Prompt Delay

Joint Work with Felix Klein (Saarland University)

Martin Zimmermann

Saarland University

December 15th, 2016

FSTTCS 2016, Chennai, India

$$egin{pmatrix} lpha(0)\ eta(0)\end{pmatrix} egin{pmatrix} lpha(1)\ eta(1)\end{pmatrix} \cdots \in {\it L}, ext{ if } eta(i)=lpha(i+2) ext{ for every } i \end{cases}$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b$$

$$O:$$

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

1: b 0: a

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

1: b a 0: a

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$egin{pmatrix} lpha(0)\ eta(0)\end{pmatrix} egin{pmatrix} lpha(1)\ eta(1)\end{pmatrix} \cdots \in {\it L}, ext{ if } eta(i)=lpha(i+2) ext{ for every } i \end{cases}$$

I: *b* a *o*: *a* a

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

$$egin{pmatrix} lpha(0)\ eta(0)\end{pmatrix} egin{pmatrix} lpha(1)\ eta(1)\end{pmatrix} \cdots \in L$$
, if $eta(i)=lpha(i+2)$ for every i

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$egin{pmatrix} lpha(0)\ eta(0)\end{pmatrix} egin{pmatrix} lpha(1)\ eta(1)\end{pmatrix} \cdots \in {\it L}, ext{ if } eta(i)=lpha(i+2) ext{ for every } i \end{cases}$$

Many possible extensions... we consider two:
 Interaction: one player may delay her moves.
 Winning condition: quantitative instead of qualitative.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b$$

$$O:$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a$$

$$O:$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b$$

$$O:$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b$$

$$O: \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b$$

$$O: \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b$$

$$O: \quad b \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a$$

$$O: \quad b \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a$$

$$O: \quad b \quad b \quad a$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a$$

$$O: \quad b \quad b \quad a \quad a$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a$$

$$O: \quad b \quad b \quad a \quad a$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a \quad b$$

$$O: \quad b \quad b \quad a \quad a \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a \quad b$$

$$O: \quad b \quad b \quad a \quad a \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \dots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a \quad b \quad b$$

$$O: \quad b \quad b \quad a \quad a \quad b \quad b$$

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a \quad b \quad b \quad \cdots$$

$$O: \quad b \quad b \quad a \quad a \quad b \quad b \quad \cdots$$

$$O \text{ wins!}$$

■ Allow Player *O* to delay her moves.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad b \quad a \quad a \quad b \quad b \quad \cdots$$

$$O \text{ wins}$$

■ Winning conditions in PROMPT-LTL, LTL with parameterized temporal operators:

 $\mathbf{G}(q
ightarrow \mathbf{F_P} p)$

holds if every request q is answered by a response p within some arbitrary, but fixed bound k.

Prompt-LTL

Syntax:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \, \mathbf{U} \varphi \mid \varphi \, \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

where p ranges over a finite set AP of atomic propositions.

Prompt-LTL

Syntax:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \, \mathbf{U} \varphi \mid \varphi \, \mathbf{R} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

where p ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound $k \in \mathbb{N}$

A PROMPT-LTL delay game ${\sf \Gamma}_f(arphi)$ consists of

- \blacksquare a winning condition φ over $\mathrm{AP}=\mathit{I}\cup\mathit{O},$ and
- a delay function: $f: \mathbb{N} \to \mathbb{N}_+$.

A PROMPT-LTL delay game ${\sf \Gamma}_f(arphi)$ consists of

- **a** winning condition φ over $AP = I \cup O$, and
- a delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- f is constant, if f(i) = 1 for all i > 0.

A PROMPT-LTL delay game $\Gamma_f(\varphi)$ consists of

- **a** winning condition φ over $AP = I \cup O$, and
- a delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- f is constant, if f(i) = 1 for all i > 0.

Rules:

- Two players: Input (Player *I*) vs. Output (Player *O*).
- In round i:
 - Player *I* picks word $u_i \in (2^I)^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - Player *O* picks letter $v_i \in 2^O$ (building $\beta = v_0 v_1 \cdots$).

A PROMPT-LTL delay game $\Gamma_f(\varphi)$ consists of

- **a** winning condition φ over $AP = I \cup O$, and
- a delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- f is constant, if f(i) = 1 for all i > 0.

Rules:

- Two players: Input (Player *I*) vs. Output (Player *O*).
- In round i:
 - Player *I* picks word $u_i \in (2^I)^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - Player *O* picks letter $v_i \in 2^O$ (building $\beta = v_0 v_1 \cdots$).

Player *O* wins w.r.t. bound *k* iff $((\alpha(0) \cup \beta(0)) (\alpha(1) \cup \beta(1)) \cdots, k) \models \varphi.$

A PROMPT-LTL delay game $\Gamma_f(\varphi)$ consists of

- **a** winning condition φ over $AP = I \cup O$, and
- a delay function: $f: \mathbb{N} \to \mathbb{N}_+$.
- f is constant, if f(i) = 1 for all i > 0.

Rules:

- Two players: Input (Player *I*) vs. Output (Player *O*).
- In round i:
 - Player *I* picks word $u_i \in (2^I)^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - Player *O* picks letter $v_i \in 2^O$ (building $\beta = v_0 v_1 \cdots$).

Player *O* wins w.r.t. bound *k* iff $((\alpha(0) \cup \beta(0)) (\alpha(1) \cup \beta(1)) \cdots, k) \models \varphi.$

Note:

Definition here is equivalent to O skipping moves.

Problems we are interested in:

- Given φ , is there an f such that O wins $\Gamma_f(\varphi)$ w.r.t some k?
- How *large* do *f* and *k* have to be?
- How hard is it to determine the winner?

An Example

•
$$I = \{1, ..., n\}$$
 and $O = \{1_0, ..., n_0\}$

 We assume that both players pick exactly one proposition in each round (expressible in LTL)

•
$$\varphi_n = \bigvee_{j \in [n]} j_O \to \psi_j \text{ with } \psi_j = \mathbf{F}_{\mathbf{P}} \left(j \land \mathbf{X} \left(\left(\bigwedge_{j' > j} \neg j' \right) \mathbf{U}_j \right) \right)$$

Example

- **1**232111111 \cdots satisfies ψ_1 , but not ψ_2 and not ψ_3
- In general, every word satisfies some ψ_j
- **1**213121333 \cdots satisfies ψ_3 , but not ψ_1 and not ψ_2

An Example

•
$$I = \{1, ..., n\}$$
 and $O = \{1_0, ..., n_0\}$

 We assume that both players pick exactly one proposition in each round (expressible in LTL)

•
$$\varphi_n = \bigvee_{j \in [n]} j_O \to \psi_j$$
 with $\psi_j = \mathbf{F}_{\mathbf{P}} \left(j \land \mathbf{X} \left(\left(\bigwedge_{j'>j} \neg j' \right) \mathbf{U}_j \right) \right)$
Then:

■ Player O wins F_f(φ_n), if f(0) ≥ 2ⁿ: every word of length 2ⁿ satisfies ψ_j for some j. Player O just picks j_O in round 0.

An Example

•
$$I = \{1, ..., n\}$$
 and $O = \{1_0, ..., n_0\}$

 We assume that both players pick exactly one proposition in each round (expressible in LTL)

•
$$\varphi_n = \bigvee_{j \in [n]} j_O \to \psi_j$$
 with $\psi_j = \mathbf{F}_{\mathbf{P}} \left(j \land \mathbf{X} \left(\left(\bigwedge_{j'>j} \neg j' \right) \mathbf{U}_j \right) \right)$
Then:

- Player O wins Γ_f(φ_n), if f(0) ≥ 2ⁿ: every word of length 2ⁿ satisfies ψ_j for some j. Player O just picks j_O in round 0.
- Player I wins Γ_f(φ_n), if f(0) < 2ⁿ: there is a word w_n of length 2ⁿ − 1 that does not satisfy ψ_j for any j.
 - Player *I* picks prefix of length *f*(0) of *w_n* in round 0, Player *O* answers by some *j_O*.
 - Player *I* picks j' for some $j' \neq j$ in each following round.

Theorem (Pnueli, Rosner '89 / Kupferman et al. 07)

Determining the winner of delay-free PROMPT-LTL games is 2EXPTIME-complete.

Theorem (Pnueli, Rosner '89 / Kupferman et al. 07) Determining the winner of delay-free PROMPT-LTL games is 2EXPTIME-complete.

Theorem (Klein, Z. '15)

The following problem is EXPTIME-complete: given a deterministic parity automaton A, does Player O win $\Gamma_f(L(A))$ for some delay function f? If yes, a constant f with $f(0) \leq 2^{\mathcal{O}(|\mathcal{A}|)}$ suffices. **Theorem (Pnueli, Rosner '89 / Kupferman et al. 07)** Determining the winner of delay-free PROMPT-LTL games is 2EXPTIME-complete.

Theorem (Klein, Z. '15)

The following problem is EXPTIME-complete: given a deterministic parity automaton \mathcal{A} , does Player O win $\Gamma_f(\mathcal{L}(\mathcal{A}))$ for some delay function f? If yes, a constant f with $f(0) \leq 2^{\mathcal{O}(|\mathcal{A}|)}$ suffices.

Corollary

The following problem is in 3EXPTIME: given an LTL formula φ , does Player O win $\Gamma_f(\varphi)$ for some delay function f? If yes, a constant f with $f(0) \leq 2^{2^{\mathcal{O}(|\varphi|)}}$ suffices.

Roadmap

Condition	complexity	lookahead	bound k
LTL	in $3ExpTIME$	\leq triply-exp.	NA
Prompt-LTL	?	?	?

The following problem is in 3EXPTIME: given a PROMPT-LTL formula φ , does Player O win $\Gamma_f(\varphi)$ for some delay function f? If yes, a constant f with $f(0) \in 2^{2^{2^{\mathcal{O}}(|\varphi|)}}$ and some bound $k \in 2^{2^{2^{\mathcal{O}}(|\varphi|)}}$ suffice simultaneously.

The following problem is in 3EXPTIME: given a PROMPT-LTL formula φ , does Player O win $\Gamma_f(\varphi)$ for some delay function f? If yes, a constant f with $f(0) \in 2^{2^{2^{\mathcal{O}}(|\varphi|)}}$ and some bound $k \in 2^{2^{2^{\mathcal{O}}(|\varphi|)}}$ suffice simultaneously.

Proof Idea: by a reduction to LTL delay games.

■ Add fresh proposition *p* to *O* ⊆ AP and inductively replace every subformula $\mathbf{F}_{\mathbf{P}} \psi$ by

$$(p \rightarrow p \mathbf{U} (\neg p \mathbf{U} \psi)) \land (\neg p \rightarrow \neg p \mathbf{U} (p \mathbf{U} \psi)).$$

■ Lemma Player *O* wins $\Gamma_f(\varphi)$ for some $f \Leftrightarrow$ Player *O* wins $\Gamma_f(\operatorname{rel}(\varphi) \land \mathbf{GF} p \land \mathbf{GF} \neg p)$ for some *f*.

Roadmap

Condition	complexity	lookahead	bound k
LTL	in $3ExpTIME$	\leq triply-exp.	NA
Prompt-LTL	in $3ExpTIME$	\leq triply-exp.	\leq triply-exp.

For every n > 0, there is an LTL formula φ_n of size $\mathcal{O}(n^2)$ s.t.

- Player O wins $\Gamma_f(\varphi_n)$ for some delay function f, but
- Player I wins $\Gamma_f(\varphi_n)$ for every delay function f with $f(0) \leq 2^{2^{2^n}}$.

For every n > 0, there is an LTL formula φ_n of size $\mathcal{O}(n^2)$ s.t.

- Player O wins $\Gamma_f(\varphi_n)$ for some delay function f, but
- Player I wins $\Gamma_f(\varphi_n)$ for every delay function f with $f(0) \leq 2^{2^{2^n}}$.

Proof Idea: blow up the introductory example Recall:

- Both players pick a sequence of numbers from $\{1, \ldots, n\}$.
- Player O has to pick j in first move such that Player I's sequence contains two j's without larger number in between.
- Player O has winning strategy, but only with lookahead 2^n .

For every n > 0, there is an LTL formula φ_n of size $\mathcal{O}(n^2)$ s.t.

- Player O wins $\Gamma_f(\varphi_n)$ for some delay function f, but
- Player I wins $\Gamma_f(\varphi_n)$ for every delay function f with $f(0) \leq 2^{2^{2^n}}$.

Proof Idea: blow up the introductory example Recall:

- Both players pick a sequence of numbers from $\{1, \ldots, n\}$.
- Player O has to pick j in first move such that Player I's sequence contains two j's without larger number in between.
- Player O has winning strategy, but only with lookahead 2^n .

 \Rightarrow Construct φ_n to encode game with range $\{1, \ldots, 2^{2^{|\varphi_n|}}\}$.

Lower Bounds: Lookahead

- $I = \{b_0, \dots, b_{n-1}, b_I, \#\}$ and $O = \{b_O, \rightarrow, \leftarrow\}$
- Require the b_j implement cyclic addressing of positions with domain {0,..., 2ⁿ − 1}
- Interpret truth values of b₁ and b₀ in one cycle of the addressing as sequence of numbers from {0,..., 2^{2ⁿ} − 1}
- Player O marks two numbers by \rightarrow, \leftarrow

Lower Bounds: Lookahead

- $I = \{b_0, \dots, b_{n-1}, b_I, \#\}$ and $O = \{b_O, \rightarrow, \leftarrow\}$
- Require the b_j implement cyclic addressing of positions with domain {0,..., 2ⁿ − 1}
- Interpret truth values of b₁ and b₀ in one cycle of the addressing as sequence of numbers from {0,..., 2^{2ⁿ} − 1}
- Player O marks two numbers by \rightarrow, \leftarrow
- Require Player O to always pick the same number (*) ⇒ checking correctness of her marks straightforward

- $I = \{b_0, \dots, b_{n-1}, b_I, \#\}$ and $O = \{b_O, \rightarrow, \leftarrow\}$
- Require the *b_j* implement cyclic addressing of positions with domain {0,..., 2ⁿ − 1}
- Interpret truth values of b₁ and b₀ in one cycle of the addressing as sequence of numbers from {0,..., 2^{2ⁿ} − 1}
- Player O marks two numbers by \rightarrow, \leftarrow
- Require Player O to always pick the same number (*) ⇒ checking correctness of her marks straightforward
- But: cannot check (*) with *small* formula, we need the help of Player I
- Copy-error manifests itself at one address. Player *I* uses # to specify such an address to force Player *O* to copy honestly

Roadmap

Condition	complexity	lookahead	bound <i>k</i>
LTL	in 3ExpTime	triply-exp.	NA
Prompt-LTL	in $3ExpTIME$	triply-exp.	\leq triply-exp.

-

For every n > 0, there is a PROMPT-LTL formula φ'_n of size $\mathcal{O}(n^2)$ s.t.

- Player O wins Γ_f(φ'_n) for some delay function f and some k, but
- Player I wins $\Gamma_f(\varphi'_n)$ for every delay function f and every $k \leq 2^{2^{2^n}}$.

For every n > 0, there is a PROMPT-LTL formula φ'_n of size $\mathcal{O}(n^2)$ s.t.

- Player O wins Γ_f(φ'_n) for some delay function f and some k, but
- Player I wins $\Gamma_f(\varphi'_n)$ for every delay function f and every $k \leq 2^{2^{2^n}}$.

Proof Idea: adapt formula for lookahead from last slide

■ Require Player *O* to play second mark ← promptly

Roadmap

Condition	complexity	lookahead	bound k
LTL	in $3ExpTIME$	triply-exp.	NA
Prompt-LTL	in 3ExpTime	triply-exp.	triply-exp.

The following problem is 3EXPTIME-complete: given an LTL formula φ , does Player O win $\Gamma_f(\varphi)$ for some delay function f?

The following problem is 3ExpTIME-complete: given an LTL formula φ , does Player O win $\Gamma_f(\varphi)$ for some delay function f? **Proof Idea:** encode alternating doubly-exponential space TM

Use previous tricks and then some more...

Roadmap

Condition	complexity	lookahead	bound k
LTL	3ExpTime-compl.	triply-exp.	NA
Prompt-LTL	3 ExpTIME-compl.	triply-exp.	triply-exp.

Non-determinism and Alternation

- The lower bounds for LTL can be adapted to solve several open problems for ω-regular delay games on non-deterministic, universal, and alternating automata
- The results obtained by determinization are optimal:

Automaton type	complexity	lookahead
deterministic parity	ExpTime-compl.	exponential

Non-determinism and Alternation

- The lower bounds for LTL can be adapted to solve several open problems for ω-regular delay games on non-deterministic, universal, and alternating automata
- The results obtained by determinization are optimal:

Automaton type	complexity	lookahead
deterministic parity	ExpTIME-compl.	exponential
non-deterministic parity universal parity	2ExpTime-compl. 2ExpTime-compl.	doubly-exp. doubly-exp.

Non-determinism and Alternation

- The lower bounds for LTL can be adapted to solve several open problems for ω-regular delay games on non-deterministic, universal, and alternating automata
- The results obtained by determinization are optimal:

Automaton type	complexity	lookahead
deterministic parity	ExpTIME-compl.	exponential
non-deterministic parity universal parity	2ExpTime-compl. 2ExpTime-compl.	doubly-exp. doubly-exp.
alternating parity	3ExpTIME-compl.	triply-exp.

Conclusion

Results

- Determining the winner of PROMPT-LTL delay games is 3EXPTIME-complete
- Triply-exponential lookahead and a triply-exponential bound for the prompt-eventually are necessary and sufficient
- All results hold for stronger parametric logics as well (e.g., PLTL and PLDL)
- doubly-exponential complexity for non-deterministic and universal parity automata, triply-exponential for alternating parity automata

Conclusion

Results

- Determining the winner of PROMPT-LTL delay games is 3ExpTIME-complete
- Triply-exponential lookahead and a triply-exponential bound for the prompt-eventually are necessary and sufficient
- All results hold for stronger parametric logics as well (e.g., PLTL and PLDL)
- doubly-exponential complexity for non-deterministic and universal parity automata, triply-exponential for alternating parity automata

Open problem

• What about more succinct acceptance conditions than parity?