Optimal Bounds in Parametric LTL Games

Martin Zimmermann

RWTH Aachen University

November 18th, 2010

Gasics Meeting Fall 2010 Paris, France

Motivation

Parametric temporal logic (PLTL, [Alur et. al., '99]):

- LTL with $\mathbf{F}_{\leq x}$, $\mathbf{G}_{\leq y}$.
- **•** x, y variables ranging over \mathbb{N} .
- Semantics w.r.t. variable valuation.

Motivation

Parametric temporal logic (PLTL, [Alur et. al., '99]):

LTL with $\mathbf{F}_{\leq x}$, $\mathbf{G}_{\leq y}$.

• x, y variables ranging over \mathbb{N} .

Semantics w.r.t. variable valuation.

Results:

 Gasics Meeting Aachen (2009): determining whether Player 0 wins a PLTL game w.r.t. some, infinitely many, or all variable valuations is **2EXPTIME**-complete.

Motivation

Parametric temporal logic (PLTL, [Alur et. al., '99]):

LTL with $\mathbf{F}_{\leq x}$, $\mathbf{G}_{\leq y}$.

• x, y variables ranging over \mathbb{N} .

Semantics w.r.t. variable valuation.

Results:

- Gasics Meeting Aachen (2009): determining whether Player 0 wins a PLTL game w.r.t. some, infinitely many, or all variable valuations is **2EXPTIME**-complete.
- Today: determining optimal variable valuations that let Player 0 win a PLTL game can be computed in doubly-exponential time.

Outline

1. Introduction

- 2. Results
- 3. Proof Sketch
- 4. Conclusion

LTL:

$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi$

4/16

PLTL:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$$

where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ are variables ranging over \mathbb{N} .

4/16

PLTL:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$$

where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ are variables ranging over \mathbb{N} .

Semantics defined w.r.t. variable valuation $\alpha : \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$.

$$(\rho, i, \alpha) \models \mathbf{F}_{\leq x} \varphi; \quad \rho^{1 \dots i} \xrightarrow{i}_{i} \xrightarrow{i}_{i \to \alpha} (x) \xrightarrow{i}_{i \to \alpha} (x)$$
$$(\rho, i, \alpha) \models \mathbf{G}_{\leq y} \varphi; \quad \rho_{1 \dots i} \xrightarrow{i}_{i} \xrightarrow{i}_{i \to \alpha} (y) \xrightarrow{i}_{i \to \alpha} (y)$$

4/16

PLTL:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \mathbf{F}_{\leq x}\varphi \mid \mathbf{G}_{\leq y}\varphi$$

where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ are variables ranging over \mathbb{N} .

Semantics defined w.r.t. variable valuation $\alpha : \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$.

$$(\rho, i, \alpha) \models \mathbf{F}_{\leq x} \varphi; \quad \rho^{\dagger \cdots } \xrightarrow{i}_{i} \qquad \qquad i + \alpha(x) \xrightarrow{i}_{i} + \alpha(x) \xrightarrow{i}_{i} + \alpha(x) \xrightarrow{i}_{i} + \alpha(x) \xrightarrow{i}_{i} + \alpha(y) \xrightarrow$$

The operators $\mathbf{U}_{\leq x}$, $\mathbf{R}_{\leq y}$, $\mathbf{F}_{>y}$, $\mathbf{G}_{>x}$, $\mathbf{U}_{>y}$, and $\mathbf{R}_{>x}$ (with the obvious semantics) are syntactic sugar, and will be ignored.

Infinite Games

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite, directed graph (V, E),
- a partition $\{V_0, V_1\}$ of V,
- an initial vertex v₀,
- a labeling *I*: *V* → 2^{*P*} for some set *P* of atomic propositions.

Winning conditions are expressed by a PLTL formula φ over *P*.

Infinite Games

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite, directed graph (V, E),
- a partition $\{V_0, V_1\}$ of V,
- an initial vertex v_0 ,
- a labeling I: V → 2^P for some set P of atomic propositions.

Winning conditions are expressed by a PLTL formula φ over *P*.

- Play: path $\rho_0 \rho_1 \rho_2 \dots$ through (V, E) starting in v_0 .
- $\rho_0\rho_1\rho_2...$ winning for Player 0 w.r.t. variable valuation α : $(\rho_0\rho_1\rho_2..., 0, \alpha) \models \varphi$. Otherwise winning for Player 1.

Infinite Games

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite, directed graph (V, E),
- a partition $\{V_0, V_1\}$ of V,
- an initial vertex v_0 ,
- a labeling *I*: *V* → 2^{*P*} for some set *P* of atomic propositions.

Winning conditions are expressed by a PLTL formula φ over *P*.

- Play: path $\rho_0 \rho_1 \rho_2 \dots$ through (V, E) starting in v_0 .
- $\rho_0 \rho_1 \rho_2 \dots$ winning for Player 0 w.r.t. variable valuation α : $(\rho_0 \rho_1 \rho_2 \dots, 0, \alpha) \models \varphi$. Otherwise winning for Player 1.
- Strategy for Player *i*: σ : $V^*V_i \rightarrow V$ s.t. $(v, \sigma(wv)) \in E$.
- Winning strategy for Player i w.r.t. α: every play that is consistent with σ is won by Player i.

PLTL Games: Examples

PLTL Games: Examples

- Winning condition G(q → F_{≤x}p). Player 0's goal: uniformly bound the waiting times between requests q and responses p by α(x).

PLTL Games: Examples

- Winning condition G(q → F_{≤x}p). Player 0's goal: uniformly bound the waiting times between requests q and responses p by α(x).

Note: both winning conditions induce an optimization problem: maximize $\alpha(y)$ respectively minimize $\alpha(x)$.

Outline

1. Introduction

2. Results

- 3. Proof Sketch
- 4. Conclusion

Solving PLTL Games

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

The set of winning valuations for Player i in a PLTL game G is

 $\mathcal{W}_{\mathcal{G}}^i = \{ \alpha \mid \mathsf{Player}\ i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \}$.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

The set of winning valuations for Player i in a PLTL game G is

 $\mathcal{W}_{\mathcal{G}}^i = \{ \alpha \mid \mathsf{Player}\ i \text{ has winning strategy for } \mathcal{G} \text{ w.r.t. } \alpha \} \ .$

Theorem

The following problems are **2EXPTIME**-complete: Given G and i:

- i) Is $\mathcal{W}_{\mathcal{G}}^{i}$ non-empty?
- **ii)** Is $\mathcal{W}_{\mathcal{G}}^{i}$ infinite?
- **iii)** Is $\mathcal{W}_{\mathcal{G}}^{i}$ universal?

Finding Optimal Bounds

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}_{\mathcal{G}}^{0}$?

Finding Optimal Bounds

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}_{\mathcal{G}}^{0}$?

Theorem

Let $\varphi_{\mathbf{F}}$ be $\mathbf{G}_{\leq y}$ -free and $\varphi_{\mathbf{G}}$ be $\mathbf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathbf{F}} = (\mathcal{A}, \varphi_{\mathbf{F}})$ and $\mathcal{G}_{\mathbf{G}} = (\mathcal{A}, \varphi_{\mathbf{G}})$. The following values can be computed in doubly-exponential time:

 $\blacksquare \min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$

Finding Optimal Bounds

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}_{\mathcal{G}}^{0}$?

Theorem

Let $\varphi_{\mathbf{F}}$ be $\mathbf{G}_{\leq y}$ -free and $\varphi_{\mathbf{G}}$ be $\mathbf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathbf{F}} = (\mathcal{A}, \varphi_{\mathbf{F}})$ and $\mathcal{G}_{\mathbf{G}} = (\mathcal{A}, \varphi_{\mathbf{G}})$. The following values can be computed in doubly-exponential time:

$$= \min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$$

$$= \min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$$

$$= \max_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \max_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$$

$$= \max_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$$

Outline

1. Introduction

2. Results

3. Proof Sketch

4. Conclusion

Duality and monotonicity: it suffices to determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$

Duality and monotonicity: it suffices to determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$

Lemma

There exists a $k \in \mathcal{O}(|\mathcal{A}| \cdot 2^{2^{|\varphi_{\mathsf{F}}|}})$ such that

$$\mathcal{W}^{0}_{\mathcal{G}_{\mathbf{F}}}
eq \emptyset \iff x \mapsto k \in \mathcal{W}^{0}_{\mathcal{G}_{\mathbf{F}}} \iff \min_{\alpha \in \mathcal{W}^{0}_{\mathcal{G}_{\mathbf{F}}}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x) \leq k$$
.

Duality and monotonicity: it suffices to determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$

Lemma

There exists a $k \in \mathcal{O}(|\mathcal{A}| \cdot 2^{2^{|\varphi_{\mathsf{F}}|}})$ such that

$$\mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}} \neq \emptyset \Longleftrightarrow x \mapsto k \in \mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}} \iff \min_{\alpha \in \mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x) \leq k \ .$$

As we can test $\alpha \in W^0_{\mathcal{G}_F}$ effectively, it suffices to check all k' < k. **Example:** $\varphi_F = \mathbf{G}(q \to \mathbf{F}_{\leq x} p)$ and $\alpha(x) = 2$: $\alpha \in W^0_{\mathcal{G}_F} \iff \text{Player 0 wins } (\mathcal{A}, \mathbf{G}(q \to p \lor \mathbf{X}(p \lor \mathbf{X}p)))$.

Duality and monotonicity: it suffices to determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x).$

Lemma

There exists a $k \in \mathcal{O}(|\mathcal{A}| \cdot 2^{2^{|\varphi_{\mathsf{F}}|}})$ such that

$$\mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}} \neq \emptyset \Longleftrightarrow x \mapsto k \in \mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}} \iff \min_{\alpha \in \mathcal{W}^{0}_{\mathcal{G}_{\mathsf{F}}}} \max_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x) \leq k \ .$$

As we can test $\alpha \in W^0_{\mathcal{G}_{\mathbf{F}}}$ effectively, it suffices to check all k' < k. **Example:** $\varphi_{\mathbf{F}} = \mathbf{G}(q \to \mathbf{F}_{\leq x}p)$ and $\alpha(x) = 2$: $\alpha \in W^0_{\mathcal{G}_{\mathbf{F}}} \iff \text{Player 0 wins } (\mathcal{A}, \mathbf{G}(q \to p \lor \mathbf{X}(p \lor \mathbf{X}p)))$.

Problem: this approach takes quadruply-exponential time.

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' .
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$.
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

4. Solve parity game
$$\mathcal{A} \times \mathfrak{P}$$

$$\alpha \in \mathcal{W}^{\mathbf{0}}_{\mathcal{G}_{\mathbf{F}}} \iff \mathsf{Player 0} \text{ wins } \mathcal{A} imes \mathfrak{P}$$

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' . $|\varphi'| \leq |\varphi_{\mathbf{F}}|$
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$.
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

4. Solve parity game
$$\mathcal{A} \times \mathfrak{P}$$

$$\alpha \in \mathcal{W}^{\mathbf{0}}_{\mathcal{G}_{\mathbf{F}}} \iff \mathsf{Player 0} \text{ wins } \mathcal{A} imes \mathfrak{P}$$

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' . $|\varphi'| \leq |\varphi_{\mathbf{F}}|$
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$. $|\mathfrak{A}_{\varphi'}| \leq |\varphi'| \cdot 2^{|\varphi'|}$
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

4. Solve parity game
$$\mathcal{A} imes \mathfrak{P}$$

$$\alpha \in \mathcal{W}^{\mathbf{0}}_{\mathcal{G}_{\mathbf{F}}} \Longleftrightarrow \mathsf{Player 0 wins} \ \mathcal{A} \times \mathfrak{P}$$

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' . $|\varphi'| \leq |\varphi_{\mathbf{F}}|$
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$. $|\mathfrak{A}_{\varphi'}| \leq |\varphi'| \cdot 2^{|\varphi'|}$
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

$$|\mathfrak{P}| \leq 2^{|\mathfrak{A}_{\varphi'}|^2} \cdot \left(\prod_{x \in \operatorname{var}\varphi_{\mathsf{F}}} \alpha(x)\right)^{||\mathfrak{A}_{\varphi'}|} \text{ with } |\mathfrak{A}_{\varphi'}| \text{ colors}$$

4. Solve parity game $\mathcal{A} \times \mathfrak{P}$

$$lpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{\mathsf{0}} \Longleftrightarrow \mathsf{Player 0} \text{ wins } \mathcal{A} imes \mathfrak{P}$$

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' . $|\varphi'| \leq |\varphi_{\mathbf{F}}|$
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$. $|\mathfrak{A}_{\varphi'}| \leq |\varphi'| \cdot 2^{|\varphi'|}$
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

$$|\mathfrak{P}| \leq 2^{|\mathfrak{A}_{\varphi'}|^2} \cdot \left(\prod_{x \in \operatorname{var} \varphi_{\mathsf{F}}} lpha(x)\right)^{||\varphi||}$$
 with $|\mathfrak{A}_{\varphi'}|$ colors

4. Solve parity game $\mathcal{A}\times\mathfrak{P}$ in doubly-exponential time

$$lpha \in \mathcal{W}^{\mathsf{0}}_{\mathcal{G}_{\mathsf{F}}} \Longleftrightarrow \mathsf{Player 0} \text{ wins } \mathcal{A} imes \mathfrak{P}$$

Faster algorithm for " $\alpha \in W^0_{\mathcal{G}_{\mathsf{F}}}$?" provided $\alpha(x) \leq k$ for all $x \in var(\varphi_{\mathsf{F}})$:

- **1.** Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' . $|\varphi'| \leq |\varphi_{\mathbf{F}}|$
- **2.** Build Büchi automaton $\mathfrak{A}_{\varphi'}$. $|\mathfrak{A}_{\varphi'}| \leq |\varphi'| \cdot 2^{|\varphi'|}$
- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .

$$|\mathfrak{P}| \leq 2^{|\mathfrak{A}_{\varphi'}|^2} \cdot \left(\prod_{x \in \operatorname{var} \varphi_{\mathsf{F}}} lpha(x)\right)^{||\varphi||}$$
 with $|\mathfrak{A}_{\varphi'}|$ colors

4. Solve parity game $\mathcal{A}\times\mathfrak{P}$ in doubly-exponential time

$$\alpha \in \mathcal{W}_{\mathcal{G}_{\mathsf{F}}}^{\mathsf{0}} \iff \mathsf{Player} \ \mathsf{0} \ \mathsf{wins} \ \mathcal{A} \times \mathfrak{P}$$

So, we have to solve exponentially many parity games, each in doubly-exponential time: gives doubly-exponential time.

An example

Consider $\varphi_{\mathbf{F}} = \mathbf{F}_{\leq x} \mathbf{G} p$ and $\alpha(x) = 2$.

An example

Consider $\varphi_{\mathbf{F}} = \mathbf{F}_{\leq x} \mathbf{G} p$ and $\alpha(x) = 2$.

1. Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' .

Here: $\varphi' = \mathbf{FG}p$

An example

Consider $\varphi_{\mathbf{F}} = \mathbf{F}_{\leq x} \mathbf{G} p$ and $\alpha(x) = 2$.

1. Replace all $\mathbf{F}_{\leq x}$ by \mathbf{F} to obtain φ' .

Here: $\varphi' = \mathbf{FG} p$

2. Build Büchi automaton $\mathfrak{A}_{\varphi'}$ (textbook method).

Accepting run: visit accepting state every $\alpha(x)$ transitions.

In general: one set of final states F_x for every $x \in var(\varphi_F)$ (generalized Büchi).

An Example

- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .
- $\mathfrak{A}_{\varphi'}$ is always unambiguous: no two accepting runs for any input.

An Example

- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .
- $\mathfrak{A}_{\varphi'}$ is always unambiguous: no two accepting runs for any input.

Use [Morgenstern, Schneider '10]: Determinization of unambiguous Büchi automata

- States (essentially) a list (S_0, \ldots, S_n) with $S_i \subseteq Q$, $n = |\mathfrak{A}_{\varphi'}|$.
- S_0 contains set of states reachable in $\mathfrak{A}_{\varphi'}$ via prefix of input.
- Build product with counters $c_{q,x}$ keeping track of last visit in F_x by the unique run of $\mathfrak{A}_{\varphi'}$ ending in q.

An Example

- **3.** Determinize $\mathfrak{A}_{\varphi'}$ and add counters simulating α to obtain deterministic parity automaton \mathfrak{P} .
- $\mathfrak{A}_{\varphi'}$ is always unambiguous: no two accepting runs for any input.

Use [Morgenstern, Schneider '10]: Determinization of unambiguous Büchi automata

- States (essentially) a list (S_0, \ldots, S_n) with $S_i \subseteq Q$, $n = |\mathfrak{A}_{\varphi'}|$.
- S_0 contains set of states reachable in $\mathfrak{A}_{\varphi'}$ via prefix of input.
- Build product with counters $c_{q,x}$ keeping track of last visit in F_x by the unique run of $\mathfrak{A}_{\varphi'}$ ending in q.

$$|\mathfrak{P}| \leq \underbrace{2^{|\mathfrak{A}_{\varphi'}|^2}}_{(S_0,\ldots,S_n)} \cdot \underbrace{\left(\prod_{x \in \operatorname{var}(\varphi_{\mathsf{F}})} \alpha(x)\right)^{|\mathfrak{A}_{\varphi'}|}}_{c_{q,x}}$$

Outline

1. Introduction

- 2. Results
- 3. Proof Sketch
- 4. Conclusion

Conclusion

We have presented an algorithm to determine optimal bounds in PLTL games in doubly-exponential time.

- For a known (doubly-exponential) upper bound k we test all smaller values k' < k.</p>
- Each test can be done in doubly-exponential time.

The problem requires at least doubly-exponential time, as solving LTL games is **2EXPTIME**-complete.

Conclusion

We have presented an algorithm to determine optimal bounds in $\rm PLTL$ games in doubly-exponential time.

- For a known (doubly-exponential) upper bound k we test all smaller values k' < k.</p>
- Each test can be done in doubly-exponential time.

The problem requires at least doubly-exponential time, as solving LTL games is **2EXPTIME**-complete.

Open question:

Is there a *direct* algorithm that avoids checking all k' < k?