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Motivation

Two goals:

1. Lift the notion of finite-state strategies to delay games.

2. Present uniform framework for solving delay games (which
yields finite-state strategies whenever possible).

Questions:

What are delay games?

Why are finite-state strategies important?

Why do we need a uniform framework?
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Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a · · ·
O: a a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.
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Some History (1/2)

Hosch & Landweber (’72): ω-regular delay games with
respect to constant delay solvable.

Holtmann, Kaiser & Thomas (’10): Solving parity delay
games in 2ExpTime, doubly-exponential lookahead sufficient.

Fridman, Löding & Z. (’11): Nothing non-trivial is solvable
for ω-contextfree delay games, unbounded lookahead
necessary.
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Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.
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Finite-state Strategies

A strategy in an infinite game is a map σ : Σ∗I → ΣO , i.e., not
necessarily finitely representable.

A finite-state strategy is implemented by a finite automaton
with output, and therefore finitely represented.

Example

0 1

a

a

b b w 7→ |w |a mod 2
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Why Finite-state Strategies

Finite-state/positional strategies are crucial in many applications of
infinite games, e.g.:

In reactive synthesis, a finite-state winning strategy is a
correct-by-construction controller.

(Modern proofs of) Rabin’s theorem rely on positional
determinacy of parity games.

In general, the existence of finite-state strategies enables the
application of infinite games.

Determining the memory requirements is one of the most
fundamental tasks for a class of games.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 7/17



Finite-state Strategies for Delay Games

Disclaimer: We focus here on constant delay!

A strategy in a delay game is still a map σ : Σ∗I → ΣO .

So, the classical definition is still applicable.

By “hardcoding” constant lookahead into the rules of the
game, finite-state winning strategies are computable.

However, this notion does not distinguish “past” and “future”.
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A (Cautionary) Example

Example

L = {
(
α

α

)
| α ∈ {0, 1}ω}

a a b a a b b b a a a b

a a b a a b b

d

I:

O:

b

Requires 2d memory states with constant lookahead d .
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Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b a b · · ·
O: b a b a b b a b · · ·
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Finite-state Strategies for Block Games

A finite-state strategy in a block game reads blocks over ΣI

and outputs blocks in ΣO :

I:

O:

a0 a1 ai−2 ai−1 ai

b0 b1 bi−2

q

bi−1
=

λ(q, ai−1, ai )

Note:

Alphabet now exponential in block length!

But, we distinguish past and future.

In particular, state complexity only concerned with past.
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Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.
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Automata Computing Aggregations

Every automaton M with input alphabet Q and state set M
computes an aggregation sM : Q+ → M: sM(π) is the state
reached by M when processing π.

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) computable by automaton with state
set Ω(Q).
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Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.
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Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17



Main Theorem

Theorem
Let A be an ω-automaton, let sM be an aggregation for A, and
define d = 2|Q|

2·|M|.

1. If Player O wins the delay game with winning condition L(A)
for any lookahead, then she also wins the corresponding
abstract block game.

2. If Player O wins the abstract block game, then she also wins
the block game with winning condition L(A) and block size d .

3. Moreover, if she has a finite-state winning strategy for the
abstract game, then she has a finite-state winning strategy of
the same size for the block game.

Corollary
Solving delay games equivalent to solving abstract block games
and constant lookahead 2d is sufficient.
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Conclusion

Also in the Paper:

1. Another type of aggregation suitable for quantitative
acceptance conditions.

2. The same framework yields decidability and finite-state
strategies for quantitative delay games w.r.t. constant
lookahead.

Unpublished (with Sarah Winter):
Recall that automata implementing finite-state strategies in block
games process blocks ⇒ Exponentially-sized alphabets.

1. Implement transition and output function as transducers.

2. Upper and lower bounds on size in both models.

3. Tradeoffs between these models.
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