Parametric LTL Games

Martin Zimmermann

RWTH Aachen University

October 23rd, 2009

Gasics Meeting Fall 2009 Aachen, Germany

Motivation

We consider infinite games with winning conditions in linear temporal logic (LTL). Advantages of LTL as specification language are

- compact, variable-free syntax,
- intuitive semantics,
- successfully employed in model checking tools.

Motivation

We consider infinite games with winning conditions in linear temporal logic (LTL). Advantages of LTL as specification language are

- compact, variable-free syntax,
- intuitive semantics,
- successfully employed in model checking tools.

However, LTL lacks capabilities to express timing constraints. There are many extensions of LTL that deal with this. Here, we consider two of them:

- PLTL: Parametric LTL (Alur et. al., '99)
- PROMPT LTL (Kupferman et. al., '07)

Outline

1. Introduction

2. Parametric LTL

3. Conclusion

Infinite Games

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite, directed graph (V, E),
- a partition $\{V_0, V_1\}$ of V,
- an initial vertex v_0 ,
- a labeling $I: V \to 2^P$ for some set P of atomic propositions.

Winning conditions are expressed in extensions of LTL over *P*.

Infinite Games

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite, directed graph (V, E),
- a partition $\{V_0, V_1\}$ of V,
- an initial vertex v_0 ,
- a labeling $I: V \to 2^P$ for some set P of atomic propositions.

Winning conditions are expressed in extensions of LTL over *P*.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete. Finite-state strategies suffice to win an LTL game.

Outline

1. Introduction

2. Parametric LTL

3. Conclusion

Parametric LTL

Let \mathcal{X} and \mathcal{Y} two disjoint sets of variables. PLTL adds bounded temporal operators to LTL:

•
$$\mathbf{F}_{\leq x}$$
 for $x \in \mathcal{X}$,
• $\mathbf{G}_{\leq y}$ for $y \in \mathcal{Y}$.

Parametric LTL

Let \mathcal{X} and \mathcal{Y} two disjoint sets of variables. PLTL adds bounded temporal operators to LTL:

•
$$\mathbf{F}_{\leq x}$$
 for $x \in \mathcal{X}$,
• $\mathbf{G}_{\leq y}$ for $y \in \mathcal{Y}$.

Semantics defined w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$.

$$(\rho, i, \alpha) \models \mathbf{F}_{\leq x} \varphi; \quad \rho^{|\dots|} \xrightarrow{i}_{i} \qquad i + \alpha(x) \xrightarrow{i}_{i} + \alpha(x)$$
$$(\rho, i, \alpha) \models \mathbf{G}_{\leq y} \varphi; \quad \rho_{|\dots|} \xrightarrow{\varphi}_{i} \qquad \varphi \qquad \varphi \qquad \varphi \qquad \varphi \qquad \varphi \qquad \varphi \qquad i + \alpha(y) \xrightarrow{i}_{i} + \alpha(y) \xrightarrow{i$$

Parametric LTL

Let \mathcal{X} and \mathcal{Y} two disjoint sets of variables. PLTL adds bounded temporal operators to LTL:

•
$$\mathbf{F}_{\leq x}$$
 for $x \in \mathcal{X}$,
• $\mathbf{G}_{\leq y}$ for $y \in \mathcal{Y}$.

Semantics defined w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$.

$$(\rho, i, \alpha) \models \mathbf{F}_{\leq x} \varphi; \quad \rho^{|\dots|} \xrightarrow{i}_{i} \qquad i + \alpha(x)$$
$$(\rho, i, \alpha) \models \mathbf{G}_{\leq y} \varphi; \quad \rho_{|\dots|} \xrightarrow{\varphi}_{i} \qquad \varphi \qquad \varphi \qquad \varphi \qquad \varphi \qquad \varphi$$
$$i + \alpha(y) \xrightarrow{i}_{i} \qquad i + \alpha(y)$$

The operators $\mathbf{U}_{\leq x}$, $\mathbf{R}_{\leq y}$, $\mathbf{F}_{>y}$, $\mathbf{G}_{>x}$, $\mathbf{U}_{>y}$, and $\mathbf{R}_{>x}$ (with the obvious semantics) are syntactic sugar, and will be ignored.

Parametric LTL Games

PLTL game (\mathcal{A}, φ) :

- σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ consistent with σ : $(\rho, 0, \alpha) \models \varphi$.
- τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ consistent with τ : $(\rho, 0, \alpha) \not\models \varphi$.

Parametric LTL Games

PLTL game (\mathcal{A}, φ) :

- σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ consistent with σ : $(\rho, 0, \alpha) \models \varphi$.
- τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ consistent with τ : $(\rho, 0, \alpha) \not\models \varphi$.

The set of winning valuations for Player *i* is

 $\mathcal{W}_{\mathcal{G}}^i = \{ \alpha \mid \mathsf{Player} \ i \ \mathsf{has} \ \mathsf{winning} \ \mathsf{strategy} \ \mathsf{for} \ \mathcal{G} \ \mathsf{w.r.t.} \ \alpha \} \ .$

We are interested in the emptiness, finiteness, and universality problem for W_G^i and in finding optimal valuations in W_G^i .

Winning condition $\mathbf{FG}_{\leq y} p$:

Player 0's goal: eventually satisfy p for at least $\alpha(y)$ steps.

Winning condition $\mathbf{FG}_{\leq y} p$:

Player 0's goal: eventually satisfy p for at least $\alpha(y)$ steps.

Player 1's goal: reach vertex with ¬p at least every α(y) steps.

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x}p)$: "Every request q is eventually responded by p".

Player 0's goal: uniformly bound the waiting times between requests q and responses p by α(x).

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x}p)$: "Every request q is eventually responded by p".

Player 0's goal: uniformly bound the waiting times between requests q and responses p by $\alpha(x)$.

Player 1's goal: enforce waiting time greater than $\alpha(x)$.

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x} p)$: "Every request q is eventually responded by p".

Player 0's goal: uniformly bound the waiting times between requests q and responses p by α(x).

Player 1's goal: enforce waiting time greater than $\alpha(x)$.

Note: both winning conditions induce an optimization problem (for Player 0): maximize $\alpha(y)$ respectively minimize $\alpha(x)$.

PROMPT-LTL

 $\mathrm{PROMPT}-\mathrm{LTL}$: No $\boldsymbol{\mathsf{G}}_{\leq y},$ all $\boldsymbol{\mathsf{F}}_{\leq x}$ parameterized by the same variable.

PROMPT-LTL

 $\mathrm{PROMPT}-\mathrm{LTL}$: No $\mathbf{G}_{\leq y},$ all $\mathbf{F}_{\leq x}$ parameterized by the same variable.

Formally: add prompt-eventually F_P to LTL. Semantics defined w.r.t. free, but fixed bound k:

$$(\rho, i, k) \models \mathbf{F}_{\mathbf{P}} \varphi: \quad \rho^{+\dots+} \xrightarrow{i}_{i} \qquad i+k$$

PROMPT-LTL

 $\mathrm{PROMPT}-\mathrm{LTL}$: No $\mathbf{G}_{\leq y},$ all $\mathbf{F}_{\leq x}$ parameterized by the same variable.

Formally: add prompt-eventually F_P to LTL. Semantics defined w.r.t. free, but fixed bound k:

PROMPT – LTL game (\mathcal{A}, φ) :

 σ is a winning strategy for Player 0 iff there exists a bound k such that $(\rho, 0, k) \models \varphi$ for every play ρ consistent with σ .

PROMPT-LTL Games

Theorem

Deciding whether Player 0 has a winning strategy in a PROMPT – LTL game is **2EXPTIME** complete.

Theorem

Deciding whether Player 0 has a winning strategy in a PROMPT – LTL game is **2EXPTIME** complete.

Proof

2EXPTIME algorithm: apply *alternating-color technique* of Kupferman et al.: reduce \mathcal{G} to an LTL game \mathcal{G}' such that a finite-state winning strategy for \mathcal{G}' can be transformed into a winning strategy for \mathcal{G} which bounds the waiting times. Player 0 wins \mathcal{G}' only if she can ensure a bound on the prompt-eventualities in \mathcal{G} .

Theorem

Deciding whether Player 0 has a winning strategy in a PROMPT – LTL game is **2EXPTIME** complete.

Proof

2EXPTIME algorithm: apply *alternating-color technique* of Kupferman et al.: reduce \mathcal{G} to an LTL game \mathcal{G}' such that a finite-state winning strategy for \mathcal{G}' can be transformed into a winning strategy for \mathcal{G} which bounds the waiting times. Player 0 wins \mathcal{G}' only if she can ensure a bound on the prompt-eventualities in \mathcal{G} .

2EXPTIME hardness follows from **2EXPTIME** hardness of solving LTL games.

Theorem

Let \mathcal{G} be a PLTL game. The emptiness, finiteness, and universality problem for $\mathcal{W}_{\mathcal{G}}^{i}$ are **2EXPTIME**-complete.

Theorem

Let \mathcal{G} be a PLTL game. The emptiness, finiteness, and universality problem for $\mathcal{W}_{\mathcal{G}}^{i}$ are **2EXPTIME**-complete.

For the proof, use:

- Duality of $\mathbf{F}_{\leq x}$ and $\mathbf{G}_{\leq y}$, i.e., $\neg \mathbf{G}_{\leq z} \neg \varphi \equiv \mathbf{F}_{\leq z} \varphi$.
- Monotonicity of $\mathbf{F}_{\leq x}$ and $\mathbf{G}_{\leq y}$, i.e., if $\alpha(z) \leq \beta(z)$, then $(\rho, i, \alpha) \models \mathbf{F}_{\leq z} \varphi$ implies $(\rho, i, \beta) \models \mathbf{F}_{\leq z} \varphi$ and $(\rho, i, \beta) \models \mathbf{G}_{\leq z} \varphi$ implies $(\rho, i, \alpha) \models \mathbf{G}_{\leq z} \varphi$.

PLTL: Proof Ideas

Proof

2EXPTIME algorithms: First consider formulae with only $\mathbf{F}_{\leq x}$:

- **Emptiness:** reduction to PROMPT LTL games.
- Universality: $\mathcal{W}_{\mathcal{G}}^0$ is universal iff it contains the valuation which maps every variable to 0.
- Finiteness: $\mathcal{W}_{\mathcal{G}}^0$ is infinite iff $\mathcal{W}_{\mathcal{G}}^0$ is non-empty.

PLTL: Proof Ideas

Proof

2EXPTIME algorithms: First consider formulae with only $\mathbf{F}_{\leq x}$:

- Emptiness: reduction to PROMPT LTL games.
- Universality: $\mathcal{W}_{\mathcal{G}}^0$ is universal iff it contains the valuation which maps every variable to 0.
- Finiteness: $\mathcal{W}_{\mathcal{G}}^0$ is infinite iff $\mathcal{W}_{\mathcal{G}}^0$ is non-empty.

Dual results hold for formulae with only $\mathbf{G}_{\leq y}.$ For the full logic, combine the results from above and the monotonicity of the operators.

PLTL: Proof Ideas

Proof

2EXPTIME algorithms: First consider formulae with only $\mathbf{F}_{\leq x}$:

- Emptiness: reduction to PROMPT LTL games.
- Universality: $\mathcal{W}^0_{\mathcal{G}}$ is universal iff it contains the valuation which maps every variable to 0.
- Finiteness: $\mathcal{W}_{\mathcal{G}}^0$ is infinite iff $\mathcal{W}_{\mathcal{G}}^0$ is non-empty.

Dual results hold for formulae with only $\mathbf{G}_{\leq y}$. For the full logic, combine the results from above and the monotonicity of the operators.

2EXPTIME hardness follows from **2EXPTIME** hardness of solving LTL games.

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}_{\mathcal{G}}^{0}$?

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}^0_{\mathcal{G}}$?

Theorem

Let φ_{F} be $\mathsf{G}_{\leq y}$ -free and φ_{G} be $\mathsf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathsf{F}} = (\mathcal{A}, \varphi_{\mathsf{F}})$ and $\mathcal{G}_{\mathsf{G}} = (\mathcal{A}, \varphi_{\mathsf{G}})$. The following problems are decidable:

• Determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in \mathcal{W}_{G}^{0} ?

Theorem

Let φ_{F} be $\mathsf{G}_{\leq y}$ -free and φ_{G} be $\mathsf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathsf{F}} = (\mathcal{A}, \varphi_{\mathsf{F}})$ and $\mathcal{G}_{\mathsf{G}} = (\mathcal{A}, \varphi_{\mathsf{G}})$. The following problems are decidable:

- Determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{F}}^{0}} \max_{x \in var(\varphi_{F})} \alpha(x)$.
- Determine $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x).$
- Determine $\max_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \max_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$
- $Determine \max_{\alpha \in \mathcal{W}^0_{\mathcal{G}_{\mathbf{G}}}} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y).$

Outline

1. Introduction

- 2. Parametric LTL
- 3. Conclusion

Conclusion

We considered infinite games with winning conditions in extensions of LTL with bounded temporal operators.

- Solving them is as hard as solving LTL games.
- Several optimization problems can be solved effectively.

Conclusion

We considered infinite games with winning conditions in extensions of LTL with bounded temporal operators.

- Solving them is as hard as solving LTL games.
- Several optimization problems can be solved effectively.

Further research:

- Better algorithms for the optimization problems.
- Hardness results for the optimization problems.
- Tradeoff between size and quality of a finite-state strategy.
- Time-optimal winning strategies for other winning conditions.