The Complexity of Counting Models of Linear-time Temporal Logic

Joint work with Hazem Torfah

Martin Zimmermann

Saarland University

September 4th, 2014

Highlights 2014, Paris, France

■ $f: \Sigma^* \to \mathbb{N}$ is in #P if there is an NP machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

• $f: \Sigma^* \to \mathbb{N}$ is in #P if there is an NP machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :

 f: Σ* → N is in #C if there is an NP machine M with oracle in C such that f(w) is equal to the number of accepting runs of M on w.

• $f: \Sigma^* \to \mathbb{N}$ is in #P if there is an NP machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :

 f: Σ* → N is in #C if there is an NP machine M with oracle in C such that f(w) is equal to the number of accepting runs of M on w.

Remark: $f \in \#C$ implies $f(w) \in O(2^{p(|w|)})$ for some polynomial p.

• $f: \Sigma^* \to \mathbb{N}$ is in #P if there is an NP machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :

 f: Σ* → N is in #C if there is an NP machine M with oracle in C such that f(w) is equal to the number of accepting runs of M on w.

Remark: $f \in \#C$ implies $f(w) \in O(2^{p(|w|)})$ for some polynomial p.

We need *larger* counting classes.

• $f: \Sigma^* \to \mathbb{N}$ is in $\#_d \text{PSPACE}$, if there is a nondeterministic polynomial-space Turing machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

• $f: \Sigma^* \to \mathbb{N}$ is in #P if there is an NP machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :

 f: Σ* → N is in #C if there is an NP machine M with oracle in C such that f(w) is equal to the number of accepting runs of M on w.

Remark: $f \in \#C$ implies $f(w) \in O(2^{p(|w|)})$ for some polynomial p.

We need *larger* counting classes.

- $f: \Sigma^* \to \mathbb{N}$ is in $\#_d \text{PSPACE}$, if there is a nondeterministic polynomial-space Turing machine \mathcal{M} such that f(w) is equal to the number of accepting runs of \mathcal{M} on w.
- Analogously: $\#_d$ EXPTIME, $\#_d$ EXPSPACE, and $\#_d$ 2EXPTIME.

Lemma

#P

Lemma

 $\#P\subseteq \#P\text{Space}$

Lemma

 $\# \mathrm{P} \subseteq \# \mathrm{PSpace} \subseteq \# \mathrm{Exptime}$

Lemma

 $\# P \subseteq \# P \text{Space} \subseteq \# E \text{Xptime} \subseteq \# N E \text{Xptime}$

Lemma

 $\# P \subseteq \# P \text{space} \subseteq \# E \text{xptime} \subseteq \# N E \text{xptime} \subseteq \# E \text{xpspace}$

Lemma

 $\#P \subseteq \#P\text{Space} \subseteq \#\text{Exptime} \subseteq \#\text{NExptime} \subseteq \#\text{Expspace} \subseteq \#2\text{Exptime}$

Lemma

 $\#_{\!d} \operatorname{PSPACE}$

 $\#P \subseteq \#P\text{Space} \subseteq \#\text{Exptime} \subseteq \#\text{NExptime} \subseteq \#\text{Expspace} \subseteq \#2\text{Exptime}$

Lemma

 $\#_{\!d} \operatorname{Pspace} \subseteq \#_{\!d} \operatorname{Exptime}$

 $\#P \subseteq \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime$

Lemma

 $\#_{d} \operatorname{PSPACE} \subseteq \#_{d} \operatorname{Exptime} \qquad \subseteq \qquad \#_{d} \operatorname{ExpSpace}$

 $\#P \subseteq \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime$

Lemma

 $\#_{d} \operatorname{Pspace} \subseteq \#_{d} \operatorname{Exptime} \qquad \subseteq \qquad \#_{d} \operatorname{Expspace} \subseteq \#_{d} \operatorname{Exptime}$

 $\#P \subseteq \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime$

Lemma

 $\begin{array}{c|c} \#_{d} Pspace \subseteq \#_{d} Exptime & \subsetneq & \#_{d} Expspace \subseteq \#_{d} 2Exptime \\ \cup & \cup & \cup & \cup & \cup \\ \#P \subseteq \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime \end{array}$

Lemma

Reductions:

f is #P-hard, if there is a polynomial time computable function r s. t. f(r(M, w)) is equal to the number of accepting runs of M on w.

Lemma

Reductions:

- f is #P-hard, if there is a polynomial time computable function r s. t. f(r(M, w)) is equal to the number of accepting runs of M on w.
- Hardness for other classes analogously.
- Completeness as usual.

Counting Word-Models

Theorem

The following problem is #P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?

Theorem

- The following problem is #P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?
- The following problem is #_dPSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Theorem

- The following problem is #P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?
- The following problem is #_dPSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Lower bound: PSPACE-hardness of LTL satisfiability **[SC85]** made one-to-one

Theorem

- The following problem is #P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?
- The following problem is #_dPSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Lower bound: PSPACE-hardness of LTL satisfiability **[SC85]** made one-to-one

Upper bound: Guess word of length k and model-check it

Counting Tree-Models with Unary Bounds

Theorem

The following problem is $\#_d \text{EXPTIME-complete:}$ Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

Counting Tree-Models with Unary Bounds

Theorem

The following problem is $\#_d \text{EXPTIME-complete:}$ Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

Counting Tree-Models with Unary Bounds

Theorem

The following problem is $\#_d \text{EXPTIME-complete:}$ Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

Upper bound: Guess tree of height *k* and model-check it.

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_d$ EXPSPACE-hard and in $\#_d$ 2EXPTIME: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_d$ EXPSPACE-hard and in $\#_d$ 2EXPTIME: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_d$ EXPSPACE-hard and in $\#_d$ 2EXPTIME: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

each inner tree has exponentially many leaves

- tree has exponential height (thus, doubly-exponentially many inner trees)
- **Upper bound:** Guess tree of height *k* and model-check it

Overview of results:

	unary	binary
words	#P-compl.	# _d Pspace-compl.
trees	$\#_d \text{EXPTIME-compl.}$	$\#_d \text{Expspace-hard}/\#_d 2 \text{Exptime}$

Overview of results:

	unary	binary
words	#P-compl.	#PSPACE-compl.
trees	$\#_d \text{EXPTIME-Compl.}$	$\#_d \text{EXPSPACE-nard}/\#_d 2 \text{EXPTIME}$

Lower bounds: safety LTL, upper bounds: full LTL

Overview of results:

	unary	binary
words	#P-compl.	#dPspace-compl.
trees	# _d Exptime-compl.	#dExpspace-hard/#d2Exptime

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

Close the gap!

Overview of results:

	unary	binary
words	#P-compl.	$\#_d Pspace-compl.$
trees	# _d Exptime-compl.	$\#_d Expspace-hard/\#_d 2Exptime$

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

- Close the gap!
 - Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?

Overview of results:

	unary	binary
words	#P-compl.	$\#_d PSPACE$ -compl.
trees	$\#_d \text{Exptime-compl.}$	$\#_d \text{Expspace-hard} / \#_d 2 \text{Exptime}$

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

- Close the gap!
 - Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?
 - Raising the lower bound: how to encode doubly-exponentially sized configurations using polynomially sized formulas? Do games help?