Prophecies all the Way: Game-based Model-Checking for HyperQPTL beyond ∀*∃*

Joint work with Sarah Winter (IRIF, Paris)

Martin Zimmermann

Aalborg University

CONCUR 2025, Aarhus, Denmark

Prophecies all the Way: Game-based Model-Checking for HyperLTL beyond ∀*∃*

Joint work with Sarah Winter (IRIF, Paris)

Martin Zimmermann

Aalborg University

CONCUR 2025, Aarhus, Denmark

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

 $\{\mathtt{init},\mathtt{i}_{\mathsf{pblc}}\}$

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

$$\{\texttt{init}, \texttt{i}_{\mathsf{pblc}}\} \qquad \{\texttt{i}_{\mathsf{scrt}}\}$$

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

$$\{\texttt{init}, \texttt{i}_{\texttt{pblc}}\} \qquad \{\texttt{i}_{\texttt{scrt}}\} \qquad \{\texttt{i}_{\texttt{pblc}}\}$$

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

 $\{\texttt{init}, \texttt{i}_{\texttt{pblc}}\} \qquad \{\texttt{i}_{\texttt{scrt}}\} \qquad \{\texttt{i}_{\texttt{pblc}}\} \qquad \{\texttt{i}_{\texttt{scrt}}, \texttt{o}_{\texttt{pblc}}, \texttt{term}\}$

Trace-based view on S: observe execution traces, i.e., infinite sequences over 2^{AP} for some set AP of atomic propositions.

$$\{init, i_{pblc}\}$$
 $\{i_{scrt}\}$ $\{i_{pblc}\}$ $\{i_{scrt}, o_{pblc}, term\}$ \emptyset .

 \blacksquare \mathcal{S} terminates

- \blacksquare \mathcal{S} terminates
- \blacksquare S terminates within a uniform time bound

- \blacksquare \mathcal{S} terminates
- \blacksquare S terminates within a uniform time bound
- Noninterference: for all traces t, t' of S, if t and t' coincide on their projection to their public inputs, then they also coincide on their projection to the public outputs.

- \blacksquare \mathcal{S} terminates
- \blacksquare S terminates within a uniform time bound
- Noninterference: for all traces t, t' of S, if t and t' coincide on their projection to their public inputs, then they also coincide on their projection to the public outputs.
- Noninterference for nondeterministic systems: for all traces t, t' of S there exists a trace t'' of S such that t'' and t coincide on their projection to public inputs and outputs and t'' and t' coincide on their projection to secret inputs.

- \blacksquare \mathcal{S} terminates
- \blacksquare S terminates within a uniform time bound
- Noninterference: for all traces t, t' of S, if t and t' coincide on their projection to their public inputs, then they also coincide on their projection to the public outputs.
- Noninterference for nondeterministic systems: for all traces t, t' of S there exists a trace t'' of S such that t'' and t coincide on their projection to public inputs and outputs and t'' and t' coincide on their projection to secret inputs.

Remark

- The first property can be checked by inspecting each trace in isolation (a trace property), but
- the other three properties can only be checked by reasoning about multiple traces simultaneously (hyperproperties).

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

where $a \in AP$

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

where $a \in AP$

Semantics

$$w \models a$$
:

•
$$w \models X \varphi$$
:

•
$$w \models \varphi_0 \cup \varphi_1$$
:

$$\varphi_0$$
 φ_0 φ_0 φ_0 φ_1 φ_0

LTL in One Slide

Syntax

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

where $a \in AP$

Semantics

$$w \models a$$
:

$$\mathbf{w} \models \mathsf{X} \varphi$$
:

$$w \vdash \varphi$$

•
$$w \models \varphi_0 \cup \varphi_1$$
:

Syntactic Sugar

$$\blacksquare$$
 F $\psi = \operatorname{tt} \mathsf{U} \psi$

$$\blacksquare \mathsf{G} \psi = \neg \mathsf{F} \neg \psi$$

HyperLTL

HyperLTL = LTL + trace quantification

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$
$$\psi ::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathsf{X} \ \psi \mid \psi \ \mathsf{U} \ \psi$$

where $a \in AP$ and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

$\mathsf{HyperLTL} = \mathsf{LTL} + \mathsf{trace} \ \mathsf{quantification}$

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$

$$\psi ::= \mathbf{a}_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathsf{X} \ \psi \mid \psi \ \mathsf{U} \ \psi$$

where $a \in AP$ and $\pi \in \mathcal{V}$ (trace variables).

- Prenex normal form, but
- closed under boolean combinations.

HyperLTL

$\mathsf{HyperLTL} = \mathsf{LTL} + \mathsf{trace} \ \mathsf{quantification}$

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$

$$\psi ::= \mathbf{a}_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathsf{X} \ \psi \mid \psi \ \mathsf{U} \ \psi$$

where $a \in AP$ and $\pi \in \mathcal{V}$ (trace variables).

- Prenex normal form, but
- closed under boolean combinations.
- Time passes synchronously on the quantified traces.

Examples

■ Noninterference:

$$\forall \pi \forall \pi'. \ \mathsf{G}((\mathit{i}_{\mathsf{pblc}})_{\pi} \leftrightarrow (\mathit{i}_{\mathsf{pblc}})_{\pi'}) \rightarrow \mathsf{G}((\mathit{o}_{\mathsf{pblc}})_{\pi} \leftrightarrow (\mathit{o}_{\mathsf{pblc}})_{\pi'})$$

Examples

■ Noninterference:

$$\forall \pi \forall \pi'. \ \mathsf{G}((i_{\mathsf{pblc}})_{\pi} \leftrightarrow (i_{\mathsf{pblc}})_{\pi'}) \rightarrow \mathsf{G}((o_{\mathsf{pblc}})_{\pi} \leftrightarrow (o_{\mathsf{pblc}})_{\pi'})$$

■ Noninterference for nondeterministic systems:

$$\forall \pi \forall \pi' \exists \pi''. \ \mathsf{G}((i_{\mathsf{pblc}})_{\pi} \leftrightarrow (i_{\mathsf{pblc}})_{\pi''}) \land \\ \mathsf{G}((o_{\mathsf{pblc}})_{\pi} \leftrightarrow (o_{\mathsf{pblc}})_{\pi''}) \land \\ \mathsf{G}((i_{\mathsf{scrt}})_{\pi'} \leftrightarrow (i_{\mathsf{scrt}})_{\pi''})$$

Examples

■ Noninterference:

$$\forall \pi \forall \pi'. \ \mathsf{G}((i_{\mathsf{pblc}})_{\pi} \leftrightarrow (i_{\mathsf{pblc}})_{\pi'}) \rightarrow \mathsf{G}((o_{\mathsf{pblc}})_{\pi} \leftrightarrow (o_{\mathsf{pblc}})_{\pi'})$$

■ Noninterference for nondeterministic systems:

$$\forall \pi \forall \pi' \exists \pi''. \ \mathsf{G}((i_{\mathsf{pblc}})_{\pi} \leftrightarrow (i_{\mathsf{pblc}})_{\pi''}) \land \\ \mathsf{G}((o_{\mathsf{pblc}})_{\pi} \leftrightarrow (o_{\mathsf{pblc}})_{\pi''}) \land \\ \mathsf{G}((i_{\mathsf{scrt}})_{\pi'} \leftrightarrow (i_{\mathsf{scrt}})_{\pi''})$$

S terminates within a uniform time bound. Not expressible in HyperLTL.

The HyperLTL model-checking problem:

Given a finite transition system S and φ , does $Traces(S) \models \varphi$?

The HyperLTL model-checking problem:

Given a finite transition system S and φ , does $Traces(S) \models \varphi$?

Recall: The LTL model-checking problem is PSPACE-complete.

The HyperLTL model-checking problem:

Given a finite transition system S and φ , does $Traces(S) \models \varphi$?

Recall: The LTL model-checking problem is PSPACE-complete.

Theorem (Clarkson et al. '14, Rabe '16)

The HyperLTL model-checking problem is TOWER-complete (in the number of quantifier alternations).

The HyperLTL model-checking problem:

Given a finite transition system S and φ , does $Traces(S) \models \varphi$?

Recall: The LTL model-checking problem is PSPACE-complete.

Theorem (Clarkson et al. '14, Rabe '16)

The HyperLTL model-checking problem is TOWER-complete (in the number of quantifier alternations).

Bottleneck of the "classical" algorithm: complementation of Büchi automata.

Proof:

■ Given φ , we replace every $\forall \pi$. by $\neg \exists \pi . \neg$.

- Given φ , we replace every $\forall \pi$. by $\neg \exists \pi . \neg$.
- We construct, by induction over the quantifier prefix, non-determinstic Büchi automata accepting exactly the variable assignments satisfying the subformulas of φ .
- Then, we obtain an automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.

- Given φ , we replace every $\forall \pi$. by $\neg \exists \pi . \neg$.
- We construct, by induction over the quantifier prefix, non-determinstic Büchi automata accepting exactly the variable assignments satisfying the subformulas of φ .
- Then, we obtain an automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for the LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_j .

- Given φ , we replace every $\forall \pi$. by $\neg \exists \pi . \neg$.
- We construct, by induction over the quantifier prefix, non-determinstic Büchi automata accepting exactly the variable assignments satisfying the subformulas of φ .
- Then, we obtain an automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for the LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S (involves product with S).

- Given φ , we replace every $\forall \pi$. by $\neg \exists \pi . \neg$.
- We construct, by induction over the quantifier prefix, non-determinstic Büchi automata accepting exactly the variable assignments satisfying the subformulas of φ .
- Then, we obtain an automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for the LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S (involves product with S).
 - For $\neg \theta$ complement automaton for θ .

Consider a formula of the form $\forall \pi_0 \exists \pi_1. \ \psi$ with quantifier-free ψ .

■ Its semantics can be captured by a two-player perfect-information zero-sum game:

Consider a formula of the form $\forall \pi_0 \exists \pi_1. \ \psi$ with quantifier-free ψ .

- Its semantics can be captured by a two-player perfect-information zero-sum game:
 - Challenger picks a trace t_0 for π_0 .

Consider a formula of the form $\forall \pi_0 \exists \pi_1. \ \psi$ with quantifier-free ψ .

- Its semantics can be captured by a two-player perfectinformation zero-sum game:
 - Challenger picks a trace t_0 for π_0 .
 - Then, Prover picks a trace t_1 for π_1 .

Consider a formula of the form $\forall \pi_0 \exists \pi_1. \ \psi$ with quantifier-free ψ .

- Its semantics can be captured by a two-player perfectinformation zero-sum game:
 - Challenger picks a trace t_0 for π_0 .
 - Then, Prover picks a trace t_1 for π_1 .
 - Prover wins if the assignment

$$\{\pi_0 \mapsto t_0, \pi_1 \mapsto t_1\}$$

satisfies ψ .

Games to the Rescue

Consider a formula of the form $\forall \pi_0 \exists \pi_1. \ \psi$ with quantifier-free ψ .

- Its semantics can be captured by a two-player perfectinformation zero-sum game:
 - Challenger picks a trace t_0 for π_0 .
 - Then, Prover picks a trace t_1 for π_1 .
 - Prover wins if the assignment

$$\{\pi_0 \mapsto t_0, \pi_1 \mapsto t_1\}$$

satisfies ψ .

Remark

- The game is sound and complete,
- but it is in general not algorithmically solvable.

.. are algorithmically more appealing..

 π_0

 π_1

.. are algorithmically more appealing..

 π_0 t_0^0

 π_1

.. are algorithmically more appealing..

 π_1 t_1^0

.. are algorithmically more appealing..

.. are algorithmically more appealing..

.. are algorithmically more appealing..

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 π_1

 t_1^0

 t_1^1

 t_{1}^{2}

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 t_0^3

 π_1

 t_1^0

 t_{1}^{1}

 t_{1}^{2}

.. are algorithmically more appealing..

 π_0 t

 t_0^1

 t_0^2

 t_0^3

 π_1

 t_1^0

 t_1^1

 t_{1}^{2}

 t_1^3

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 t_0^3

 t_0^4

 π_1

 t_1^0

 t_1^1

 t_{1}^{2}

 t_1^3

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 t_0^3

 t_0^4

 π_1

 t_1^0

 t_1^1

 t_{1}^{2}

 t_1^3

 t_{1}^{4}

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 t_0^3

 t_0^4

. .

 π_1

 t_1^0

 t_1^1

 t_{1}^{2}

 t_1^3

 t_{1}^{4}

.. are algorithmically more appealing..

 π_0 t_0^0

 t_0^1

 t_0^2

 t_0^3

 t_0^4

. .

 π_1

 t_1^0

 t_1^1

 t_1^2

 t_1^3

 t_{1}^{4}

. . .

.. are algorithmically more appealing..

.. and sound, but not complete.

.. are algorithmically more appealing..

.. and sound, but not complete.

Example

Consider the formula

$$\varphi = \forall \pi \exists \pi'. (\mathsf{F} \, \mathsf{a}_{\pi}) \leftrightarrow \mathsf{a}_{\pi'}.$$

 $(2^{\{a\}})^{\omega}$ satisfies φ , but Prover loses the sequential game.

■ Intuitively, Prover is at a disadvantage, because she does not get access to the full trace *t* when making her first move.

- Intuitively, Prover is at a disadvantage, because she does not get access to the full trace *t* when making her first move.
- But she does not need to, limited information is sufficient: In the example, knowing whether *t* contains an *a* or not.

- Intuitively, Prover is at a disadvantage, because she does not get access to the full trace *t* when making her first move.
- But she does not need to, limited information is sufficient: In the example, knowing whether *t* contains an *a* or not.
- A prophecy is an ω -language, Challenger has to specify in each round whether the suffix of the trace he picks is in the prophecy or not. If he cheats, he loses.

- Intuitively, Prover is at a disadvantage, because she does not get access to the full trace *t* when making her first move.
- But she does not need to, limited information is sufficient: In the example, knowing whether *t* contains an *a* or not.
- A prophecy is an ω -language, Challenger has to specify in each round whether the suffix of the trace he picks is in the prophecy or not. If he cheats, he loses.

Theorem [Beutner and Finkbeiner '22]

For every transition system \mathcal{S} and every $\forall^*\exists^*$ HyperLTL formula φ there is a finite set of prophecies such that $\mathcal{S} \models \varphi$ if and only if Prover wins the induced game with prophecies (which is a finite parity game).

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

 π_0

 π_1

 π_2

 π_3

- π_2
- π_3

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

$$\pi_1$$
 t_1^0

 π_2

 π_3

$$\pi_1$$
 t_1^0

$$\pi_2$$
 t_2^0

$$\pi_3$$

$$\pi_1$$
 t_1^0

$$\pi_2$$
 t_2^0

$$\pi_3$$
 t_3^0

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

 t_3^0

 π_3

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

$$\pi_0$$
 t_0^0 t_0^1 t_0^2 t_0^2 π_1 t_1^0 t_1^1 t_1^2 π_2 t_2^0 t_2^1

 t_3^0

 π_3

 t_3^1

$$\pi_0$$
 t_0^0 t_0^1 t_0^2 t_0^2
 π_1 t_1^0 t_1^1 t_1^2
 π_2 t_2^0 t_2^1 t_2^2
 π_3 t_3^0 t_3^1 t_3^2 t_3^2

$$\pi_0$$
 t_0^0 t_0^1 t_0^2 t_0^3 t_0^3 t_0^3 t_0^4 t_0^4

$$\pi_0$$
 t_0^0

$$t_0^1$$

$$t_0^2$$

$$t_0^3$$

$$\pi_1$$

$$t_1^0$$

$$t_{1}^{2}$$

$$t_{1}^{3}$$

$$\pi_2$$

$$t_{2}^{0}$$

$$t_2^1$$

$$t_{2}^{2}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_{3}^{1}$$

$$t_{3}^{2}$$

$$\pi_0$$
 t_0^0

$$t_0^1$$

$$t_0^2$$

$$t_0^3$$

$$\pi_1$$

$$t_1^0$$
 t_2^0

$$t_{1}^{2}$$

$$t_{1}^{3}$$

$$\pi_2$$

$$t_{2}^{0}$$

$$t_2^1$$

$$t_{2}^{2}$$

$$t_{2}^{3}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_3^1$$

$$t_{3}^{2}$$

$$\pi_0$$
 t_0^0 t_0^1 t_0^2

$$\pi_1$$
 $\begin{bmatrix} t_1^0 \end{bmatrix}$ $\begin{bmatrix} t_1^1 \end{bmatrix}$ $\begin{bmatrix} t_1^2 \end{bmatrix}$ $\begin{bmatrix} t_1^3 \end{bmatrix}$

$$\pi_2$$
 t_2^0 t_2^1 t_2^2 t_2^3

$$\pi_3$$
 t_3^0 t_3^1 t_3^2 t_3^3

$$\pi_0$$
 t_0^0

$$t_0^1$$

$$t_0^2$$

$$t_0^3$$

$$t_0^4$$

$$\pi_1$$

$$t_1^0$$

$$t_1^1$$

$$t_1^2$$

$$t_{1}^{3}$$

$$\pi_2$$

$$t_{2}^{0}$$

$$t_2^1$$

$$t_{2}^{2}$$

$$t_{2}^{3}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_{3}^{1}$$

$$t_{3}^{2}$$

$$t_3^3$$

$$\pi_0$$
 t_0^0

$$t_0^1$$

$$t_0^2$$

$$t_0^3$$

$$t_0^4$$

$$\pi_1$$

$$t_1^0$$

$$t_1^1$$

$$t_1^2$$

$$t_1^3$$

$$t_{1}^{4}$$

$$\pi_2$$

$$t_{2}^{0}$$

$$t_2^1$$

$$t_{2}^{2}$$

$$t_{2}^{3}$$

$$t_{2}^{4}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_{3}^{1}$$

$$t_{3}^{2}$$

$$t_{3}^{3}$$

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

 π_0

 π_1

 t_2^3

 π_3

 π_2

 t_3^0

 t_3^1

 t_2^1

 t_3^2

 t_3^3

 t_3^4

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

 π_0 t_0^0

_0

₊1

.2

 t_0^3

 t_0^4

• •

 π_1

 t_1^0

 t_1^{\perp}

 t_2^1

+2

 t_{2}^{3}

 t_2^4

 π_3

 π_2

 t_{3}^{0}

 t_{3}^{1}

 t_{3}^{2}

 t_{3}^{3}

 t_{3}^{4}

$$\pi_0$$
 t_0^0

$$t_0^1$$

$$t_0^2$$

$$t_0^3$$

$$t_0^4$$

$$\pi_1$$

$$t_1^0$$

$$t_1^1$$

$$t_1^2$$

$$t_1^3$$

$$t_{1}^{4}$$

$$\pi_2$$

$$t_{2}^{0}$$

$$t_2^1$$

$$t_{2}^{2}$$

$$t_{2}^{3}$$

$$t_{2}^{4}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_{3}^{1}$$

$$t_{3}^{2}$$

$$t_{3}^{3}$$

$$t_{3}^{4}$$

$$\pi_0$$
 t_0^0

$$t_0^{\circ}$$
 t_0°

$$t_0^2$$

$$t_0^3$$

$$t_0^4$$

$$\pi_1$$

$$t_1^0$$

$$t_1^1$$

$$t_1^2$$

$$t_1^{\circ}$$

$$t_1^4$$

$$\pi_2$$

$$t_2^0$$

$$t_2^1$$

$$t_{2}^{2}$$

$$t_{2}^{3}$$

$$t_{2}^{4}$$

$$\pi_3$$

$$t_{3}^{0}$$

$$t_{3}^{1}$$

$$t_{3}^{2}$$

$$t_{3}^{3}$$

$$t_{3}^{4}$$

Consider a formula of the form $\forall \pi_0 \exists \pi_1 \forall \pi_2 \exists \pi_3$. ψ with quantifier-free ψ .

π_0	t_0^0	t_0^1	t_0^2	t_0^3	t_0^4	
π_1	t_1^0	t_1^1	t_1^2	t_1^3	t_1^4	
π_2	t_2^0	t_2^1	t_2^2	t_2^3	t_2^4	
π_3	t_3^0	t_3^1	t_3^2	t_3^3	t ₃ ⁴	

We need imperfect information to ensure that π_1 does not depend on π_2 and π_3 .

Theorem

Theorem

- A set of prophecies for each existentially quantified variable with consistency requirements between prophecies.
- Careful setup so that prophecies do not "leak" information.

Theorem

- A set of prophecies for each existentially quantified variable with consistency requirements between prophecies.
- Careful setup so that prophecies do not "leak" information.
- As many players as variable alternations.

Theorem

- A set of prophecies for each existentially quantified variable with consistency requirements between prophecies.
- Careful setup so that prophecies do not "leak" information.
- As many players as variable alternations.
- The tower bounding the runtime of our algorithm is "taller" than the lower bound for HyperLTL model-checking.

Theorem

- A set of prophecies for each existentially quantified variable with consistency requirements between prophecies.
- Careful setup so that prophecies do not "leak" information.
- As many players as variable alternations.
- The tower bounding the runtime of our algorithm is "taller" than the lower bound for HyperLTL model-checking.
- Also, we complement Büchi automata.