Time-optimal Strategies for Infinite Games

Martin Zimmermann

RWTH Aachen University

March 10th, 2010

DIMAP Seminar Warwick University, United Kingdom

Introduction

Model Checking: program P, specification φ , does

 $P\models \varphi$?

Introduction

Model Checking: program P, specification φ , does

 $P \models \varphi$?

Synthesis: environment E, specification $\varphi.$ Generate program P such that

 $E \times P \models \varphi$.

Introduction

Model Checking: program P, specification φ , does

 $P \models \varphi$?

Synthesis: environment E, specification $\varphi.$ Generate program P such that

 $E \times P \models \varphi$.

Synthesis as a game: no matter what the environment does, the program has to guarantee φ .

- Beautiful and rich theory based on infinite graph games.
- typically: a player either wins or loses (zero-sum).
- here: adding quantitative aspects to infinite games.

Outline

1. Infinite Games

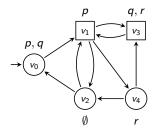
2. Poset Games

- 3. Parametric LTL Games
- 4. Finite-time Muller Games
- 5. Conclusion

Definitions

An arena $\mathcal{A} = (V, V_0, V_1, E, v_0, I)$ consists of

- a finite directed graph (V, E) without dead-ends,
- a partition {V₀, V₁} of V denoting the positions of Player 0 (circles) and Player 1 (squares),
- an initial vertex $v_0 \in V$,
- a labeling function *I* : *V* → 2^{*P*} for some set *P* of atomic propositions.



Play in \mathcal{A} : infinite path $\rho_0 \rho_1 \rho_2 \dots$ starting in v_0 .

- Play in \mathcal{A} : infinite path $\rho_0 \rho_1 \rho_2 \dots$ starting in v_0 .
- Strategy for Player $i \in \{0,1\}$: mapping $\sigma : V^*V_i \to V$ such that $(s, \sigma(ws)) \in E$.
- σ is finite-state: σ computable by finite automaton with output.
- $\rho_0\rho_1\rho_2...$ is consistent with $\sigma: \rho_{n+1} = \sigma(\rho_0...\rho_n)$ for all n such that $\rho_n \in V_i$.

- Play in \mathcal{A} : infinite path $\rho_0 \rho_1 \rho_2 \dots$ starting in v_0 .
- Strategy for Player $i \in \{0,1\}$: mapping $\sigma : V^*V_i \to V$ such that $(s, \sigma(ws)) \in E$.
- σ is finite-state: σ computable by finite automaton with output.
- $\rho_0\rho_1\rho_2...$ is consistent with $\sigma: \rho_{n+1} = \sigma(\rho_0...\rho_n)$ for all n such that $\rho_n \in V_i$.

Game:
$$\mathcal{G} = (\mathcal{A}, \text{Win})$$
 with $\text{Win} \subseteq V^{\omega}$.

- ρ winning for Player 0: $\rho \in Win$.
- ρ winning for Player 1: $\rho \in V^{\omega} \setminus Win$.

- Play in \mathcal{A} : infinite path $\rho_0 \rho_1 \rho_2 \dots$ starting in v_0 .
- Strategy for Player $i \in \{0,1\}$: mapping $\sigma : V^*V_i \to V$ such that $(s, \sigma(ws)) \in E$.
- σ is finite-state: σ computable by finite automaton with output.
- $\rho_0\rho_1\rho_2...$ is consistent with $\sigma: \rho_{n+1} = \sigma(\rho_0...\rho_n)$ for all n such that $\rho_n \in V_i$.

Game:
$$\mathcal{G} = (\mathcal{A}, \text{Win})$$
 with $\text{Win} \subseteq V^{\omega}$.

- ρ winning for Player 0: $\rho \in Win$.
- ρ winning for Player 1: $\rho \in V^{\omega} \setminus Win$.
- σ winning strategy for Player i: all plays ρ consistent with σ are winning for Player i.
- \mathcal{G} determined: one player has a winning strategy.

Outline

1. Infinite Games

2. Poset Games

- 3. Parametric LTL Games
- 4. Finite-time Muller Games
- 5. Conclusion

Motivation

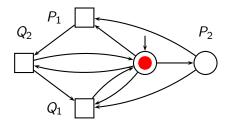
- Request-Reponse conditions are a typical requirement on reactive systems.
- There is a natural definition of waiting times and they allow time-optimal strategies.

Motivation

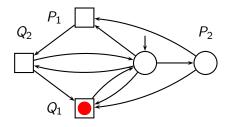
- Request-Reponse conditions are a typical requirement on reactive systems.
- There is a natural definition of waiting times and they allow time-optimal strategies.

Goal:

- Extend the Request-Response condition to partially ordered objectives..
- .. while retaining the notion of waiting times and the existence of time-optimal strategies.



$$t_1 : 0 \\ t_2 : 0$$

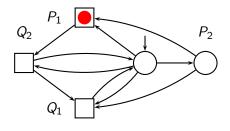


$$\begin{array}{rrrr} t_1: & 0 & 1 \\ t_2: & 0 & 0 \end{array}$$

Request-response game: $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$ where $Q_j, P_j \subseteq V$. Player 0 wins a play if every visit to Q_j (request) is responded by a later visit to P_j .

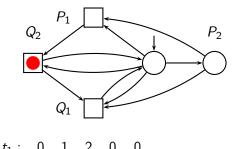


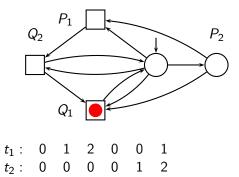
Request-response game: $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$ where $Q_j, P_j \subseteq V$. Player 0 wins a play if every visit to Q_j (request) is responded by a later visit to P_j .

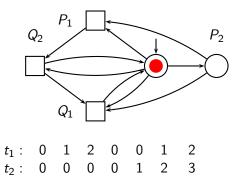


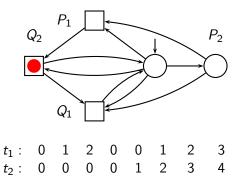
t_1 :				
<i>t</i> ₂ :	0	0	0	0

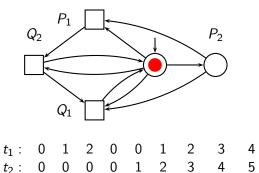
Request-response game: $(\mathcal{A}, (Q_j, P_j)_{j=1,...,k})$ where $Q_j, P_j \subseteq V$. Player 0 wins a play if every visit to Q_j (request) is responded by a later visit to P_j .

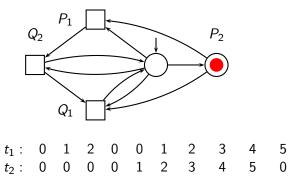


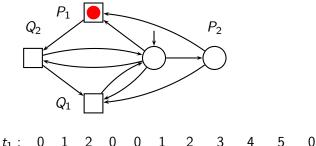




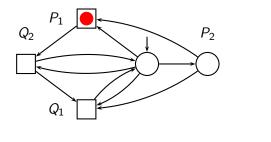




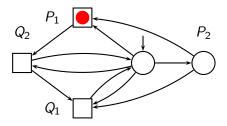




$$t_2: 0 0 0 0 1 2 3 4 5 0 0$$



<i>t</i> ₁ :	0	1	2	0	0	1	2	3	4	5	0
t_2 :	0	0	0	0	1	2	3	4	5	0	0
$p_i = t_1 + t_2$:	0	1	2	0	1	3	5	7	9	5	0



<i>t</i> ₁ :	0	1	2	0	0	1	2	3	4	5	0
<i>t</i> ₂ :	0	0	0	0	1	2	3	4	5	0	0
$p_i = t_1 + t_2$:	0	1	2	0	1	3	5	7	9	5	0
$\frac{1}{n}\sum_{i=1}^{n}p_{i}$:	0	$\frac{1}{2}$	1	<u>3</u> 4	$\frac{4}{5}$	$\frac{7}{6}$	$\frac{12}{7}$	<u>19</u> 8	<u>28</u> 9	$\frac{34}{10}$	$\frac{34}{11}$

Request-Reponse Games: Results

- Waiting times: start a clock for every request that is stopped as soon as it is responded (and ignore subsequent requests).
- Accumulated waiting time: sum up the clock values of a play prefix (quadratic influence of open requests).
- Value of a play: limit superior of the average accumulated waiting time.
- Value of a strategy: value of the worst play consistent with the strategy.

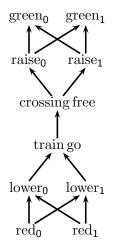
Request-Reponse Games: Results

- Waiting times: start a clock for every request that is stopped as soon as it is responded (and ignore subsequent requests).
- Accumulated waiting time: sum up the clock values of a play prefix (quadratic influence of open requests).
- Value of a play: limit superior of the average accumulated waiting time.
- Value of a strategy: value of the worst play consistent with the strategy.

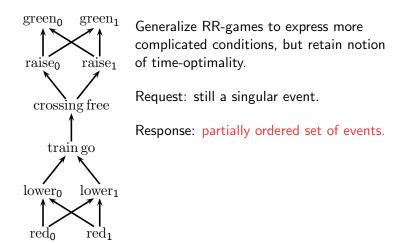
Theorem (Horn, Thomas, Wallmeier)

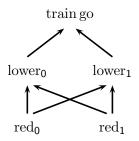
If Player 0 has a winning strategy for an RR-game, then she also has an optimal winning strategy, which is finite-state and effectively computable.

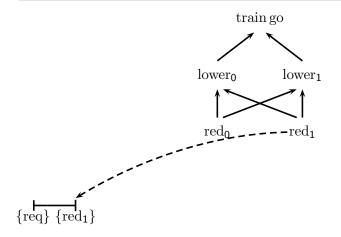
Extending Request-Reponse Games

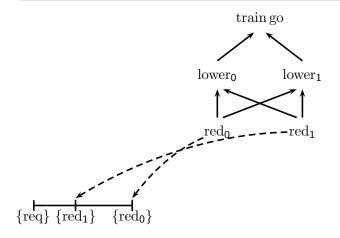


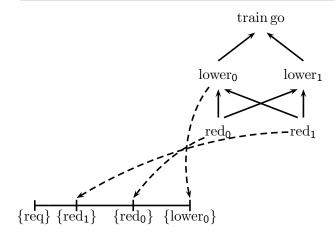
Extending Request-Reponse Games

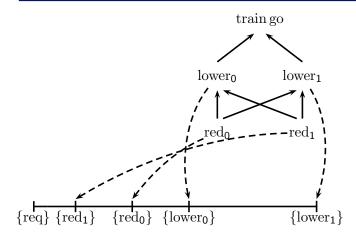




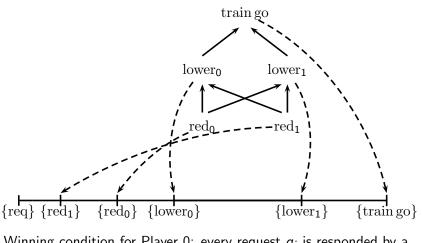








A Play



Winning condition for Player 0: every request q_j is responded by a later embedding of \mathcal{P}_j .

Theorem

Poset games are determined with finite-state strategies, i.e., in every poset games, one of the players has a finite-state winning strategy.

Theorem

Poset games are determined with finite-state strategies, i.e., in every poset games, one of the players has a finite-state winning strategy.

Proof:

Reduction to Büchi games; memory is used

- to store elements of the posets that still have to be embedded,
- to deal with overlapping embeddings,
- to implement a cyclic counter to ensure that every request is responded by an embedding.

Size of the memory: exponential in the size of the posets \mathcal{P}_j .

Waiting Times

As desired, a natural definition of waiting times is retained:

- Start a clock if a request is encountered...
- ... that is stopped as soon as the embedding is completed.
- Need a clock for every request (even if another request is already open).

Waiting Times

As desired, a natural definition of waiting times is retained:

- Start a clock if a request is encountered...
- ... that is stopped as soon as the embedding is completed.
- Need a clock for every request (even if another request is already open).
- Value of a play: limit superior of the average accumulated waiting time.
- Value of a strategy: value of the worst play consistent with the strategy.
- Corresponding notion of optimal strategies.

Theorem

If Player 0 has a winning strategy for a poset game G, then she also has an optimal winning strategy, which is finite-state and effectively computable.

Theorem

If Player 0 has a winning strategy for a poset game G, then she also has an optimal winning strategy, which is finite-state and effectively computable.

Proof:

- If Player 0 has a winning strategy, then she also has one of value less than a certain constant c (from reduction). This bounds the value of an optimal strategy, too.
- For every strategy of value ≤ c there is another strategy of smaller or equal value, that also bounds all waiting times and bounds the number of open requests.
- If the waiting times and the number of open requests are bounded, then G can be reduced to a mean-payoff game.

Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the poset game (holds already for RR-games). Needed: tight bounds on the length of a non-self-covering sequence of waiting time vectors.

Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the poset game (holds already for RR-games). Needed: tight bounds on the length of a non-self-covering sequence of waiting time vectors.

Also:

- Heuristic algorithms and approximatively optimal strategies.
- Lower bounds on the memory size of an optimal strategy.
- Direct computation of optimal strategies (without reduction to mean-payoff games).
- Other valuation functions for plays (e.g., discounting, $\limsup \sum_{i=1}^{k} t_i$).
- Tradeoff between size and value of a strategy.

Outline

1. Infinite Games

2. Poset Games

3. Parametric LTL Games

4. Finite-time Muller Games

5. Conclusion

Here, we consider winning conditions in linear temporal logic (LTL). Advantages of LTL as specification language are

- compact, variable-free syntax,
- intuitive semantics,
- successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.

Here, we consider winning conditions in linear temporal logic (LTL). Advantages of LTL as specification language are

- compact, variable-free syntax,
- intuitive semantics,
- successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.

Solution: Consider games with winning conditions in extensions of $\rm LTL$ that can express timing constraints.

LTL

Formulae of Linear temporal logic over P:

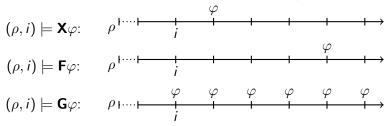
$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi$$

LTL

Formulae of Linear temporal logic over P:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi$$

LTL is evaluated at positions *i* of infinite words ρ over 2^{ρ} :



Parametric LTL

Let \mathcal{X} and \mathcal{Y} be two disjoint sets of variables. PLTL adds bounded temporal operators to LTL:

•
$$\mathbf{F}_{\leq x}$$
 for $x \in \mathcal{X}$,

•
$$\mathbf{G}_{\leq y}$$
 for $y \in \mathcal{Y}$.

Parametric LTL

Let \mathcal{X} and \mathcal{Y} be two disjoint sets of variables. PLTL adds bounded temporal operators to LTL:

•
$$\mathbf{F}_{\leq x}$$
 for $x \in \mathcal{X}$,

•
$$\mathbf{G}_{\leq y}$$
 for $y \in \mathcal{Y}$.

Semantics defined w.r.t. variable valuation $\alpha \colon \mathcal{X} \cup \mathcal{Y} \to \mathbb{N}$.

$$(\rho, i, \alpha) \models \mathbf{F}_{\leq x} \varphi; \quad \rho^{1} \xrightarrow{i} i \qquad i + \alpha(x) \xrightarrow{\varphi} (\rho, i, \alpha) \models \mathbf{G}_{\leq y} \varphi; \quad \rho_{1} \xrightarrow{\varphi} i \qquad i + \alpha(y) \xrightarrow{\varphi} i \qquad$$

Parametric LTL Games

PLTL game (\mathcal{A}, φ) :

- σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ consistent with σ : $(\rho, 0, \alpha) \models \varphi$.
- τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ consistent with τ : $(\rho, 0, \alpha) \not\models \varphi$.

Parametric LTL Games

PLTL game (\mathcal{A}, φ) :

- σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ consistent with σ : $(\rho, 0, \alpha) \models \varphi$.
- τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ consistent with τ : $(\rho, 0, \alpha) \not\models \varphi$.

The set of winning valuations for Player *i* is

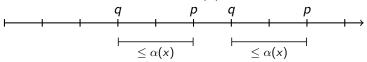
 $\mathcal{W}_{\mathcal{G}}^i = \{ \alpha \mid \mathsf{Player} \ i \ \mathsf{has} \ \mathsf{winning} \ \mathsf{strategy} \ \mathsf{for} \ \mathcal{G} \ \mathsf{w.r.t.} \ \alpha \} \ .$

We are interested in the emptiness, finiteness, and universality problem for W_G^i and in finding optimal valuations in W_G^i .

PLTL Games: Example

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x}p)$: "Every request q is eventually responded by p".

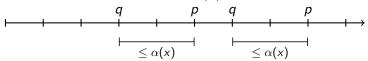
Player 0's goal: uniformly bound the waiting times between requests q and responses p by $\alpha(x)$.



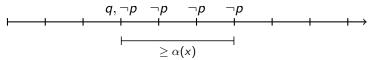
PLTL Games: Example

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x}p)$: "Every request q is eventually responded by p".

Player 0's goal: uniformly bound the waiting times between requests q and responses p by α(x).



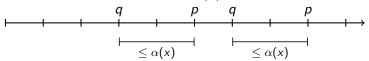
Player 1's goal: enforce waiting time greater than $\alpha(x)$.



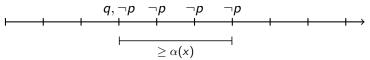
PLTL Games: Example

Winning condition $\mathbf{G}(q \to \mathbf{F}_{\leq x}p)$: "Every request q is eventually responded by p".

Player 0's goal: uniformly bound the waiting times between requests q and responses p by $\alpha(x)$.



Player 1's goal: enforce waiting time greater than $\alpha(x)$.



Note: the winning condition induces an optimization problem (for Player 0): minimize $\alpha(x)$.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

Theorem

Let \mathcal{G} be a PLTL game. The emptiness, finiteness, and universality problem for $\mathcal{W}_{\mathcal{G}}^{i}$ are **2EXPTIME**-complete.

Theorem (Pnueli, Rosner '89)

Determining the winner of an LTL game is **2EXPTIME**-complete.

Theorem

Let \mathcal{G} be a PLTL game. The emptiness, finiteness, and universality problem for $\mathcal{W}_{\mathcal{G}}^{i}$ are **2EXPTIME**-complete.

So, adding bounded temporal operators does increase the complexity of solving games.

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}_{\mathcal{G}}^{0}$?

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}^0_{\mathcal{G}}$?

Theorem

Let $\varphi_{\mathbf{F}}$ be $\mathbf{G}_{\leq y}$ -free and $\varphi_{\mathbf{G}}$ be $\mathbf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathbf{F}} = (\mathcal{A}, \varphi_{\mathbf{F}})$ and $\mathcal{G}_{\mathbf{G}} = (\mathcal{A}, \varphi_{\mathbf{G}})$. Then, the following values are computable: $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x)$.

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in $\mathcal{W}^0_{\mathcal{G}}$?

Theorem

Let $\varphi_{\mathbf{F}}$ be $\mathbf{G}_{\leq y}$ -free and $\varphi_{\mathbf{G}}$ be $\mathbf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathbf{F}} = (\mathcal{A}, \varphi_{\mathbf{F}})$ and $\mathcal{G}_{\mathbf{G}} = (\mathcal{A}, \varphi_{\mathbf{G}})$. Then, the following values are computable: $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x)$. $\min_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x)$. $\max_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \max_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y)$. $\max_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y)$.

If φ contains only $\mathbf{F}_{\leq x}$ respectively only $\mathbf{G}_{\leq y}$, then solving games is an optimization problem: which is the *best* valuation in \mathcal{W}_{G}^{0} ?

Theorem

Let $\varphi_{\mathbf{F}}$ be $\mathbf{G}_{\leq y}$ -free and $\varphi_{\mathbf{G}}$ be $\mathbf{F}_{\leq x}$ -free, let $\mathcal{G}_{\mathbf{F}} = (\mathcal{A}, \varphi_{\mathbf{F}})$ and $\mathcal{G}_{\mathbf{G}} = (\mathcal{A}, \varphi_{\mathbf{G}})$. Then, the following values are computable: $\mathbf{min}_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \max_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x)$. $\mathbf{min}_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{F}}}^{0}} \min_{x \in \operatorname{var}(\varphi_{\mathbf{F}})} \alpha(x)$. $\mathbf{max}_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \max_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y)$. $\mathbf{max}_{\alpha \in \mathcal{W}_{\mathcal{G}_{\mathbf{G}}}^{0}} \min_{y \in \operatorname{var}(\varphi_{\mathbf{G}})} \alpha(y)$.

Proof idea: obtain (double-exponential) upper bound k on the optimal value by a reduction to an LTL game. Then, perform binary search in the interval (0, k) to find the optimum.

Further research and Open Problems

- Again: tradeoff between size and quality of a finite-state strategy.
- Better algorithms for the optimization problems.
- Hardness results for the optimization problems.

Outline

- 1. Infinite Games
- 2. Poset Games
- 3. Parametric LTL Games
- 4. Finite-time Muller Games
- 5. Conclusion

 σ positional strategy: $\sigma(w)$ only depends on the last vertex of w.

- σ positional strategy: $\sigma(w)$ only depends on the last vertex of w.
 - Assume a game allows positional winning strategies for both players.
 - Then, we can stop a play as soon as the first loop is closed.
 - Winner is determined by infinite repetition of this loop.

- σ positional strategy: $\sigma(w)$ only depends on the last vertex of w.
 - Assume a game allows positional winning strategies for both players.
 - Then, we can stop a play as soon as the first loop is closed.
 - Winner is determined by infinite repetition of this loop.

Is there an analogous notion for games with finite-state strategies? Here, we consider Muller games.

Muller Games

• $\operatorname{Inf}(\rho) = \{ v \in V \mid \exists^{\omega} n \in \mathbb{N} \text{ such that } \rho_n = v \}.$

Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$. A play ρ is winning for Player *i*, if $\text{Inf}(\rho) \in \mathcal{F}_i$.

Muller Games

•
$$Inf(\rho) = \{ v \in V \mid \exists^{\omega} n \in \mathbb{N} \text{ such that } \rho_n = v \}.$$

Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$. A play ρ is winning for Player *i*, if $\text{Inf}(\rho) \in \mathcal{F}_i$.

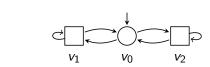
Theorem

Muller games are determined with finite-state strategies of size $|V| \cdot |V|!$.

Finite-time Muller Games

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player *i*, if $F \in \mathcal{F}_i$, where *F* is the first loop that is seen *k* times in a row.

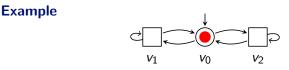
Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



Let k = 2: play

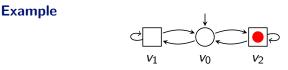
Example

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



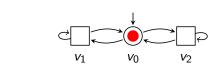
Let k = 2: play v_0

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



Let k = 2: play $v_0 v_2$

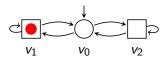
Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



Let k = 2: play $v_0 v_2 v_0$

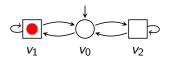
Example

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



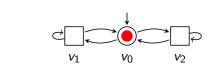
Let k = 2: play $v_0 v_2 v_0 v_1$

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



Let k = 2: play $v_0 v_2 v_0 v_1 v_1$

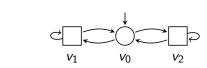
Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player i, if $F \in \mathcal{F}_i$, where F is the first loop that is seen k times in a row.



Let k = 2: play $v_0 v_2 v_0 v_1 v_1 v_0$.

Example

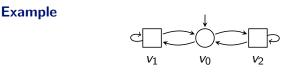
Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player *i*, if $F \in \mathcal{F}_i$, where *F* is the first loop that is seen *k* times in a row.



Example

Let k = 2: play $v_0 v_2 v_0 v_1 v_1 v_0$. $F = \{v_0, v_1\}$ seen twice.

Finite-time Muller game: $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$ such that $\{\mathcal{F}_0, \mathcal{F}_1\}$ is a partition of $2^V \setminus \{\emptyset\}$ and $k \ge 2$. A finite play w is winning for Player *i*, if $F \in \mathcal{F}_i$, where *F* is the first loop that is seen *k* times in a row.



Let k = 2: play $v_0 v_2 v_0 v_1 v_1 v_0$. $F = \{v_0, v_1\}$ seen twice.

Theorem

Finite-time Muller games are determined.

Theorem

Let \mathcal{A} be an arena and $k = |V|^2 \cdot |V|! + 1$. Player *i* wins the Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ iff she wins the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$.

Theorem

Let \mathcal{A} be an arena and $k = |V|^2 \cdot |V|! + 1$. Player *i* wins the Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ iff she wins the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, k)$.

Proof:

A finite-state winning strategy for Player *i* does not see $F \in \mathcal{F}_{1-i}$ *k* times in a row.

Conjecture

Player i wins the Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ iff she wins the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, 2)$.

Conjecture

Player i wins the Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1)$ iff she wins the finite-time Muller game $(\mathcal{A}, \mathcal{F}_0, \mathcal{F}_1, 2)$.

Also:

- Is there a natural definition of eager strategies?
- Complexity of solving a finite-time Muller game? It is just a reachability game (albeit a large one), so simple algorithms exist.
- Starting with a winning strategy for a finite-time Muller game, can we construct a (finite-state) winning strategy for the Muller game.

Outline

1. Infinite Games

- 2. Poset Games
- 3. Parametric LTL Games
- 4. Finite-time Muller Games
- 5. Conclusion

Collaboration

Three suggestions from my side:

- Request-response games and Poset games
- PLTL games
- Finite-time Muller games

Collaboration

Three suggestions from my side:

- Request-response games and Poset games
- PLTL games
- Finite-time Muller games

Thank you!