Visibly Linear Dynamic Logic

Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

Saarland University

December 14th, 2016

FSTTCS 2016, Chennai, India

Consider an arbiter granting access to a shared resource.

Requirements:

• "Every request q is eventually answered by a response p"

 "Every request q is eventually answered by a response p after an even number of steps"

"There are never more responses than requests"

Consider an arbiter granting access to a shared resource.

Requirements:

• "Every request q is eventually answered by a response p"

Linear Temporal Logic: $\mathbf{G}(q \rightarrow \mathbf{F} p)$

 "Every request q is eventually answered by a response p after an even number of steps"

"There are never more responses than requests"

Consider an arbiter granting access to a shared resource.

Requirements:

• "Every request q is eventually answered by a response p"

Linear Temporal Logic: $\mathbf{G}(q \rightarrow \mathbf{F} p)$

 "Every request q is eventually answered by a response p after an even number of steps"

Linear Dynamic Logic: $[true^*](q \rightarrow \langle (true \cdot true)^* \rangle p)$

"There are never more responses than requests"

Consider an arbiter granting access to a shared resource.

Requirements:

• "Every request q is eventually answered by a response p"

Linear Temporal Logic: $\mathbf{G}(q \rightarrow \mathbf{F} p)$

 "Every request q is eventually answered by a response p after an even number of steps"

Linear Dynamic Logic: $[true^*](q \rightarrow \langle (true \cdot true)^* \rangle p)$

"There are never more responses than requests"

Expressible with pushdown automata/context-free grammars as guards \Rightarrow Visibly Linear Dynamic Logic

Outline

1. Preliminaries

- 2. Expressiveness
- 3. VLDL Verification
- 4. Discussion

Outline

1. Preliminaries

- 2. Expressiveness
- 3. VLDL Verification
- 4. Discussion

Visibly Pushdown Automata

Partition input alphabet Σ into Σ_c (calls), Σ_r (returns), and Σ_ℓ (local actions).

A visibly pushdown automaton (VPA) has to

- push when processing a call,
- pop when processing a return, and
- leave the stack unchanged when processing a local action.

Stack height determined by input word \Rightarrow closure under union, intersection, and complement.

Visibly Pushdown Automata

Partition input alphabet Σ into Σ_c (calls), Σ_r (returns), and Σ_ℓ (local actions).

A visibly pushdown automaton (VPA) has to

- push when processing a call,
- pop when processing a return, and
- leave the stack unchanged when processing a local action.

Stack height determined by input word \Rightarrow closure under union, intersection, and complement.

Examples:

Visibly Linear Dynamic Logic (VLDL)

Syntax

$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle \mathfrak{A} \rangle \varphi \mid [\mathfrak{A}] \varphi$$

where $p \in P$ ranges over atomic propositions and \mathfrak{A} ranges over VPA's. All VPA's have the same partition of 2^{P} into calls, returns, and local actions.

Visibly Linear Dynamic Logic (VLDL)

Syntax

$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle \mathfrak{A} \rangle \varphi \mid [\mathfrak{A}] \varphi$$

where $p \in P$ ranges over atomic propositions and \mathfrak{A} ranges over VPA's. All VPA's have the same partition of 2^{P} into calls, returns, and local actions.

Semantics: $(w \in (2^P)^{\omega})$

- $w \models \langle \mathfrak{A} \rangle \varphi$ if there exists an *n* such that $w_0 \cdots w_{n-1}$ is accepted by \mathfrak{A} and $w_n w_{n+1} w_{n+2} \cdots \models \varphi$.
- $w \models [\mathfrak{A}]\varphi$ if for every *n* s.t. $w_0 \cdots w_{n-1}$ is accepted by \mathfrak{A} we have $w_n w_{n+1} w_{n+2} \cdots \models \varphi$.

Example

"Every request q is eventually answered by a response p and there are never more responses than requests"

$$[\mathfrak{A}^*](q
ightarrow \langle \mathfrak{A}^*
angle p) \land \neg \langle \mathfrak{A}
angle$$
true

where

\blacksquare \mathfrak{A}^* accepts every word, and

 $\blacksquare \ \mathfrak{A}$ accepts those words with more responses than requests.

Both languages are visibly pushdown, if

- $\{q\}$ is a call,
- {p} is a return, and
- **•** \emptyset and $\{p, q\}$ are local actions.

Outline

1. Preliminaries

2. Expressiveness

3. VLDL Verification

4. Discussion

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Proof Idea

VLDL

non-deterministic ω -VPA

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Proof Idea

VLDL

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Lemma

VLDL and non-deterministic ω -VPA are expressively equivalent.

Acceptance: maximal priority occuring at infinitely many steps even

Acceptance: maximal priority occuring at infinitely many steps even

Equivalently: For some state q of even priority c there is step with state q s.t.

- 1. after this step, no larger priority appears at a step, and
- **2.** for every step with state q, there is a later one with state q.

Acceptance: maximal priority occuring at infinitely many steps even **Equivalently:** For some state q of even priority c there is step with state q s.t.

- 1. after this step, no larger priority appears at a step, and
- **2.** for every step with state q, there is a later one with state q.

$$\bigvee_{q \in \mathcal{Q}_{even}} \langle_{q_{l}}\mathfrak{A}'_{q} \rangle \left(\bigwedge_{q' \in \mathcal{Q}_{> \Omega(q)}} [_{q}\mathfrak{A}'_{q'}] \texttt{false} \right) \wedge [\mathfrak{A}'_{q}] \langle_{q}\mathfrak{A}'_{q} \rangle \texttt{true}$$

6

Outline

1. Preliminaries

2. Expressiveness

3. VLDL Verification

4. Discussion

Satisfiability

Theorem

VLDL Satisfiability is EXPTIME-complete.

Satisfiability

Theorem

VLDL Satisfiability is EXPTIME-complete.

Proof Sketch

- Membership: Construct equivalent ω-VPA and check it for emptiness.
- Hardness: Adapt EXPTIME-hardness proof of LTL model-checking of pushdown systems [BEM '97]

Model Checking

Theorem

VLDL model checking of visibly pushdown systems is EXPTIME-complete.

Model Checking

Theorem

VLDL model checking of visibly pushdown systems is EXPTIME-complete.

Proof Sketch

- Membership: To check $S \models \varphi$, construct ω -VPA equivalent to $\neg \varphi$ and check intersection with S for emptiness.
- Hardness: Follows immediately from EXPTIME-hardness of satisfiability.

Synthesis

Theorem

Solving infinite games on visibly pushdown graphs with VLDL winning conditions is 3ExpTIME-complete.

Theorem

Solving infinite games on visibly pushdown graphs with VLDL winning conditions is 3ExpTIME-complete.

Proof Sketch

- Membership: To determine the winner, construct an ω-VPA that accepts the winning condition and solve the resulting game with VPA winning condition [LMS '04].
- Hardness: Adapt 3EXPTIME-hardness proof of pushdown games with LTL winning condition [LMS '04].

Outline

1. Preliminaries

- 2. Expressiveness
- 3. VLDL Verification
- 4. Discussion

"If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well"

"If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well"

VLDL:

$$[\mathfrak{A}_{c}](p
ightarrow \langle \mathfrak{A}_{r}
angle p)$$

with

"If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well"

 ω -VPA:

"If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well"

VLTL: [Bozzelli '14]

 $(\alpha; \texttt{true}) | \alpha \rangle \texttt{false}$

with visibly rational expression α below:

 $[(p\cup q)^*\texttt{call}_m[(q\Box)\cup (p\Box p)]\,\texttt{return}_m(p\cup q)^*]^{\circlearrowright_\Box}\curvearrowleft_\Box (p\cup q)^*$

Results:

• VLDL as expressive as ω -VPA

Results:

• VLDL as expressive as ω -VPA

	validity	model-checking	infinite games
LTL	PSpace	PSpace	2ExpTime
LDL	PSpace	PSpace	2ExpTime

Results:

• VLDL as expressive as ω -VPA

	validity	model-checking	infinite games
LTL	PSpace	PSpace	2ExpTime
LDL	PSpace	PSpace	2ExpTime
VLDL	ExpTime	EXPTIME	3ExpTime

Results:

• VLDL as expressive as ω -VPA

	validity	model-checking	infinite games
LTL	PSpace	PSpace	2ExpTime
LDL	PSpace	PSpace	2ExpTime
VLDL	ExpTime	EXPTIME	3ExpTime
VLTL	ExpTime	ExpTime	?

 Using (deterministic) pushdown automata as guards leads to undecidability, i.e.,

 $\langle \mathfrak{A}_1 \rangle \# \land \langle \mathfrak{A}_2 \rangle \# \land$ "exactly one #"

is satisfiable $\Leftrightarrow L(\mathfrak{A}_1) \cap L(\mathfrak{A}_2) \neq \emptyset$.