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HyperLTL and HyperCTL∗
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Example

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

HyperLTL vs. HyperCTL∗

• HyperLTL: prenex normal form, models = sets of traces

• HyperCTL∗: no prenex normal form,

models = transition systems/computation trees
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Undecidability

HyperLTL and HyperCTL∗ model-checking problems are

decidable . . .

. . . but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL∗ satisfiability?
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Levels of Undecidability

HyperLTL

satisfiability

HyperCTL∗

satisfiability

HyperLTL

satisfiability

HyperCTL∗

satisfiability

Theorem

HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

Theorem

HyperCTL∗ satisfiability is Σ1
1-hard. [Clarkson et al. 2014]
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Main Results

Theorem

HyperLTL satisfiability is Σ1
1-complete.

• Satisfiable HyperLTL formulas have countable models,

some have only infinite models. [Finkbeiner, Z. 2017]

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

• Satisfiable HyperCTL∗ formulas have models of

cardinality c = |2N|, some have only uncountable models.
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