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Motivation

Robert McNaughton: Playing Infinite Games in Finite Time. In:
A Half-Century of Automata Theory, World Scientific (2000).
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We believe that infinite games might have an interest for
casual living-room recreation.

McNaughton suggests a method of keeping score to declare a
winner such that

.. if the play were to continue with each [player] playing
forever as he has so far, then the player declared to be
the winner would be the winner of the infinite play of the
game.
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Robert McNaughton: Playing Infinite Games in Finite Time. In:
A Half-Century of Automata Theory, World Scientific (2000).

We believe that infinite games might have an interest for
casual living-room recreation.

McNaughton suggests a method of keeping score to declare a
winner such that

.. if the play were to continue with each [player] playing
forever as he has so far, then the player declared to be
the winner would be the winner of the infinite play of the
game.

“Winning regions should be equal”
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Muller Games

A Muller game (G ,F0,F1) consists of an arena G = (V ,V0,V1,E )
and a partition (F0,F1) of 2

V .

Rules:

Players move a token through the arena ad infinitum.

Player i wins play (infinite path) iff the set of vertices visited
infinitely often is in Fi .
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Muller Games

A Muller game (G ,F0,F1) consists of an arena G = (V ,V0,V1,E )
and a partition (F0,F1) of 2

V .

Rules:

Players move a token through the arena ad infinitum.

Player i wins play (infinite path) iff the set of vertices visited
infinitely often is in Fi .

Example:

21 3 F0 = {{1, 2, 3}, {1}, {3}}

F1 = 2{1,2,3} \ F0

Winning strategy for Player 0 (circles): coming from 1 to 2 move
to 3, coming from 3 to 2 move to 1.
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Scoring Functions

For F ⊆ V define ScF : V
+ → N:

ScF (w) = max{k | exist words x1, · · · , xk ∈ V+ s.t.

x1 · · · xk is suffix of w and Occ(xi) = F for all i}

where Occ(w) = {v ∈ V | ∃j s.t. wj = v}.

scoreF (w) = k iff all of F visited k consecutive times
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Finite-time Muller Games

Two properties of the scoring functions (informal versions):

1. If you play long enough, some score value will be high.

2. At most one score value can increase at a time.
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Finite-time Muller Games

Two properties of the scoring functions (informal versions):

1. If you play long enough, some score value will be high.

2. At most one score value can increase at a time.

Definition
Finite-time Muller game: (G ,F0,F1, k) with threshold k ≥ 2.

Rules:

Players move a token through the arena.

Stop play w as soon as score of k is reached for the first time.

There is a unique F such that ScF (w) = k (see above).

Player i wins w iff F ∈ Fi .
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Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s
finite-time Muller game coincide.
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Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s
finite-time Muller game coincide.

Our result:

Theorem
The winning regions in a Muller game (G ,F0,F1) and in the
finite-time Muller game (G ,F0,F1, 3) coincide.

Stronger statement, which implies the theorem:

Lemma
On her winning region in a Muller game, Player i can prevent her
opponent from ever reaching a score of 3 for every set F ∈ F1−i .
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Conclusion

Results:

Reduction McNaughton here

Threshold – |F |! + 1 3
Play Length ≤ n · n! + 1 ≤ (n! + 1)n ≤ 3n

Space O(n!) O((n! + 1)n) O(3n)
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Reduction McNaughton here

Threshold – |F |! + 1 3
Play Length ≤ n · n! + 1 ≤ (n! + 1)n ≤ 3n

Space O(n!) O((n! + 1)n) O(3n)

Open Questions:

Is the finite-time Muller game with threshold 2 equivalent to
the original Muller game?

Given a winning strategy for a finite-time Muller game, can
we turn it into a winning strategy for the Muller game?
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