ω -regular and Max-regular Delay Games

Joint work with Felix Klein (Saarland University)

Martin Zimmermann

Saarland University

February 2nd, 2015

Seminar Non-Zero-Sum Games and Control Dagstuhl, Germany

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

- Interaction between players typically described by a graph.
- Simpler setting: realizability / Gale-Stewart games. Players *I*/*O* alternatingly pick letters α(*i*) and β(*i*). *O* wins if ^{(α(0)}_{β(0)}) (^{α(1)}_{β(1)}) · · · is in winning condition *L*.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

- Interaction between players typically described by a graph.
- Simpler setting: realizability / Gale-Stewart games. Players *I*/*O* alternatingly pick letters α(*i*) and β(*i*). *O* wins if ^{(α(0)}_{β(0)})^{(α(1)}_{β(1)}) · · · is in winning condition *L*.

But assuming fixed interaction might be too strong in the presence of buffers, asynchronous communication channels, etc.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

- Interaction between players typically described by a graph.
- Simpler setting: realizability / Gale-Stewart games.
 Players *I*/*O* alternatingly pick letters α(*i*) and β(*i*). *O* wins if
 ^{(α(0)}_{β(0)})^{(α(1)}_{β(1)}) · · · is in winning condition L.

But assuming fixed interaction might be too strong in the presence of buffers, asynchronous communication channels, etc.

 Hosch & Landweber ('72), Holtmann, Kaiser & Thomas ('10): allow one player to delay her moves, thereby gain a lookahead on her opponents moves.

- **Delay function**: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

- **Delay function**: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).

In round i:

• *I* picks word
$$u_i \in \Sigma_I^{f(i)}$$
 (building $\alpha = u_0 u_1 \cdots$).

• *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

• *O* wins iff
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
.

- **Delay function**: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:

• *I* picks word
$$u_i \in \Sigma_{I}^{f(i)}$$
 (building $\alpha = u_0 u_1 \cdots$)

• *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

• *O* wins iff
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$

Definition: f is constant, if f(i) = 1 for every i > 0.

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:

I picks word
$$u_i \in \Sigma_{I}^{f(i)}$$
 (building $\alpha = u_0 u_1 \cdots$)

• *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

• *O* wins iff
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$$
.

Definition: f is constant, if f(i) = 1 for every i > 0.

Questions we are interested in:

- Given L, is there an f such that O wins $\Gamma_f(L)$?
- How *large* does *f* have to be?
- How hard is the problem to solve?

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.

No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b*

No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b*
O: *a*
No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a*
O: *a*
No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a*
O: *a a*
No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b*
O: *a a*
No delay

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b*
O: *a a*
No delay: *I* wins

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b*
O: *a a*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b*
O: *a a*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b*
O: *a a O*: *b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b*
O: *a a O*: *b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b*
O: *a a O*: *b b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b a*
O: *a a O*: *b b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b a*
O: *a a O*: *b b a*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b a b*
O: *a a O*: *b b a*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b a b*
O: *a a O*: *b b a b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: *b a b I*: *b a b b a b a*
O: *a a O*: *b b a b*
No delay: *I* wins $f(0) = 3, f(i+1) = 1$

$$\begin{array}{c|c} & \binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_{1} \subseteq (\{a,b\}\times\{a,b\})^{\omega}, \text{ if } \beta(i) = \alpha(i+2).\\ & I: \ b \ a \ b \\ & I: \ b \ a \ b \ b \ a \ b \ a \\ & O: \ a \ a \\ & O: \ b \ b \ a \ b \ a \\ & O: \\ & No \ delay: \ I \ wins \\ \end{array}$$

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_1 \subseteq (\{a, b\} \times \{a, b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: b a b I: b a b b a b a \dots
O: a a O: b b a b a \dots
No delay: I wins $f(0) = 3, f(i+1) = 1$: O wins
• $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L_2 \subseteq (\{a, b, c\} \times \{a, b, c\})^{\omega}$, if
• $\alpha(i) = a$ for every i, or
• $\beta(0) = \alpha(i)$, where i is minimal with $\alpha(i) \neq a$.
 $f(0)$
I: $\overbrace{a \dots a}^{f(0)}$
O: b

•
$$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_1 \subseteq (\{a,b\} \times \{a,b\})^{\omega}$$
, if $\beta(i) = \alpha(i+2)$.
I: b a b I: b a b b a b a \cdots
O: a a O: b b a b a \cdots
No delay: I wins $f(0) = 3, f(i+1) = 1$: O wins
• $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_2 \subseteq (\{a,b,c\} \times \{a,b,c\})^{\omega}$, if
• $\alpha(i) = a$ for every i, or
• $\beta(0) = \alpha(i)$, where i is minimal with $\alpha(i) \neq a$.
 $f(0)$
I: $\overrightarrow{a \cdots a} c$
O: b
I wins for every f

Previous Results

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Theorem (Holtmann, Kaiser & Thomas '10)

- **1.** TFAE for L given by deterministic parity automaton \mathcal{A} :
 - O wins $\Gamma_f(L)$ for some f.
 - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2^{|\mathcal{A}|}}$.
- **2.** Deciding whether this is the case is in 2ExpTIME.

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Theorem (Holtmann, Kaiser & Thomas '10)

1. TFAE for L given by deterministic parity automaton A:

• O wins $\Gamma_f(L)$ for some f.

- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2^{|\mathcal{A}|}}$.
- **2.** Deciding whether this is the case is in 2ExpTIME.

Theorem (Fridman, Löding & Z. '11)

The following problem is undecidable: Given (one-counter, weak, and deterministic) context-free L, does O win $\Gamma_f(L)$ for some f?

Theorem (Klein & Z. '14)

- **1.** TFAE for L given by deterministic parity automaton A with k colors:
 - O wins $\Gamma_f(L)$ for some f.
 - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.
- **2.** Deciding whether this is the case is EXPTIME-complete.

Theorem (Klein & Z. '14)

- **1.** TFAE for L given by deterministic parity automaton A with k colors:
 - O wins $\Gamma_f(L)$ for some f.
 - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.
- **2.** Deciding whether this is the case is EXPTIME-complete.
- **3.** Matching lower bound on necessary lookahead (already for reachability and safety).

Theorem (Klein & Z. '14)

- **1.** TFAE for L given by deterministic parity automaton A with k colors:
 - O wins $\Gamma_f(L)$ for some f.
 - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$.
- **2.** Deciding whether this is the case is EXPTIME-complete.
- **3.** Matching lower bound on necessary lookahead (already for reachability and safety).
- 4. Solving reachability delay games is PSPACE-complete.

Outline

1. Reducing Delay Games to Delay-free Games

- 2. Beyond ω -regularity: WMSO+U conditions
- 3. Conclusion

- Start with deterministic parity automaton A recognizing the winning condition.
- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.

• Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

- Start with deterministic parity automaton A recognizing the winning condition.
- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.
- Note: $L(\mathcal{C}) \neq L(\mathcal{A})$.

 $I: \qquad \alpha(0) \cdots \alpha(i) \cdots \alpha(i)$

 $O: \qquad \beta(0) \cdots \beta(j)$

- Start with deterministic parity automaton A recognizing the winning condition.
- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.

• Note:
$$L(\mathcal{C}) \neq L(\mathcal{A})$$
.

 $I: \qquad \begin{array}{ccc} \alpha(0) & \cdots & \alpha(i) & \cdots & \alpha(i) \\ & q_0 & q \\ O: & \beta(0) & \cdots & \beta(j) \end{array}$

■ *q*: state reached by \mathcal{A} after processing $\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \cdots \begin{pmatrix} \alpha(i) \\ \beta(i) \end{pmatrix}$.

- Start with deterministic parity automaton A recognizing the winning condition.
- Extend \mathcal{A} to \mathcal{C} to keep track of maximal color seen during run using states of the form (q, c), which has color c.

• Note:
$$L(\mathcal{C}) \neq L(\mathcal{A})$$
.

$$I: \qquad \begin{array}{cccc} \alpha(0) & \cdots & \alpha(i) & \cdots & \alpha(i) \\ q_0 & q & P \\ O: & \beta(0) & \cdots & \beta(j) \end{array}$$

- *q*: state reached by \mathcal{A} after processing $\binom{\alpha(0)}{\beta(0)} \cdots \binom{\alpha(i)}{\beta(i)}$.
- P: set of states reachable by pr₀(C) from (q, Ω(q)) after processing α(i + 1) · · · α(j).

• $\delta_{\mathcal{P}}$: transition function of powerset automaton of $pr_0(\mathcal{C})$.

δ_P: transition function of powerset automaton of pr₀(C).
 Let w ∈ Σ^{*}_I: define r^D_w: D → 2^{Q_C} via

$$r_w^D(q,c) = \delta_{\mathcal{P}}^*(\{(q,\Omega(q))\},w)$$

δ_P: transition function of powerset automaton of pr₀(C).
 Let w ∈ Σ^{*}_I: define r^D_w: D → 2^{Q_C} via

$$r_w^D(q,c) = \delta_{\mathcal{P}}^*(\{(q,\Omega(q))\},w)$$

w is witness for *r*^D_w ⇒ Language *W*_r of witnesses.
ℜ = {*r* | *W*_r infinite}.

δ_P: transition function of powerset automaton of pr₀(C).
 Let w ∈ Σ^{*}_I: define r^D_w: D → 2^{Q_C} via

$$r_w^D(q,c) = \delta_{\mathcal{P}}^*(\{(q,\Omega(q))\},w)$$

w is witness for r^D_w ⇒ Language W_r of witnesses.
ℜ = {r | W_r infinite}.

Lemma

Fix domain D. If $|w| \ge 2^{|\mathcal{C}|^2}$, then w is witness of a unique $r \in \mathfrak{R}$ with domain D.

Define new game $\mathcal{G}(\mathcal{A})$ between I and O:

■ In round 0:

- I has to pick $r_0 \in \mathfrak{R}$ with $\operatorname{dom}(r_0) = \{q_I^{\mathcal{C}}\},\$
- O has to pick $q_0 \in \operatorname{dom}(r_0)$ (i.e., $q_0 = q_I^{\mathcal{C}}$).

Define new game $\mathcal{G}(\mathcal{A})$ between I and O:

In round 0:

- I has to pick $r_0 \in \mathfrak{R}$ with $\operatorname{dom}(r_0) = \{q_I^{\mathcal{C}}\},\$
- *O* has to pick $q_0 \in \operatorname{dom}(r_0)$ (i.e., $q_0 = q_I^{\mathcal{C}}$).

• Round i > 0 with play prefix $r_0 q_0 \cdots r_{i-1} q_{i-1}$:

- I has to pick $r_i \in \mathfrak{R}$ with $\operatorname{dom}(r_i) = r_{i-1}(q_{i-1})$,
- *O* has to pick $q_i \in \text{dom}(r_i)$.

Define new game $\mathcal{G}(\mathcal{A})$ between I and O:

In round 0:

- I has to pick $r_0 \in \mathfrak{R}$ with $\operatorname{dom}(r_0) = \{q_I^{\mathcal{C}}\},\$
- O has to pick $q_0 \in \operatorname{dom}(r_0)$ (i.e., $q_0 = q_I^{\mathcal{C}}$).
- Round i > 0 with play prefix $r_0 q_0 \cdots r_{i-1} q_{i-1}$:
 - I has to pick $r_i \in \mathfrak{R}$ with $\operatorname{dom}(r_i) = r_{i-1}(q_{i-1})$,

• *O* has to pick $q_i \in \text{dom}(r_i)$.

• Let $q_i = (q'_i, c_i)$. *O* wins play if $c_0 c_1 c_2 \cdots$ satisfies parity condition.

Define new game $\mathcal{G}(\mathcal{A})$ between I and O:

■ In round 0:

- I has to pick $r_0 \in \mathfrak{R}$ with $\operatorname{dom}(r_0) = \{q_I^{\mathcal{C}}\},\$
- O has to pick $q_0 \in \operatorname{dom}(r_0)$ (i.e., $q_0 = q_I^{\mathcal{C}}$).
- Round i > 0 with play prefix $r_0 q_0 \cdots r_{i-1} q_{i-1}$:
 - I has to pick $r_i \in \mathfrak{R}$ with $\operatorname{dom}(r_i) = r_{i-1}(q_{i-1})$,
 - *O* has to pick $q_i \in \text{dom}(r_i)$.
- Let $q_i = (q'_i, c_i)$. *O* wins play if $c_0 c_1 c_2 \cdots$ satisfies parity condition.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some f if and only if O wins $\mathcal{G}(\mathcal{A})$.

l: G	r ₀		<i>r</i> 1		<i>r</i> ₂		
9 0:		q 0		q_1			

We can assume f to be constant **[HKT10]**.

[] [] [] [] [] [] [] [] [] [] [] [] [] [r ₀		<i>r</i> 1		<i>r</i> ₂		r ₃		r ₄	
9 0:		q 0		q_1		q 2		q 3		<i>q</i> 4

Color encoded in q_i is maximal one seen on run from q'_{i-1} to q'_i in play of $\Gamma \Rightarrow$ Play in \mathcal{G} winning for O.

Let
$$d = 2^{|C|^2}$$
 and $f(0) = 2d$.

O wins $\Gamma_f(L(\mathcal{A})) \leftarrow O$ wins $\mathcal{G}(\mathcal{A})$

Let $d = 2^{|C|^2}$ and f(0) = 2d.

Color encoded in q_i is maximal one seen on run from q'_{i-1} to q'_i in play of $\Gamma \Rightarrow$ Play in Γ winning for O.

12/20

Finishing the Proof

- $\mathcal{G}(\mathcal{A})$ can be encoded as parity game of exponential size with the same colors as \mathcal{A} .
- Such a game can be solved in exponential time in $|\mathcal{A}|$.

Finishing the Proof

- *G*(*A*) can be encoded as parity game of exponential size with the same colors as *A*.
- Such a game can be solved in exponential time in $|\mathcal{A}|$.

Applying both directions of equivalence between $\Gamma_f(L(\mathcal{A}))$ and $\mathcal{G}(\mathcal{A})$ yields upper bound on lookahead.

Corollary

Let L = L(A) where A is a deterministic parity automaton with k colors. The following are equivalent:

- **1.** O wins $\Gamma_f(L)$ for some delay function f.
- **2.** O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}|k)^2+1}$.

Finishing the Proof

- *G*(*A*) can be encoded as parity game of exponential size with the same colors as *A*.
- Such a game can be solved in exponential time in $|\mathcal{A}|$.

Applying both directions of equivalence between $\Gamma_f(L(\mathcal{A}))$ and $\mathcal{G}(\mathcal{A})$ yields upper bound on lookahead.

Corollary

Let L = L(A) where A is a deterministic parity automaton with k colors. The following are equivalent:

- **1.** O wins $\Gamma_f(L)$ for some delay function f.
- **2.** O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}|k)^2+1}$.

Note: $f(0) \le 2^{2|A|k+2} + 2$ achievable by direct pumping argument.

Outline

1. Reducing Delay Games to Delay-free Games

- 2. Beyond ω -regularity: WMSO+U conditions
- 3. Conclusion

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- UXφ(X): there are arbitrarily large finite sets X s.t. φ(X) holds.

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- UXφ(X): there are arbitrarily large finite sets X s.t. φ(X) holds.

Max-automata

- Deterministic finite automata with counters
- actions: incr, reset, max
- acceptance: boolean combination of "counter γ is bounded".

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- UXφ(X): there are arbitrarily large finite sets X s.t. φ(X) holds.

Example:

Max-automata

- Deterministic finite automata with counters
- actions: incr, reset, max
- acceptance: boolean combination of "counter γ is bounded".

$$L = \{ \alpha \in \{a, b, c\}^{\omega} \mid a^n b \text{ infix of } \alpha \text{ for every } n \}$$

WMSO+U:

- weak monadic second-order logic with the unbounding quantifier U
- UXφ(X): there are arbitrarily large finite sets X s.t. φ(X) holds.

Example:

Max-automata

- Deterministic finite automata with counters
- actions: incr, reset, max
- acceptance: boolean combination of "counter γ is bounded".

 $L = \{ \alpha \in \{a, b, c\}^{\omega} \mid a^n b \text{ infix of } \alpha \text{ for every } n \}$

Theorem

The following problem is decidable: Given a max-automaton A, does Player O win $\Gamma_f(L(A))$ for some constant f?

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_I \times (\Sigma_O)^*$ on counters:

- **Transfers from counter** γ to γ' .
- Existence of increments, but not how many.
- \Rightarrow equivalence relation \equiv of exponential index.

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_I \times (\Sigma_O)^*$ on counters:

- **Transfers from counter** γ to γ' .
- Existence of increments, but not how many.
- \Rightarrow equivalence relation \equiv of exponential index.

Lemma

Let $(x_i)_{i \in \mathbb{N}}$ and $(x'_i)_{i \in \mathbb{N}}$ be two sequences of words over Σ^* with $\sup_i |x_i| < \infty$, $\sup_i |x'_i| < \infty$, and $x_i \equiv x'_i$ for all *i*. Then, $x = x_0 x_1 x_2 \cdots \in L(\mathcal{A})$ if and only if $x' = x'_0 x'_1 x'_2 \cdots \in L(\mathcal{A})$.

Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect of words over $\Sigma_I \times (\Sigma_O)^*$ on counters:

- **Transfers from counter** γ to γ' .
- Existence of increments, but not how many.
- \Rightarrow equivalence relation \equiv of exponential index.

Lemma

Let $(x_i)_{i \in \mathbb{N}}$ and $(x'_i)_{i \in \mathbb{N}}$ be two sequences of words over Σ^* with $\sup_i |x_i| < \infty$, $\sup_i |x'_i| < \infty$, and $x_i \equiv x'_i$ for all *i*. Then, $x = x_0 x_1 x_2 \cdots \in L(\mathcal{A})$ if and only if $x' = x'_0 x'_1 x'_2 \cdots \in L(\mathcal{A})$.

- G(A) is now a game with weak MSO+U winning condition.
 Can be solved as satisfiability problem for weak MSO+U with path quantifiers over infinite tress [Bojańczyk '14].
 Doubly exponential upper bound on constant delay.
- Doubly-exponential upper bound on constant delay.

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

- Input block: #w with $w \in \{0,1\}^+$. Length: |w|.
- Output block:

$$\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n)}{*}\binom{b}{b}\in(\Sigma_{I}\times\Sigma_{O})^{+}$$

for $b \in \{0,1\}$ and $\alpha(j) \in \{0,1\}$. Length: n+1.

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

Input block: #w with $w \in \{0,1\}^+$. Length: |w|.

Output block:

$$\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n)}{*}\binom{b}{b}\in(\Sigma_I\times\Sigma_O)^+$$

for $b \in \{0,1\}$ and $\alpha(j) \in \{0,1\}$. Length: n+1.

Define language L: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Constant Lookahead is not Sufficient

•
$$\Sigma_I = \{0, 1, \#\}$$
 and $\Sigma_O = \{0, 1, *\}.$

Input block: #w with $w \in \{0,1\}^+$. Length: |w|.

Output block:

$$\binom{\#}{b}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n)}{*}\binom{b}{b}\in(\Sigma_I\times\Sigma_O)^+$$

for $b \in \{0,1\}$ and $\alpha(j) \in \{0,1\}$. Length: n+1.

Define language L: if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks.

Theorem:

I wins $\Gamma_f(L)$, if f is a bounded delay function, O if f is unbounded.

Outline

- 1. Reducing Delay Games to Delay-free Games
- 2. Beyond ω -regularity: WMSO+U conditions
- 3. Conclusion

Results for ω -regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential*	PSPACE-complete

Results for ω -regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential*	PSPACE -complete
det. safety	$exponential^*$	ExpTIME-complete
det. parity	exponential*	ExpTIME-complete

Results for ω -regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential*	PSPACE -complete
det. safety	$exponential^*$	ExpTIME-complete
det. parity	$exponential^*$	ExpTIME-complete
safety \cap det. reach.	polynomial	Π_2^{P}

*: tight bound.

Results for ω -regular conditions:

automaton	lookahead	complexity
(non)det. reachability	exponential*	PSPACE-complete
det. safety	$exponential^*$	ExpTIME-complete
det. parity	$exponential^*$	ExpTIME-complete
safety \cap det. reach.	polynomial	Π_2^{P}

*: tight bound.

Open questions:

- Consider non-deterministic automata and
- Rabin, Streett, Muller automata.
- Can we determine minimal lookahead that is sufficient to win?

Results for max-regular conditions:

- Decidable w.r.t. constant delay functions.
- If O wins w.r.t. some constant delay function, then doubly-exponential constant delay is sufficient.
- But: constant delay is not always enough.

Results for max-regular conditions:

- Decidable w.r.t. constant delay functions.
- If O wins w.r.t. some constant delay function, then doubly-exponential constant delay is sufficient.
- But: constant delay is not always enough.

Open questions:

- What kind of delay function is sufficient?
- Decidability w.r.t. arbitrary delay functions.