# Playing Pushdown Parity Games in a Hurry 

Joint work with Wladimir Fridman (RWTH Aachen University)

Martin Zimmermann

University of Warsaw
September 7th, 2012

GandALF 2012
Naples, Italy

## Motivation

Playing infinite games in finite time:
■ Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.

## Motivation

Playing infinite games in finite time:
■ Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
■ Jurdziński: small progress measures for parity games.

- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
■ Björklund, Sandberg, Vorobyov: positional determinacy of parity games.


## Motivation

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
■ Jurdziński: small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
■ Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called scoring functions.


## Motivation

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
■ Jurdziński: small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
■ Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called scoring functions.
- Fearnley, Neider, Rabinovich, Z.: strong bounds on McNaughton's scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.


## Motivation

Playing infinite games in finite time:
■ Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
■ Jurdziński: small progress measures for parity games.

- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
■ Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called scoring functions.
■ Fearnley, Neider, Rabinovich, Z.: strong bounds on McNaughton's scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.

Results hold only for finite arenas. What about infinite ones?

## Parity Games

Arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ :
■ directed (possibly countable) graph ( $V, E$ ).

- positions of the players: partition $\left\{V_{0}, V_{1}\right\}$ of $V$.

■ initial vertex $v_{\text {in }} \in V$.

## Parity Games

Arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ :
■ directed (possibly countable) graph ( $V, E$ ).

- positions of the players: partition $\left\{V_{0}, V_{1}\right\}$ of $V$.
- initial vertex $v_{\text {in }} \in V$.



## Parity Games

Arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ :
■ directed (possibly countable) graph ( $V, E$ ).

- positions of the players: partition $\left\{V_{0}, V_{1}\right\}$ of $V$.
- initial vertex $v_{\text {in }} \in V$.


Parity game $\mathcal{G}=(\mathcal{A}, \mathrm{col})$ with col: $V \rightarrow\{0, \ldots, d\}$.
■ Player 0 wins play $\Leftrightarrow$ minimal color seen infinitely often even.

- (Winning / positional) strategies defined as usual.

■ Player $i$ wins $\mathcal{G} \Leftrightarrow$ she has winning strategy from $v_{\text {in }}$.

## Scoring Functions for Parity Games

For $c \in \mathbb{N}$ and $w \in V^{*}: \mathrm{Sc}_{c}(w)$ denotes the number of occurrences of $c$ in the suffix of $w$ after the last occurrence of a smaller color.

Formally: $\mathrm{Sc}_{c}(\varepsilon)=0$ and

$$
\mathrm{Sc}_{c}(w v)= \begin{cases}\mathrm{Sc}_{c}(w) & \text { if } \operatorname{col}(v)>c \\ \mathrm{Sc}_{c}(w)+1 & \text { if } \operatorname{col}(v)=c \\ 0 & \text { if } \operatorname{col}(v)<c\end{cases}
$$

## Scoring Functions for Parity Games

For $c \in \mathbb{N}$ and $w \in V^{*}: \mathrm{Sc}_{c}(w)$ denotes the number of occurrences of $c$ in the suffix of $w$ after the last occurrence of a smaller color.

## Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd $c$ by $|V|$.

## Scoring Functions for Parity Games

For $c \in \mathbb{N}$ and $w \in V^{*}: \mathrm{Sc}_{c}(w)$ denotes the number of occurrences of $c$ in the suffix of $w$ after the last occurrence of a smaller color.

## Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd $c$ by $|V|$.

## Corollary

In a finite arena, Player 0 wins $\Leftrightarrow$ she can prevent a score of $|V|+1$ for all odd $c$ (safety condition).

## Scoring Functions for Parity Games

For $c \in \mathbb{N}$ and $w \in V^{*}: \mathrm{Sc}_{c}(w)$ denotes the number of occurrences of $c$ in the suffix of $w$ after the last occurrence of a smaller color.

## Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd $c$ by $|V|$.

## Corollary

In a finite arena, Player 0 wins $\Leftrightarrow$ she can prevent a score of $|V|+1$ for all odd $c$ (safety condition).
The remark does not hold in infinite arenas:


## Pushdown Arenas

Pushdown arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ induced by Pushdown System $\mathcal{P}=\left(Q, \Gamma, \Delta, q_{\text {in }}\right)$ :

- $(V, E)$ : configuration graph of $\mathcal{P}$.

■ $\left\{V_{0}, V_{1}\right\}$ induced by partition $\left\{Q_{0}, Q_{1}\right\}$ of $Q$.

- $v_{\text {in }}=\left(q_{\text {in }}, \perp\right)$.


## Pushdown Arenas

Pushdown arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ induced by Pushdown System $\mathcal{P}=\left(Q, \Gamma, \Delta, q_{\text {in }}\right)$ :

- $(V, E)$ : configuration graph of $\mathcal{P}$.

■ $\left\{V_{0}, V_{1}\right\}$ induced by partition $\left\{Q_{0}, Q_{1}\right\}$ of $Q$.

- $v_{\text {in }}=\left(q_{\text {in }}, \perp\right)$.



## Pushdown Arenas

Pushdown arena $\mathcal{A}=\left(V, V_{0}, V_{1}, E, v_{\text {in }}\right)$ induced by Pushdown System $\mathcal{P}=\left(Q, \Gamma, \Delta, q_{\text {in }}\right)$ :

- $(V, E)$ : configuration graph of $\mathcal{P}$.
- $\left\{V_{0}, V_{1}\right\}$ induced by partition $\left\{Q_{0}, Q_{1}\right\}$ of $Q$.
- $v_{\text {in }}=\left(q_{\mathrm{in}}, \perp\right)$.


Pushdown parity game $\mathcal{G}=(\mathcal{A}, \mathrm{col})$ where col is lifting of $\mathrm{col}: Q \rightarrow\{0, \ldots, d\}$ to configurations.

## Stairs and Stair-Scores


$w$ finite path starting in $v_{\text {in }}$ :

## Stairs and Stair-Scores


$w$ finite path starting in $v_{\text {in }}$ :

- Stair in w: position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- reset $(w)$ : prefix of $w$ up to second-to-last stair.

■ IstBmp( $w$ ): suffix after second-to-last stair.

## Stairs and Stair-Scores


$w$ finite path starting in $v_{\text {in }}$ :

- Stair in w: position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- reset $(w)$ : prefix of $w$ up to second-to-last stair.
- IstBmp( $w$ ): suffix after second-to-last stair.


## Stairs and Stair-Scores



For every color $c$, define StairSc $_{c}: V^{*} \rightarrow \mathbb{N}$ by $\operatorname{StairSc}_{c}(\varepsilon)=0$ and $\operatorname{StairSc}_{c}(w)=\left\{\begin{array}{lr}\operatorname{StairSc}_{c}(\text { reset }(w)) & \text { if } \operatorname{minCol}(\operatorname{lstBmp}(w))>c, \\ \operatorname{StairSc}_{c}(\operatorname{reset}(w))+1 & \text { if } \min \operatorname{Col}(\operatorname{lstBmp}(w))=c, \\ 0 & \text { if } \operatorname{minCol}(\operatorname{lstBmp}(w))<c .\end{array}\right.$

## Stairs and Stair-Scores



## Stairs and Stair-Scores



## Stairs and Stair-Scores



## Main Theorem

Finite-time pushdown game: $(\mathcal{A}, \operatorname{col}, k)$ with pushdown arena $\mathcal{A}$, coloring col, and $k \in \mathbb{N} \backslash\{0\}$.

## Rules:

■ Play until StairSc $c_{c}=k$ is reached for the first time for some color $c$ (which is unique).

- Player 0 wins $\Leftrightarrow c$ is even.


## Main Theorem

Finite-time pushdown game: $(\mathcal{A}, \operatorname{col}, k)$ with pushdown arena $\mathcal{A}$, coloring col, and $k \in \mathbb{N} \backslash\{0\}$.

## Rules:

■ Play until StairSc $c_{c}=k$ is reached for the first time for some color $c$ (which is unique).

- Player 0 wins $\Leftrightarrow c$ is even.

Let $d=|\operatorname{col}(V)|$.

## Theorem

Let $\mathcal{G}=(\mathcal{A}, \mathrm{col})$ be a pushdown game and $k>|Q| \cdot|\Gamma| \cdot 2^{|Q| \cdot d} \cdot d$. Player $i$ wins $\mathcal{G}$ if and only if Player $i$ wins $(\mathcal{A}, \mathrm{col}, k)$.

Note: $(\mathcal{A}, \mathrm{col}, k)$ is a reachability game in finite arena.

## Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game $\mathcal{G}$ to parity game $\mathcal{G}^{\prime}$ in finite arena $\mathcal{A}^{\prime}$ (of exponential size):
- Turn winning strategy $\sigma^{\prime}$ for $\mathcal{G}^{\prime}$ into winning strategy $\sigma$ for $\mathcal{G}$.


## Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game $\mathcal{G}$ to parity game $\mathcal{G}^{\prime}$ in finite arena $\mathcal{A}^{\prime}$ (of exponential size):
- Turn winning strategy $\sigma^{\prime}$ for $\mathcal{G}^{\prime}$ into winning strategy $\sigma$ for $\mathcal{G}$.

One can show more:

- For every play prefix $w$ in $\mathcal{G}$ consistent with $\sigma$, there exists play prefix $w^{\prime}$ in $\mathcal{G}^{\prime}$ consistent with $\sigma^{\prime}$ such that

$$
\operatorname{StairSc}_{c}(w)=\mathrm{Sc}_{c}\left(w^{\prime}\right) \quad \text { for every color } \mathrm{c} .
$$

## Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game $\mathcal{G}$ to parity game $\mathcal{G}^{\prime}$ in finite arena $\mathcal{A}^{\prime}$ (of exponential size):
- Turn winning strategy $\sigma^{\prime}$ for $\mathcal{G}^{\prime}$ into winning strategy $\sigma$ for $\mathcal{G}$.

One can show more:

- For every play prefix $w$ in $\mathcal{G}$ consistent with $\sigma$, there exists play prefix $w^{\prime}$ in $\mathcal{G}^{\prime}$ consistent with $\sigma^{\prime}$ such that

$$
\operatorname{StairSc}_{c}(w)=\mathrm{Sc}_{c}\left(w^{\prime}\right) \quad \text { for every color } \mathrm{c} .
$$

- If $\sigma^{\prime}$ is positional winning strategy for Player $i$ in $\mathcal{G}^{\prime}$, then $\sigma$ bounds the scores of Player $1-i$ in $\mathcal{G}$ by $\left|\mathcal{A}^{\prime}\right|$.
■ Hence, Player $i$ wins $(\mathcal{A}, \operatorname{col}, k)$, provided $k>\left|\mathcal{A}^{\prime}\right|$.


## Lower Bounds



## Lower Bounds



For first $n$ primes $p_{1}, \ldots, p_{n}$ : Player 0 has to reach stack height $\prod_{j=1}^{n} p_{j}>2^{n}$ in upper row $\Rightarrow$ cannot prevent losing player from reaching exponentially high scores (in the number of states).

## Conclusion

Playing pushdown parity games in finite time:
■ Adapt scores to stair-scores.

- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.


## Conclusion

Playing pushdown parity games in finite time:
■ Adapt scores to stair-scores.

- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.

Further research:

- Turn winning strategy for finite-duration game into winning strategy for pushdown game.
■ Permissive strategies for pushdown parity games.
- Extensions to more general classes of arenas, e.g., higher-order pushdown systems.

