The Complexity of Counting Models of Linear-time Temporal Logic

Joint work with Hazem Torfah

Martin Zimmermann

Saarland University
September 4th, 2014

Highlights 2014, Paris, France

Counting Complexity

■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathrm{P}$ if there is an NP machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

Counting Complexity

■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathrm{P}$ if there is an NP machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathcal{C}$ if there is an NP machine \mathcal{M} with oracle in \mathcal{C} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

Counting Complexity

■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathrm{P}$ if there is an NP machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathcal{C}$ if there is an NP machine \mathcal{M} with oracle in \mathcal{C} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.
Remark: $f \in \# \mathcal{C}$ implies $f(w) \in \mathcal{O}\left(2^{p(|w|)}\right)$ for some polynomial p.

Counting Complexity

■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathrm{P}$ if there is an NP machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathcal{C}$ if there is an NP machine \mathcal{M} with oracle in \mathcal{C} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.
Remark: $f \in \# \mathcal{C}$ implies $f(w) \in \mathcal{O}\left(2^{p(|w|)}\right)$ for some polynomial p.
We need larger counting classes.
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\#_{d}$ PSPACE, if there is a nondeterministic polynomial-space Turing machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

Counting Complexity

■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathrm{P}$ if there is an NP machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.

For complexity class \mathcal{C} :
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\# \mathcal{C}$ if there is an NP machine \mathcal{M} with oracle in \mathcal{C} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.
Remark: $f \in \# \mathcal{C}$ implies $f(w) \in \mathcal{O}\left(2^{p(|w|)}\right)$ for some polynomial p.
We need larger counting classes.
■ $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in $\#_{d}$ PSPACE, if there is a nondeterministic polynomial-space Turing machine \mathcal{M} such that $f(w)$ is equal to the number of accepting runs of \mathcal{M} on w.
■ Analogously: $\#_{d}$ Exptime, $\#_{d}$ Expspace, and $\#_{d}$ 2Exptime.

Counting Complexity

Lemma

\#P

Counting Complexity

Lemma

$\# \mathrm{P} \subseteq$ \#Pspace

Counting Complexity

Lemma

$\# \mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime

Counting Complexity

Lemma

\# $\mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime

Counting Complexity

Lemma

\# $\mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace

Counting Complexity

Lemma

$\# \mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime

Counting Complexity

Lemma

\#d Pspace
$\# \mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#ExpSPACE \subseteq \#2Exptime

Counting Complexity

Lemma

$\#_{d}$ Pspace $\subseteq \#_{d}$ Exptime
$\# \mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#ExpSPACE \subseteq \#2Exptime

Counting Complexity

Lemma

$\#_{d}$ PSPACE $\subseteq \#_{d}$ Exptime $\subsetneq \quad \#_{d}$ Expspace
$\# \mathrm{P} \subseteq \# \mathrm{PsPACE} \subseteq \# \mathrm{Exptime} \subseteq$ \#NExptime \subseteq \#Expspace \subseteq \#2Exptime

Counting Complexity

Lemma

$\#_{d}$ Pspace $\subseteq \#_{d}$ Exptime $\subsetneq \quad \#_{d}$ Expspace $\subseteq \#_{d} 2$ Exptime
$\# \mathrm{P} \subseteq$ \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime

Counting Complexity

Lemma

Counting Complexity

Lemma

Reductions:
■ f is \#P-hard, if there is a polynomial time computable function r s. t. $f(r(\mathcal{M}, w))$ is equal to the number of accepting runs of \mathcal{M} on w.

Counting Complexity

Lemma

Reductions:
■ f is \#P-hard, if there is a polynomial time computable function r s.t. $f(r(\mathcal{M}, w))$ is equal to the number of accepting runs of \mathcal{M} on w.

- Hardness for other classes analogously.

■ Completeness as usual.

Counting Word-Models

Theorem

- The following problem is \#P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?

Counting Word-Models

Theorem

- The following problem is \#P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?
- The following problem is $\#_{d}$ PsPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Counting Word-Models

Theorem

- The following problem is \#P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?
- The following problem is $\#_{d}$ PSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Lower bound: PSPACE-hardness of LTL satisfiability [SC85] made one-to-one

Counting Word-Models

Theorem

- The following problem is \#P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?

■ The following problem is $\#_{d}$ PSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Lower bound: PSPACE-hardness of LTL satisfiability [SC85] made one-to-one

Upper bound: Guess word of length k and model-check it

Counting Tree-Models with Unary Bounds

Theorem

The following problem is \#d Exptime-complete: Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

Counting Tree-Models with Unary Bounds

Theorem

The following problem is $\#_{d}$ Exptime-complete: Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

- Lower bound:

Counting Tree-Models with Unary Bounds

Theorem

The following problem is $\#_{d}$ Exptime-complete: Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?

- Lower bound:

■ Upper bound: Guess tree of height k and model-check it.

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_{d}$ ExpsPACE-hard and in $\#_{d}$ 2Exptime: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_{d}$ ExpsPACE-hard and in $\#_{d}$ 2Exptime:
Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

■ Lower bound:

■ each inner tree has exponentially many leaves

- tree has exponential height (thus, doubly-exponentially many inner trees)

Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_{d}$ ExpsPACE-hard and in $\#_{d}$ 2Exptime:
Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

■ Lower bound:

- each inner tree has exponentially many leaves
- tree has exponential height (thus, doubly-exponentially many inner trees)
■ Upper bound: Guess tree of height k and model-check it

Conclusion

Overview of results:

unary		binary
words	\#P-compl.	\# $_{d}$ PsPACE-compl.
trees	$\#_{d}$ Exptime-compl.	\#d $_{d}$ ExPSPACE-hard/ \#d 2 Exptime

Conclusion

Overview of results:

unary		binary
words	\#P-compl.	\#d $_{d}$ PsPACE-compl.
trees	\#d $_{d}$ Exptime-compl.	\#d $_{d}$ ExPSPACE-hard/ \#d 2Exptime

Lower bounds: safety LTL, upper bounds: full LTL

Conclusion

Overview of results:

unary		binary
words	\#P-compl.	\# $_{d}$ Pspace-compl.
trees	$\#_{d}$ Exptime-compl.	\#d $_{d}$ ExpSPACE-hard/ \#d 2Exptime

Lower bounds: safety LTL, upper bounds: full LTL
Open problems:
■ Close the gap!

Conclusion

Overview of results:

unary		binary
words	\#P-compl.	\#d $_{d}$ PsPACE-compl.
trees	$\#_{d}$ Exptime-compl.	\#d $_{d}$ ExPSPACE-hard/\#d 2Exptime

Lower bounds: safety LTL, upper bounds: full LTL
Open problems:

- Close the gap!
- Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?

Conclusion

Overview of results:

unary		binary
words	\#P-compl.	\#d $_{d}$ PsPACE-compl.
trees	$\#_{d}$ Exptime-compl.	\#d $_{d}$ ExPSPACE-hard/\#d 2Exptime

Lower bounds: safety LTL, upper bounds: full LTL
Open problems:

- Close the gap!

■ Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?

- Raising the lower bound: how to encode doubly-exponentially sized configurations using polynomially sized formulas? Do games help?

