Optimal Strategies in Weighted Limit Games

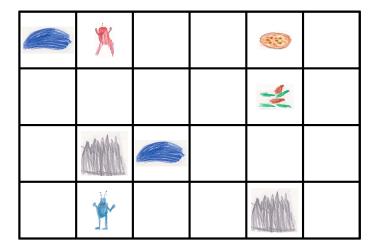
Joint Work with Aniello Murano (Napoli) and Sasha Rubin (Sydney) Artwork by Paulina Zimmermann

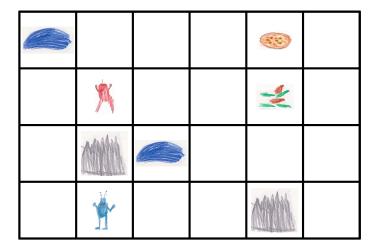
Martin Zimmermann

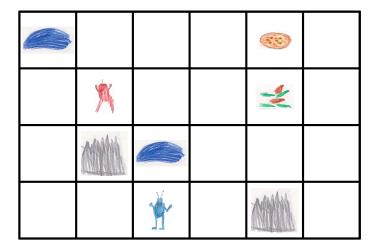
University of Liverpool

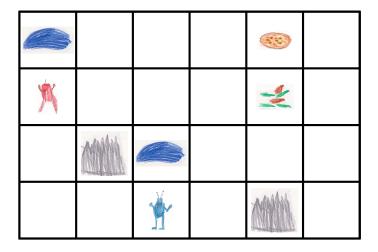
September 2020 GandALF 2020

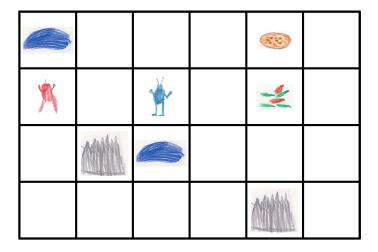
	X			
			W	
Ý			M	











Ň	*	W	
M			

	*		
×		W	
		M	

	*		
	×	W	
		M	

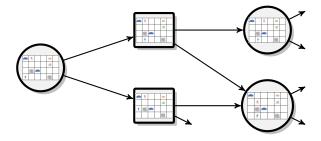
		*		
	×		W	
			M	

	*		
	×	W	
		M	

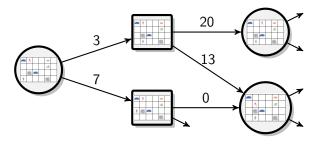
	Ň	W	

- The interaction between the robots can be modeled as an infinite-duration two-player game on a graph. The specification yields the winning condition of the game.
- A winning strategy corresponds to an implementation for the blue robot that satisfies the specification.

- The interaction between the robots can be modeled as an infinite-duration two-player game on a graph. The specification yields the winning condition of the game.
- A winning strategy corresponds to an implementation for the blue robot that satisfies the specification.



- The interaction between the robots can be modeled as an infinite-duration two-player game on a graph. The specification yields the winning condition of the game.
- A winning strategy corresponds to an implementation for the blue robot that satisfies the specification.
- Even qualitative specifications have often quantitative aspects, e.g., there is a preference order among winning strategies.



- The interaction between the robots can be modeled as an infinite-duration two-player game on a graph. The specification yields the winning condition of the game.
- A winning strategy corresponds to an implementation for the blue robot that satisfies the specification.
- Even qualitative specifications have often quantitative aspects, e.g., there is a preference order among winning strategies.

Reachability specifications:

- Qualitative: reach a fixed set of vertices..
- Quantitative: while minimizing the accumulated weight.
- This problem has been solved before (often as special case of more general problems): optimal strategies exist and can be computed in polynomial time.

- The interaction between the robots can be modeled as an infinite-duration two-player game on a graph. The specification yields the winning condition of the game.
- A winning strategy corresponds to an implementation for the blue robot that satisfies the specification.
- Even qualitative specifications have often quantitative aspects, e.g., there is a preference order among winning strategies.

Recurrence specifications:

- Qualitative: reach a fixed set of vertices infinitely often..
- Quantitative: while minimizing the maximal accumulated weight between such visits.
- This problem can also be encoded in more general problems, but a fine-grained analysis is missing

Limit of a language K ⊆ V*:
 lim(K) = {α₀α₁α₂··· ∈ V^ω | α₀··· α_j ∈ K for inf. many j}.

Limit of a language $K \subseteq V^*$: $\lim(K) = \{\alpha_0 \alpha_1 \alpha_2 \cdots \in V^{\omega} \mid \alpha_0 \cdots \alpha_j \in K \text{ for inf. many } j\}.$

• Weighted regular limit game: $\mathcal{G} = (\mathcal{A}, \lim(\mathcal{K}))$ with arena \mathcal{A} with weight function $w \colon E \to \mathbb{N}$ and regular \mathcal{K} .

• Limit of a language $K \subseteq V^*$: $\lim(K) = \{\alpha_0 \alpha_1 \alpha_2 \cdots \in V^{\omega} \mid \alpha_0 \cdots \alpha_j \in K \text{ for inf. many } j\}.$

• Weighted regular limit game: $\mathcal{G} = (\mathcal{A}, \lim(\mathcal{K}))$ with arena \mathcal{A} with weight function $w: \mathcal{E} \to \mathbb{N}$ and regular \mathcal{K} .

• Value of play $\rho = v_0 v_1 v_2 \cdots$:

$$\mathsf{val}_\mathcal{G}(
ho) = \sup_{j \in \mathbb{N}} \min_{\substack{j' > j \\ v_0 \cdots v_{j'} \in \mathcal{K}}} w(v_j \cdots v_{j'})$$

• Limit of a language $K \subseteq V^*$: $\lim(K) = \{\alpha_0 \alpha_1 \alpha_2 \cdots \in V^{\omega} \mid \alpha_0 \cdots \alpha_j \in K \text{ for inf. many } j\}.$

• Weighted regular limit game: $\mathcal{G} = (\mathcal{A}, \lim(\mathcal{K}))$ with arena \mathcal{A} with weight function $w: E \to \mathbb{N}$ and regular \mathcal{K} .

• Value of play $\rho = v_0 v_1 v_2 \cdots$:

$$\operatorname{val}_{\mathcal{G}}(\rho) = \sup_{j \in \mathbb{N}} \min_{\substack{j' > j \\ v_0 \cdots v_{j'} \in K}} w(v_j \cdots v_{j'})$$

Value of a strategy σ for Player 0 from vertex ν: val_G(σ, ν) = sup_ρ val_G(ρ) where the supremum ranges over all plays ρ that start in ν and are consistent with σ.

• Limit of a language $K \subseteq V^*$: $\lim(K) = \{\alpha_0 \alpha_1 \alpha_2 \cdots \in V^{\omega} \mid \alpha_0 \cdots \alpha_j \in K \text{ for inf. many } j\}.$

• Weighted regular limit game: $\mathcal{G} = (\mathcal{A}, \lim(\mathcal{K}))$ with arena \mathcal{A} with weight function $w: E \to \mathbb{N}$ and regular \mathcal{K} .

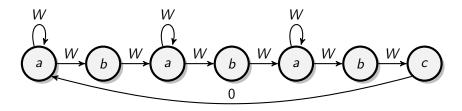
• Value of play $\rho = v_0 v_1 v_2 \cdots$:

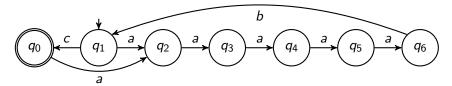
$$\operatorname{val}_{\mathcal{G}}(\rho) = \sup_{j \in \mathbb{N}} \min_{\substack{j' > j \\ v_0 \cdots v_{j'} \in K}} w(v_j \cdots v_{j'})$$

Value of a strategy σ for Player 0 from vertex v: val_G(σ, v) = sup_ρ val_G(ρ) where the supremum ranges over all plays ρ that start in v and are consistent with σ.

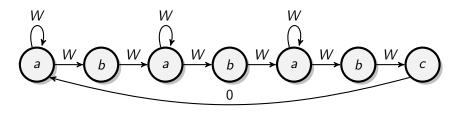
• σ is optimal if val_G(σ , v) \leq val_G(σ' , v) for every σ' and every v.

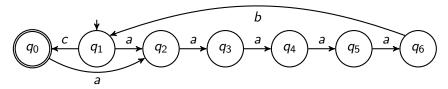
An Example





An Example

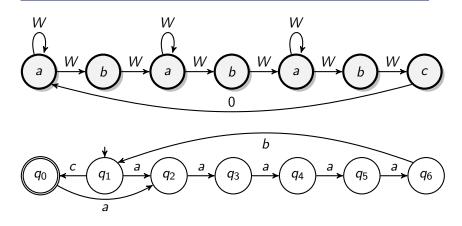




Note

Only Player 0 moves \Rightarrow identify strategies with plays

An Example



Unique winning play (strategy) of value $18 \cdot W$: every self-loop has to be traversed exactly four times.

A Refinement

Lemma

- $val_{\mathcal{G}}(\rho) < \infty$ implies $\rho \in \lim(K)$.
- val_G(σ, v) < ∞ implies that σ is a winning strategy for Player 0 from v in G.

A Refinement

Lemma

• $val_{\mathcal{G}}(\rho) < \infty$ implies $\rho \in \lim(K)$.

 val_G(σ, ν) < ∞ implies that σ is a winning strategy for Player 0 from ν in G.

Note

The other directions of both implications can easily be shown to be false. So, "having finite value" is a refinement of "winning".

$$v_0 \xrightarrow{1} v_1 \xrightarrow{1} v_0 \xrightarrow{1} v_0 \xrightarrow{1} v_1 \xrightarrow{1} v_0 \xrightarrow{1} v_0 \xrightarrow{1} v_0 \xrightarrow{1} v_0 \xrightarrow{1} v_1 \xrightarrow{1} v_0 \xrightarrow{1} v$$

with $K = (v_0 + v_1)^* v_1$.

6/10

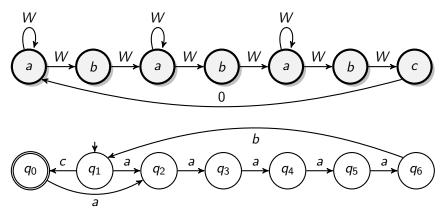
Theorem

- **1.** Player 0 has an optimal finite-state strategy in every regular weighted limit game.
- The problem "Given an arena A and a DFA 𝔅, compute an optimal strategy for Player 0 in (A, lim(L(𝔅)))" is solvable in time O(|V|³ · |E| · |Q|² · |F|²), where (V, E) is the graph underlying A and Q and F are the sets of states and accepting states of 𝔅 (using the unit-cost model).

Upper Bounds

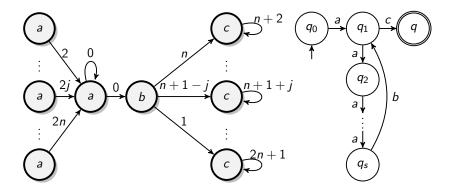
- Value: $(|V| \cdot |Q| + 1) \cdot W$, where W is the largest weight
- Memory size: $|V| \cdot |Q| \cdot |F|$

Lower Bounds: Value

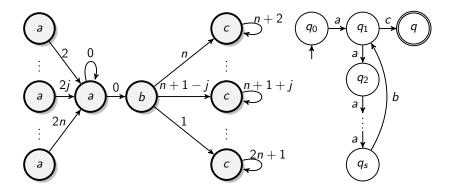


Generalization yields tight lower bound of $|V| \cdot |Q| \cdot W$ on value of optimal strategy.

Lower Bounds: Memory

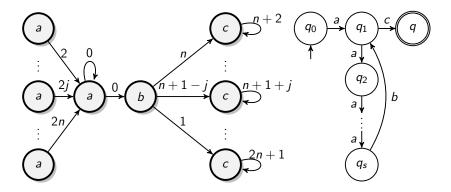


Lower Bounds: Memory



Only Player 0 moves \Rightarrow identify strategies with plays

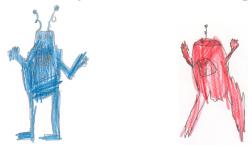
Lower Bounds: Memory



Optimal play from *j*-th vertex on the left has to use self-loop s - 2 times and then reach *j*-th vertex on the right \Rightarrow requires $n \cdot (s - 1)$ memory states.

The Last Slide

Thank you for watching.



Aniello Murano: murano@na.infn.it Sasha Rubin: sasha.rubin@sydney.ed.au Martin Zimmermann: martin.zimmermann@liverpool.ac.uk