Playing Pushdown Parity Games in a Hurry

Joint work with Wladimir Fridman (RWTH Aachen University)

Martin Zimmermann

University of Warsaw

September 11th, 2012

Games Workshop 2012 Naples, Italy

Playing infinite games in finite time:

 Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
- **Jurdziński:** small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
- Björklund, Sandberg, Vorobyov: positional determinacy of parity games.

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
- **Jurdziński:** small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
- Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called *scoring functions*.

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
- **Jurdziński:** small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
- Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called *scoring functions*.
- Fearnley, Neider, Rabinovich, Z.: strong bounds on McNaughton's scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.

Playing infinite games in finite time:

- Ehrenfeucht, Mycielski: positional determinacy of mean-payoff games.
- **Jurdziński:** small progress measures for parity games.
- Bernet, Janin, Walukiewicz: permissive strategies for parity games.
- Björklund, Sandberg, Vorobyov: positional determinacy of parity games.
- McNaughton: playing Muller games in finite time using so-called *scoring functions*.
- Fearnley, Neider, Rabinovich, Z.: strong bounds on McNaughton's scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.

Results hold only for finite arenas. What about infinite ones?

Parity Games

Arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$:

- directed (possibly countable) graph (V, E).
- positions of the players: partition $\{V_0, V_1\}$ of V.
- initial vertex $v_{in} \in V$.

Parity Games

Arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$:

- directed (possibly countable) graph (V, E).
- positions of the players: partition $\{V_0, V_1\}$ of V.
- initial vertex $v_{in} \in V$.

Parity Games

Arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$:

- directed (possibly countable) graph (V, E).
- positions of the players: partition $\{V_0, V_1\}$ of V.
- initial vertex $v_{in} \in V$.

Parity game $\mathcal{G} = (\mathcal{A}, \operatorname{col})$ with $\operatorname{col}: V \to \{0, \ldots, d\}$.

- **Player 0 wins play** \Leftrightarrow **minimal color seen infinitely often even.**
- (Winning / positional) strategies defined as usual.
- Player *i* wins $\mathcal{G} \Leftrightarrow$ she has winning strategy from v_{in} .

For $c \in \mathbb{N}$ and $w \in V^*$: $Sc_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Formally: $Sc_c(\varepsilon) = 0$ and

$$\mathsf{Sc}_c(wv) = \begin{cases} \mathsf{Sc}_c(w) & \text{if } \operatorname{col}(v) > c, \\ \mathsf{Sc}_c(w) + 1 & \text{if } \operatorname{col}(v) = c, \\ 0 & \text{if } \operatorname{col}(v) < c. \end{cases}$$

For $c \in \mathbb{N}$ and $w \in V^*$: $Sc_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd c by |V|.

For $c \in \mathbb{N}$ and $w \in V^*$: $Sc_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd c by |V|.

Corollary

In a finite arena, Player 0 wins \Leftrightarrow she can prevent a score of |V| + 1 for all odd *c* (safety condition).

For $c \in \mathbb{N}$ and $w \in V^*$: $Sc_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd c by |V|.

Corollary

In a finite arena, Player 0 wins \Leftrightarrow she can prevent a score of |V| + 1 for all odd *c* (safety condition).

The remark does not hold in infinite arenas:

Pushdown Arenas

Pushdown arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$ induced by Pushdown System $\mathcal{P} = (Q, \Gamma, \Delta, q_{in})$:

- (V, E): configuration graph of \mathcal{P} .
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.

•
$$v_{\text{in}} = (q_{\text{in}}, \perp).$$

Pushdown Arenas

Pushdown arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$ induced by Pushdown System $\mathcal{P} = (Q, \Gamma, \Delta, q_{in})$:

- (V, E): configuration graph of \mathcal{P} .
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.

•
$$v_{\mathrm{in}} = (q_{\mathrm{in}}, \perp)$$

Pushdown Arenas

Pushdown arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$ induced by Pushdown System $\mathcal{P} = (Q, \Gamma, \Delta, q_{in})$:

- (V, E): configuration graph of \mathcal{P} .
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.

•
$$v_{\mathrm{in}} = (q_{\mathrm{in}}, \perp)$$

Pushdown parity game $\mathcal{G} = (arena, col)$ where col is lifting of col: $Q \rightarrow \{0, \ldots, d\}$ to configurations.

w finite path starting in v_{in} :

w finite path starting in v_{in} :

- Stair in w: position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- reset(w): prefix of w up to second-to-last stair.
- lstBmp(w): suffix after second-to-last stair.

w finite path starting in v_{in} :

- Stair in w: position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- reset(w): prefix of w up to second-to-last stair.
- lstBmp(w): suffix after second-to-last stair.

For every color c, define $\text{StairSc}_c \colon V^* \to \mathbb{N}$ by $\text{StairSc}_c(\varepsilon) = 0$ and

$$\mathsf{StairSc}_c(w) = \begin{cases} \mathsf{StairSc}_c(\mathsf{reset}(w)) & \text{if } \mathsf{minCol}(\mathsf{lstBmp}(w)) > c, \\ \mathsf{StairSc}_c(\mathsf{reset}(w)) + 1 & \text{if } \mathsf{minCol}(\mathsf{lstBmp}(w)) = c, \\ 0 & \text{if } \mathsf{minCol}(\mathsf{lstBmp}(w)) < c. \end{cases}$$

- StairSc₁: 2
- StairSc₂: 0

Main Theorem

Finite-time pushdown game: $(\mathcal{A}, \operatorname{col}, k)$ with pushdown arena \mathcal{A} , coloring col, and $k \in \mathbb{N} \setminus \{0\}$.

Rules:

- Play until StairSc_c = k is reached for the first time for some color c (which is unique).
- Player 0 wins $\Leftrightarrow c$ is even.

Main Theorem

Finite-time pushdown game: $(\mathcal{A}, \operatorname{col}, k)$ with pushdown arena \mathcal{A} , coloring col, and $k \in \mathbb{N} \setminus \{0\}$.

Rules:

- Play until StairSc_c = k is reached for the first time for some color c (which is unique).
- Player 0 wins \Leftrightarrow *c* is even.

Let $d = |\operatorname{col}(V)|$.

Theorem

Let $\mathcal{G} = (\mathcal{A}, \operatorname{col})$ be a pushdown game and $k > |\mathcal{Q}| \cdot |\Gamma| \cdot 2^{|\mathcal{Q}| \cdot d} \cdot d$. Player *i* wins \mathcal{G} if and only if Player *i* wins $(\mathcal{A}, \operatorname{col}, k)$.

Note: $(\mathcal{A}, \operatorname{col}, k)$ is a reachability game in finite arena.

Lower Bounds

Lower Bounds

For first *n* primes p_1, \ldots, p_n : Player 0 has to reach stack height $\prod_{j=1}^n p_j > 2^n$ in upper row \Rightarrow cannot prevent losing player from reaching exponentially high scores (in the number of states).

Conclusion

Playing pushdown parity games in finite time:

- Adapt scores to stair-scores.
- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.

Conclusion

Playing pushdown parity games in finite time:

- Adapt scores to stair-scores.
- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.

Further research:

- Turn winning strategy for finite-duration game into winning strategy for pushdown game.
- Permissive strategies for pushdown parity games.
- Extensions to more general classes of arenas, e.g., higher-order pushdown systems.