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Motivation

Linear Temporal Logic (LTL) as specification language:

Simple and variable-free syntax and intuitive semantics.
Expressively equivalent to first-order logic on words.
LTL model checking routinely applied in industrial settings.
Desirable algorithmic properties.

Shortcomings:

1. LTL cannot express timing constraints.

Add F≤k for k ∈ N.

Not practical (i.e., which k is right?)
Add F≤x for variable x . Now: does there exist a
valuation for x s.t. specification is satisfied?

2. LTL cannot express all ω-regular properties.

Many extensions that are equivalent to ω-regular
languages: add regular expression-, grammar-, or
automata-operators to LTL.
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Parametric LTL

Alur et al. ’99: add parameterized operators to LTL

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ

with x ∈ X , y ∈ Y (X ∩ Y = ∅).

Semantics w.r.t. variable valuation α : X ∪ Y → N:

As usual for LTL operators.

(ρ, n, α) |= F≤xϕ: ρ
n n + α(x)

ϕ

(ρ, n, α) |= G≤yϕ: ρ
n n + α(y)

ϕ ϕ ϕ ϕ ϕ

Example:

G(req → F≤x resp)
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Results

Model Checking: Does there exist an α such that every execution
satisfies the specification w.r.t. α?

Theorem (Alur et al. ’99, Kupferman et al. 06’)

PLTL model checking is PSpace-complete.

Infinite Games: Does there exist an α and a strategy σ for
Player 0 such that every play that is consistent with σ satisfies the
specification w.r.t. α?

Theorem (Kupferman et al. 06’, Z. ’11)

Solving PLTL games is 2ExpTime-complete.

Parameterized operators can be added for free!
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Linear Dynamic Logic

Vardi ’11: Another extension of LTL expressing exactly the
ω-regular languages: use PDL-like operators

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r ]ϕ

r ::=φ | ϕ? | r + r | r ; r | r∗

where φ ranges over boolean formulas over atomic propositions.

Semantics:

(ρ, n) |= 〈r〉ϕ: ρ

r︷ ︸︸ ︷
n

ϕ

(ρ, n) |= [r ]ϕ: ρ

r︷ ︸︸ ︷ r︷ ︸︸ ︷
n

ϕ
ϕ

Example:

[tt∗ ] (req → 〈(tt ; tt)∗〉 resp)
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Results

Theorem (Vardi ’11)

LDL defines exactly the ω-regular languages.

Theorem (Vardi ’11)

LDL can be translated into linearly-sized alternating automata.

Corollary

1. LDL model checking is PSpace-complete.

2. Solving LDL games is 2ExpTime-complete.

Expressivity can be increased for free!
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Parametric LDL

Faymonville, Z. ’14: add parameterized operators to LDL.
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Beyond Bounding Time: Costs

Model checking and solving games for PLTL and PLDL are
boundedness problems.

Recently, boundedness problems have received a lot of
attention:

Automata with counters and quantitative logics
finitary parity, parity with costs, energy-parity, etc.

Example: Parity games with costs:

Label arena with costs, i.e., cst : E → N.

Condition: there exists a b s.t. almost every occurrence of
some odd color is followed by occurrence of larger even color
s.t. cost between occurrences is at most b.

This is not expressible in PLTL or PLDL.

Martin Zimmermann Saarland University Parameterized Linear Temporal Logics Meet Costs 12/19



Beyond Bounding Time: Costs

Model checking and solving games for PLTL and PLDL are
boundedness problems.

Recently, boundedness problems have received a lot of
attention:

Automata with counters and quantitative logics
finitary parity, parity with costs, energy-parity, etc.

Example: Parity games with costs:

Label arena with costs, i.e., cst : E → N.

Condition: there exists a b s.t. almost every occurrence of
some odd color is followed by occurrence of larger even color
s.t. cost between occurrences is at most b.

This is not expressible in PLTL or PLDL.

Martin Zimmermann Saarland University Parameterized Linear Temporal Logics Meet Costs 12/19



Beyond Bounding Time: Costs

Model checking and solving games for PLTL and PLDL are
boundedness problems.

Recently, boundedness problems have received a lot of
attention:

Automata with counters and quantitative logics
finitary parity, parity with costs, energy-parity, etc.

Example: Parity games with costs:

Label arena with costs, i.e., cst : E → N.

Condition: there exists a b s.t. almost every occurrence of
some odd color is followed by occurrence of larger even color
s.t. cost between occurrences is at most b.

This is not expressible in PLTL or PLDL.

Martin Zimmermann Saarland University Parameterized Linear Temporal Logics Meet Costs 12/19



Overview

LTL

LDL PLTL

PLDL

Martin Zimmermann Saarland University Parameterized Linear Temporal Logics Meet Costs 13/19



Overview

LTL

LDL PLTL

PLDL

cPLDL

cPLTL

mult-cPLDL

mult-cPLTL
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PLTL and PLDL with Costs

Syntax: As for PLTL respectively PLDL.

Semantics: Label edges by costs, i.e., cst : E → N, and bound
cost instead of time, e.g.,

(ρ, n, α) |= F≤xϕ: ρ
n n + j

ϕ

︸ ︷︷ ︸
cost ≤ α(x)

Note: j might be arbitrarily large, as we allow cost zero.

A multi-dimensional setting: mult-cPLTL and mult-cPLDL

cst : E → Nd , d ∈ N.

Label parameterized operators with coordinate i ∈ {1, . . . , d},
e.g., F≤ix and 〈r〉≤ix
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Results

Let L ∈ {cPLTL, cPLDL,mult-cPLTL,mult-cPLDL}.

Theorem
L model checking is PSpace-complete.

Theorem
Solving L games is 2ExpTime-complete.

Remark: The running times are independent of the largest cost, as
we consider boundedness problems.

Going from bounding time to bounding (multi-dimensional) costs
for free!
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Optimization Problems

Unipolar formulas: at most one type of parameterized operator
Then: ask for optimal variable valuations

For F≤x and 〈r〉≤x : minimize α(x)
For G≤y and [r ] ≤y : maximize α(y)

Theorem

1. Tight exponential upper/lower bounds on optimal α for
unipolar cPLDL model checking.

2. Tight doubly-exponential upper/lower bounds on optimal α
for unipolar cPLDL games.

Corollary

1. Model checking optimization in polynomial space.

2. Game optimization in triply-exponential time.
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Proof Sketch (for PLTL Games)

1. Replacing G≤yψ by ψ preserves satisfiability (monotonicity).

2. Apply alternating color technique (Kupferman et al. ’06):

Add new proposition p and replace every F≤xψ by

(p → pU(¬pUψ)) ∧ (¬p → ¬pU(pUψ))

(ψ satisfied within one color change), obtain c(ϕ).

Lemma
ϕ and c(ϕ) “equivalent” on traces where distance between color
changes is bounded.

3. Emptiness for game with condition ϕ equivalent to Player 0
winning LTL game with condition c(ϕ) ∧ GFp ∧ GF¬p, as
finite state strategies bound distance between color changes.

4. Yields doubly-exponential upper bound.
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Conclusion

Weighted extensions of parameterized linear temporal logics that
retain the attractive algorithmic properties of LTL:

Model checking PSpace-complete.

Solving games 2ExpTime-complete.

Also (in the one-dimensional case):

Model checking optimization in polynomial space.

Game optimization in triply-exponential time.

Open problems:

Game optimization in doubly-exponential time.

Multi-dimensional optimization problems.

More general weight structures, e.g., negative weights,
semi-rings, etc.
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mult-cPLTL

Model Checking:
PSpace-compl.

Infinite Games:
2ExpTime-compl.

Opt. Model Checking:
polynomial space

Opt. Infinite Games:
3-exponential time
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