What are Strategies in Delay Games? Borel Determinacy for Games with Lookahead

Joint work with Felix Klein (Saarland University)

Martin Zimmermann

Saarland University

September 10th, 2015

CSL 2015, Berlin, Germany

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$egin{pmatrix} lpha(0)\ eta(0)\end{pmatrix} egin{pmatrix} lpha(1)\ eta(1)\end{pmatrix} \cdots \in {\it L}, ext{ if } eta(i)=lpha(i+2) ext{ for every } i \end{cases}$$

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

I: b О:

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

I: b а О: а а

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

I: b a b O: a a

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\binom{lpha(0)}{eta(0)}\binom{lpha(1)}{eta(1)}\dots\in L$$
, if $eta(i)=lpha(i+2)$ for every i

I: *b a b* ···· *O*: *a a* ···· *I* wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots$$

$$O: \quad a \quad a \quad \cdots$$

I wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \\ O: \quad a \quad a \quad \cdots \qquad O:$$

I wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

: b a b \cdots l: b a
: a a \cdots O:

I wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$f: \quad b \quad a \quad b \quad \cdots \quad I: \quad b \quad a \quad b$$

$$f: \quad a \quad a \quad \cdots \quad O:$$

$$wins$$

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$\vdots \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \\ \vdots \quad a \quad a \quad \cdots \qquad O: \quad b$$
wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$\vdots \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b$$

$$\vdots \quad a \quad a \quad \cdots \qquad O: \quad b$$
wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$\vdots \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b$$

$$\vdots \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$
wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$\vdots \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$

$$\vdots \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$

$$\text{wins}$$

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$\vdots \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$

$$\vdots \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a$$
wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b \\ 0: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \\ \text{wins}$$

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$l: \ b \ a \ b \ \cdots \qquad l: \ b \ a \ b \ b \ a \ b$$

$$l: \ a \ a \ \cdots \qquad O: \ b \ b \ a \ b$$
wins

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

Büchi-Landweber Theorem The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$

$$l: \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ \cdots$$

$$l: \ b \ a \ b \ b \ a \ b \ a \ \cdots$$

$$b: \ a \ a \ \cdots$$

$$O: \ b \ b \ a \ b \ a \ \cdots$$

$$wins \qquad O \text{ wins}$$

- **Delay function**: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$).
 - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).
- *O* wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \cdots \in L$.

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$.
- Two players: Input (1) vs. Output (0).
- In round i:
 - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$). ■ *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$).
- *O* wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)} \dots \in L$.

Special case:

- (delay-free) Gale-Stewart games: pick f(i) = 1 for all i.
- Notation: $\Gamma(L)$.

Fix some f.

- A strategy for I in $\Gamma_f(L)$ is a mapping $\tau \colon \Sigma_O^* \to \Sigma_I^+$ s.t. $|\tau(w)| = f(|w|)$.
- A strategy for O in $\Gamma_f(L)$ is a mapping $\sigma \colon \Sigma_I^* \to \Sigma_O$.

Fix some f.

- A strategy for I in $\Gamma_f(L)$ is a mapping $\tau \colon \Sigma_O^* \to \Sigma_I^+$ s.t. $|\tau(w)| = f(|w|)$.
- A strategy for O in $\Gamma_f(L)$ is a mapping $\sigma \colon \Sigma_I^* \to \Sigma_O$.

Note:

1. The definition for I depends (syntactically) on f.

Fix some f.

- A strategy for I in $\Gamma_f(L)$ is a mapping $\tau \colon \Sigma_O^* \to \Sigma_I^+$ s.t. $|\tau(w)| = f(|w|)$.
- A strategy for O in $\Gamma_f(L)$ is a mapping $\sigma \colon \Sigma_I^* \to \Sigma_O$.

Note:

- **1.** The definition for I depends (syntactically) on f.
- **2.** As usual, a strategy has only access to the opponent's moves. No restriction, since own moves can be reconstructed.
- **3.** But: for *O*, this depends on knowledge about *f*.

Fix some f.

- A strategy for I in $\Gamma_f(L)$ is a mapping $\tau \colon \Sigma_O^* \to \Sigma_I^+$ s.t. $|\tau(w)| = f(|w|)$.
- A strategy for O in $\Gamma_f(L)$ is a mapping $\sigma \colon \Sigma_I^* \to \Sigma_O$.

Note:

- **1.** The definition for I depends (syntactically) on f.
- **2.** As usual, a strategy has only access to the opponent's moves. No restriction, since own moves can be reconstructed.
- **3.** But: for *O*, this depends on knowledge about *f*.

So, both definitions depend on f.

A game is determined, if one of the players has a winning strategy.

A game is determined, if one of the players has a winning strategy.

Theorem (Martin '75)

Every Gale-Stewart game with Borel winning condition is determined.

A game is determined, if one of the players has a winning strategy.

Theorem (Martin '75)

Every Gale-Stewart game with Borel winning condition is determined.

Borel hierarchy: levels levels Σ_{α} and Π_{α} for every countable ordinal $\alpha > 0$:

•
$$\Sigma_1 = \{ L \subseteq \Sigma^{\omega} \mid L = K \cdot \Sigma^{\omega} \text{ for some } K \subseteq \Sigma^* \},$$

 $\blacksquare \Pi_{\alpha} = \{ \Sigma^{\omega} \setminus L \mid L \in \mathbf{\Sigma}_{\alpha} \} \text{ for every } \alpha, \text{ and }$

• $\Sigma_{\alpha} = \{\bigcup_{i \in \mathbb{N}} L_i \mid L_i \in \Pi_{\alpha_i} \text{ with } \alpha_i < \alpha \text{ for every } i\}$ for every $\alpha > 1$.

A game is determined, if one of the players has a winning strategy.

Theorem (Martin '75)

Every Gale-Stewart game with Borel winning condition is determined.

Borel hierarchy: levels levels Σ_{α} and Π_{α} for every countable ordinal $\alpha > 0$:

•
$$\Sigma_1 = \{L \subseteq \Sigma^{\omega} \mid L = K \cdot \Sigma^{\omega} \text{ for some } K \subseteq \Sigma^*\},$$

• $\Pi_{\alpha} = \{\Sigma^{\omega} \setminus L \mid L \in \Sigma_{\alpha}\} \text{ for every } \alpha, \text{ and}$
• $\Sigma_{\alpha} = \{\bigcup_{i \in \mathbb{N}} L_i \mid L_i \in \Pi_{\alpha_i} \text{ with } \alpha_i < \alpha \text{ for every } i\} \text{ for every } \alpha > 1.$

Our goal: Borel determinacy for delay games.

Borel Determinacy for Delay Games

Theorem

Let L be Borel and let f be a delay function. Then, $\Gamma_f(L)$ is determined.

Let L be Borel and let f be a delay function. Then, $\Gamma_f(L)$ is determined.

Proof.

• \triangleright : fresh skip-symbol not in Σ_O .

- shift_f(β) = $\triangleright^{f(0)-1}\beta(0) \triangleright^{f(1)-1}\beta(1) \triangleright^{f(2)-1}\beta(2) \cdots$
- shift_f(L) = { $\binom{\alpha}{\text{shift}_f(\beta)} \mid \binom{\alpha}{\beta} \in L$ }

Let L be Borel and let f be a delay function. Then, $\Gamma_f(L)$ is determined.

Proof.

• \triangleright : fresh skip-symbol not in Σ_O .

- shift_f(β) = $\triangleright^{f(0)-1}\beta(0) \triangleright^{f(1)-1}\beta(1) \triangleright^{f(2)-1}\beta(2) \cdots$
- $\operatorname{shift}_{f}(L) = \{ \begin{pmatrix} \alpha \\ \operatorname{shift}_{f}(\beta) \end{pmatrix} \mid \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in L \}$

Lemma

- **1.** $\operatorname{shift}_f(L)$ is Borel.
- **2.** I wins $\Gamma(\operatorname{shift}_f(L)) \Rightarrow I$ wins $\Gamma_f(L)$.
- **3.** O wins $\Gamma(\operatorname{shift}_f(L)) \Rightarrow O$ wins $\Gamma_f(L)$.

Example

$$L_0 \subseteq (\{a, b, c\} imes \{b, c\})^{\omega}$$
 with $\binom{lpha(0)}{eta(0)} \binom{lpha(1)}{eta(1)} \binom{lpha(2)}{eta(2)} \dots \in L_0$ if

•
$$\alpha(n) = a$$
 for every $n \in \mathbb{N}$, or

• $\beta(0) \neq \alpha(n)$, where *n* is the smallest position with $\alpha(n) \neq a$.

Example

$$L_0 \subseteq (\{a, b, c\} imes \{b, c\})^{\omega}$$
 with $\binom{lpha(0)}{eta(0)} \binom{lpha(1)}{eta(1)} \binom{lpha(2)}{eta(2)} \dots \in L_0$ if

•
$$\alpha(n) = a$$
 for every $n \in \mathbb{N}$, or

• $\beta(0) \neq \alpha(n)$, where *n* is the smallest position with $\alpha(n) \neq a$.

I wins $\Gamma_f(L_0)$ for every *f*:

•
$$\tau(\varepsilon) = a^{f(0)}$$
, and
• $\tau(w_0 \cdots w_{n-1}) = w_0^{f(n)}$.

Example

$$L_0 \subseteq (\{a, b, c\} imes \{b, c\})^{\omega}$$
 with $\binom{lpha(0)}{eta(0)} \binom{lpha(1)}{eta(1)} \binom{lpha(2)}{eta(2)} \dots \in L_0$ if

•
$$lpha({\it n})={\it a}$$
 for every ${\it n}\in\mathbb{N}$, or

• $\beta(0) \neq \alpha(n)$, where *n* is the smallest position with $\alpha(n) \neq a$.

I wins $\Gamma_f(L_0)$ for every *f*:

•
$$\tau(\varepsilon) = a^{f(0)}$$
, and
• $\tau(w_0 \cdots w_{n-1}) = w_0^{f(n)}$.

"Strategy" that is winning for every f: $au(\varepsilon) = a^{\omega}$, and $au(w_0 \cdots w_{n-1}) = w_0^{\omega}$.

Example

$$L_0 \subseteq (\{a, b, c\} imes \{b, c\})^{\omega}$$
 with $\binom{lpha(0)}{eta(0)} \binom{lpha(1)}{eta(1)} \binom{lpha(2)}{eta(2)} \dots \in L_0$ if

•
$$lpha({\it n})={\it a}$$
 for every ${\it n}\in\mathbb{N}$, or

• $\beta(0) \neq \alpha(n)$, where *n* is the smallest position with $\alpha(n) \neq a$.

I wins $\Gamma_f(L_0)$ for every *f*:

•
$$\tau(\varepsilon) = a^{f(0)}$$
, and
• $\tau(w_0 \cdots w_{n-1}) = w_0^{f(n)}$.

"Strategy" that is winning for every f: $\tau(\varepsilon) = a^{\omega}$, and $\tau(w_0 \cdots w_{n-1}) = w_0^{\omega}$.

We call such a strategy omnipotent for L_0 .

1. output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^\omega$.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^\omega$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau : \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau \colon \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.
 - Access to number of rounds and number of letters picked so far.
 - Still cannot reconstruct own moves.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau \colon \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.
 - Access to number of rounds and number of letters picked so far.
 - Still cannot reconstruct own moves.
- **3.** input-output-tracking strategy: $\tau \colon \Sigma_O^* \times \Sigma_I^* \to \Sigma_I^\omega$.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau : \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.
 - Access to number of rounds and number of letters picked so far.
 - Still cannot reconstruct own moves.
- **3.** input-output-tracking strategy: $\tau \colon \Sigma_O^* \times \Sigma_I^* \to \Sigma_I^\omega$.
 - Access to both player's move.
 - Cannot reconstruct when *O*'s moves where made.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^\omega$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau : \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.
 - Access to number of rounds and number of letters picked so far.
 - Still cannot reconstruct own moves.
- **3.** input-output-tracking strategy: $\tau \colon \Sigma_O^* \times \Sigma_I^* \to \Sigma_I^\omega$.
 - Access to both player's move.
 - Cannot reconstruct when *O*'s moves where made.
- **4.** history-tracking strategy: $\tau : (\Sigma_O \cup \{\triangleright\})^* \to \Sigma_I^{\omega}$.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
 - Access to number of rounds.
 - Cannot reconstruct own moves (not even numbers of letters picked so far).
- **2.** lookahead-counting strategy: $\tau : \Sigma_O^* \times \mathbb{N} \to \Sigma_I^\omega$.
 - Access to number of rounds and number of letters picked so far.
 - Still cannot reconstruct own moves.
- **3.** input-output-tracking strategy: $\tau \colon \Sigma_O^* \times \Sigma_I^* \to \Sigma_I^\omega$.
 - Access to both player's move.
 - Cannot reconstruct when *O*'s moves where made.
- **4.** history-tracking strategy: $\tau : (\Sigma_O \cup \{\triangleright\})^* \to \Sigma_I^{\omega}$.
 - Can reconstruct moves of each round.

- **1.** output-tracking strategy: $\tau \colon \Sigma_O^* \to \Sigma_I^{\omega}$.
- **2.** lookahead-counting strategy: $\tau : \Sigma_O^* \times \mathbb{N} \to \Sigma_I^{\omega}$.
- **3.** input-output-tracking strategy: $\tau \colon \Sigma_O^* \times \Sigma_I^* \to \Sigma_I^\omega$.
- **4.** history-tracking strategy: $\tau : (\Sigma_O \cup \{\triangleright\})^* \to \Sigma_I^{\omega}$.

These notions form a hierarchy, the first three can be separated:

Theorem

- **1.** Every output-tracking strategy is a lookahead-counting one.
- **2.** Every lookahead-counting strategy is an input-output tracking one.
- 3. Every input-output tracking strategy is a history tracking one.

Output-Tracking vs. Lookahead-Counting

Theorem

Let $L_1 = \{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mid \alpha \neq (ab)^{\omega} \}$. I has an omnipotent lookahead-counting strategy for L_1 , but no omnipotent output-tracking strategy.

Let $L_1 = \{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mid \alpha \neq (ab)^{\omega} \}$. I has an omnipotent lookahead-counting strategy for L_1 , but no omnipotent output-tracking strategy.

Proof.

Assume τ is omnipotent output-tracking strategy:

• We have
$$\tau(\varepsilon) = (ab)^{\omega}$$
.

Assume $\tau(c)$ starts with *a*. Then, τ is losing for every *f* with odd f(0) (other case dual).

Let $L_1 = \{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mid \alpha \neq (ab)^{\omega} \}$. I has an omnipotent lookahead-counting strategy for L_1 , but no omnipotent output-tracking strategy.

Proof.

Assume τ is omnipotent output-tracking strategy:

• We have
$$\tau(\varepsilon) = (ab)^{\omega}$$
.

Assume $\tau(c)$ starts with *a*. Then, τ is losing for every *f* with odd f(0) (other case dual).

The following lookahead-counting strategy is omnipotent:

$$au(x,n) = egin{cases} (ab)^{\omega} & n ext{ even}, \ (ba)^{\omega} & n ext{ odd}. \end{cases}$$

There is a winning condition L_2 such that I has an omnipotent input-output-tracking strategy for L_2 , but no omnipotent lookahead-counting strategy.

There is a winning condition L_2 such that I has an omnipotent input-output-tracking strategy for L_2 , but no omnipotent lookahead-counting strategy.

Open question:

Are omnipotent history-tracking strategies stronger than omnipotent input-output-tracking strategies?

1. *input-tracking* strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.

- **1.** input-tracking strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.
 - No access to number of rounds.
 - Cannot reconstruct own moves.

- **1.** input-tracking strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.
 - No access to number of rounds.
 - Cannot reconstruct own moves.
- **2.** round-counting strategy: $\sigma \colon \Sigma_I^* \times \mathbb{N} \to \Sigma_O$.

- **1.** input-tracking strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.
 - No access to number of rounds.
 - Cannot reconstruct own moves.
- **2.** round-counting strategy: $\sigma \colon \Sigma_I^* \times \mathbb{N} \to \Sigma_O$.
 - Access to number of rounds.
 - Cannot reconstruct own moves.

- **1.** input-tracking strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.
- **2.** round-counting strategy: $\sigma \colon \Sigma_I^* \times \mathbb{N} \to \Sigma_O$.

These notions form a strict hierarchy:

Theorem

- 1. Every input-tracking strategy is a round-counting one.
- **2.** There is a winning condition L₃ such that O has an omnipotent round-counting strategy for L₃, but no omnipotent input-tracking strategy.

- **1.** input-tracking strategy: $\sigma \colon \Sigma_I^* \to \Sigma_O$.
- **2.** round-counting strategy: $\sigma \colon \Sigma_I^* \times \mathbb{N} \to \Sigma_O$.

These notions form a strict hierarchy:

Theorem

- 1. Every input-tracking strategy is a round-counting one.
- There is a winning condition L₃ such that O has an omnipotent round-counting strategy for L₃, but no omnipotent input-tracking strategy.

Theorem

Either, I wins $\Gamma_f(L)$ for some f or O has an omnipotent round-counting strategy for L.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

- Open whether this is true for input-output-tracking strategies.
- Wrong for output-tracking and lookahead-counting strategies.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

- Open whether this is true for input-output-tracking strategies.
- Wrong for output-tracking and lookahead-counting strategies.

Proof.

• Let $\operatorname{skip}(L) = \bigcup_f \operatorname{shift}_f(L)$.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

- Open whether this is true for input-output-tracking strategies.
- Wrong for output-tracking and lookahead-counting strategies.

Proof.

• Let
$$\operatorname{skip}(L) = \bigcup_f \operatorname{shift}_f(L)$$
.

Lemma

1. skip(L) is Borel.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

- Open whether this is true for input-output-tracking strategies.
- Wrong for output-tracking and lookahead-counting strategies.

Proof.

• Let
$$\operatorname{skip}(L) = \bigcup_f \operatorname{shift}_f(L)$$
.

Lemma

- **1.** skip(L) is Borel.
- **2.** O wins $\Gamma(\operatorname{skip}(L)) \Rightarrow O$ wins $\Gamma_f(L)$ for some f.

Let I be Borel. Either, O wins $\Gamma_f(L)$ for some f or I has an omnipotent history-tracking strategy for L.

- Open whether this is true for input-output-tracking strategies.
- Wrong for output-tracking and lookahead-counting strategies.

Proof.

• Let
$$\operatorname{skip}(L) = \bigcup_f \operatorname{shift}_f(L)$$
.

Lemma

- **1.** skip(L) is Borel.
- **2.** O wins $\Gamma(skip(L)) \Rightarrow O$ wins $\Gamma_f(L)$ for some f.
- **3.** I wins $\Gamma(\operatorname{skip}(L)) \Rightarrow I$ has omnipotent history-tracking strategy for L.

Borel determinacy for delay-free games [Martin]:

 $\forall \sigma \exists \tau \ \rho(\sigma, \tau) \notin L \Leftrightarrow \exists \tau \ \forall \sigma \ \rho(\sigma, \tau) \notin L$

Borel determinacy for delay-free games [Martin]:

$$\forall \sigma \exists \tau \ \rho(\sigma, \tau) \notin L \Leftrightarrow \exists \tau \ \forall \sigma \ \rho(\sigma, \tau) \notin L$$

Our results:

■ Borel Determinacy for fixed *f*:

$$\forall \sigma \exists \tau \, \rho(\sigma, \tau, f) \notin \mathsf{L} \Leftrightarrow \exists \tau \, \forall \sigma \, \rho(\sigma, \tau, f) \notin \mathsf{L}$$

Borel determinacy for delay-free games [Martin]:

 $\forall \sigma \exists \tau \ \rho(\sigma, \tau) \notin L \Leftrightarrow \exists \tau \ \forall \sigma \ \rho(\sigma, \tau) \notin L$

Our results:

Borel Determinacy for fixed *f*:

$$\forall \sigma \exists \tau \, \rho(\sigma, \tau, f) \notin L \Leftrightarrow \exists \tau \, \forall \sigma \, \rho(\sigma, \tau, f) \notin L$$

Borel Determinacy for arbitrary *f*:

 $\forall f \,\forall \sigma \,\exists \tau \,\rho(\sigma,\tau,f) \notin L \Leftrightarrow \exists \tau \,\forall f \,\forall \sigma \,\rho(\sigma,\tau,f) \notin L$

Borel determinacy for delay-free games [Martin]:

 $\forall \sigma \exists \tau \ \rho(\sigma, \tau) \notin L \Leftrightarrow \exists \tau \ \forall \sigma \ \rho(\sigma, \tau) \notin L$

Our results:

Borel Determinacy for fixed *f*:

$$\forall \sigma \exists \tau \, \rho(\sigma, \tau, f) \notin L \Leftrightarrow \exists \tau \, \forall \sigma \, \rho(\sigma, \tau, f) \notin L$$

Borel Determinacy for arbitrary *f*:

$$\forall f \,\forall \sigma \,\exists \tau \,\rho(\sigma,\tau,f) \notin L \Leftrightarrow \exists \tau \,\forall f \,\forall \sigma \,\rho(\sigma,\tau,f) \notin L$$

(Un)decidability results, e.g., it is decidable whether *I* has an omnipotent strategy for a given ω-regular *L*.