduction to Kamp’s theorem.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 19/28

Equivalence

Theorem (Finkbeiner & Z. ’17)
HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.
From HyperFO to HyperLTL: reduction to Kamp’s theorem.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 19/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 20/28

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem (Finkbeiner & Hahn ’16)
∀∃-HyperLTL satisfiability is undecidable.

Proof:
Express the mortality problem for Turing machines: Given a Turing
machine, decide whether it has an infinite run starting in some (not
necessarily initial) configuration:

∀π∃π′. ϕ

where ϕ expresses that π′ encodes a successor configuration of the
configuration encoded by π.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 21/28

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem (Finkbeiner & Hahn ’16)
∀∃-HyperLTL satisfiability is undecidable.

Proof:
Express the mortality problem for Turing machines: Given a Turing
machine, decide whether it has an infinite run starting in some (not
necessarily initial) configuration:

∀π∃π′. ϕ

where ϕ expresses that π′ encodes a successor configuration of the
configuration encoded by π.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 21/28

Decidability

Theorem (Finkbeiner & Hahn ’16)
1. ∃∗-HyperLTL satisfiability is PSpace-complete.
2. ∀∗-HyperLTL satisfiability is PSpace-complete.
3. ∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Theorem (Mascle & Zimmermann ’20)
1. “Is there a model with ≤ k traces?” is ExpSpace-complete.
2. “Is there a model with ultimately periodic traces of length

≤ k?” is N2ExpTime-complete.
3. “Is there a model represented by a transition system with ≤ k

states?” is Tower-complete.

Also: Decidability/better complexity for restricted nesting of
temporal operators.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 22/28

Decidability

Theorem (Finkbeiner & Hahn ’16)
1. ∃∗-HyperLTL satisfiability is PSpace-complete.
2. ∀∗-HyperLTL satisfiability is PSpace-complete.
3. ∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Theorem (Mascle & Zimmermann ’20)
1. “Is there a model with ≤ k traces?” is ExpSpace-complete.
2. “Is there a model with ultimately periodic traces of length

≤ k?” is N2ExpTime-complete.
3. “Is there a model represented by a transition system with ≤ k

states?” is Tower-complete.

Also: Decidability/better complexity for restricted nesting of
temporal operators.
Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 22/28

Model-Checking

The HyperLTL model-checking problem:

Given a transition system S and ϕ, does Traces(S) |= ϕ?

Theorem (Clarkson et al. ’14)
The HyperLTL model-checking problem is decidable.

Corollary (Mascle & Z. ’20)
The HyperLTL model-checking problem is TOWER-hard, even for a
fixed transition system with 5 states and formulas without nested
operators.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 23/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 24/28

Team Semantics for LTL

Team semantics have been introduced to capture notions like
dependence and independence in first-order logic.

Novelty: evaluate formulas on sets (called teams) of variable
assignments instead of a single assignment.

What about team semantics for (classical) LTL, i.e., evaluate
formulas on sets of traces instead of traces?

Theorem (Krebs, Meier, Virtema, Z. ’18)

1. TeamLTL satisfiability is decidable.
2. TeamLTL and HyperLTL are incomparable. In particluar,

TeamLTL can express “There is an n such that p /∈ t(n) for
every t ∈ T ”.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 25/28

Team Semantics for LTL

Team semantics have been introduced to capture notions like
dependence and independence in first-order logic.

Novelty: evaluate formulas on sets (called teams) of variable
assignments instead of a single assignment.

What about team semantics for (classical) LTL, i.e., evaluate
formulas on sets of traces instead of traces?

Theorem (Krebs, Meier, Virtema, Z. ’18)

1. TeamLTL satisfiability is decidable.
2. TeamLTL and HyperLTL are incomparable. In particluar,

TeamLTL can express “There is an n such that p /∈ t(n) for
every t ∈ T ”.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 25/28

Team Semantics for LTL

Team semantics have been introduced to capture notions like
dependence and independence in first-order logic.

Novelty: evaluate formulas on sets (called teams) of variable
assignments instead of a single assignment.

What about team semantics for (classical) LTL, i.e., evaluate
formulas on sets of traces instead of traces?

Theorem (Krebs, Meier, Virtema, Z. ’18)

1. TeamLTL satisfiability is decidable.
2. TeamLTL and HyperLTL are incomparable. In particluar,

TeamLTL can express “There is an n such that p /∈ t(n) for
every t ∈ T ”.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 25/28

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 26/28

Conclusion

HyperLTL behaves quite differently than LTL:
The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
Satisfiability is in general undecidable.
Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things:
HyperLTL is a powerful tool for information security and beyond

Information-flow control
Symmetries in distributed systems
Error resistant codes
Software doping

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 27/28

Conclusion

HyperLTL behaves quite differently than LTL:
The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
Satisfiability is in general undecidable.
Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things:
HyperLTL is a powerful tool for information security and beyond

Information-flow control
Symmetries in distributed systems
Error resistant codes
Software doping

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 27/28

Open Problems

Is there a class of languages L such that every satisfiable
HyperLTL sentence has a model from L?
Is the quantifier alternation hierarchy strict?
Is there a temporal logic that is expressively equivalent to
FO[<, E]?
What about HyperCTL∗?
Quantitative hyperproperties
Is TeamLTL model checking decidable?

Thank you

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 28/28

Open Problems

Is there a class of languages L such that every satisfiable
HyperLTL sentence has a model from L?
Is the quantifier alternation hierarchy strict?
Is there a temporal logic that is expressively equivalent to
FO[<, E]?
What about HyperCTL∗?
Quantitative hyperproperties
Is TeamLTL model checking decidable?

Thank you

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 28/28

