Delay Games with WMSO+U Winning Conditions

Martin Zimmermann

Saarland University

September 17th, 2015

Highlights Conference 2015, Prague, Czech Republic

Max-Automata

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **\blacksquare** acceptance: boolean combination of "counter γ is bounded"

Max-Automata

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **\blacksquare** acceptance: boolean combination of "counter γ is bounded"

a:
$$\operatorname{inc}(\gamma)$$
 \frown b : $\operatorname{reset}(\gamma)$; $\operatorname{inc}(\gamma')$

Acceptance condition: γ and γ' unbounded.

 $L(\mathcal{A}) = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots \mid \sup_i n_i = \infty\}$

Max-Automata

- Deterministic finite automata with counters
- counter actions: incr, reset, max
- **\blacksquare** acceptance: boolean combination of "counter γ is bounded"

a:
$$\operatorname{inc}(\gamma)$$
 \frown b : $\operatorname{reset}(\gamma)$; $\operatorname{inc}(\gamma')$

Acceptance condition: γ and γ' unbounded.

 $L(\mathcal{A}) = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots \mid \sup_i n_i = \infty\}$

Such automata capture weak MSO with the unbounding quantifier and thus many quantitative specification formalisms, e.g., finitary parity and Prompt-LTL.

Example

■
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}$.
■ Input block: $\#w$ with $w \in \{0, 1\}^+$.
■ Output block:

$$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$$
for $\alpha(j) \in \{0,1\}.$

Example

■
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}$.
■ Input block: $\#w$ with $w \in \{0, 1\}^+$.
■ Output block:

$$\begin{pmatrix} \# \\ \alpha(n) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ * \end{pmatrix} \begin{pmatrix} \alpha(2) \\ * \end{pmatrix} \cdots \begin{pmatrix} \alpha(n-1) \\ * \end{pmatrix} \begin{pmatrix} \alpha(n) \\ \alpha(n) \end{pmatrix}$$
for $\alpha(j) \in \{0, 1\}.$

Define language L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Example

■
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}$.
■ Input block: $\#w$ with $w \in \{0, 1\}^+$.
■ Output block:

$$\begin{pmatrix} \# \\ \alpha(n) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ * \end{pmatrix} \begin{pmatrix} \alpha(2) \\ * \end{pmatrix} \cdots \begin{pmatrix} \alpha(n-1) \\ * \end{pmatrix} \begin{pmatrix} \alpha(n) \\ \alpha(n) \end{pmatrix}$$
for $\alpha(j) \in \{0, 1\}.$

Define language L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

O wins with unbounded lookahead:

- If *I* produces arbitrarily long input blocks, then the lookahead will contain arbitrarily long input blocks.
- Thus, O can produce arbitrarily long output blocks.

Theorem

Delay Games with max-regular winning conditions w.r.t fixed delay functions are determined.

Theorem

Delay Games with max-regular winning conditions w.r.t fixed delay functions are determined.

Theorem

The following problem is decidable: given a max-automaton A, does O win the delay game with winning condition L(A) with bounded lookahead?

Theorem

Delay Games with max-regular winning conditions w.r.t fixed delay functions are determined.

Theorem

The following problem is decidable: given a max-automaton A, does O win the delay game with winning condition L(A) with bounded lookahead?

But: bounded lookahead is not always sufficient!

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

$$I: \# 0 0 \cdots 0$$

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

(

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

(

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

(

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Recall: O wins with unbounded lookahead.

- Input block: #w with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L₀: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: / wins with bounded lookahead:

Lookahead contains only input blocks of bounded length.

 I can react to O's declaration at beginning of an output block to bound size of output blocks while producing arbitrarily large input blocks.

Current Work

Theorem

If O wins a max-regular delay game with unbounded lookahead, then it does not matter how slow or fast the lookahead grows.

Current Work

Theorem

If O wins a max-regular delay game with unbounded lookahead, then it does not matter how slow or fast the lookahead grows.

Conjecture

Max-regular delay games with unbounded lookahead are decidable.