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Motivation

S
iscrt oscrt

ipblc opblc

Trace-based view on S: observe execution traces, i.e., infinite
sequences over 2AP for some set AP of atomic propositions.

{init, ipblc} {iscrt} {ipblc} {iscrt, opblc, term} · · ·
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Motivation

S
iscrt oscrt

ipblc opblc

Typical requirements:

S terminates

S terminates within a uniform time bound
S is input-deterministic: for all traces t, t ′ of S

t =I t
′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =ipblc t

′ implies t =opblc t
′
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Trace Properties vs. Hyperproperties

Definition
A trace property T ⊆ (2AP)ω is a set of traces. A system S
satisfies T , if Traces(S) ⊆ T .

Example: The set of traces where term holds at least once.

Definition
A hyperproperty H ⊆ 2(2

AP)ω is a set of sets of traces. A system S
satisfies H if Traces(S) ∈ H.

Example: The set {T ⊆ Tn | n ∈ N} where Tn is the trace
property containing the traces where term holds at least once
within the first n positions.
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Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion
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LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where a ∈ AP

Semantics

w |= a: w
a

w |= Xϕ: w
ϕ

w |= ϕ0 Uϕ1: w
ϕ0 ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = trueUψ Gψ = ¬F¬ψ
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HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ∈ AP and π ∈ V (trace variables).

Prenex normal form, but
closed under boolean combinations.
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Examples

S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

In HyperLTL: ∀π∀π′. G (iπ ↔ iπ′) → G (oπ ↔ oπ′)

Noninterference: for all traces t, t ′ of S
t =Ipblc t

′ implies t =Opblc t
′

In HyperLTL:
∀π∀π′. G ((ipblc)π ↔ (ipblc)π′) → G ((opblc)π ↔ (opblc)π′)

S terminates within a uniform time bound.
Not expressible in HyperLTL.
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Applications

Uniform framework for information-flow control
Does a system leak information?

Symmetries in distributed systems
Are clients treated symmetrically?

Error resistant codes
Do codes for distinct inputs have at least Hamming
distance d?

Software doping
Think emission scandal in automotive industry

There are prototype tools for model checking, satisfiability
checking, runtime verification, and synthesis.
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The Virtues of LTL

LTL is the most important specification language for reactive
systems and has many desirable properties:

1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finitely-represented model.

2. LTL and FO[<] are expressively equivalent.
3. LTL satisfiability and model-checking are PSpace-complete.

Which properties does HyperLTL retain?
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Outline

1. HyperLTL

2. The Models Of HyperLTL

3. The First-order Logic of Hyperproperties

4. HyperLTL Satisfiability

5. Team Semantics

6. Conclusion
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What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of
∀π. (¬aπ)U (aπ ∧ XG¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
finite set of traces.
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More Results

Theorem (Finkbeiner & Z. ’17)
Every satisfiable HyperLTL sentence has a countable model.

What about ω-regular models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
ω-regular set of traces.

What about ultimately periodic models?

Theorem (Finkbeiner & Z. ’17)
There is a satisfiable HyperLTL sentence that is not satisfied by any
set of traces that contains an ultimately periodic trace.
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First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)
LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x)) → ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.
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First-order Logic for Hyperproperties
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FO[<, E ]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.
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FO[<, E ]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Example

∀x∀x ′ E (x , x ′) → (Pon(x) ↔ Pon(x
′))
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First-order Logic for Hyperproperties
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FO[<, E ]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Proposition
For every HyperLTL sentence there is an equivalent FO[<, E ]
sentence.

Martin Zimmermann University of Liverpool Temporal Logics for Information-flow Policies 16/28



A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)
ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E ]:

∃x ∀y E (x , y) → ¬Pp(y)

Corollary
FO[<, E ] strictly subsumes HyperLTL.
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HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.
∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

ℓ yℓ ≥ xgℓ . ψ

Q ∈ {∃, ∀},
{x1, . . . , xk} and {y1, . . . , yℓ} are disjoint,
every guard xgj is in {x1, . . . , xk}, and
ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , yℓ}.
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Equivalence

Theorem (Finkbeiner & Z. ’17)
HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.
From HyperFO to HyperLTL: reduction to Kamp’s theorem.
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Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem (Finkbeiner & Hahn ’16)
∀∃-HyperLTL satisfiability is undecidable.

Proof:
Express the mortality problem for Turing machines: Given a Turing
machine, decide whether it has an infinite run starting in some (not
necessarily initial) configuration:

∀π∃π′. ϕ

where ϕ expresses that π′ encodes a successor configuration of the
configuration encoded by π.
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Decidability

Theorem (Finkbeiner & Hahn ’16)
1. ∃∗-HyperLTL satisfiability is PSpace-complete.
2. ∀∗-HyperLTL satisfiability is PSpace-complete.
3. ∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Theorem (Mascle & Zimmermann ’20)
1. “Is there a model with ≤ k traces?” is ExpSpace-complete.
2. “Is there a model with ultimately periodic traces of length

≤ k?” is N2ExpTime-complete.
3. “Is there a model represented by a transition system with ≤ k

states?” is Tower-complete.

Also: Decidability/better complexity for restricted nesting of
temporal operators.
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Model-Checking

The HyperLTL model-checking problem:

Given a transition system S and ϕ, does Traces(S) |= ϕ?

Theorem (Clarkson et al. ’14)
The HyperLTL model-checking problem is decidable.

Corollary (Mascle & Z. ’20)
The HyperLTL model-checking problem is TOWER-hard, even for a
fixed transition system with 5 states and formulas without nested
operators.
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Team Semantics for LTL

Team semantics have been introduced to capture notions like
dependence and independence in first-order logic.

Novelty: evaluate formulas on sets (called teams) of variable
assignments instead of a single assignment.

What about team semantics for (classical) LTL, i.e., evaluate
formulas on sets of traces instead of traces?

Theorem (Krebs, Meier, Virtema, Z. ’18)

1. TeamLTL satisfiability is decidable.
2. TeamLTL and HyperLTL are incomparable. In particluar,

TeamLTL can express “There is an n such that p /∈ t(n) for
every t ∈ T ”.
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Conclusion

HyperLTL behaves quite differently than LTL:
The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
Satisfiability is in general undecidable.
Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things:
HyperLTL is a powerful tool for information security and beyond

Information-flow control
Symmetries in distributed systems
Error resistant codes
Software doping
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Open Problems

Is there a class of languages L such that every satisfiable
HyperLTL sentence has a model from L?
Is the quantifier alternation hierarchy strict?
Is there a temporal logic that is expressively equivalent to
FO[<, E ]?
What about HyperCTL∗?
Quantitative hyperproperties
Is TeamLTL model checking decidable?

Thank you
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