Finite-state Strategies in Delay Games

Martin Zimmermann

Saarland University

September 21st, 2017

GandALF 2017, Rome, Italy

Motivation

Two goals:

- 1. Lift the notion of finite-state strategies to delay games.
- **2.** Present uniform framework for solving delay games (which yields finite-state strategies whenever possible).

Motivation

Two goals:

- 1. Lift the notion of finite-state strategies to delay games.
- **2.** Present uniform framework for solving delay games (which yields finite-state strategies whenever possible).

Questions:

- What are delay games?
- Why are finite-state strategies important?
- Why do we need a uniform framework?

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
, if $\beta(i) = \alpha(i+2)$ for every i

I wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$f: b = a = b = \cdots$$

$$f: a = a = \cdots$$
wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

1

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

1

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \quad I: \quad b \quad a \quad b \\ O: \quad a \quad a \quad \cdots \quad O:$$

$$wins$$

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

I

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$l: \ b \ a \ b \ \cdots \qquad l: \ b \ a \ b$$

$$l: \ a \ a \ \cdots \qquad O: \ b$$

wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b$$

$$D: \quad a \quad a \quad \cdots \qquad O: \quad b$$

$$wins$$

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \\ O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$
wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$

$$D: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$
wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$

$$D: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a$$
wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

I: b a b \cdots I: b a b b a b
D: a a \cdots O: b b a
V wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

I: b a b \cdots I: b a b b a b
D: a a \cdots O: b b a b
V wins

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \dots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b \quad a$$

$$O: \quad a \quad a \quad \dots \qquad O: \quad b \quad b \quad a \quad b$$

$$I \text{ wins}$$

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad$$

In this talk, a game is given by an ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.

Example

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad a \quad b \quad a \quad \cdots \\ O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \quad b \quad a \quad \cdots \\ I \text{ wins} \qquad \qquad O \text{ wins}$$

Hosch & Landweber ('72): ω-regular delay games with respect to constant delay solvable.

- Hosch & Landweber ('72): ω-regular delay games with respect to constant delay solvable.
- Holtmann, Kaiser & Thomas ('10): Solving parity delay games in 2EXPTIME, doubly-exponential lookahead sufficient.

- Hosch & Landweber ('72): ω-regular delay games with respect to constant delay solvable.
- Holtmann, Kaiser & Thomas ('10): Solving parity delay games in 2EXPTIME, doubly-exponential lookahead sufficient.
- Fridman, Löding & Ζ. ('11): Nothing non-trivial is solvable for ω-contextfree delay games, unbounded lookahead necessary.

Klein & Z. ('15): Solving parity delay games is EXPTIMEcomplete, exponential lookahead sufficient and necessary.

- Klein & Z. ('15): Solving parity delay games is EXPTIMEcomplete, exponential lookahead sufficient and necessary.
- **Z.** ('15): Max-regular delay games with respect to constant delay solvable, unbounded lookahead necessary.

- Klein & Z. ('15): Solving parity delay games is EXPTIMEcomplete, exponential lookahead sufficient and necessary.
- Z. ('15): Max-regular delay games with respect to constant delay solvable, unbounded lookahead necessary.
- Klein & Z. ('16): Solving LTL delay games is 3EXPTIMEcomplete, triply-exponential lookahead sufficient and necessary.

- Klein & Z. ('15): Solving parity delay games is EXPTIMEcomplete, exponential lookahead sufficient and necessary.
- Z. ('15): Max-regular delay games with respect to constant delay solvable, unbounded lookahead necessary.
- Klein & Z. ('16): Solving LTL delay games is 3EXPTIMEcomplete, triply-exponential lookahead sufficient and necessary.
- **Z.** ('17): Solving cost-parity delay games is EXPTIME-complete, exponential lookahead sufficient and necessary.

- Klein & Z. ('15): Solving parity delay games is EXPTIMEcomplete, exponential lookahead sufficient and necessary.
- Z. ('15): Max-regular delay games with respect to constant delay solvable, unbounded lookahead necessary.
- Klein & Z. ('16): Solving LTL delay games is 3EXPTIMEcomplete, triply-exponential lookahead sufficient and necessary.
- **Z.** ('17): Solving cost-parity delay games is EXPTIME-complete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Finite-state Strategies

A strategy in an infinite game is a map σ: Σ^{*}_I → Σ_O, i.e., not necessarily finitely representable.

Finite-state Strategies

- A strategy in an infinite game is a map σ: Σ^{*}_I → Σ_O, i.e., not necessarily finitely representable.
- A finite-state strategy is implemented by a finite automaton with output, and therefore finitely represented.

Finite-state/positional strategies are crucial in many applications of infinite games, e.g.:

- In reactive synthesis, a finite-state winning strategy is a correct-by-construction controller.
- (Modern proofs of) Rabin's theorem rely on positional determinacy of parity games.
- In general, the existence of finite-state strategies enables the application of infinite games.
- Determining the memory requirements is one of the most fundamental tasks for a class of games.

Disclaimer: We focus here on constant delay!

- A strategy in a delay game is still a map $\sigma \colon \Sigma_I^* \to \Sigma_O$.
- So, the classical definition is still applicable.
- By "hardcoding" constant lookahead into the rules of the game, finite-state winning strategies are computable.
Disclaimer: We focus here on constant delay!

- A strategy in a delay game is still a map $\sigma \colon \Sigma_I^* \to \Sigma_O$.
- So, the classical definition is still applicable.
- By "hardcoding" constant lookahead into the rules of the game, finite-state winning strategies are computable.
- However, this notion does not distinguish "past" and "future".

$$L = \{ \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \mid \alpha \in \{0,1\}^{\omega} \}$$

$$L = \left\{ \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \mid \alpha \in \{0, 1\}^{\omega} \right\}$$

I: a a b a a b b b a a a b
O: a a b a a b b

$$L = \left\{ \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \mid \alpha \in \{0, 1\}^{\omega} \right\}$$

I: a a b a a b b b a a a b
O: a a b a a b b b

Example

$$L = \left\{ \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \mid \alpha \in \{0, 1\}^{\omega} \right\}$$

I: a a b a a b b b b a a a b
O: a a b a a b b b

• Requires 2^d memory states with constant lookahead d.

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0 a_1 a_2}}{b_0 b_1 b_2 \dots}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\begin{pmatrix} \overline{a_0 a_1 a_2} \\ \overline{b_0 b_1 b_2} \\ \end{pmatrix} \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\begin{pmatrix} \overline{a_0 a_1 a_2} \\ \overline{b_0 b_1 b_2} \\ \end{pmatrix} \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\begin{pmatrix} \overline{a_0 a_1 a_2} \\ b_0 b_1 b_2 \\ \dots \end{pmatrix} \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Distinguishing between past and future: block games

- Fix a block length d > 0.
- Player *I* picks blocks $\overline{a_i} \in \Sigma_I^d$.
- Player *O* picks blocks $\overline{b_i} \in \Sigma_O^d$.
- Player *O* wins, if $\left(\frac{\overline{a_0a_1a_2}}{b_0b_1b_2}\right) \in L$
- To account for (constant) lookahead, Player 1 is one move ahead.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

 A finite-state strategy in a block game reads blocks over Σ_I and outputs blocks in Σ_O:

 A finite-state strategy in a block game reads blocks over Σ₁ and outputs blocks in Σ₀:

 A finite-state strategy in a block game reads blocks over Σ₁ and outputs blocks in Σ₀:

 A finite-state strategy in a block game reads blocks over Σ₁ and outputs blocks in Σ₀:

Note:

- Alphabet now exponential in block length!
- But, we distinguish past and future.
- In particular, state complexity only concerned with past.

Fix ω-automaton 𝔅 and a finite set M.
s: Q⁺ → M is an aggregation for 𝔅, if for all runs ρ = π₀π₁π₂ ··· and ρ' = π'₀π'₁π'₂ ··· with s(π₀)s(π₁)s(π₂) ··· = s(π'₀)s(π'₁)s(π'₂) ··· : ρ is accepting ⇔ ρ' is accepting.

Fix ω-automaton 𝔅 and a finite set M.
s: Q⁺ → M is an aggregation for 𝔅, if for all runs ρ = π₀π₁π₂ ··· and ρ' = π'₀π'₁π'₂ ··· with s(π₀)s(π₁)s(π₂) ··· = s(π'₀)s(π'₁)s(π'₂) ··· : ρ is accepting ⇔ ρ' is accepting.

π_0	π_1	π_2	π_3	π_4	

Fix ω-automaton 𝔅 and a finite set M.
s: Q⁺ → M is an aggregation for 𝔅, if for all runs ρ = π₀π₁π₂ ··· and ρ' = π'₀π'₁π'₂ ··· with s(π₀)s(π₁)s(π₂) ··· = s(π'₀)s(π'₁)s(π'₂) ··· : ρ is accepting ⇔ ρ' is accepting.

π_0	π_1	π_2	π_3	π_4	
÷		, , ,	<u> </u>	·:-	••
m_0	m_1	<i>m</i> 3	<i>m</i> 3	m_4	

Fix ω-automaton 𝔅 and a finite set M.
s: Q⁺ → M is an aggregation for 𝔅, if for all runs ρ = π₀π₁π₂ ··· and ρ' = π'₀π'₁π'₂ ··· with s(π₀)s(π₁)s(π₂) ··· = s(π'₀)s(π'₁)s(π'₂) ··· : ρ is accepting ⇔ ρ' is accepting.

π_0	π_1	π_2	π_3		π_4	
÷	- <u> </u>	**	``	- <u> </u>		
m_0	m_1	<i>m</i> 3		m_3	т	4
	N ''	۲.	<u>```</u>	A 1		
π_0	π_1		π_2	π_3	π_4	

Fix ω-automaton 𝔅 and a finite set M.
s: Q⁺ → M is an aggregation for 𝔅, if for all runs ρ = π₀π₁π₂ ··· and ρ' = π'₀π'₁π'₂ ··· with s(π₀)s(π₁)s(π₂) ··· = s(π'₀)s(π'₁)s(π'₂) ··· : ρ is accepting ⇔ ρ' is accepting.

π_0	π_1	π_2	π_3		π_4	
÷	'	**	<u> </u>	<u> </u>	r.,	
m_0	m	n m	3	m_3	m_4	
.1		N	T	<u> </u>	*	
π_0		π_1	π_2	π_3	π_4	

Example

 $q_0 \cdots q_i \mapsto \max_{0 \le j \le i} \Omega(q_j)$ is an aggregation for a max-parity automaton with coloring Ω .

Every automaton \mathfrak{M} with input alphabet Q and state set M computes an aggregation $s_{\mathfrak{M}}: Q^+ \to M: s_{\mathfrak{M}}(\pi)$ is the state reached by \mathfrak{M} when processing π .

Every automaton \mathfrak{M} with input alphabet Q and state set M computes an aggregation $s_{\mathfrak{M}}: Q^+ \to M: s_{\mathfrak{M}}(\pi)$ is the state reached by \mathfrak{M} when processing π .

Example

 $q_0 \cdots q_i \mapsto \max_{0 \le j \le i} \Omega(q_j)$ computable by automaton with state set $\Omega(Q)$.

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_M-value.

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_M-value.

$$x \in \Sigma_I^*$$
:

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_M-value.

$$x \in \Sigma_I^*:$$

$$y \in \Sigma_O^*:$$

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔅, i.e., the same state changes and the corresponding runs have the same s_m-value.

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_m-value.

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_m-value.

Fix \mathfrak{A} recognizing winning condition $L(\mathfrak{A}) \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$ and let $s_{\mathfrak{M}} \colon Q^+ \to M$ be aggregation for \mathfrak{A} computed by some \mathfrak{M} .

■ Define x ≡ x' iff x and x' induce the same behavior in 𝔄, i.e., the same state changes and the corresponding runs have the same s_m-value.

$$\blacksquare \equiv$$
 has index at most $2^{|Q|^2|M|}$

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.
The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

The abstract block game is played as follows:

Sn

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

qı

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

qı

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

The abstract block game is played as follows:

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- Player *I* picks equivalence classes $S_0 S_1 \cdots$.
- Player O picks compatible sequence $(q_0, *)(q_1, m_1) \cdots$.

- This is a delay-free Gale-Stewart game!
- Automaton reconizing winning condition is (roughly) of size O(index(=)).

Main Theorem

Theorem

Let \mathfrak{A} be an ω -automaton, let $s_{\mathfrak{M}}$ be an aggregation for \mathfrak{A} , and define $d = 2^{|Q|^2 \cdot |M|}$.

- 1. If Player O wins the delay game with winning condition $L(\mathfrak{A})$ for any lookahead, then she also wins the corresponding abstract block game.
- **2.** If Player *O* wins the abstract block game, then she also wins the block game with winning condition $L(\mathfrak{A})$ and block size *d*.
- **3.** Moreover, if she has a finite-state winning strategy for the abstract game, then she has a finite-state winning strategy of the same size for the block game.

Main Theorem

Theorem

Let \mathfrak{A} be an ω -automaton, let $s_{\mathfrak{M}}$ be an aggregation for \mathfrak{A} , and define $d = 2^{|Q|^2 \cdot |M|}$.

- 1. If Player O wins the delay game with winning condition $L(\mathfrak{A})$ for any lookahead, then she also wins the corresponding abstract block game.
- **2.** If Player *O* wins the abstract block game, then she also wins the block game with winning condition $L(\mathfrak{A})$ and block size *d*.
- **3.** Moreover, if she has a finite-state winning strategy for the abstract game, then she has a finite-state winning strategy of the same size for the block game.

Corollary

Solving delay games equivalent to solving abstract block games and constant lookahead 2d is sufficient.

Conclusion

Also in the Paper:

- **1.** Another type of aggregation suitable for quantitative acceptance conditions.
- 2. The same framework yields decidability and finite-state strategies for quantitative delay games w.r.t. constant lookahead.

Conclusion

Also in the Paper:

- **1.** Another type of aggregation suitable for quantitative acceptance conditions.
- 2. The same framework yields decidability and finite-state strategies for quantitative delay games w.r.t. constant lookahead.

Unpublished (with Sarah Winter):

Recall that automata implementing finite-state strategies in block games process blocks \Rightarrow Exponentially-sized alphabets.

- 1. Implement transition and output function as transducers.
- 2. Upper and lower bounds on size in both models.
- **3.** Tradeoffs between these models.