Distributed PROMPT-LTL Synthesis

Joint work with Swen Jacobs and Leander Tentrup (Saarland University)

Martin Zimmermann

Saarland University

September 16th, 2016

GandALF 2016, Catania, Italy

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. '07)

PROMPT-LTL model checking (synthesis) is as hard as LTL model checking (synthesis).

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. '07)

PROMPT-LTL model checking (synthesis) is as hard as LTL model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

- LTL is the standard language for the specification of reactive systems...
- but it cannot express timing constraints, e.g., every request is answered within a bounded amount of time.
- PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. '07)

PROMPT-LTL model checking (synthesis) is as hard as LTL model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

Here: synthesis of distributed systems, i.e., multiple components with imperfect information.

Outline

1. Definitions

PROMPT-LTL Distributed Synthesis The Alternating Color Technique

2. The Synchronous Case

- 3. The Asynchronous Case
- 4. Conclusion

PROMPT-LTL

Syntax:

$$\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

where a ranges over a finite set AP of atomic propositions.

PROMPT-LTL

Syntax:

$$\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

where a ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound $k \in \mathbb{N}$

PROMPT-LTL

Syntax:

$$\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

where a ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound $k \in \mathbb{N}$

Example: $\mathbf{G}(q \rightarrow \mathbf{F}_{\mathbf{P}} p)$ w.r.t. bound k: every request q is answered by response p within k steps.

An architecture consists of

- a finite set P of processes with an environment process p_{env} ,
- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

Examples:

An architecture consists of

- a finite set P of processes with an environment process p_{env} ,
- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p: (2^{I_p})^{\omega} \to (2^{O_p})^{\omega}$.

An architecture consists of

• a finite set P of processes with an environment process p_{env} ,

- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p: (2^{I_p})^{\omega} \to (2^{O_p})^{\omega}$.

The PROMPT-LTL distributed realizability problem for a fixed architecture \mathcal{A} asks, given a PROMPT-LTL formula φ , to decide whether implementations f_p for every $p \neq p_{env}$ and a bound k exist s.t. every outcome $w \in \bigoplus_p f_p$ satisfies φ w.r.t. k.

An architecture consists of

• a finite set P of processes with an environment process p_{env} ,

- for all $p \in P$ a set $O_p \subseteq AP$ of outputs (pairwise disjoint), and
- for all $p \in P \setminus \{p_{env}\}$ a set $I_p \subseteq AP$ of inputs.

An implementation of a process $p \neq p_{env}$ is a finite transducer computing a function $f_p: (2^{I_p})^{\omega} \to (2^{O_p})^{\omega}$.

The PROMPT-LTL distributed realizability problem for a fixed architecture \mathcal{A} asks, given a PROMPT-LTL formula φ , to decide whether implementations f_p for every $p \neq p_{env}$ and a bound k exist s.t. every outcome $w \in \bigoplus_p f_p$ satisfies φ w.r.t. k.

Synthesis: compute such f_p , if they exist.

- **1.** Add fresh proposition $r \notin AP$: think of a coloring.
- 2. Obtain $\mathit{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

 $(r \rightarrow (r \ \mathbf{U} \ (\neg r \ \mathbf{U} \ rel(\psi)))) \land (\neg r \rightarrow (\neg r \ \mathbf{U} \ (r \ \mathbf{U} \ rel(\psi)))).$

Intuitively: ψ has to be satisfied within one color change.

- **1.** Add fresh proposition $r \notin AP$: think of a coloring.
- 2. Obtain $\mathit{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

$$(r
ightarrow (r \ \mathbf{U} \ (\neg r \ \mathbf{U} \ rel(\psi)))) \land (\neg r
ightarrow (\neg r \ \mathbf{U} \ (r \ \mathbf{U} \ rel(\psi)))).$$

Intuitively: ψ has to be satisfied within one color change.

- **1.** Add fresh proposition $r \notin AP$: think of a coloring.
- 2. Obtain $\mathit{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

$$(r
ightarrow (r \mathbf{U} (\neg r \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg r
ightarrow (\neg r \mathbf{U} (r \mathbf{U} \operatorname{rel}(\psi)))).$$

Intuitively: ψ has to be satisfied within one color change.

- **1.** Add fresh proposition $r \notin AP$: think of a coloring.
- 2. Obtain $\mathit{rel}(\varphi)$ by replacing each subformula $\mathbf{F}_{\mathbf{P}} \psi$ of φ by

$$(r
ightarrow (r \mathbf{U} (\neg r \mathbf{U} \operatorname{rel}(\psi)))) \land (\neg r
ightarrow (\neg r \mathbf{U} (r \mathbf{U} \operatorname{rel}(\psi)))).$$

Intuitively: ψ has to be satisfied within one color change.

Lemma (Kupferman et al. '07)

Let φ be a PROMPT-LTL formula, $w \in (2^{AP})^{\omega}$, and $w' \in (2^{AP \cup \{r\}})^{\omega}$ s.t. w and w' coincide on P at every position.

- **1.** If $(w, k) \vDash \varphi$ and distance between color changes is at least k in w', then $w' \vDash rel(\varphi)$.
- **2.** Let $k \in \mathbb{N}$. If $w' \models rel(\varphi)$ and distance between color-changes is at most k in w', then $(w, 2k) \models \varphi$.

Outline

1. Definitions

PROMPT-LTL Distributed Synthesis The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion

Given architecture A, let A^r be A with a new input-free (coloring) process p_{col} that outputs r.

Given architecture A, let A^r be A with a new input-free (coloring) process p_{col} that outputs r.

Given architecture \mathcal{A} , let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT-LTL formula φ is realizable in \mathcal{A} if, and only if, rel(φ) \wedge **GF** $r \wedge$ **GF** $\neg r$ is realizable in \mathcal{A}^r .

Given architecture \mathcal{A} , let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT-LTL formula φ is realizable in \mathcal{A} if, and only if, rel(φ) \wedge **GF** $r \wedge$ **GF** $\neg r$ is realizable in \mathcal{A}^r .

Proof Idea:

- Let φ be realizable in \mathcal{A} with bound k by implementations f_{ρ} .
- Add the implementation producing $(\emptyset^k \{r\}^k)$ for p_{col} in \mathcal{A}^r .
- Every outcome in \mathcal{A}^r coincides on P with an outcome in \mathcal{A} .
- So, the implementations realize $rel(\varphi) \wedge \mathbf{GF} r \wedge \mathbf{GF} \neg r$ in \mathcal{A}^r .

Given architecture \mathcal{A} , let \mathcal{A}^r be \mathcal{A} with a new input-free (coloring) process p_{col} that outputs r.

Theorem

A PROMPT-LTL formula φ is realizable in \mathcal{A} if, and only if, rel(φ) \wedge **GF** $r \wedge$ **GF** $\neg r$ is realizable in \mathcal{A}^r .

Proof Idea:

- Let $rel(\varphi) \wedge \mathbf{GFr} \wedge \mathbf{GF} \neg r$ be realizable in \mathcal{A}^r by implementations f_p .
- As the implementation for p_{col} is finite-state, there is a bound k on the distance between color changes.
- **Thus, the implementations also realize** φ in \mathcal{A} with bound 2k.

Information Forks

Information Forks

Theorem (Finkbeiner & Schewe '05)

The LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.

Information Forks

Theorem (Finkbeiner & Schewe '05)

The LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.

Adding the coloring process does not introduce information forks.

Corollary

The PROMPT-LTL distributed realizability problem for A is decidable if, and only if, A has no information fork.

Outline

1. Definitions

PROMPT-LTL Distributed Synthesis The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion

- Add a scheduler, which is part of the (antagonistic) environment: For every p ∈ P add scheduling proposition sched_p to O_{penv} and to I_p.
- Implementation may change its state only if enabled.

- Add a scheduler, which is part of the (antagonistic) environment: For every p ∈ P add scheduling proposition sched_p to O_{penv} and to I_p.
- Implementation may change its state only if enabled.
 ⇒ Need assumptions on scheduler: bounded fairness

 $\bigwedge_{p} \mathbf{GF}_{\mathbf{P}} \operatorname{sched}_{p}$

■ Solution: assume-guarantee realizability for PROMPT-LTL.

- Add a scheduler, which is part of the (antagonistic) environment: For every p ∈ P add scheduling proposition sched_p to O_{penv} and to I_p.
- Implementation may change its state only if enabled.
 ⇒ Need assumptions on scheduler: bounded fairness

 $\bigwedge_{p} \mathbf{GF}_{\mathbf{P}} \operatorname{sched}_{p}$

■ Solution: assume-guarantee realizability for PROMPT-LTL.

The asynchronous assume-guarantee realizability problem for a fixed architecture A asks, given PROMPT-LTL formulas φ_A , φ_G , to decide whether implementations f_p for every $p \neq p_{env}$ exist s.t.

$$\forall k_A \ \exists k_G \ \forall w \in \bigoplus_p f_p : (w, k_A) \vDash \varphi_A \text{ implies } (w, k_G) \vDash \varphi_G.$$

Lemma

There exists an assume-guarantee PROMPT-LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.

Lemma

There exists an assume-guarantee PROMPT-LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.

Proof

Lemma

There exists an assume-guarantee PROMPT-LTL specification that can be realized with an infinite-state implementation, but not with a finite-state implementation.

Proof

■ Implementation of p_1 has to falsify assumption φ_A , i.e., satisfy $\mathbf{F} \neg \mathbf{F}_{\mathbf{P}} o \land \mathbf{G} \mathbf{F} o$ for every bound k

- This requires to produce $\inf \emptyset^k$ for every k, but not suffix \emptyset^{ω} .
- This is impossible for finite-state transducers.

Asynchronous LTL realizability is undecidable for architectures with at least two processes [Schewe & Finkbeiner '06].

Theorem

The PROMPT-LTL distributed assume-guarantee realizability problem is semi-decidable.

Asynchronous LTL realizability is undecidable for architectures with at least two processes [Schewe & Finkbeiner '06].

Theorem

The PROMPT-LTL distributed assume-guarantee realizability problem is semi-decidable.

Proof Sketch

- PROMPT-LTL assume-guarantee model checking is decidable [Kupferman et al. '07].
- Apply bounded synthesis [Finkbeiner & Schewe '07]: Search through the space of transducers and model check whether they satisfy the assume-guarantee specification.

Outline

1. Definitions

PROMPT-LTL Distributed Synthesis The Alternating Color Technique

2. The Synchronous Case

3. The Asynchronous Case

4. Conclusion

Conclusion

Results

- For a fixed architecture A: synchronous PROMPT-LTL realizability for A is decidable if, and only if, synchronous LTL realizability for A is decidable.
- Asynchronous PROMPT-LTL assume-guarantee realizability is semi-decidable, just as for LTL.
- Both results can be extended to synthesis and to stronger logics.

Conclusion

Results

- For a fixed architecture A: synchronous PROMPT-LTL realizability for A is decidable if, and only if, synchronous LTL realizability for A is decidable.
- Asynchronous PROMPT-LTL assume-guarantee realizability is semi-decidable, just as for LTL.
- Both results can be extended to synthesis and to stronger logics.

Open problems

- Single process asynchronous LTL realizability is decidable. What about PROMPT-LTL?
- Distributed PROMPT-LTL synthesis as an optimization problem (see next talk for the single process case!)