ω-regular and Max-regular Delay Games

Joint work with Felix Klein (Saarland University)

Martin Zimmermann

Saarland University
February 2nd, 2015
Seminar Non-Zero-Sum Games and Control
Dagstuhl, Germany

Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω-regular winning condition can be determined effectively.

Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω-regular winning condition can be determined effectively.

- Interaction between players typically described by a graph.

■ Simpler setting: realizability / Gale-Stewart games. Players I/O alternatingly pick letters $\alpha(i)$ and $\beta(i)$. O wins if $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots$ is in winning condition L.

Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω-regular winning condition can be determined effectively.

■ Interaction between players typically described by a graph.
■ Simpler setting: realizability / Gale-Stewart games. Players I/O alternatingly pick letters $\alpha(i)$ and $\beta(i)$. O wins if $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots$ is in winning condition L.

But assuming fixed interaction might be too strong in the presence of buffers, asynchronous communication channels, etc.

Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω-regular winning condition can be determined effectively.

■ Interaction between players typically described by a graph.
■ Simpler setting: realizability / Gale-Stewart games. Players I/O alternatingly pick letters $\alpha(i)$ and $\beta(i)$. O wins if $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots$ is in winning condition L.

But assuming fixed interaction might be too strong in the presence of buffers, asynchronous communication channels, etc.

■ Hosch \& Landweber ('72), Holtmann, Kaiser \& Thomas ('10): allow one player to delay her moves, thereby gain a lookahead on her opponents moves.

The Delay Game $\Gamma_{f}(L)$

■ Delay function: $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

- ω-language $L \subseteq\left(\Sigma_{I} \times \Sigma_{O}\right)^{\omega}$.
- Two players: Input (I) vs. Output (O).

The Delay Game $\Gamma_{f}(L)$

■ Delay function: $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

- ω-language $L \subseteq\left(\Sigma_{I} \times \Sigma_{O}\right)^{\omega}$.
- Two players: Input (I) vs. Output (O).

■ In round i:

- I picks word $u_{i} \in \Sigma_{I}^{f(i)}$ (building $\left.\alpha=u_{0} u_{1} \cdots\right)$.
- O picks letter $v_{i} \in \Sigma_{O}$ (building $\beta=v_{0} v_{1} \cdots$).

The Delay Game $\Gamma_{f}(L)$

■ Delay function: $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

- ω-language $L \subseteq\left(\Sigma_{I} \times \Sigma_{O}\right)^{\omega}$.
- Two players: Input (I) vs. Output (O).

■ In round i :

- I picks word $u_{i} \in \Sigma_{I}^{f(i)}$ (building $\left.\alpha=u_{0} u_{1} \cdots\right)$.
- O picks letter $v_{i} \in \Sigma_{O}$ (building $\beta=v_{0} v_{1} \cdots$).
- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L$.

The Delay Game $\Gamma_{f}(L)$

■ Delay function: $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

- ω-language $L \subseteq\left(\Sigma_{I} \times \Sigma_{O}\right)^{\omega}$.
- Two players: Input (I) vs. Output (O).

■ In round i :

- I picks word $u_{i} \in \Sigma_{I}^{f(i)}$ (building $\left.\alpha=u_{0} u_{1} \cdots\right)$.

■ O picks letter $v_{i} \in \Sigma_{O}$ (building $\beta=v_{0} v_{1} \cdots$).

- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L$.

Definition: f is constant, if $f(i)=1$ for every $i>0$.

The Delay Game $\Gamma_{f}(L)$

■ Delay function: $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

- ω-language $L \subseteq\left(\Sigma_{I} \times \Sigma_{O}\right)^{\omega}$.
- Two players: Input (I) vs. Output (O).
- In round i:
- I picks word $u_{i} \in \Sigma_{I}^{f(i)}$ (building $\left.\alpha=u_{0} u_{1} \cdots\right)$.
- O picks letter $v_{i} \in \Sigma_{O}$ (building $\beta=v_{0} v_{1} \cdots$).
- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L$.

Definition: f is constant, if $f(i)=1$ for every $i>0$.
Questions we are interested in:

- Given L, is there an f such that O wins $\Gamma_{f}(L)$?
- How large does f have to be?
- How hard is the problem to solve?

Examples

$$
\square\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}, \text { if } \beta(i)=\alpha(i+2) .
$$

No delay

Examples

$$
\begin{aligned}
& ■\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
& \quad \text { I: } \quad b
\end{aligned}
$$

No delay

Examples

$$
\begin{aligned}
& \square\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}, \text { if } \beta(i)=\alpha(i+2) \\
& \quad \text { I: } \quad b \\
& O: \quad a
\end{aligned}
$$

No delay

Examples

$$
\begin{aligned}
& \square\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}, \text { if } \beta(i)=\alpha(i+2) \\
& \quad \text { I: } \quad b \text { a } \\
& O: \quad a
\end{aligned}
$$

No delay

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
& \quad \text { I: } \quad b \quad a \\
& O: \quad a \quad a
\end{aligned}
$$

No delay

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
& \quad \text { I: } \quad b \text { a } b \\
& O: \quad a \quad a
\end{aligned}
$$

No delay

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
& \quad \text { I: } \quad b \text { a } b \\
& O: \quad a \quad a
\end{aligned}
$$

No delay: I wins

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
& \quad \text { I: } \quad b \text { a } b \\
& O: \quad a \quad a
\end{aligned}
$$

No delay: I wins $\quad f(0)=3, f(i+1)=1$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a } b \quad l: b \text { a } b \\
& \text { O: a a }
\end{aligned}
$$

No delay: I wins $\quad f(0)=3, f(i+1)=1$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { I: } b \text { a b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { O: b } \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { I: } b \text { a b b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { O: b } \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { I: } b \text { a b b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { O: } b \quad b \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { I: } b \text { a b b a } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { O: } b \quad b \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a } b \\
& \text { I: } b \text { a b b a } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { O: } b \text { b a } \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { I: } b \begin{array}{lllll}
& b & b & b & a
\end{array} \\
& \text { O: } b \quad b \quad a \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { I: } b \begin{array}{lllll}
a & b & b & a & b
\end{array} \\
& O: b \quad b \quad a \quad b \\
& f(0)=3, f(i+1)=1
\end{aligned}
$$

Examples

$$
\left.\begin{array}{l}
\text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) . \\
\begin{array}{c}
I:
\end{array} \quad b \quad a \quad b
\end{array} \quad I: \begin{array}{llllllll}
& b & a & b & b & a & b & a \\
O: & a & a & O: & b & b & a & b
\end{array}\right]
$$

Examples

$$
\begin{aligned}
& \text { ■ }\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega} \text {, if } \beta(i)=\alpha(i+2) \text {. } \\
& \text { I: } b \text { a b } \\
& \text { O: a a } \\
& \text { No delay: I wins } \\
& \text { I: } b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots \\
& O: \quad b \quad b \quad a \quad b \quad a \quad \cdots \\
& f(0)=3, f(i+1)=1: O \text { wins }
\end{aligned}
$$

Examples

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}$, if $\beta(i)=\alpha(i+2)$.
I: b a $b \quad I: \quad b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots$
O: a a
$O: \quad b \quad b \quad a \quad b \quad a \quad \cdots$
No delay: I wins

$$
f(0)=3, f(i+1)=1: O \text { wins }
$$

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{2} \subseteq(\{a, b, c\} \times\{a, b, c\})^{\omega}$, if

- $\alpha(i)=a$ for every i, or
- $\beta(0)=\alpha(i)$, where i is minimal with $\alpha(i) \neq a$.

Examples

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}$, if $\beta(i)=\alpha(i+2)$.
I: b a $b \quad l: \quad b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots$

O: a a
$O: \quad b \quad b \quad a \quad b \quad a \quad \cdots$
No delay: I wins

$$
f(0)=3, f(i+1)=1: O \text { wins }
$$

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{2} \subseteq(\{a, b, c\} \times\{a, b, c\})^{\omega}$, if

- $\alpha(i)=a$ for every i, or
- $\beta(0)=\alpha(i)$, where i is minimal with $\alpha(i) \neq a$.

Examples

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}$, if $\beta(i)=\alpha(i+2)$.
I: b a $b \quad l: \quad b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots$
O: a a
$O: \quad b \quad b \quad a \quad b \quad a \quad \cdots$
No delay: I wins

$$
f(0)=3, f(i+1)=1: O \text { wins }
$$

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{2} \subseteq(\{a, b, c\} \times\{a, b, c\})^{\omega}$, if

- $\alpha(i)=a$ for every i, or
- $\beta(0)=\alpha(i)$, where i is minimal with $\alpha(i) \neq a$.

Examples

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{1} \subseteq(\{a, b\} \times\{a, b\})^{\omega}$, if $\beta(i)=\alpha(i+2)$.
I: b a $b \quad l: \quad b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots$
O: a a
$O: \quad b \quad b \quad a \quad b \quad a \quad \cdots$
No delay: I wins

$$
f(0)=3, f(i+1)=1: O \text { wins }
$$

■ $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_{2} \subseteq(\{a, b, c\} \times\{a, b, c\})^{\omega}$, if

- $\alpha(i)=a$ for every i, or
- $\beta(0)=\alpha(i)$, where i is minimal with $\alpha(i) \neq a$.

l wins for every f

Previous Results

Theorem (Hosch \& Landweber '72)

The following problem is decidable: Given ω-regular L, does O win $\Gamma_{f}(L)$ for some constant f ?

Previous Results

Theorem (Hosch \& Landweber '72)

The following problem is decidable: Given ω-regular L, does O win $\Gamma_{f}(L)$ for some constant f ?

Theorem (Holtmann, Kaiser \& Thomas '10)

1. TFAE for L given by deterministic parity automaton \mathcal{A} :

- O wins $\Gamma_{f}(L)$ for some f.
- O wins $\Gamma_{f}(L)$ for some constant f with $f(0) \leq 2^{2|\mathcal{A}|}$.

2. Deciding whether this is the case is in 2ExpTime.

Previous Results

Theorem (Hosch \& Landweber '72)

The following problem is decidable: Given ω-regular L, does O win $\Gamma_{f}(L)$ for some constant f ?

Theorem (Holtmann, Kaiser \& Thomas '10)

1. TFAE for L given by deterministic parity automaton \mathcal{A} :

- O wins $\Gamma_{f}(L)$ for some f.
- O wins $\Gamma_{f}(L)$ for some constant f with $f(0) \leq 2^{2^{|\mathcal{A}|}}$.

2. Deciding whether this is the case is in 2ExpTime.

Theorem (Fridman, Löding \& Z. '11)

The following problem is undecidable: Given (one-counter, weak, and deterministic) context-free L, does O win $\Gamma_{f}(L)$ for some f ?

Our Results

Theorem (Klein \& Z. '14)

1. TFAE for L given by deterministic parity automaton \mathcal{A} with k colors:

- O wins $\Gamma_{f}(L)$ for some f.
- O wins $\Gamma_{f}(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.

2. Deciding whether this is the case is ExpTime-complete.

Our Results

Theorem (Klein \& Z. '14)

1. TFAE for L given by deterministic parity automaton \mathcal{A} with k colors:

- O wins $\Gamma_{f}(L)$ for some f.
- O wins $\Gamma_{f}(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.

2. Deciding whether this is the case is ExpTime-complete.
3. Matching lower bound on necessary lookahead (already for reachability and safety).

Our Results

Theorem (Klein \& Z. '14)

1. TFAE for L given by deterministic parity automaton \mathcal{A} with k colors:

- O wins $\Gamma_{f}(L)$ for some f.
- O wins $\Gamma_{f}(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.

2. Deciding whether this is the case is ExpTime-complete.
3. Matching lower bound on necessary lookahead (already for reachability and safety).
4. Solving reachability delay games is PSPACE-complete.

Outline

1. Reducing Delay Games to Delay-free Games

2. Beyond ω-regularity: $\mathbf{W M S O}+\mathrm{U}$ conditions

3. Conclusion

Upper Bounds for ω-regular Conditions

■ Start with deterministic parity automaton \mathcal{A} recognizing the winning condition.

- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.
- Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

Upper Bounds for ω-regular Conditions

■ Start with deterministic parity automaton \mathcal{A} recognizing the winning condition.

- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.
- Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

$$
\begin{aligned}
& \text { I: } \alpha(0) \cdots \cdots \cdots \cdots \cdots \cdot \alpha(i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { O: } \quad \beta(0) \cdots \cdots \cdots \cdots(j)
\end{aligned}
$$

Upper Bounds for ω-regular Conditions

■ Start with deterministic parity automaton \mathcal{A} recognizing the winning condition.

- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.
- Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

- q : state reached by \mathcal{A} after processing $\binom{\alpha(0)}{\beta(0)} \cdots\binom{\alpha(i)}{\beta(i)}$.

Upper Bounds for ω-regular Conditions

■ Start with deterministic parity automaton \mathcal{A} recognizing the winning condition.

- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.
- Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

- q : state reached by \mathcal{A} after processing $\binom{\alpha(0)}{\beta(0)} \cdots\binom{\alpha(i)}{\beta(i)}$.
- P : set of states reachable by $\operatorname{pr}_{0}(\mathcal{C})$ from $(q, \Omega(q))$ after processing $\alpha(i+1) \cdots \alpha(j)$.

Proof Continued

- $\delta_{\mathcal{P}}$: transition function of powerset automaton of $\operatorname{pr}_{0}(\mathcal{C})$.

Proof Continued

- $\delta_{\mathcal{P}}$: transition function of powerset automaton of $\operatorname{pr}_{0}(\mathcal{C})$.
- Let $w \in \Sigma_{l}^{*}$: define $r_{w}^{D}: D \rightarrow 2^{Q_{\mathcal{C}}}$ via

$$
r_{w}^{D}(q, c)=\delta_{\mathcal{P}}^{*}(\{(q, \Omega(q))\}, w)
$$

Proof Continued

- $\delta_{\mathcal{P}}$: transition function of powerset automaton of $\operatorname{pr}_{0}(\mathcal{C})$.

■ Let $w \in \Sigma_{l}^{*}$: define $r_{w}^{D}: D \rightarrow 2^{Q_{\mathcal{C}}}$ via

$$
r_{w}^{D}(q, c)=\delta_{\mathcal{P}}^{*}(\{(q, \Omega(q))\}, w)
$$

■ w is witness for $r_{w}^{D} \Rightarrow$ Language W_{r} of witnesses.
■ $\mathfrak{R}=\left\{r \mid W_{r}\right.$ infinite $\}$.

Proof Continued

- $\delta_{\mathcal{P}}$: transition function of powerset automaton of $\operatorname{pr}_{0}(\mathcal{C})$.
- Let $w \in \Sigma_{l}^{*}$: define $r_{w}^{D}: D \rightarrow 2^{Q_{\mathcal{C}}}$ via

$$
r_{w}^{D}(q, c)=\delta_{\mathcal{P}}^{*}(\{(q, \Omega(q))\}, w)
$$

■ w is witness for $r_{w}^{D} \Rightarrow$ Language W_{r} of witnesses.
■ $\mathfrak{R}=\left\{r \mid W_{r}\right.$ infinite $\}$.

Lemma

Fix domain D. If $|w| \geq 2^{|\mathcal{C}|^{2}}$, then w is witness of a unique $r \in \mathfrak{R}$ with domain D.

The Game $\mathcal{G}(\mathcal{A})$

Define new game $\mathcal{G}(\mathcal{A})$ between I and O :

- In round 0 :
- I has to pick $r_{0} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{0}\right)=\left\{q_{l}^{\mathcal{C}}\right\}$,
- O has to pick $q_{0} \in \operatorname{dom}\left(r_{0}\right)$ (i.e., $q_{0}=q_{l}^{\mathcal{C}}$).

The Game $\mathcal{G}(\mathcal{A})$

Define new game $\mathcal{G}(\mathcal{A})$ between I and O :

- In round 0 :
- I has to pick $r_{0} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{0}\right)=\left\{q_{l}^{\mathcal{C}}\right\}$,
- O has to pick $q_{0} \in \operatorname{dom}\left(r_{0}\right)$ (i.e., $q_{0}=q_{l}^{\mathcal{C}}$).

■ Round $i>0$ with play prefix $r_{0} q_{0} \cdots r_{i-1} q_{i-1}$:
■ I has to pick $r_{i} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{i}\right)=r_{i-1}\left(q_{i-1}\right)$,

- O has to pick $q_{i} \in \operatorname{dom}\left(r_{i}\right)$.

The Game $\mathcal{G}(\mathcal{A})$

Define new game $\mathcal{G}(\mathcal{A})$ between I and O :

- In round 0 :
- I has to pick $r_{0} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{0}\right)=\left\{q_{l}^{\mathcal{C}}\right\}$,
- O has to pick $q_{0} \in \operatorname{dom}\left(r_{0}\right)$ (i.e., $q_{0}=q_{l}^{\mathcal{C}}$).

■ Round $i>0$ with play prefix $r_{0} q_{0} \cdots r_{i-1} q_{i-1}$:
■ I has to pick $r_{i} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{i}\right)=r_{i-1}\left(q_{i-1}\right)$,
■ O has to pick $q_{i} \in \operatorname{dom}\left(r_{i}\right)$.
■ Let $q_{i}=\left(q_{i}^{\prime}, c_{i}\right)$. O wins play if $c_{0} c_{1} c_{2} \cdots$ satisfies parity condition.

The Game $\mathcal{G}(\mathcal{A})$

Define new game $\mathcal{G}(\mathcal{A})$ between I and O :

- In round 0 :
- I has to pick $r_{0} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{0}\right)=\left\{q_{l}^{\mathcal{C}}\right\}$,
- O has to pick $q_{0} \in \operatorname{dom}\left(r_{0}\right)$ (i.e., $q_{0}=q_{l}^{\mathcal{C}}$).

■ Round $i>0$ with play prefix $r_{0} q_{0} \cdots r_{i-1} q_{i-1}$:
■ I has to pick $r_{i} \in \mathfrak{R}$ with $\operatorname{dom}\left(r_{i}\right)=r_{i-1}\left(q_{i-1}\right)$,
■ O has to pick $q_{i} \in \operatorname{dom}\left(r_{i}\right)$.
■ Let $q_{i}=\left(q_{i}^{\prime}, c_{i}\right)$. O wins play if $c_{0} c_{1} c_{2} \cdots$ satisfies parity condition.

Lemma
O wins $\Gamma_{f}(L(\mathcal{A}))$ for some f if and only if O wins $\mathcal{G}(\mathcal{A})$.

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

$$
\mathcal{G}^{I:}
$$

I:
Γ
O:

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

$$
\begin{gathered}
\text { I: } \\
\\
\\
O: \\
\end{gathered}
$$

I:
Γ
O:

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

$$
\begin{array}{llll}
I: & r_{0} & \\
\mathcal{G} & & q_{0}=q_{0}^{\mathcal{C}}
\end{array}
$$

$$
\Gamma^{I:}
$$

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

$$
\begin{array}{rllll}
I: & r_{0} & & r_{1} \\
\mathcal{G} & & & \\
O: & & q_{0} &
\end{array}
$$

$$
\Gamma \quad \begin{aligned}
& 1: \\
& 0
\end{aligned}
$$

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].
I:
r_{0}
r_{1}
\mathcal{G}

$$
O: \quad q_{0}
$$

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].
I:
\mathcal{G}
q_{0}
r_{1}
r_{2}
r_{0}

$$
O:
$$

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

O wins $\Gamma_{f}(L(\mathcal{A})) \Rightarrow O$ wins $\mathcal{G}(\mathcal{A})$

We can assume f to be constant [HKT10].

Color encoded in q_{i} is maximal one seen on run from q_{i-1}^{\prime} to q_{i}^{\prime} in play of $\Gamma \Rightarrow$ Play in \mathcal{G} winning for O.

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

$$
\text { Let } d=2^{|\mathcal{C}|^{2}} \text { and } f(0)=2 d
$$

I:
Γ
O:

I:
\mathcal{G}
O:

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d=2^{|\mathcal{C}|^{2}}$ and $f(0)=2 d$.

I:
G
O:

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d=2^{|\mathcal{C}|^{2}}$ and $f(0)=2 d$.

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

$$
\text { Let } d=2^{|\mathcal{C}|^{2}} \text { and } f(0)=2 d \text {. }
$$

$$
1:
$$

$$
\Gamma
$$

O:

\[

\]

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d=2^{|\mathcal{C}|^{2}}$ and $f(0)=2 d$.

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

$$
\text { Let } d=2^{|\mathcal{C}|^{2}} \text { and } f(0)=2 d \text {. }
$$

I:

$$
r_{0}
$$

$$
r_{1}
$$

$$
\mathcal{G}
$$

0 :
q_{0} q_{1}

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d=2^{|\mathcal{C}|^{2}}$ and $f(0)=2 d$.

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d=2^{|\mathcal{C}|^{2}}$ and $f(0)=2 d$.

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

$$
\text { Let } d=2^{|\mathcal{C}|^{2}} \text { and } f(0)=2 d \text {. }
$$

O wins $\Gamma_{f}(L(\mathcal{A})) \Leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

$$
\text { Let } d=2^{|\mathcal{C}|^{2}} \text { and } f(0)=2 d
$$

Color encoded in q_{i} is maximal one seen on run from q_{i-1}^{\prime} to q_{i}^{\prime} in play of $\Gamma \Rightarrow$ Play in Γ winning for O.

Finishing the Proof

- $\mathcal{G}(\mathcal{A})$ can be encoded as parity game of exponential size with the same colors as \mathcal{A}.
■ Such a game can be solved in exponential time in $|\mathcal{A}|$.

Finishing the Proof

- $\mathcal{G}(\mathcal{A})$ can be encoded as parity game of exponential size with the same colors as \mathcal{A}.
- Such a game can be solved in exponential time in $|\mathcal{A}|$.

Applying both directions of equivalence between $\Gamma_{f}(L(\mathcal{A}))$ and $\mathcal{G}(\mathcal{A})$ yields upper bound on lookahead.

Corollary

Let $L=L(\mathcal{A})$ where \mathcal{A} is a deterministic parity automaton with k colors. The following are equivalent:

1. O wins $\Gamma_{f}(L)$ for some delay function f.
2. O wins $\Gamma_{f}(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}| k)^{2}+1}$.

Finishing the Proof

- $\mathcal{G}(\mathcal{A})$ can be encoded as parity game of exponential size with the same colors as \mathcal{A}.
- Such a game can be solved in exponential time in $|\mathcal{A}|$.

Applying both directions of equivalence between $\Gamma_{f}(L(\mathcal{A}))$ and $\mathcal{G}(\mathcal{A})$ yields upper bound on lookahead.

Corollary

Let $L=L(\mathcal{A})$ where \mathcal{A} is a deterministic parity automaton with k colors. The following are equivalent:

1. O wins $\Gamma_{f}(L)$ for some delay function f.
2. O wins $\Gamma_{f}(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}| k)^{2}+1}$.

Note: $f(0) \leq 2^{2|A| k+2}+2$ achievable by direct pumping argument.

Outline

1. Reducing Delay Games to Delay-free Games

2. Beyond ω-regularity: $\mathrm{WMSO}+\mathrm{U}$ conditions

3. Conclusion

Delay Games with WMSO+U conditions

WMSO+U:

- weak monadic
second-order logic with
the unbounding
quantifier U
- $U X \varphi(X)$: there are arbitrarily large finite sets X s.t. $\varphi(X)$ holds.

Delay Games with WMSO + U conditions

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- $U X \varphi(X)$: there are arbitrarily large finite sets X s.t. $\varphi(X)$ holds.

Max-automata

- Deterministic finite automata with counters

■ actions: incr, reset, max

- acceptance: boolean combination of "counter γ is bounded".

Delay Games with WMSO+U conditions

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- $U X \varphi(X)$: there are arbitrarily large finite sets X s.t. $\varphi(X)$ holds.

Max-automata

- Deterministic finite automata with counters

■ actions: incr, reset, max

- acceptance: boolean combination of "counter γ is bounded".

Example:

$$
L=\left\{\alpha \in\{a, b, c\}^{\omega} \mid a^{n} b \text { infix of } \alpha \text { for every } n\right\}
$$

Delay Games with WMSO+U conditions

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U

■ $U X \varphi(X)$: there are arbitrarily large finite sets X s.t. $\varphi(X)$ holds.

Max-automata

- Deterministic finite automata with counters

■ actions: incr, reset, max

- acceptance: boolean combination of "counter γ is bounded".

Example:

$$
L=\left\{\alpha \in\{a, b, c\}^{\omega} \mid a^{n} b \text { infix of } \alpha \text { for every } n\right\}
$$

Theorem

The following problem is decidable: Given a max-automaton \mathcal{A}, does Player O win $\Gamma_{f}(L(\mathcal{A}))$ for some constant f ?

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_{I} \times\left(\Sigma_{O}\right)^{*}$ on counters:

- Transfers from counter γ to γ^{\prime}.

■ Existence of increments, but not how many.

- \Rightarrow equivalence relation \equiv of exponential index.

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_{I} \times\left(\Sigma_{O}\right)^{*}$ on counters:

■ Transfers from counter γ to γ^{\prime}.
■ Existence of increments, but not how many.
■ \Rightarrow equivalence relation \equiv of exponential index.

Lemma

Let $\left(x_{i}\right)_{i \in \mathbb{N}}$ and $\left(x_{i}^{\prime}\right)_{i \in \mathbb{N}}$ be two sequences of words over \sum^{*} with $\sup _{i}\left|x_{i}\right|<\infty, \sup _{i}\left|x_{i}^{\prime}\right|<\infty$, and $x_{i} \equiv x_{i}^{\prime}$ for all i. Then, $x=x_{0} x_{1} x_{2} \cdots \in L(\mathcal{A})$ if and only if $x^{\prime}=x_{0}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \cdots \in L(\mathcal{A})$.

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_{I} \times\left(\Sigma_{O}\right)^{*}$ on counters:

■ Transfers from counter γ to γ^{\prime}.
■ Existence of increments, but not how many.
■ \Rightarrow equivalence relation \equiv of exponential index.

Lemma

Let $\left(x_{i}\right)_{i \in \mathbb{N}}$ and $\left(x_{i}^{\prime}\right)_{i \in \mathbb{N}}$ be two sequences of words over \sum^{*} with $\sup _{i}\left|x_{i}\right|<\infty, \sup _{i}\left|x_{i}^{\prime}\right|<\infty$, and $x_{i} \equiv x_{i}^{\prime}$ for all i. Then, $x=x_{0} x_{1} x_{2} \cdots \in L(\mathcal{A})$ if and only if $x^{\prime}=x_{0}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \cdots \in L(\mathcal{A})$.

- $\mathcal{G}(\mathcal{A})$ is now a game with weak $\mathrm{MSO}+\mathrm{U}$ winning condition.

■ Can be solved as satisfiability problem for weak MSO $+U$ with path quantifiers over infinite tress [Bojańczyk '14].
■ Doubly-exponential upper bound on constant delay.

Constant Lookahead is not Sufficient

■ $\Sigma_{I}=\{0,1, \#\}$ and $\Sigma_{O}=\{0,1, *\}$.
■ Input block: $\# w$ with $w \in\{0,1\}^{+}$. Length: $|w|$.

- Output block:

$$
\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*} \cdots\binom{\alpha(n)}{*}\binom{b}{b} \in\left(\Sigma_{I} \times \Sigma_{O}\right)^{+}
$$

for $b \in\{0,1\}$ and $\alpha(j) \in\{0,1\}$. Length: $n+1$.

Constant Lookahead is not Sufficient

■ $\Sigma_{I}=\{0,1, \#\}$ and $\Sigma_{O}=\{0,1, *\}$.
■ Input block: $\# w$ with $w \in\{0,1\}^{+}$. Length: $|w|$.

- Output block:

$$
\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*} \cdots\binom{\alpha(n)}{*}\binom{b}{b} \in\left(\Sigma_{I} \times \Sigma_{O}\right)^{+}
$$

for $b \in\{0,1\}$ and $\alpha(j) \in\{0,1\}$. Length: $n+1$.

Define language L : if infinitely many \# and arbitrarily long input blocks, then arbitrarily long output blocks.

Constant Lookahead is not Sufficient

■ $\Sigma_{I}=\{0,1, \#\}$ and $\Sigma_{O}=\{0,1, *\}$.

- Input block: $\# w$ with $w \in\{0,1\}^{+}$. Length: $|w|$.
- Output block:

$$
\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*} \cdots\binom{\alpha(n)}{*}\binom{b}{b} \in\left(\Sigma_{I} \times \Sigma_{O}\right)^{+}
$$

for $b \in\{0,1\}$ and $\alpha(j) \in\{0,1\}$. Length: $n+1$.

Define language L : if infinitely many \# and arbitrarily long input blocks, then arbitrarily long output blocks.

Theorem:
I wins $\Gamma_{f}(L)$, if f is a bounded delay function, O if f is unbounded.

Outline

1. Reducing Delay Games to Delay-free Games

2. Beyond ω-regularity: $\mathbf{W M S O}+\mathrm{U}$ conditions

3. Conclusion

Conclusion

Results for ω-regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential*	PSPACE-complete

Conclusion

Results for ω-regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential	PSPACE-complete
det. safety	exponential	ExPTimE-complete
det. parity	exponential	ExPTimE-complete

Conclusion

Results for ω-regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential *	PSpaCE-complete
det. safety	exponential	ExpTimE-complete
det. parity	exponential	ExpTimE-complete
safety \cap det. reach.	polynomial	Π_{2}^{P}

*: tight bound.

Conclusion

Results for ω-regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential *	PSpACE-complete
det. safety	exponential	ExpTimE-complete
det. parity	exponential	ExpTimE-complete
safety \cap det. reach.	polynomial	Π_{2}^{P}

*: tight bound.

Open questions:

- Consider non-deterministic automata and

■ Rabin, Streett, Muller automata.

- Can we determine minimal lookahead that is sufficient to win?

Conclusion

Results for max-regular conditions:
■ Decidable w.r.t. constant delay functions.

- If O wins w.r.t. some constant delay function, then doubly-exponential constant delay is sufficient.
- But: constant delay is not always enough.

Conclusion

Results for max-regular conditions:
■ Decidable w.r.t. constant delay functions.

- If O wins w.r.t. some constant delay function, then doubly-exponential constant delay is sufficient.
- But: constant delay is not always enough.

Open questions:

- What kind of delay function is sufficient?

■ Decidability w.r.t. arbitrary delay functions.

